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ABSTRACT 

Two fundamental properties of perception are selective attention and perceptual contrast, but how 

these two processes interact remains unknown. Does an attended stimulus history exert a larger 

contrastive influence on the perception of a following target than unattended stimuli? Dutch listeners 

categorized target sounds with a reduced prefix “ge-” marking tense (e.g., ambiguous between gegaan-

gaan “gone-go”). In ‘single talker’ Experiments 1-2, participants perceived the reduced syllable 

(reporting gegaan) when the target was heard after a fast sentence, but not after a slow sentence 

(reporting gaan). In ‘selective attention’ Experiments 3-5, participants listened to two simultaneous 

sentences from two different talkers, followed by the same target sounds, with instructions to attend 

only one of the two talkers. Critically, the speech rates of attended and unattended talkers were found 

to equally influence target perception – even when participants could watch the attended talker speak. 

In fact, participants’ target perception in ‘selective attention’ Experiments 3-5 did not differ from 

participants who were explicitly instructed to divide their attention equally across the two talkers 

(Experiment 6). This suggests that contrast effects of speech rate are immune to selective attention, 

largely operating prior to attentional stream segregation in the auditory processing hierarchy. 
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INTRODUCTION 

Perception typically relies on relative, rather than absolute, coding strategies. That is, perception 

relies on the encoding of contrast, which enhances processing of information that is most likely to be 

informative 1,2. A second key feature of perception is attentional enhancement, which improves the 

processing of high-priority stimuli in the environment at the expense of less relevant stimuli 3. These 

two fundamental processing principles are thought to play a critical role in the ability of biological 

systems to survive in their typically highly variable environments by allowing them to recognize 

meaningful items despite variability in their appearance and despite various forms of background noise 

4. Both contrast enhancement and selective attention have been found to operate on a range of perceptual 

features such as brightness, hue, pitch, loudness, and temperature, to name a few. How they are related 

to each other is less well understood. 

One domain in which these two principles play a critical role is human speech perception. In the case 

of contrast enhancement, it has been demonstrated that stimulus histories affect the processing of both 

spectral and temporal information in speech 5–8. These effects of stimulus history are known as acoustic 

context effects. To exemplify, when the length of the second unstressed syllable in “terror” /'tɛɹ.əɹ/ is 

gradually decreased, it eventually sounds like the word “tear” /'tɛɹ/. Yet, for ambiguous (i.e, perceptually 

bistable) items, perception of the second syllable is in fact dependent on the rate of surrounding speech. 

This effect of the contextual speech rate is contrastive: after a fast-spoken sentence an ambiguous token 

sounds relatively long (compared to the fast sounds of the context), which biases listeners towards 

perceiving “terror”. Conversely, in the context of a slow sentence, the final syllable sounds relatively 

short, resulting in the perception of “tear”. That is, in a slow context, syllables can disappear from 

perception 9,10. This acoustic context effect induced by the surrounding speech rate, known as a temporal 

contrast effect or rate normalization, has been shown to influence a wide range of different duration-

based phonological cues such as voice onset time VOT; 11,12, formant transition duration 13, vowel duration 

14,15, lexical stress 16, and word segmentation 17,18. In fact, a similar contrastive effect is found in the 
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spectral domain: a sentence with a relatively low first formant (F1) can bias the perception of a following 

target with an ambiguous F1 (e.g., ambiguous between “bit”  and “bet”) towards a high F1 percept 

(“bet”; known as a spectral contrast effect or spectral normalization 6,19,20). 

Selective attention is also critical in natural spoken communication because it allows listeners to 

enhance the processing of speech from a specific speaker and/or direction in multi-talker environments 

(i.e., ‘cocktail party’ settings 21,22). While most listeners can resolve the multi-talker problem, it poses 

considerable trouble for automatic speech recognition systems and hearing impaired individuals 23. One 

of the ways in which the auditory system deals with competing speech streams is by selectively 

enhancing the strength of the neural representations of the attended stream in auditory cortex 24,25, 

involving a form of gain control 26. However, little is known about how contrast enhancement and 

selective attention interact. Recently, evidence has been provided that spectral contrast effects are 

modulated by selective attention 27: when presented with two context sentences at the same time, only 

the spectral properties of the attended sentence influence the perception of a following spectrally 

ambiguous vowel 28. However, whether temporal contrast effects are also modulated by selective 

attention remains unknown. 

More specifically, it is unclear whether the speech rate of unattended stimuli does or does not induce 

contrastive effects on the perception of a following attended target. This issue is highly relevant to 

speech perception because cocktail parties not only involve different people talking at the same time, 

those talkers are typically also speaking at different rates. More fundamentally, if unattended speech 

affects duration perception to the same extent as attended speech, it would support a cognitive 

processing hierarchy in which temporal contrast effects operate before influences of selective attention 

29. Interestingly, both temporal contrast effects and selective attention affect the processing of sound 

from early auditory processing levels onwards – but their relative temporal ordering is unknown. For 

instance, temporal contrast effects modulate the uptake of duration cues immediately upon target 

presentation and have also been observed for non-speech contexts, such as sequences of tones 5,13,but see 

30 and even in non-human species 31. Moreover, acoustic context effects in general also appear when 

listeners perform demanding concurrent tasks in the visual domain 29. 
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One neural mechanism thought to specifically underlie temporal contrast effects involves sustained 

entrainment of endogenous neural oscillators, phase-locking to the preceding syllabic rate 32. These 

entrained neural rhythms have been found to persist for a few cycles after the driving rhythm has ceased 

33, thus influencing the temporal parsing window of following speech segments 5,34,35. Similarly, the 

effects of selective attention on auditory perception are thought to occur early in perception 36,37 and 

have also been mechanistically explained in terms of phase-locking of low-frequency activity in 

auditory cortex, but then specifically to the attended speech stream 3,33,34,38. This overlap in neural 

mechanisms may hence allow selective gain control to influence temporal contrast effects by enhancing 

the cortical tracking of attended speech, such that this enhanced entrainment also has a stronger 

influence on subsequent speech parsing (compared to ignored speech). On the other hand, the sustained 

influence of neural entrainment that is suggested to underlie temporal contrast effects may in fact 

originate from earlier (more peripheral) processing stages than the enhancement due to selective 

attention. Hence, we investigated whether temporal contrast effects reflect the tuning-in to the attended 

speaker, or whether they precede the influences of attention, being based on the global (combined 

attended and unattended) sensory environment. 

The present study relied on the Dutch morphological prefix ge- /xə-/ (e.g., forming the past participle 

on verbs; e.g., gegaan /xə.'xa:n/ “gone” vs. gaan /'xa:n/ “to go”) that is often reduced or elided before 

/x/-initial stems in spontaneous conversation 39. We asked Dutch participants to categorize a range of 

ge-initial Dutch words (Supplementary Table S1) that spanned a perceptually ambiguous space between 

‘prefix present’ (e.g., gegaan) and ‘prefix absent’ forms (gaan) by shortening the prefix ge- in a number 

of steps (Figure 1a). Critically, these target words were preceded by one or two fast (average syllable 

rate = 5.67 Hz) and slow (2.84 Hz) Dutch context sentences (200 in total; cf. Supplementary Table S2). 

In ‘single talker’ Experiments 1-2, we used single context sentences (presented binaurally) followed 

by target words (Figure 1b) to demonstrate that slow contexts led participants to miss the initial syllable 

ge- (e.g., more gaan reports), even when context sentences were spoken in a different voice than the 

target. In ‘selective attention’ Experiments 3-5, two lexically different (duration-matched) context 

sentences were presented to different ears (SNR = 0 dB) with instructions to attend to only one of them. 
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Rate manipulations were fully mixed: on a given trial, one context sentence could be fast or slow, 

combined with another context sentence being either fast or slow (i.e., intermixed rate-matching and 

rate-mismatching trials). If selective attention modulated temporal contrast effects induced by preceding 

speech rates, we would expect a higher proportion of ‘prefix present’ responses when participants attend 

a fast context sentence, compared to trials in which they attend a slow context sentence, independently 

of the rate of the competing speaker. If, instead, temporal contrast effects are immune to the influences 

of selective attention, being based on the global sensory environment, then participants’ target responses 

in Experiments 3-5 should not differ from participants who are explicitly instructed to divide their 

attention equally across the two talkers, as in ‘divided attention’ Experiment 6. 
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Figure 1. Stimulus design and experimental design of the six experiments. (a) Slow and fast context sentences 

(matched duration) were combined with target sounds, containing an initial syllable /xə-/ with modified durations 

(e.g., ambiguous between ‘prefix present’ gegaan /xə.'xa:n/ “gone” and ‘prefix absent’ gaan /'xa:n/ “to go”). Four-

step duration continua of the initial syllable ranged from step 1 (25% of its original duration, most gaan-like) to 

step 4 (40%; most gegaan-like). (b) Target words were always produced by Talker A (white fill) and preceded by 
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context sentences (with a 100 ms silent gap). Experiments 1 and 2 involved a single talker paradigm, presenting 

one context sentence at a time (Expt. 1: same talker as target; Expt. 2: different talker as target) at fast and slow 

rates (on separate, intermixed trials). Experiments 3-5 involved a selective attention paradigm, where participants 

were instructed to attend one of two different context sentences from two different talkers. In Experiment 3, one 

context sentence was always produced by Talker A (L/R location counter-balanced across participants) whom 

participants were instructed to attend. The talker’s speech rate on a given trial varied such that it was fast in one 

trial, but slow in another trial. The rate of the competing talker could either match or mismatch the rate of the 

attended talker (both speaking fast or slow vs. one speaking fast, the other slow). Experiment 4 was identical, 

except that both context sentences were produced by other talkers (B and C). Half of the participants was instructed 

to attend to Talker B, the other to Talker C. Experiment 5 was identical to Experiment 4 except that a video of the 

attended talker was provided. Finally, Experiment 6 was identical to Experiment 4, except that it involved a 

divided attention paradigm: participants were instructed to divide their attention equally across both talkers. 

RESULTS 

Slow context sentences make following syllables disappear 

Experiments 1 and 2 used a ‘single talker’ paradigm to validate the experimental materials and to 

serve as a baseline for the following experiments. In particular, they tested whether talker-congruent 

(Expt. 1) and talker-incongruent (Expt. 2) fast and slow context sentences influence the perceived 

duration (and hence presence) of the prefix of the target words. 

The categorization results (Figure 2) demonstrate that slow context sentences resulted in fewer 

‘prefix present’ responses than fast sentences, indicating that slow speech rates made the prefix in the 

target ‘disappear’ (p = .004), thereby replicating previous findings of temporal contrast effects. 

Furthermore, the size of the context effect was of a similar size in Experiments 1 and 2 (p > .05). 
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Figure 2. The perception of duration-based speech sound continua is contrastively influenced by the speech 

rate in the preceding context. In Experiment 1, participants were presented with one context sentence at a time, 

produced by the same talker as the target. The speech rate of the context sentences had a contrastive effect on 

target perception: fast context sentences (red bars) led to more ‘prefix present’ responses, slow sentences (blue 

bars) to more ‘prefix absent’ responses. Changing the talker that produced the context sentences (talker-

incongruent contexts and targets in Expt. 2) did not change the temporal contrast effect. Error bars enclose 1.96 

x SE on either side; 95% confidence intervals. * = p < .001. 

Both attended and unattended contexts influence target categorization 

Experiments 3-5 tested whether selective attention could modulate the influence of the context 

sentences. Participants were presented with two different context sentences, one in each ear, followed 

by the same target words as in Experiments 1 and 2, spoken by Talker A (cf. Figure 1b). In Experiment 

3 participants attended Talker A in one ear and ignored the competing talker in the other ear. In 

Experiment 4, both context sentences were spoken by voices that differed from the target speaker (to 

control for the confounding of attention and talker identity that was present in Experiment 3). To aid 

participants in the focusing of attention, Experiment 5 replicated Experiment 4, but with the addition of 

a video of the attended talker presented during the context sentence. Across experiments, participants’ 

success in selective attention was monitored by asking participants to verbally repeat the attended 

sentence. This was assessed on 20 randomly selected trials (out of the 200; 10%) so participants could 

not predict when they would be prompted to verbally repeat the attended sentence. They also filled out 

a post-experimental questionnaire about the perceived difficulty of the attentional task. Verbal 
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repetition scores demonstrated an overwhelming predominance of keywords from the attended talker 

in ‘selective attention’ Experiments 3-5 (47-64%), indicating successful attention allocation. By 

comparison, participants in Experiment 6 – who were explicitly instructed to divide their attention 

equally across the two talkers – were significantly worse at recalling keywords from the sentences (14% 

accuracy at reporting either of the two sentences; p < .001). 

Results from ‘selective attention’ Experiments 3-5 were very similar (see Figure 3). That is, no 

evidence was found, in any experiment, for attentional modulation of temporal contrast effects on target 

perception. When presented with a fast sentence from one talker and a slow sentence from another talker 

(i.e., rate-mismatching trials), attending to one or the other sentence did not lead to differential target 

categorization (no difference between red and blue bars in the right panels in Figure 3; interaction 

between Attended Rate and Rate Match: p < .001; Bayes Factor (BF) for Attended Rate in the rate-

mismatching conditions = .04). Individual variation in how well participants attended the to-be-attended 

talker also did not predict performance in rate-mismatching conditions (see Figure 4), suggesting once 

more that the individual participants’ success at selective attention did not influence target 

categorization in the two rate-mismatching conditions. In fact, participants’ target categorization 

behavior in ‘selective attention’ Experiments 3-5 did not differ from that of participants who were 

explicitly instructed to divide their attention equally across the two talkers (‘divided attention’ 

Experiment 6). However, across all dichotic Experiments 3-6, a consistent difference was found when 

both the attended and the unattended sentences had matching speech rates. Two fast context sentences 

biased perception to ‘prefix present’ responses, while two slow sentences biased towards ‘prefix absent’ 

responses (p < .001; BF = 208). 
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Figure 3. Both attended and unattended contextual speech rates influence target perception to the same 

degree. When the speech rates of two dichotically presented context sentences match (both fast or slow; left 

column), fast speech rates bias perception towards ‘prefix present’ responses. However, when the two speech rates 

mismatch (one slow, the other fast; right column), attending to the fast sentence does not lead to more ‘prefix 

present’ responses compared to attending to the slow sentence. These results were observed when (a) participants 

attended context sentences in the same voice as the targets (Expt. 3), (b) in a different voice than the targets (Expt. 



Bosker, Sjerps, & Reinisch / Temporal contrast is immune to selective attention p. 12 

p. 12 
 

4), and (c) even when an additional video of the attended talker was provided (Expt. 5). In fact, participants’ target 

categorization in ‘selective attention’ Experiments 3-5 did not differ from that of (d) participants in ‘divided 

attention’ Experiment 6. Attended rates are given in capitals, unattended rates in parentheses, divided attention to 

both rates is indicated by “&”. Error bars enclose 1.96 x SE on either side; 95% confidence intervals. * = p < .001. 

 

 

Figure 4. Performance in rate-mismatching conditions is not influenced by participants’ success in 

selective attention in Experiments 3-5. By-participant variation in selective attention (on x-axis; calculated as 

difference in proportion keywords correct from attended – unattended context sentence; higher values show 

greater success) does not predict the difference in proportion ‘prefix present’ responses between the two rate-

mismatching conditions (on y-axis; calculated as P(prefix present) when attending fast – attending slow) across 

dichotic Experiments 3-5 (blue = participants from Expt. 3; red = Expt. 4; yellow = Expt. 5): r = .015; p = .88. 

 

DISCUSSION 

Contrast enhancement and selective attention are two well-known processing principles that allow 
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biological systems to break down the substantial variability in their sensory environments, but whether 

and how the underlying processes interact is poorly understood. We show evidence from temporal 

contrast effects in speech perception that selective attention does not modulate duration-based 

contrastive context effects on the perception of speech. Listening to a slow context sentence can make 

a reduced syllable in a following target word disappear (even when the lead-in sentence is in a 

different voice than the target; Expts. 1-2), but when the same slow sentence is heard (attended) 

simultaneously with a competing (ignored) fast talker, this temporal contrast effect is abolished 

(Expts. 3-5). This observation held for talker-congruent contexts (same voice as targets) and talker-

incongruent contexts (different voice than targets). Moreover, the addition of visual articulatory cues 

to the to-be-attended speech, which is known to considerably aid selective attention in dual-talker 

environments 40–42 and to provide additional visual cues to the tempo of the attended talker, did not 

help reduce the influence of the unattended contexts. In fact, participants’ target categorization in 

‘selective attention’ Experiments 3-5 mirrored that of participants in Experiment 6, who were 

explicitly instructed to divide their attention equally across both talkers. 

Duration-based contrastive context effects have been shown in human and non-human perception 31, 

by intelligible (speech) and unintelligible (speech/non-speech) contexts 5,13,but see 30, and by contexts in a 

different voice (including one’s own 14,43). The present study uniquely demonstrates that both attended 

and unattended contexts equally induce temporal contrast effects, suggesting that rate normalization 

processes in speech perception are automatic and very general in nature 44. Moreover, we consistently 

found that in rate-matching trials hearing two slow context talkers led participants to miss the reduced 

initial syllable in the targets, while hearing two fast contexts induced more ‘prefix present’ responses. 

This suggests that temporal contrast enhancement operates over the global sensory environment 

(independent from selective attentional enhancement), computed over multiple talkers and over longer 

time periods 45–47. 

We should point out that all participants in the ‘selective attention’ Experiments 3-5 reported to have 

performed the selective attention task accurately as instructed. This was also evidenced by the high 

proportion of correct keywords reported from the attended sentences, and the low proportion of 
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keywords reported from the unattended sentences. In fact, the observed proportions of correct keywords 

are similar to those reported by Bosker, Sjerps, and Reinisch (62-65% 28), who – using the same 

paradigm – did find evidence for attentional modulation of spectral contrast effects. Moreover, no 

correlation between individual participants’ success at selective attention and target categorization in 

rate-mismatching conditions was observed (see Figure 4). Therefore, the absence of attentional 

modulation cannot be explained by a presumed failure to accurately attend the to-be-attended talker. It 

also cannot be explained by participants in Experiments 3-5 purposefully dividing their attention equally 

across both talkers (i.e., behaving in conflict with the instructions), because divided attention is a very 

demanding task and leads to lower verbal repetition scores as evidenced in the ‘divided attention’ 

Experiment 6. Conversely, this also suggests that further facilitation of selective attention, for instance 

by using two talkers of different gender, is unlikely to provide evidence of attentional modulation (note 

that the additional visual cues in Experiment 5 also failed to modulate effects). 

The observation that selective attention to a particular talker does not modulate the contrast induced 

by this talker suggests that effects of temporal contrast functionally precede the influence of selective 

attention. This is in line with the observation that increasing the cognitive demands on attentional 

resources (cognitive load) also does not result in reduction of acoustic context effects 29. Still, the fact 

that temporal contrast enhancement is immune to selective attention is a unique finding. Earlier research 

indicates that selective attention to one speech stream does not mean that humans can completely ignore 

unattended sounds. Acoustic and linguistic properties of unattended speech can influence attended 

speech processing, known as informational masking 48,49 or attentional leakage 50. However, in all these 

cases, the interference from unattended acoustic and linguistic cues is reduced relative to the 

contribution of attended speech. To our knowledge, this study provides the first demonstration of 

perceptual processes in speech perception (namely temporal contrast enhancement) that are not 

modulated by selective attention. 

This may be all the more striking considering that both selective attention and temporal contrast 

effects have been said to involve similar neurobiological mechanisms. Recent MEG 33 and 

psychoacoustic 5,34 evidence suggests that neural oscillators in the theta range (3-9 Hz) become entrained 
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to the fast and slow syllabic rhythms in preceding context sentences. This entrainment is sustained for 

a few cycles after context sentence offset, influencing how the subsequent target sounds are parsed 

within the continuous speech stream 5,33. Solving the ‘cocktail party’ problem in dual-talker listening 

environments is also said to involve neural representations being selectively phase-locked to the rhythm 

of each speech stream 51. Attention modulates the neural representations by enhancing cortical tracking 

of the attended speech stream 3. At first sight, this enhanced cortical speech-tracking may predict that 

following consequences of sustained entrainment should also be modulated by attention. However, 

selective tracking of the attended talker is most pronounced in higher-order language processing areas 

and attentional control regions, while the temporal envelope of ignored speech remains robustly 

represented in lower-level auditory cortex 3,51. In fact, neural entrainment to the acoustic amplitude 

fluctuations in speech is comparable in awake (attending) and sleeping (unattending) listeners 52. The 

present results advocate a model in which temporal contrast effects are driven by low-level neural 

entrainment to the syllabic amplitude fluctuations in auditory cortex, unmodulated by attention, which 

in turn guides subsequent speech parsing. 

This study has principally focused on temporal contrast effects (also known as rate normalization), 

induced by contextual fast and slow speech rates. This raises the question whether all forms of 

perceptual contrast operate independent from selective attention. Interestingly, recent evidence suggests 

that spectral contrast effects (i.e., low formant frequencies in context make following formant 

frequencies sound higher) are modulated by selective attention 27,28. This indicates that the 

neurobiological mechanisms underlying these two forms of acoustic context effects are likely to differ 

(sustained entrained neural oscillators vs. adaptive gain control 20,33,53). In particular, context effects 

induced by higher-level properties of language (e.g., based on talker-identity, language, and situation-

specific expectations 45,46,54–56) are likely to be influenced by attention. This advocates a two-stage model 

of the influence of acoustic context effects 29, where the earliest perceptual effects are of general auditory 

nature and unaffected by attention. Additional cognitive effects may emerge at one or more later stages 

(e.g., decision-making level) during processing, subject to attention allocation. 

Beyond fundamental issues, the present study also has practical implications for hearing aid 



Bosker, Sjerps, & Reinisch / Temporal contrast is immune to selective attention p. 16 

p. 16 
 

development. The present study has revealed that the syllabic rate of unattended talkers influences the 

perception of target speech produced by an attended talker. While human listeners may not be able to 

ignore the temporal envelope of unattended speech, speech enhancement algorithms – as implemented 

in hearing aids – might. Thus, this study makes reduced transmission of the temporal envelope of 

unattended talkers a prime target for hearing aid development, potentially aiding attended talker 

perception in multi-talker settings in hearing impaired individuals. 

METHODS 

Participants 

Native Dutch individuals with normal hearing were recruited from the Max Planck Institute’s 

participant pool (Expt. 1: N = 16; 11 females (f), 5 males (m); Mage = 22; Expt. 2: N = 16; 13f, 3m; Mage 

= 24; Expt. 3: N = 32; 24f, 8m; Mage = 22; Expt. 4: N = 32; 27f, 5m; Mage = 27; Expt. 5: N = 32; 28f, 

4m; Mage = 23; Expt. 6: N = 32; 24f, 8m; Mage = 23). All gave informed consent as approved by the 

Ethics Committee of the Social Sciences department of Radboud University (project code: ECSW2014-

1003-196). All research was performed in accordance with relevant guidelines and regulations. 

Participants had normal hearing, had no speech or language disorders, and took part in only one of our 

experiments. 

We decided a priori to exclude participants with a proportion of ‘prefix present’ responses 

[P(present)] below 0.2 or above 0.8, as for these participants the presented stimuli would be 

insufficiently ambiguous to establish reliable effects of speech rate. Based on this criterion, 2 additional 

participants were excluded from Experiment 1 (both < 0.2 P(present)), 7 from Experiment 3 (all 

P(present) > 0.8); 7 from Experiment 4 (all P(present) > 0.8); 4 from Experiment 5 (all P(present) > 

0.8); and 4 from Experiment 6 (all P(present) > 0.8). 

Stimuli  

Two-hundred Dutch context sentences were constructed: half were short (11-13 syllables), the other 



Bosker, Sjerps, & Reinisch / Temporal contrast is immune to selective attention p. 17 

p. 17 
 

half long (22-26 syllables; see Supplementary Table S2). All sentences were semantically neutral with 

regard to the sentence-final target word. Twenty Dutch minimal word pairs were selected as targets. 

They only differed in the presence vs. absence of the word-initial unstressed syllable /xə-/ (e.g., gegaan 

/xə.'xa:n/ “gone” – gaan /'xa:n/ “to go”; see Supplementary Table S1). This prefix is primarily used to 

create the past participle, although it can occur in other forms. In spontaneous speech it is often 

pronounced in a reduced form [x] 39. If the stem of the word also begins with /x/, the primary difference 

between the word with and without the prefix is the longer duration of [x] 39. 

Three female native speakers of Dutch (referred to as Talker A, B, and C) were recorded producing 

all sentences ending in one of the target words. Context sentences (i.e., all speech up to target onset) 

were excised and manipulated. Each short sentence (11-13 syllables) was paired with one long sentence 

(22-26 syllables) and their duration was set to the mean duration of that pair across all three talkers 

using PSOLA in Praat (adjusting tempo while maintaining pitch and formants 57). That is, the long 

sentences were compressed and the short sentences were stretched resulting in short sentences played 

at a slow speech rate and long sentences played at a fast rate, with identical overall duration.  

For the target words, only recordings from Talker A were used. Each of the 20 target pairs was 

manipulated in the initial syllable /xə-/, resulting in duration continua from for instance, ‘prefix absent’ 

gaan to ‘prefix present’ gegaan (see Figure 1a). Four ambiguous steps were created using compression 

levels of 25%, 30%, 35%, and 40% of the original duration. Two additional unambiguous steps were 

created for use as filler trials by compressing to 5% (unambiguously gaan) and 90% (unambiguously 

gegaan) of the original duration. The intended perception of the duration continuum was confirmed in 

a pretest presenting manipulated target words in isolation. 

Procedure 

In all experiments, participants were presented with combinations of context sentences and target 

words over headphones (see Figure 1b). Stimulus presentation was controlled by Presentation software 

(v16.5; Neurobehavioral Systems, Albany, CA, USA). Each trial started with the presentation of a 

fixation cross. After 500 ms, the context sentence(s) was presented, followed by a silent interval of 100 
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ms, followed by a target word. After target offset, the fixation cross was replaced by a screen with two 

response options (i.e., the words of the minimal pair), one on the left, one on the right (position counter-

balanced across participants). Participants entered their response as to which of the two response options 

they had heard (gegaan or gaan, etc.) by pressing the “Z” button on a regular computer keyboard for 

the option on the left, or “M” for the option on the right. After their response (or timeout after 4 seconds), 

the screen was replaced by an empty screen for 500 ms, after which the next trial was initiated. 

Targets were always presented binaurally. They were presented at the four different ambiguous steps 

of the duration continuum twice: once after a critical slow sentence and once after a critical fast sentence 

(N = 160; henceforth: experimental trials). All target pairs were also presented at the two unambiguous 

steps of the duration continuum – half following a slow sentence and half following a fast sentence (N 

= 40; henceforth: filler trials).  

In Experiment 1, all speech (contexts and targets) was presented binaurally and came from the same 

talker (Talker A). Experiment 2 was identical, except that the contexts were in a different voice (Talker 

B or C) than the targets (Talker A). The identity of the context talkers was consistent within but counter-

balanced across participants. That is, half listened to context sentences spoken by Talker B, and half to 

contexts by Talker C. 

In Experiment 3, two different context sentences were presented simultaneously to participants, one 

in each ear (i.e., dichotic presentation; counter-balanced across participants; see Figure 1b). One of the 

two context sentences was always produced by the talker that also produced the targets (Talker A; 

talker-congruent), while the other was produced by a different talker (Talker B or C; talker-

incongruent). The identity of the competing talker was consistent within but counter-balanced across 

participants. Participants were instructed to specifically attend to Talker A throughout the experiment, 

and ignore the competing talker in the other ear, simulating a ‘cocktail party’ situation. All context 

sentences were scaled to 70 dB SPL (i.e., 0 dB target-to-masker ratio). 

Context sentence and target pairings were based on those from Experiment 1 (all targets presented 

at all four steps; plus two filler steps), except that during the context, Talker A was only presented in 

one ear with a competing talker in the other ear. To create rate-matching trials, half of Talker A’s slow 
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sentences was paired with other slow sentences and half of the fast sentences was paired with other fast 

sentences, each from the other talkers, of different semantic content, but with the same number of 

syllables. To create rate-mismatching sentences fast and slow sentences were paired, using the pairs 

described for the rate manipulation above. 

For Experiment 4, the same context pairs and target combinations were used as in Experiment 3, 

except that this time the context by Talker A was replaced by the same sentence from another talker 

(Talker B or C). Participants in Experiment 4 were randomly allocated to one of two groups. One group 

(n = 16) was instructed to selectively attend to Talker B (and ignore Talker C), while the other group (n 

= 16) was instructed to focus on Talker C (and ignore Talker B). Thus, each group of participants 

listened to the exact same acoustic stimuli; they only differed in which talker they attended to. The 

location of the attended talker (i.e., which ear) was counter-balanced across participants. This meant 

that participants selectively attended to only one ear + talker combination throughout the experiment. 

Context Rate was varied within participants on a trial-by-trial basis; that is, in one trial the attended 

talker spoke fast, on another the attended talker spoke slowly, etc. 

Experiment 5 was similar to Experiment 4, except that an additional video of the attended talker was 

presented during the context window (video dimensions: 960 by 580 pixels). Also, because we had only 

recorded audio (no video) for the previous experiments, we re-recorded the context sentences used in 

the previous experiments. Two new female native speakers of Dutch were video-recorded (‘talking 

head’ format) while reading out all context sentences ending in one of the target words. All stimulus 

manipulations, context pairings, and target combinations were similar to Experiment 4, except that these 

were now performed using atempo in FFmpeg (open source multimedia software; 

http://www.ffmpeg.org). 

Finally, Experiment 6 followed the same procedure as Experiment 4, except that participants were 

explicitly instructed to divide their attention across both talkers at the same time. 

Verbal repetition 

In order to verify that participants in ‘selective attention’ Experiments 3-5 were indeed selectively 

http://www.ffmpeg.org/
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attending to one talker and ignoring the other, participants were presented with prompts to type out the 

last attended sentence. These prompts were presented after half of the filler trials (n = 20 out of 200 

trials) after they had provided a categorization response. Because trials were randomized within 

participants, participants could not predict on which trials they would be prompted to repeat the attended 

sentence. Additionally, after the experiment, they were asked to fill out a debriefing questionnaire about 

the perceived difficulty of the attentional task, how successful they were in this task, and potential 

strategies. 

The mean proportion of keywords reported from the attended/unattended sentences were: 

Experiment 3, 0.64/0.03 (SD = 0.31/0.13); Experiment 4, 0.48/0.06 (SD = 0.33/0.18); Experiment 5, 

0.47/0.08 (SD = 0.33/0.22). In Experiment 3, participants reported more keywords from the unattended 

than the attended sentence in only 4% of the prompts (Expt. 4: 10%; Expt. 5: 13%). These percentages 

were comparable in trials with matching and mismatching rates. 

In ‘divided attention’ Experiment 6, verbal repetition prompts were also presented after a randomly 

selected 10% of the trials. However, in Experiment 6, participants were asked to verbally repeat one of 

the two sentences they had divided their attention across (left vs. right sentence was selected randomly 

for each trial). Hence, participants could not predict when or which ear they would be prompted to 

verbally repeat, further motivating them to divide their attention equally across the two talkers. The 

mean proportion of keywords reported from the prompted sentences in Experiment 6 was only 0.14 (SD 

= 0. 23). A Linear Mixed Model 58 on the logit-transformed proportion data revealed that performance 

in Experiment 6 was significantly lower than in all three selective attention experiments (Expt. 6 vs. 3: 

β = 3.428, SE = 0.148, t = 23.150, p < 0.001; Expt. 6 vs. 4: β = 2.125, SE = 0.146, t = 14.580, p < 0.001; 

Expt. 6 vs. 5: β = 2.150, SE = 0.140, t = 15.420, p < 0.001). In sum, divided attention was a difficult 

task, suggesting that participants in Experiments 3-5 were largely successful at selectively attending to 

one talker while ignoring the other competing talker. 

This was further corroborated by participants’ responses on the questionnaire. Responses from 

participants in ‘selective attention’ Experiments 3-5 indicated that the selective attention task was 

demanding but doable. At times, the attentional focus was lost but most participants reported to restore 
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selective attention by, for instance, looking in the direction of the attended sound, concentrating 

carefully, or silently shadowing the attended talker. It seemed that participants in Experiment 5 found 

the selective attention task easier, likely due to the additional visual cues to the to-be-attended speech 

stream. In contrast, all participants from ‘divided attention’ Experiment 6 reported that dividing their 

attention across the two talkers equally was very difficult. They frequently failed to divide their 

attention, instead attending one talker on some trials, and the other talker on other trials. Several 

participants across all experiments reported the speech rate manipulation. 

Statistical analysis 

Trials with missing categorization responses due to timeout (Expt. 1: n = 9; < 1%; Expt. 2: n = 16; < 

1%; Expt. 3: n = 44; 1%; Expt. 4: n = 9; < 1%; Expt. 5: n = 5; < 1%; Expt. 6: n = 16; < 1%) were 

excluded from analyses. The binomial categorization data in experimental trials were analyzed using 

Generalized Linear Mixed Models (GLMM 59) with a logistic linking function as implemented in the 

lme4 library (version 1.0.5 60) in R 61. The binomial dependent variable was participants’ categorization 

of the target as either the ‘prefix present’ (e.g., gegaan; coded as 1) or the ‘prefix absent’ target word 

(e.g., gaan; coded 0). Analyses were run separately for the ‘single talker’ Experiments 1-2 and the 

dichotic Experiments 3-6. 

The data from the ‘single talker’ Experiments 1-2 were combined and analyzed for fixed effects of 

Continuum Step (continuous predictor; centered and scaled around the mean), Context Rate (categorical 

predictor; deviation coding, with slow context coded as -0.5 and fast as +0.5), Experiment (categorical 

predictor; dummy coding, with Experiment 2 mapped onto the intercept), and all interactions. The 

model included Participant and Target Pair as random factors, with by-participant and by-item random 

slopes for Context Rate. Models with more complex random effects structures failed to converge. This 

model revealed significant effects of Continuum Step (β = 1.539, SE = 0.065, z = 23.540, p < .001; 

higher P(present) as initial syllable duration increased) and Context Rate (β = 0.627, SE = 0.218, z = 

2.874, p = .004; higher P(present) for contexts with fast speech rates). We also found a main effect of 

Experiment (β = -0.775, SE = 0.378, z = -2.052, p = .040), revealing that there was a significantly higher 
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proportion of ‘prefix present’ responses in Experiment 2 compared to Experiment 1 (MExpt1 = 0.47; 

MExpt2 = 0.57). No interactions were observed, suggesting that the effect of Context Rate did not differ 

across these two single talker experiments. 

The data from the four dichotic Experiments 3-6 were analyzed together. This GLMM included the 

predictors Continuum Step (continuous predictor; centered and scaled around the mean) and Attended 

Rate (categorical predictor; deviation coding, with slow attended rate coded as -0.5 and fast attended 

rate as +0.5). Note that since, in Experiment 6, participants were instructed to divide their attention 

equally across both talkers, we used left-ear rate as a proxy for attended rate and right-ear rate for 

unattended rate (cf. Figure 3). This coding was adopted for purposes of comparison to the other 

‘selective attention’ Experiments 3-5. Additionally, the GLMM included the predictors Rate Match 

(categorical predictor; deviation coding, with rate-mismatching trials coded as -0.5 and rate-matching 

trials as +0.5), Experiment (categorical predictor; dummy coding, with Experiment 3 mapped onto the 

intercept), and all interactions between the predictors. The model also included Participant and Target 

Pair as random factors, with by-participant and by-item random slopes for Context Rate. Models with 

more complex random effects structures failed to converge. This model revealed significant effects of 

Continuum Step (β = 1.527, SE = 0.045, z = 33.751, p < .001; higher P(present) as initial syllable 

duration increased) and an effect of Attended Rate (β = 0.341, SE = 0.091, z = 3.742, p < .001; higher 

P(present) when attending a fast vs. slow context sentence). However, there was an interaction between 

Attended Rate and Rate Match (β = 0.599, SE = 0.155, z = 3.866, p < .001), suggesting a difference 

between the two rate-matching conditions but no difference between rate-mismatching conditions. In 

fact, no 3-way interaction between Attended Rate, Rate Match, and Experiment was observed, 

indicating similar categorization behavior across all four dichotic experiments – regardless of whether 

they involved a ‘selective attention’ (Experiments 3-5) or a ‘divided attention’ paradigm (Experiment 

6). Separate analyses of rate-matching and rate-mismatching trials revealed only an effect of Attended 

Rate in rate-matching trials (β = 0.649, SE = 0.141, z = 4.602, p < .001; higher P(present) for two fast 

than two slow contexts), but no effect in rate-mismatching trials (β = 0.039, SE = 0.145, z = 0.269, p = 

.788).  
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We also found an overall difference between Experiment 3 and 4 (β = 0.660, SE = 0.313, z = 2.111, 

p = .035) and Experiment 3 and 6 (β = 1.025, SE = 0.314, z = 3.268, p = .001), revealing that there was 

a significantly higher proportion of ‘prefix present’ responses in Experiment 4 and Experiment 6 

compared to Experiment 3 (MExpt3 = 0.56; MExpt4 = 0.65; MExpt3 = 0.59; MExpt4 = 0.70). An overall effect 

of Rate Match (β = 0.185, SE = 0.077, z = 2.387, p = .017) indicated a slightly higher proportion of 

‘prefix present’ responses in rate-matching (P(present) = 0.63) vs. rate-mismatching trials (P(present) 

= 0.62). Finally, there was a small interaction between Continuum Step and the contrast between 

Experiment 3 and 4 (β = -0.150, SE = 0.061, z = -2.450, p = .014) and between Continuum Step and 

the contrast between Experiment 3 and 6 (β = -0.212, SE = 0.063, z = -3.343, p < .001), suggesting a 

slightly reduced effect of Continuum Step in Experiment 4 and 6 compared to Experiment 3. 

Finally, Bayesian analyses were carried out (see Supplementary Information) corroborating, first, the 

absence of evidence for a difference between the two rate-mismatching conditions; second, strong 

evidence for the alternative hypothesis that the two rate-matching conditions do differ in dichotic 

Experiments 3-6. 
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FIGURE LEGENDS 

Figure 1. Stimulus design and experimental design of the six experiments. (a) Slow and fast context 
sentences (matched duration) were combined with target sounds, containing an initial syllable /xə-/ with 
modified durations (e.g., ambiguous between ‘prefix present’ gegaan /xə.'xa:n/ “gone” and ‘prefix absent’ gaan 
/'xa:n/ “to go”). Four-step duration continua of the initial syllable ranged from step 1 (25% of its original 
duration, most gaan-like) to step 4 (40%; most gegaan-like). (b) Target words were always produced by Talker 
A (white fill) and preceded by context sentences (with a 100 ms silent gap). Experiments 1 and 2 involved a 
single talker paradigm, presenting one context sentence at a time (Expt. 1: same talker as target; Expt. 2: 
different talker as target) at fast and slow rates (on separate, intermixed trials). Experiments 3-5 involved a 
selective attention paradigm, where participants were instructed to attend one of two different context sentences 
from two different talkers. In Experiment 3, one context sentence was always produced by Talker A (L/R 
location counter-balanced across participants) whom participants were instructed to attend. The talker’s speech 
rate on a given trial varied such that it was fast in one trial, but slow in another trial. The rate of the competing 
talker could either match or mismatch the rate of the attended talker (both speaking fast or slow vs. one speaking 
fast, the other slow). Experiment 4 was identical, except that both context sentences were produced by other 
talkers (B and C). Half of the participants was instructed to attend to Talker B, the other to Talker C. Experiment 
5 was identical to Experiment 4 except that a video of the attended talker was provided. Finally, Experiment 6 
was identical to Experiment 4, except that it involved a divided attention paradigm: participants were instructed 
to divide their attention equally across both talkers. ............................................................................................... 7 

Figure 2. The perception of duration-based speech sound continua is contrastively influenced by the 
speech rate in the preceding context. In Experiment 1, participants were presented with one context sentence 
at a time, produced by the same talker as the target. The speech rate of the context sentences had a contrastive 
effect on target perception: fast context sentences (red bars) led to more ‘prefix present’ responses, slow 
sentences (blue bars) to more ‘prefix absent’ responses. Changing the talker that produced the context sentences 
(talker-incongruent contexts and targets in Expt. 2) did not change the temporal contrast effect. Error bars 
enclose 1.96 x SE on either side; 95% confidence intervals. * = p < .001. ............................................................ 9 

Figure 3. Both attended and unattended contextual speech rates influence target perception to the same 
degree. When the speech rates of two dichotically presented context sentences match (both fast or slow; left 
column), fast speech rates bias perception towards ‘prefix present’ responses. However, when the two speech 
rates mismatch (one slow, the other fast; right column), attending to the fast sentence does not lead to more 
‘prefix present’ responses compared to attending to the slow sentence. These results were observed when (a) 
participants attended context sentences in the same voice as the targets (Expt. 3), (b) in a different voice than the 
targets (Expt. 4), and (c) even when an additional video of the attended talker was provided (Expt. 5). In fact, 
participants’ target categorization in ‘selective attention’ Experiments 3-5 did not differ from that of (d) 
participants in ‘divided attention’ Experiment 6. Attended rates are given in capitals, unattended rates in 
parentheses, divided attention to both rates is indicated by “&”. Error bars enclose 1.96 x SE on either side; 95% 
confidence intervals. * = p < .001......................................................................................................................... 11 

Figure 4. Performance in rate-mismatching conditions is not influenced by participants’ success in 
selective attention in Experiments 3-5. By-participant variation in selective attention (on x-axis; calculated as 
difference in proportion keywords correct from attended – unattended context sentence; higher values show 
greater success) does not predict the difference in proportion ‘prefix present’ responses between the two rate-
mismatching conditions (on y-axis; calculated as P(prefix present) when attending fast – attending slow) across 
dichotic Experiments 3-5 (blue = participants from Expt. 3; red = Expt. 4; yellow = Expt. 5): r = .015; p = .88.12 
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