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Abstract:One of themain approaches tomodel reduction of both linear and nonlinear
dynamical systems is bymeans of interpolation. This approach seeks reducedmodels
whose transfer function matches that of the original system at selected interpolation
points. Data-driven methods constitute an important special case. We start with an
account of the Loewner framework in the linear case [52]. It constructs models from
given data in a straightforward manner. An important attribute is that it provides a
trade-off between accuracy of fit and complexity of the model. We compare this ap-
proach with other approximation methods and apply it to different test-cases. One
of the case studies to which we apply the aforementioned methods is defined by the
inverse of the Bessel function. We then turn our attention to the approximation of an
Euler–Bernoulli beammodel with Rayleigh damping. Further case studies include the
approximation of two real valued functions with specific difficulties (discontinuity,
sharp peaks). One computational tool is the SVD; its complexity is cubic in the num-
ber of data points. For large data sets the CUR factorization is a viable alternative. Note
that its complexity is cubic aswell but with respect to the dimension of the reduced or-
der model (ROM). Another option is to use stochastic procedures such as randomized
singular value decomposition (r-SVD) [41].
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6.1 Introduction

A challenging problem that computational linear algebra deals with is that of big data
modeling. The problem consists mainly in constructing reduced complexity systems
from input/output data. This contribution focuses on reduction via interpolation. The
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Loewner framework is a data-driven approach which can construct low order models
from measurements. It can be applied to both frequency and time-domain data [56].
Here we will concentrate on frequency domain data. The Loewner framework will be
implemented using (a) the SVD (singular value decomposition), (b) the CUR factoriza-
tion, (c) randomized SVD (r-SVD). Its performance will be compared with that of the
recently developed AAA algorithm see [53], the Vector Fitting approach [21, 40] and
the IRKA algorithm [13].

The paper is composed of three sections. The first one covers the fundamen-
tals of the Loewner framework starting from left and right interpolatory reduction. It
concludes (a) by describing an interpolation property satisfied by reduced systems
and (b) by making the procedure of obtaining real reduced models (despite com-
plex interpolation points and values) explicit. Next the description of two algorithms
namely, Loewner-SISO and Loewner-MIMO, is given. Finally two simple examples are
presented and the role of generalized inverses outlined.

The second chapter describes methods for implementing the Loewner reduction,
namely the SVD, the CUR factorization and the role of splitting the interpolation point
in left and right sets. The third chapter illustrates the main features of the Loewner
approach bymeans of seven case studies, namely, (a) the CD player, (b) an oscillating
function, (c) the inverse of a Bessel function, (d) an Euler–Bernoulli beam, (e) a heat
equation, (f) a function with two sharp peaks, and (g) the sign function. An epilogue
and references conclude the presentation.

6.2 The Loewner framework and moment matching

The Loewner framework has attracted increased attention of researchers from vari-
ous fields of applied mathematics and control engineering in the last 13 years. Con-
sequently, a fair amount of contributions that are now available, deal with various
aspects on further extending the framework and with its application to different test-
cases. Below we provide an account of some of the work related to or inspired by the
“Loewner framework” (see Table 6.1).

Consider linear, time-invariant systems withm inputs, n internal variables (states
if E is non-singular) and p outputs:

Σ : {
Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), where

E,A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n.
(6.1)

Wewill denote this realization of the systembymeans of the quadrupleΣ = (C,E,A,B).
The associated transfer function is

H(s) = CΦ(s)B whereΦ(s) = (sE − A)−1 ∈ ℂn×n. (6.2)
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Table 6.1: A collection of contributions related to the Loewner Framework.

Original paper [52] & tutorial paper [6] Chapters 4 and 7 in the book [9]

Extension to Application to
parametrized linear systems [4, 42] modeling multi-port linear systems [48]
bilinear systems [5, 45, 46] preserving the stability of the ROM [30]
quadratic systems [29, 36] the Burgers equations [8]
quadratic-bilinear systems [32] the Oseen equations [10]
linear switched systems [34] preserving the structure of DAE systems [37]
polynomial systems [11, 16] systems with delay [35, 59]
modeling from noisy data [20, 50] approximating functions [31, 33, 43, 44]
modeling from time-domain data [56] singular/rectangular systems [3]

genes oscillations [7] and biological rhythms [68]

Perspective based on duality and application
to bilinear differential [57, 58]

Interpretation based on interconnection and
application to LTV systems [60, 61]

A common way to reduce the complexity of a system is by means of Petrov–Galerkin
projections. Such projections are defined bymeans of twomatricesV,W ∈ ℝn×k, k < n,
satisfying the condition thatWTV ∈ ℝk×k is invertible.1

Definition 6.1. Consider vi,wi ∈ ℝ
n, i = 1, . . . , k, and let V = [v1, . . . , vk], W =

[w1, . . . ,wk] ∈ ℝ
n×k . The map defined by Π1 = V(VTV)−1VT , is an orthogonal pro-

jection onto the span of the columns ofV. IfWTV is non-singular,Π2 = V(WTV)−1WT ,
is an oblique projector onto the span of the columns of V, along the columns of W.
Π1 and Π2 are usually referred to in the model reduction literature as Galerkin and
Petrov–Galerkin projectors, respectively.

Reducing the system Σ = (C,E,A,B) defined above, bymeans of a Petrov–Galerkin
projection, we obtain the reduced system Σ̂ = (Ĉ, Ê, Â, B̂)with the reduced order matri-
ces given by

Ĉ = CV ∈ ℝp×k , Ê =WTEV, Â =WTAV ∈ ℝk×k , B̂ =WTB ∈ ℝk×m. (6.3)

There are many ways of choosing Petrov–Galerkin projectors in order to achieve
various goals. Herewewill restrict our attention to interpolatory projections. Suchpro-
jectors yield reducedmodels whichmatchmoments of the original system. These mo-
ments are values of transfer functions at selected frequencies, referred to as interpo-
lation points.

Remark 6.1. The D-term. In the system representations to follow no explicit D terms
will be considered. The reason is that such terms can be incorporated in the remaining

1 The notation (⋅)T indicates transposition of (⋅), while the notation (⋅)∗ indicates transposition of (⋅)
followed by complex conjugation.
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matrices of the realization, thus yieldingwhat is knownas adescriptor representation.
Consider a rank-revealing factorization

D = D1D2 where D1 ∈ ℝ
p×ρ, D2 ∈ ℝ

ρ×m,

and ρ = rankD. It readily follows that

Ê = [ E
0ρ×ρ
] , Â = [ A

−Iρ
] , B̂ = [ B

D2
] , Ĉ = [ C D1 ] ,

is a descriptor realization of the same system with no explicit D-term. The reason for
not considering explicit D-terms, comes from the fact that the Loewner framework
yields descriptor realizations with the D-term incorporated in the rest of the realiza-
tion.

6.2.1 Moments of a system

Given a matrix-valued function of time h : ℝ → ℝp×m, its kthmoment is

ηk =
∞

∫
0

tkh(t) dt, k = 0, 1, 2, . . . .

If this function has a Laplace transform defined by H(s) = ℒ(h)(s) = ∫∞0 h(t)e−st dt,
the kth moment of h is, up to a sign, the kth derivative of H evaluated at s = 0:

ηk = (−1)
k dk

dsk
H(s)|s=0 ∈ ℝ

p×m, k = 0, 1, 2, . . . .

In the sequel, we will also make use of a generalized notion of moments, namely the
moments of h around the (arbitrary) point s0 ∈ ℂ:

ηk(s0) =
∞

∫
0

tkh(t)e−s0t dt.

These generalized moments turn out to be (up to a sign) the derivatives ofH(s) evalu-
ated at s = s0:

ηk(s0) = (−1)
k dk

dsk
H(s)|s=s0 ∈ ℝ

p×m, k = 0, 1, 2, . . . .

In this context, assuming for simplicity that E = I, the moments of h at s0 ∈ ℂ are

ηk(s0) = −kC(s0I − A)
−(k+1)B, k = 0, 1, 2, . . . ,

provided that s0 is not an eigenvalue of A.
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Notice that the moments determine the coefficients of the Laurent series expan-
sion of the transfer function H(s) in the neighborhood of si ∈ ℂ; in particular

H(s) = H(s0) +H
(1)(s0)
(s − s0)

1!
+ ⋅ ⋅ ⋅ +H(k)(s0)

(s − s0)k

k!
+ ⋅ ⋅ ⋅

= η0(s0) + η1(s0)
(s − s0)

1!
+ ⋅ ⋅ ⋅ + ηk(s0)

(s − s0)k

k!
+ ⋅ ⋅ ⋅ .

Approximation by moment matching
Given Σ = (C,E,A,B), consider the expansion of the transfer function around si, i =
1, . . . , r, as above. Approximation by moment matching consists in finding

Σ̂ = (Ĉ, Ê, Â, B̂), Ê, Â ∈ ℝk×k , B̂ ∈ ℝk×m, Ĉ ∈ ℝp×k , (6.4)

such that the expansion of the transfer function

Ĥ(s) = η̂0(si) + η̂1(si)
(s − si)
1!
+ η̂2(si)

(s − si)2

2!
+ η̂3(si)

(s − si)3

3!
+ ⋅ ⋅ ⋅ ,

for appropriate si ∈ ℂ, and ℓi, r ∈ ℕ, satisfies

ηj(si) = η̂j(si), j = 1, 2, . . . , ℓi and i = 1, . . . , r.

This problem is also known as rational interpolation.

6.2.2 Rational interpolation by Petrov–Galerkin projection

Rational interpolation by projection was originally proposed in the work of Skelton
and co-workers; see [65, 66, 67]. Contributions were also made by Grimme, Gallivan
and van Dooren [23, 24, 38].

Suppose that we are given a system Σ = (C,E,A,B), assumed SISO (single-input
single-output, i. e.,m = p = 1) for simplicity. We wish to find lower dimensional mod-
els Σ̂ = (Ĉ, Ê, Â, B̂), defined as in (6.3), k < n, such that Σ̂ approximates the original
system in an appropriate way.

Consider k distinct points sj ∈ ℂ. Define V as a generalized controllability matrix:

V = [(s1E − A)
−1B, . . . , (skE − A)

−1B] ∈ ℂn×k , (6.5)

and letW∗ be any left inverse of V. Then we have the following.

Proposition 6.1. Σ̂ interpolates the transfer function of Σ at the points sj, that is,

H(sj) = C(sjE − A)
−1B = Ĉ(sjÊ − Â)

−1B̂ = Ĥ(sj), j = 1, . . . , k.
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Proof. Denoting by ej = [0 ⋅ ⋅ ⋅0 1⏟⏟⏟⏟⏟⏟⏟
j

0 ⋅ ⋅ ⋅ 0]T , the jth unit vector, we obtain the string

of equalities below which lead to the desired result:

Ĉ(sjÊ − Â)
−1B̂ = CV(sjW

∗EV −W∗AV)−1W∗B

= CV(W∗(sjE − A)V)
−1W∗B

= CV([∗ ⋅ ⋅ ⋅ ∗W∗B ∗ ⋅ ⋅ ⋅ ∗])−1W∗B

= [C(s1E − A)
−1B, . . . ,C(skE − A)

−1B]ej
= C(sjE − A)

−1B.

Next, we are concernedwithmatching the value of the transfer function at a given
point s0 ∈ ℂ, together with k − 1 derivatives. We define

V = [(s0E − A)
−1B, (s0E − A)

−2B, . . . , (s0E − A)
−kB] ∈ ℂn×k , (6.6)

together with any left inverseW. The following holds.

Proposition 6.2. Σ̂ interpolates the transfer function ofΣat s0, togetherwith k−1deriva-
tives at the same point:

(−1)j

j!
dj

dsj
H(s)|s=s0 = C(s0E − A)

−(j+1)B = Ĉ(s0Ê − Â)
−(j+1)B̂ = (−1)

j

j!
dj

dsj
Ĥ(s)|s=s0 ,

for j = 0, 1, . . . , k − 1.

Proof. Let V be as defined in (6.6), and W be such that WTV = Ik . It readily follows
that the ℓth power of the projected matrix s0Ê − Â satisfies

(s0Ê − Â)
ℓ = [ ∗ ⋅ ⋅ ⋅ ∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ−1
W∗B ∗ ⋅ ⋅ ⋅ ∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

k−ℓ
].

Consequently [WT (s0E − A)V]−ℓWTB = eℓ, which finally implies

Ĉ(s0Ê − Â)
−ℓB̂ = CV[WT (s0E − A)V]

−ℓWTB = CVeℓ = C(s0E − A)
−ℓB,

for ℓ = 1, 2, . . . , k.

Since any V̄ that spans the same column space as V achieves the same objective,
projectors composed of combinations of the cases (6.5) and (6.6) achieve matching of
an appropriate number of moments. To formalize this we will make use of the follow-
ing matrices:

ℛk(E,A,B; σ) = [(σE − A)
−1B (σE − A)−2B ⋅ ⋅ ⋅ (σE − A)−kB].
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Corollary 6.1.
(a) If V as defined above is replaced by V̄ = RV, R ∈ ℝk×k , detR ̸= 0, and W by

W̄ = R−TW, the same matching results hold true.
(b) Let V be such that

span colV = span col [ℛm1
(E,A,B; σ1) ⋅ ⋅ ⋅ ℛmℓ (E,A,B; σℓ)],

andW be any left inverse of V. The reduced system matches mi moments at σi ∈ ℂ,
i = 1, . . . , ℓ.

6.2.3 Two-sided projections

The above results can be strengthened if the row span of the matrix WT is chosen
to match the row span of a generalized observability matrix. In such a case twice as
manymoments canbematchedwith a reduced systemof the samedimension.Here, in
addition to points s1, . . . , sk, and the associated (6.5), we are given k additional distinct
points sk+1, . . . , s2k . These points are used to define a generalized observability matrix:

W = [(sk+1E
T − AT)−1CT ⋅ ⋅ ⋅ (s2kE

T − AT)−1CT] ∈ ℂn×k . (6.7)

Proposition 6.3. Assuming thatWTV has full rank, the projected system Σ̂, interpolates
the transfer function of Σ at the points si, i = 1, . . . , 2k.

Proof. The string of equalities that follows proves the desired result:

Ĉ(siÊ − Â)
−1B̂ = CV(siW

TEV −WTAV)−1WTB

= CV(WT (siE − A)V)
−1WTB

= CV(WT [⋅ ⋅ ⋅B ⋅ ⋅ ⋅])−1WTB

= CVei = C(siE − A)
−1B, for i = 1, . . . , k,

= CV(
[[[[

[

...
C
...

]]]]

]

V)

−1

WTB

= eTi W
TB = C(siE − A)

−1B, for i = k + 1, . . . , 2k.

The projectors (see [62]) discussed in the previous section satisfy the Sylvester
equations as shown next.

Proposition 6.4. With Λ = diag[λ1, . . . , λk], M = diag[μ1, . . . , μq], where λi and μj are
mutually distinct, R = [1 ⋅ ⋅ ⋅ 1] ∈ ℝk , and L = [1 ⋅ ⋅ ⋅ 1]T ∈ ℝq, the matrices V andW
satisfy the Sylvester equations:

EVΛ − AV = BR and MWTE −WTA = LC. (6.8)
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6.2.4 Interpolatory model reduction for MIMO systems

In the general case ofMIMO (multi-inputmulti-output) systems, themoments arep×m
matrices. So, in the case of rational matrix interpolation the most appropriate way to
proceed is to interpolate along certain directions. This leads to the so-called tangential
interpolation problem (see e. g. [6, 21, 25]).

More precisely, we are given a set of input/output response measurements spec-
ified by left driving frequencies {μi}

q
i=1 ⊂ ℂ, using left input or tangential directions:

{ℓi}
q
i=1 ⊂ ℂ

p, producing left responses: {vi}
q
i=1 ⊂ ℂ

m, and right driving frequencies:
{λi}ki=1 ⊂ ℂ, using right input or tangential directions: {ri}

k
i=1 ⊂ ℂ

m, producing right re-
sponses: {wi}

k
i=1. We are thus given the left data: (μj; ℓjT , vTj ), j = 1, . . . , q, and the right

data: (λi; ri,wi), i = 1, . . . , k. The problem is to find a rational p × m matrix H(s), such
that

H(λi)ri = wi, i = 1, . . . , k, ℓTj H(μj) = v
T
j , j = 1, . . . , q. (6.9)

The left data is rearranged compactly as

M =
[[[

[

μ1
. . .

μq

]]]

]

∈ ℂq×q, L =
[[[

[

ℓT1
...
ℓTq

]]]

]

∈ ℂq×p, 𝕍 =
[[[

[

vT1
...
vTq

]]]

]

∈ ℂq×m, (6.10)

while the right data is rearranged as

Λ =
[[[

[

λ1
. . .

λk

]]]

]

∈ ℂk×k ,
R = [r1 r2 ⋅ ⋅ ⋅ rk] ∈ ℂm×k ,

𝕎 = [w1 w2 ⋅ ⋅ ⋅ wk] ∈ ℂ
p×k .

(6.11)

Interpolation points and tangential directions are determined by the problem or are
selected to realize given model reduction goals. For SISO systems, i. e.,m = p = 1, left
and right directions can be taken equal to one (ℓj = 1, ri = 1) and hence the conditions
above become

Ĥ(μj) = H(μj) ⇒ Ĥ(μj) = vj, j = 1, . . . , q,

Ĥ(λi) = H(λi) ⇒ Ĥ(λi) = wi, i = 1, . . . , k.
} (6.12)

6.2.5 The Loewner framework

Given a row array of complex numbers (μj, vj), j = 1, . . . , q, and a column array, (λi,wi),
i = 1, . . . , k, (with λi and the μj mutually distinct) the associated Loewner matrix is

𝕃 =
[[[[

[

v1−w1
μ1−λ1
⋅ ⋅ ⋅ v1−wk

μ1−λk
...

. . .
...

vq−w1
μq−λ1
⋅ ⋅ ⋅ vq−wk

μq−λk

]]]]

]

∈ ℂq×k .
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Definition 6.2. If g is rational, i. e., g(s) = p(s)
q(s) , for appropriate polynomials p, q, the

McMillan degree or the complexity of g is deg g = max{deg(p),deg(q)}.

Now, if wi = g(λi), and vj = g(μj), are samples of a rational function g, the main
property of Loewner matrices asserts the following.

Theorem 6.1 ([52]). Let 𝕃 be as above. If k, q ≥ deg g, then rank𝕃 = deg g. In other
words the rank of 𝕃 encodes the complexity of the underlying rational function g. Fur-
thermore, the same result holds for matrix-valued functions g.

6.2.5.1 The Loewner pencil and interpolatory projectors

In the sequel we denote the tangential versions of (6.5) and (6.7) byℛ,𝒪, respectively.
For arbitrary k and q, these are defined as

ℛ = [(λ1E − A)
−1Br1, . . . , (λkE − A)

−1Brk] ∈ ℂ
n×k , (6.13)

𝒪T = [(μ1E
T − AT)−1CTℓ1 ⋅ ⋅ ⋅ (μqE

T − AT)−1CTℓq] ∈ ℂ
n×k . (6.14)

It readily follows that the reduced quantities Ê and Â form a Loewner pencil:

Ê = −𝒪Eℛ = −
[[[[[

[

vT1 r1−ℓ
T
1 w1

μ1−λ1
⋅ ⋅ ⋅ vT1 rk−ℓ

T
1 wk

μ1−λk
...

. . .
...

vTq r1−ℓ
T
qw1

μq−λ1
⋅ ⋅ ⋅ vTq rk−ℓ

T
qwk

μq−λk

]]]]]

]

= −𝕃 ∈ ℂq×k , (6.15)

Â = −𝒪Aℛ = −
[[[[[

[

μ1vT1 r1−ℓ
T
1 w1λ1

μ1−λ1
⋅ ⋅ ⋅ μ1vT1 rk−ℓ

T
1 wkλk

μ1−λk
...

. . .
...

μqvTq r1−ℓ
T
qw1λ1

μq−λ1
⋅ ⋅ ⋅ μqvTq rk−ℓ

T
qwkλk

μq−λk

]]]]]

]

= −𝕃s ∈ ℂ
q×k , (6.16)

B̂ = 𝒪B =
[[[

[

vT1
...
vTq

]]]

]

= 𝕍 ∈ ℂq×m, Ĉ = Cℛ = [ w1 ⋅ ⋅ ⋅ wk ] = 𝕎 ∈ ℂ
p×k . (6.17)

The resulting quadruple (𝕎,𝕃, 𝕃s, 𝕍) is called the Loewner quadruple.

Lemma 6.1. Upon multiplication of the first equation in (6.8) with𝒪 on the left and the
second byℛ on the right we obtain

𝕃s − 𝕃Λ = 𝕍R and 𝕃s −M𝕃 = L𝕎. (6.18)

By adding/subtracting appropriate multiples of these expressions it follows that the
Loewner quadruple satisfies the Sylvester equations

M𝕃 − 𝕃Λ = 𝕍R − L𝕎 and M𝕃s − 𝕃sΛ = M𝕍R − L𝕎Λ. (6.19)
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Theorem 6.2. Assume that the pencil (𝕃s, 𝕃) is regular.2 Then H(s) = 𝕎(𝕃s − s𝕃)−1𝕍,
satisfies the tangential interpolation condition (6.9).

Proof. Multiplying the first Sylvester equation by s and subtracting it from equation
the second one, we get

M(𝕃s − s𝕃) − (𝕃s − s𝕃)Λ = (M − sI)𝕍R − L𝕎(Λ − sI).

Multiplying this equation by ei on the right and setting s = λi, we obtain

(M − λiI)(𝕃s − λi𝕃)ei = (M − λiI)𝕍ri ⇒ (𝕃s − λi𝕃)ei = 𝕍ri
⇒𝕎ei = 𝕎(𝕃s − λi𝕃)

−1𝕍ri.

Thus wi = H(λi)ri. Next, we multiply the above equation by eTj on the left and set
s = μj:

eTj (𝕃s − μj𝕃)(Λ − μjI) = e
T
j L𝕎(Λ − μjI) ⇒ eTj (𝕃s − μj𝕃) = ℓj𝕎

⇒ eTj 𝕍 = ℓ
T
j 𝕎(𝕃s − μj𝕃)

−1𝕍.

Thus vTj = ℓ
T
j H(μj).

Remark 6.2 (Parametrization of all interpolants of complexity equal to the size of 𝕃).
With K ∈ ℂp×m, the Sylvester equations can be rewritten as

M𝕃 − 𝕃Λ = (𝕍 − LK)R − L(𝕎 − KR) and
M(𝕃s + LKR) − (𝕃s + LKR)Λ = M(𝕍 − LK)R − L(𝕎 − KR)Λ.

These equations imply that (𝕎̄, 𝕃, 𝕃̄s, 𝕍̄) is an interpolant for all K ∈ ℂp×m, where
𝕃̄s = 𝕃s + LKR, 𝕍̄ = 𝕍 − LK and 𝕎̄ = 𝕎 − KR.

6.2.5.2 Construction of interpolants

If the pencil (𝕃s, 𝕃) is regular, then E = −𝕃,A = −𝕃s,B = 𝕍,C = 𝕎, is a minimal
interpolant of the data, i. e., H(s) = 𝕎(𝕃s − s𝕃)−1𝕍, interpolates the data. Otherwise,
as shown in [52], problem (6.9) has a solution provided that

rank[s𝕃 − 𝕃s] = rank[𝕃, 𝕃s] = rank [
𝕃
𝕃s
] = r,

for all s ∈ {λj} ∪ {μi}. Consider then the short SVDs:

[𝕃, 𝕃s] = YΣ̂rX̃
∗, [
𝕃
𝕃s
] = ỸΣrX

∗,

where Σ̂r, Σr ∈ ℝr×r, Y ∈ ℂq×r, X ∈ ℂk×r, Ỹ ∈ ℂ2q×r, X̃ ∈ ℂr×2k .

2 The pencil (𝕃s,𝕃) is called regular if there is at least one value of λ ∈ ℂ such that det(𝕃s − λ𝕃) ̸= 0.
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Remark 6.3. r can be chosen as the numerical rank (as opposed to the exact rank) of
the Loewner pencil. For issues related to the rank, we refer the reader to [2], page 50,
for details.

Theorem 6.3. The quadruple (E,A,B,C) of size r × r, r × r, r ×m, p × r, given by

E = −YT𝕃X, A = −YT𝕃sX, B = YT𝕍, C = 𝕎X,

is a descriptor realization of an (approximate) interpolant of the data with McMillan
degree r = rank𝕃.

Remark 6.4.
(a) The Loewner approach constructs a descriptor representation (𝕎,𝕃, 𝕃s, 𝕍), of an

underlying dynamical system exclusively from the data, with no further manipu-
lations involved (i. e., matrix factorizations or inversions). In general, the pencil
(𝕃s, 𝕃) is singular and needs to be projected to a regular pencil (A,E). However, as
shown in the mass–spring–damper example in equation (6.22), inversion can be
replaced by generalized inversion.

(b) As already mentioned, in the Loewner framework, by construction, D terms are
absorbed in the other matrices of the realization. Extracting the D term involves
an eigenvalue decomposition of (𝕃s, 𝕃).

6.2.5.3 Interpolation property of reduced systems

Given a Loewner quadruple and the projection matrices3 X,Y ∈ ℂn×k, let the reduced
quantities be

𝕃̂ = X∗𝕃Y, 𝕃̂s = X
∗𝕃sY, 𝕍̂ = X

∗𝕍, 𝕎̂ = 𝕎Y.

We also consider the projected L and Rmatrices, namely L̂ = X∗L, R̂ = RY. The ques-
tion which arises is whether these reduced quantities satisfy interpolation conditions
as well. The answer is affirmative and to show this we proceed as follows.

The associated Λ̂ and M̂must satisfy the projected equations resulting from (6.18),
i. e.

𝕃̂s − 𝕃̂Λ̂ = 𝕍̂R̂ and 𝕃̂s − M̂𝕃̂ = L̂𝕎̂. (6.20)

Notice that the projected Loewner pencil is not in Loewner form. To achieve this we
proceed as follows. We need to diagonalize Λ̂ and M̂. For this purpose we compute the
following two generalized eigenvalue decompositions:

[DΛ̂,TΛ̂] = eig(𝕃̂s − 𝕍̂R̂, 𝕃̂) and [DM̂,TM̂] = eig(𝕃̂s − L̂𝕎̂, 𝕃̂).

3 We call X,Y ∈ ℂn×k projection matrices as they are used for defining the projector: X(Y∗X)−1Y∗.
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These decompositions imply

Λ̂ = TΛ̂DΛ̂T
−1
Λ̂ and M̂ = TM̂DM̂T

−1
M̂ , (6.21)

where for simplicity, it is assumed that the matrices Λ̂ and M̂ are diagonalizable.
It follows that the (diagonal) entries of DΛ̂ and DM̂ are the right frequencies and

the left frequencies of the reduced system, respectively. Furthermore, straightforward
calculations imply that the remaining quantities are as follows:

{{{{
{{{{
{

𝕃̄s = T−1M̂ 𝕃̂sTΛ̂, 𝕃̄ = T
−1
M̂ 𝕃̂TΛ̂,

𝕍̄ = T−1M̂ 𝕍̂, L̄ = T−1M̂ L̂,

𝕎̄ = 𝕎̂TΛ̂, R̄ = R̂TΛ̂.

Conclusion: the right/left data triples for the reduced system are (DΛ̂, 𝕎̄, R̄), and
(DM̂, 𝕍̄, L̄), respectively, while the associated Loewner pencil is (𝕃̄s, 𝕃̄).

6.2.5.4 Real interpolants and reduced models

Most often the data are collected from real systems. In these cases if (si,ϕi) si,ϕi ∈ ℂ, is
a measurement pair, in order for the interpolants/reducedmodels to be real, the com-
plex conjugate pair ( ̄si, ϕ̄i), should also be included. Thus the left/right frequencies
besides real quantities contain complex ones appearing in complex conjugate pairs.
For instance, in the SISO (single-input single-output) case, let the real measurement
frequencies be σi ∈ ℝ, and the complex ones σ̂i + j ⋅ ω̂i where j denotes the imaginary
unit. We split them in two sets, the left and the right ones, respectively, making sure
that each set is closed under complex conjugation:

M = {σi, i = 1, . . . , r1; σ̂i ± j ⋅ ω̂i, i = 1, . . . , r3},
Λ = {σi, i = r1 + 1, . . . , r1 + r2; σ̂i ± j ⋅ ω̂i, i = r3 + 1, . . . , r3 + r4}.

Thus the left set has r1 real frequencies and r3 complex frequencies together with their
complex conjugates (total r1+2r3 numbers). Similarly the numbers for the right set are
r2 and r4, i. e., it consists of r2 + 2r4 numbers. The quantities𝕎 and 𝕍 are assembled
in accordance withM and Λ. In addition let us define the matrices:

Jμ = blkdiag[Ir1 ,

r3 terms
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞J, . . . , J] ∈ ℂ(r1+2r3)×(r1+2r3),

Jλ = blkdiag[Ir2 , J, . . . , J⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
r4 terms
] ∈ ℂ(r2+2r4)×(r2+2r4),

where J = 1
√2 [

1 −j
1 j ], where blkdiag[⋅] (following Matlab notation) denotes the block

diagonal structure. A simple calculation shows then that the matrices

MR = J
∗
μMJμ, 𝕍R = J

∗
μ𝕍, LR = J

∗
μL,
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have real entries. The same happens with the matrices

ΛR = J
∗
λΛJλ, 𝕎R = 𝕎Jλ, RR = RJλ.

Recall equations (6.18). If we now solve the transformed equations for 𝕃R, 𝕃Rs :

𝕃Rs − 𝕃
RΛR = 𝕍RRR and 𝕃Rs −MR𝕃

R = LR𝕎R,

the resulting pencil (𝕃Rs , 𝕃
R) has real entries. Hence the algorithms based on 𝕃R and

𝕃Rs described below yield real reduced order models.

6.2.5.5 The Loewner algorithms for scalar and matrix rational approximation

Next, two algorithms (see Algorithms 6.1 and 6.2) for computing a strictly rational real
interpolant for both, the scalar and the matrix interpolation problem are presented.

Algorithm 6.1: Loewner-SISO (Scalar rational approximation) [49].

Input: S = [s1, . . . , sN ] ∈ ℂN ,F = [ϕ1, . . . ,ϕN ] ∈ ℂ
N ,N ∈ ℕ.

Output: Ê ∈ ℝr×r , Â ∈ ℝr×r , B̂ ∈ ℝr×1, Ĉ ∈ ℝ1×r with r ≪ N .

1. Partition the measurements into two disjoint sets and form left and right set as
(μj, vj), j = 1, . . . , q and (λi,wi), i = 1, . . . , k.

frequencies : [s1, . . . , sN ] → [λ1, . . . , λk], [μ1, . . . , μq], k + q = N ,

values : [ϕ1, . . . ,ϕN ] → [w1, . . . ,wk] = 𝕎, [v1, . . . , vq] = 𝕍T .

2. Construct the Loewner pencil as

𝕃 = (
vi −wj

μi − λj
)
j=1,...,k

i=1,...,q
, 𝕃s = (

μivi − λjwj

μi − λj
)
j=1,...,k

i=1,...,q
.

3. It follows that the complex rawmodel is

{𝕎,𝕃, 𝕃s, 𝕍}.

4. Transform all the complex data to real and there follows the raw real model:

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}.

5. Compute the rank-revealing SVDs: [Y1, Σ1,X1] = SVD([𝕃R𝕃Rs ]) and [Y2, Σ2,X2] =
SVD([𝕃R; 𝕃Rs ]); the decay of the singular values, leads to the choice of the order r
of the approximant.
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6. The reduced realmodel is obtainedbyprojecting the raw realmodelwithY = Yn×r
1

and X = Xn×r
2 as

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

singular

⇒⏟⏟⏟⏟⏟⏟⏟
SVD
{𝕎RX,Y

T𝕃RX,YT𝕃RsX,Y
T𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

regular

= {Ĉ, −Ê, −Â, B̂}.

7. A real approximant of the data is then

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ ≈ ϕ(s).

Algorithm 6.2: Loewner-MIMO (Matrix rational approximation).

Input: S = [s1, . . . , sN ] ∈ ℂN ,F = [ϕ1, . . . ,ϕN ] ∈ ℂ
N×p×m,N ∈ ℕ.

Output: Ê ∈ ℝr×r , Â ∈ ℝr×r , B̂ ∈ ℝr×m, Ĉ ∈ ℝp×r with r ≪ N .

1. Partition the measurements into two disjoint sets:
Left data:

M =
[[[

[

μ1
. . .

μq

]]]

]

∈ ℂq×q, L =
[[[

[

ℓT1
...
ℓTq

]]]

]

∈ ℂq×p, 𝕍 =
[[[

[

vT1
...
vTq

]]]

]

∈ ℂq×m.

Right data:

Λ =
[[[

[

λ1
. . .

λk

]]]

]

∈ ℂk×k ,
R = [r1, r2, ⋅ ⋅ ⋅ rk] ∈ ℂm×k ,

𝕎 = [w1 w2 ⋅ ⋅ ⋅ wk] ∈ ℂ
p×k .

2. Construct the Loewner pencil as

𝕃 = (
vTi ri − ℓ

T
j wj

μi − λj
)
j=1,...,k

i=1,...,q
, 𝕃s = (

μivTi ri − λjℓ
T
j wj

μi − λj
)
j=1,...,k

i=1,...,q
.

3. It follows that the complex rawmodel is

{𝕎,𝕃, 𝕃s, 𝕍}.

4. Transform all the complex data to real and there follows the real rawmodel:

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}.

5. Compute the rank-revealing SVDs: [Y1, Σ1,X1] = SVD([𝕃R𝕃Rs ]) and [Y2, Σ2,X2] =
SVD([𝕃R; 𝕃Rs ]); the decay of the singular values, lead to the choice of r.
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6. The reduced realmodel is obtainedbyprojecting the raw realmodelwithY = Yn×r
1

and X = Xn×r
2 .

{𝕎R, 𝕃
R, 𝕃Rs , 𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

singular

⇒⏟⏟⏟⏟⏟⏟⏟
SVD
{𝕎RX,Y

T𝕃RX,YT𝕃RsX,Y
T𝕍R}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

regular

= {Ĉ, −Ê, −Â, B̂}.

7. A real approximant of the data is

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ ≈ ϕ(s).

6.2.6 Examples

In this section the theory will be illustrated by means of simple examples.

Example 6.1 (A spring–mass–damper system). Letm, d, and k denote themass, damp-
ing, and stiffness of the spring as in Figure 6.1; let also x(t) denote the displacement
and F(t) the force applied; the associated differential equation is

mẍ(t) + dẋ(t) + kx(t) = F(t).

Figure 6.1: A spring–mass–damper system.

This is a SISO (single-input single-output) system. By introducing the state variables
x1 = x, x2 = ẋ, the input u = F, and as output the velocity y = ẋ, the following state
equations result:

ẋ1(t) = x2(t), mẋ2(t) = −kx1 − dx2(t) + u(t), y(t) = x2(t).

The system matrices are thus

E = [ 1 0
0 m
] , A = [ 0 1

−k −d
] , B = [ 0

1
] , C = [ 0 1 ] ,

and the resulting transfer function is

H(s) = C(sE − A)−1B = s
ms2 + ds + k

.

In the sequel we will assume for simplicity that all parameters have value one. We
nowwish to recover state equations equivalent to the ones above frommeasurements
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of the transfer function. Toward this goal we evaluate the transfer function at the real
frequencies: λ1 =

1
2 , λ2 = 1 (right frequencies), as well as μ1 = −

1
2 , μ2 = −1 (left frequen-

cies). The corresponding values of H are collected in the matrices

𝕎 = ( 2
7

1
3 ) , 𝕍 = ( −

2
3 −1 )

T
.

Furthermore, with R = [1 1] = LT , we construct the Loewner pencil:

𝕃 = [
20
21

2
3

6
7

2
3

] , 𝕃s = [
− 421 0

− 47 −
1
3

] .

Since the pencil (𝕃s, 𝕃) is regular, we recover the original transfer function:

H(s) = 𝕎Φ(s)−1𝕍 = s
s2 + s + 1

, where Φ(s) = 𝕃s − s𝕃.

Hence, themeasurements above yield aminimal (descriptor) realization of the system
in terms of the (state) variables z1, z2:

20
21
ż1(t) +

2
3
ż2(t) =

4
21
z1(t) +

2
3
u(t),

6
7
ż1(t) +

2
3
ż2(t) = −

4
7
z1(t) −

1
3
z2(t) + u(t), y(t) =

2
7
z1(t) +

1
3
z2(t),

with

Ẽ = [
20
21

2
3

6
7

2
3

] , Ã = [
− 421 0

− 47 −
1
3

] , B̃ = [
2
3

1
] , C̃ = [ 2

7
1
3 ] .

By multiplying with Ẽ−1, it yields (id: identified system in state-space form)

Ãid = [
4 7

2
−6 −5

] , B̃id = [
− 72
6
] , C̃id = [ 2

7
1
3 ] .

Coordinate transformation Let the state vector x be transformed to the new state
vector z by the non-singular transformation matrix

Ψ = [ C
CA
]
−1

[
C̃id

C̃idÃid
] ,

of dimension 2 × 2. Then the following hold:

z = Ψ−1x, Ãid = Ψ
−1AΨ, B̃id = Ψ

−1B, C̃id = CΨ;

e. g.,ΨÃidΨ−1 = [ 0 1
−1 −1 ] = A.
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Remark 6.5. The above result ensures that the Loewner framework constitutes a data-
driven system identification method which constructs a realization only from mea-
surements. It is important to mention that under a coordinate transformation, both
systems, initial and identified are identical. At the same time, the underlying dynam-
ics is recovered exactly while the corresponding revealing transfer function remains
invariant under such a transformation.

The question now arises: what happens if we collect more data than neces-
sary? Let us consider

Λ = diag ( 1
2 1 3

2 2 ) , M = diag ( − 12 −1 −
3
2 −2 ) .

In this case, the associated measurements are

𝕎 = ( 2
7

1
3

6
19

2
7 ) , 𝕍 = ( −

2
3 −1 −

6
7 −

2
3 )

T
,

and with R = [1 1 1 1] = LT , the Loewner pencil is

𝕃 =

[[[[[[[[

[

20
21

2
3

28
57

8
21

6
7

2
3

10
19

3
7

4
7

10
21

52
133

16
49

8
21

1
3

16
57

5
21

]]]]]]]]

]

, 𝕃s =

[[[[[[[[

[

− 421 0 4
57

2
21

− 47 −
1
3 −

4
19 −

1
7

− 47 −
8
21 −

36
133 −

10
49

− 1021 −
1
3 −

14
57 −

4
21

]]]]]]]]

]

.

It turns out that we can choose arbitrary matrices X,Y ∈ ℝ4×2, provided that
det(YTX) ̸= 0, e. g.

X =
[[[[

[

−1 0
0 −1
0 0
−2 1

]]]]

]

, YT = [
0 1 0 −1
1 −1 −1 1

] ,

so that the projected quantities

𝕎̂ = 𝕎X = [ − 67 −
1
21 ] , 𝕃̂ = Y

T𝕃X = [
− 67 −

1
7

18
49

1
147

] ,

𝕃̂s = Y
T𝕃sX = [

0 1
21

− 4849 −
19
147

] , 𝕍̂ = YT𝕍 = [
− 13
11
21

] ,

constitute a minimal realization of H(s):

H(s) = 𝕎̂(𝕃̂s − s𝕃̂)
−1𝕍̂ =

s
s2 + s + 1

.

It should be stressed that this holds for arbitrary projection matrices X, Y.
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6.2.6.1 The generalized inverse approach

There is another way to express the above relationship avoiding arbitrary projectors.
Basic ingredients are generalized inverses. This approach will be demonstrated only
for the spring–mass–damper example. However, it holds in general (see, e. g., [3]).

In the sequel, we will make use (only) of theMoore–Penrose generalized inverse,
which is defined as follows. Given the (rectangular) matrix M ∈ ℝq×k, the Moore–
Penrose generalized inverse, denoted byMMP ∈ ℝk×q, satisfies:
(a) MMMPM = M,
(b) MMPMMMP = MMP,
(c) [MMMP]T = MMMP,
(d) [MMPM]T = MMPM.

This generalized inverse always exists and is unique.
In the sequel we will be concerned with rectangular q × k polynomial matrices

which have an explicit (rank-revealing) factorization as follows:

M = XΔYT ,

where X, Δ, Y have dimension q × n, n × n, k × n, n ≤ q, k, and all have full rank n. In
such cases, theMoore–Penrose generalized inverse is

MMP = Y(YTY)−1Δ−1(XTX)−1XT .

Mass–spring–damper example (continued). The quantity needed is the generalized
inverse of

Φ(s) = 𝕃s − s𝕃 =
[[[[[[

[

− 20s21 −
4
21 − 2s3

4
57 −

28s
57

2
21 −

8s
21

− 6s7 −
4
7 − 2s3 −

1
3 −

10s
19 −

4
19 −

3s
7 −

1
7

− 4s7 −
4
7 −

10s
21 −

8
21 −

52s
133 −

36
133 −

16s
49 −

10
49

− 8s21 −
10
21 − s3 −

1
3 − 16s57 −

14
57 −

5s
21 −

4
21

]]]]]]

]

. (6.22)

We first notice thatΦ(s) = XΔ(s)YT , where X and Y can be chosen as follows:

X =
[[[[[[

[

1 0

0 1

− 37
8
7

− 12 1

]]]]]]

]

, Y = [
1 0 − 719 −

1
2

0 1 24
19

9
7

] ⇒ det(YX) ̸= 0.
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Thus by taking the 2 × 2 upper-left block as Δ(s) = Φ(1 : 2, 1 : 2)(s), it follows that
Φ(s)MP = 1

80989667
1

s2+s+1Z(s), where

Z(s) =
[[[[

[

−28(11610185s + 7274073) 14(3558666s − 5604037)
294(225182s + 281171) (−147)(192415s − 19668)
3724(54617s + 48189) (−1862)(29046s − 17485)
98(2527157s + 2123670) −49(1250553s − 876439)

6076(32301s − 391) 14(15168851s + 1670036)
−2058(29494s + 15609) −147(417597s + 261503)
−26068(5715s + 1523) −1862(83663s + 30704)
−98(1797669s + 409322) −49(3777710s + 1247231)

]]]]

]

In the rectangular case, where there are two right measurements less, i. e., we only
have Λ̃ = diag[ 12 , 1], whileM remains the same, the right values are 𝕎̃ = 𝕎(:, 1 : 2);
hence

Φ̃(s) = 𝕃̃s − s𝕃̃ =

[[[[[[[

[

− 20s21 −
4
21 − 2s3

− 6s7 −
4
7 − 2s3 −

1
3

− 4s7 −
4
7 −

10s
21 −

8
21

− 8s21 −
10
21 − s3 −

1
3

]]]]]]]

]

= XΔ(s)ỸT ,

has dimension 4 × 2, where Ỹ = Y(1 : 2, 1 : 2). In this case the Moore–Penrose inverse
is

Φ̃(s)MP = 1
737(s2 + s + 1)

× [
−4767s − 3402 1827

2 s − 2037
2 3087s + 294 3297s + 1365

2
5838s + 5250 −1596s + 903 −4326s − 1218 −4515s − 1722

] ,

which implies the desired equality

⇒𝕎Φ(s)MP𝕍 = 𝕎̃Φ̃(s)MP𝕍 = H(s).

Conclusion: the Loewner framework allows the definition of rectangular and singular
systems.

Example 6.2 (Reduction of a 10th order band-stop filter). The system has two inputs
and two outputs (MIMO), state-space dimension 10, and a D term of rank 2. A state-
space representation is as follows:

Σ : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), where
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A =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

− 12 −
1
2 −

1
2

1
2

1
2 −1 0 0 0 0

− 12 −
1
2 −

1
2 −

1
2

1
2 0 −1 0 0 0

1
2

1
2 −

1
2 −

1
2 −

1
2 0 0 −1 0 0

− 12
1
2 −

1
2 −

1
2 −

1
2 0 0 0 −1 0

− 12 −
1
2 −

1
2 −

1
2 −

1
2 0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]

]

, B =

[[[[[[[[[[[[[[[[[[[[[[[[[[

[

1
2 −

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0

0 0

0 0

0 0

0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]

]

,

C = [
− 12 −

1
2

1
2

1
2

1
2 0 0 0 0 0

− 12 −
1
2 −

1
2 −

1
2 −

1
2 0 0 0 0 0

] , D = [
1
2 −

1
2

1
2

1
2

] .

The transfer function is a 2 × 2 rational matrix given by

H(s) = 1
d(s)
[

n1(s) n2(s)

−n2(s) −n1(s)
] + D, where

n1(s) = s(s
8 + 7s6 + 13s4 + 7s2 + 1),

n2(s) = s(5s
8 + 6s7 + 25s6 + 20s5 + 41s4 + 20s3 + 25s2 + 6s + 5),

d(s) = 2(s4 + s3 + 3s2 + 2s+)(2s6 + 3s5 + 7s4 + 7s3 + 7s2 + 3s + 2).

It readily follows that lims→∞H(s) = D. We take N = 100 samples of the transfer func-
tion on the imaginary axis (frequency response measurements) between 10−1 and 101

rad/sec. Figure 6.3 (left) shows the first 20 normalized singular values of the resulting
real Loewner pencil (the rest are numerically zero). The rank of 𝕃 is 10 (the McMillan
degree of the system) while the rank of 𝕃s is 12 (= rank𝕃 + rankD). The right pane in
Figure 6.2 shows that we can obtain a perfect fit (total recovery of the model) with the
Loewner framework for this MIMO example only by sampling the transfer function.
As both Gramians are 𝒫 = 𝒬 = 1

2 I10, i. e., they are equal and a multiple of the identity
matrix, the Hankel singular values (see [2]) are all equal; this makes reduction with
balanced truncation not feasible.

The right pane in Figure 6.3 shows the poles of the system obtained by means of
the Loewner framework along with the zeros for every entry. The right pane in Fig-
ure 6.2 shows the band-stop character around frequency ω0 = 1 rad/s, of entries (1, 2)
and (2, 1).
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Figure 6.2: Left pane: Shows the 100 measurements sampled with DNS(Direct Numerical Simula-
tions) of the theoretical (2 × 2)-matrix transfer function. Right pane: Loewner approximants.

Figure 6.3: Left pane: Shows the first 12 singular values while the rest are numerically zero. Right
pane: Pole/Zero diagram.

Computing the poles of the Loewner model confirms the accuracy of the approach.
Consider the following:

[[[[[[[[[[[[[[[[[[[[[[

[

eig(A) eig(Ar ,Er)
−0.0181885913675508 − 0.745231200229 i −0.0181885913675508 − 0.745231200229 i
−0.0181885913675508 + 0.745231200229 i −0.0181885913675508 + 0.745231200229 i
−0.148402943598342 − 0.632502179219046 i −0.148402943598342 − 0.632502179219046 i
−0.148402943598342 + 0.632502179219046 i −0.148402943598342 + 0.632502179219046 i
−0.699080475814867 − 0.715042997542469 i −0.699080475814867 − 0.715042997542469 i
−0.699080475814867 + 0.715042997542469 i −0.699080475814867 + 0.715042997542469 i
−0.0327309328175858 − 1.34106659803138 i −0.0327309328175858 − 1.34106659803138 i
−0.0327309328175858 + 1.34106659803138 i −0.0327309328175858 + 1.34106659803138 i
−0.351597056401658 − 1.49852758300335 i −0.351597056401658 − 1.49852758300335 i
−0.351597056401658 + 1.49852758300335 i −0.351597056401658 + 1.49852758300335 i

∞
∞

]]]]]]]]]]]]]]]]]]]]]]

]

As can be observed from this table, the Loewner method computes, besides the fi-
nite poles, two poles at infinity. This happens because in the Loewner framework the
D-term is incorporated in the remaining matrices of the realization.
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6.2.7 Summary

Recall Section 6.2.5. The following result summarizes the cases which arise in the
Loewner framework, depending on the amount of data available.

Lemma 6.2. Given is a scalar transfer function of McMillan degree n.
1. Amount of data less that 2n. For q = k ≤ n, define the transfer function Ĥ(s) = Ĉ(sÊ−

Â)−1B̂, by means of the Loewner procedure. The interpolation conditions below are
satisfied:

Ĥ(μi) = H(μi) and Ĥ(λi) = H(λi) for i = 1, . . . , k.

If k = q = n, the Loewner quadruple is equivalent to the original one (C,E,A,B).
2. Arbitrary amount of data, no reduction. For arbitrary k and q (i. e. k, q ≤ n or k,

q ≥ n) the Loewner quadruple interpolates the data, even if the pencil (𝕃s, 𝕃) is
singular. This is to be interpreted as follows:

(𝕃s − λi𝕃)ei = 𝕍 and eTj (𝕃s − μj𝕃) = 𝕎.

Hence𝕎ei = wi, i = 1, . . . , k, and eTj 𝕍 = vj, j = 1, . . . , q. Therefore the transfer
function of the Loewner pencil interpolates H(s) at the left and right interpolation
points.

3. Arbitrary amount of data, followed by reduction. If k, q ≥ n, consider the rank-
revealing SVD decompositions:

[𝕃 𝕃s] = Ŷr Σ̂rX
T
r and [ 𝕃

𝕃s
] = Yr Σ̃rX̃

T
r ,

where Yr ∈ ℝ
q×r , Xr ∈ ℝ

k×r , and r ≤ k, q, is the exact or the numerical rank of the
Loewner pencil involved. Let

Ẽ = YT
r 𝕃Xr , Ã = YT

r 𝕃sXr ∈ ℂ
r×r , B̃ = YT

r 𝕍 ∈ ℂ
r , C̃ = 𝕎Xr ∈ ℂ

1×r .

Then the following approximate interpolation conditions are satisfied:

H̃(μi) ≈ H(μi), i = 1, . . . , q, and H̃(λj) ≈ H(λj), j = 1, . . . , k.

In addition, the reduced system satisfies (exact) interpolation conditions as shown
in Section 6.2.5.3.

6.3 Practical considerations
This section deals with some key aspects of the Loewner framework, through a prac-
tical point of view.
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– The factorization of the Loewner matrix into low-rank factor matrices:
1. Through the singular value decomposition (SVD).
2. Through the CUR decomposition.

– The choices involving the measurements used in the framework:
1. Distribution of the interpolation points.
2. Partition of the interpolation points.

6.3.1 The singular value decomposition
The SVD is arguably one of the most useful and commonly used tools in numerical
linear algebra. It is listed as one of the main matrix decompositions and can be effi-
ciently computed through various numerically stable algorithms. It is widely used for
different high dimension reduction and approximation methods.

Any complex-valued matrix A ∈ ℂn×m has a singular value decomposition given
by A = YΣX∗ where Y ∈ ℂn×n, X ∈ ℂm×m are unitary matrices, i. e., Y∗Y = In and
X∗X = Im. The left and right singular vectors are collected as columns of matrices X,
and Y, respectively.

Additionally, the matrix Σ ∈ ℂn×m is defined as Σi,i = σi and zero elsewhere. Here,
the ordered non-negative scalars σ1 ⩾ σ2 ⩾ ⋅ ⋅ ⋅ σn ⩾ 0 are the singular values (for
n ⩽ m).

In what follows, it is assumed that matrix A has low rank, i. e., rank(A) = r ⩽ n
⩽ m. Let k be a positive integer so that k < r. The singular value decomposition of
matrix A can be additively split as follows:

A = Y ⋅ Σ ⋅ X∗ = (Yk Yn−k)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n×n
⋅ (

Σk 0k,m−k
0n−k,k Σn−k,m−k

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n×m

⋅ (
X∗k
X∗m−k
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
m×m

(6.23)

= YkΣkX
∗
k⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=Ak

+Yn−kΣn−k,m−kX
∗
m−k (6.24)

where Yk ∈ ℂ
n×k, Σk ∈ ℂk×k andXk ∈ ℝ

m×k . Note that the matrixAk := YkΣkX∗k ∈ ℂ
m×n

can be written in terms of the truncated dyadic decomposition, i. e., Ak = ∑
k
i=1 σiyix

∗
i ,

where yi and xi are the ith column of matrices Y, and X, respectively.
A problem of interest is to approximate the original matrix A with a rank k ma-

trix T, so that the approximation error is minimal with respect to the 2-induced norm
or to the Frobenius norm.

From the Schmidt–Eckart–Young–Mirsky theorem (see Theorem 3.6 in [2]), it fol-
lows that (given σk > σk+1)

min
T∈ℝn×m , rank(T)≤k‖A − T‖2 = σk+1. (6.25)

Moreover, it turns out that the unique solution to theminimization problem in (6.25) is
given by T = Ak . If we replace the 2-induced normwith the Frobenius norm, it follows
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that

min
T∈ℝn×m , rank(T)≤k‖A − T‖F = (

n
∑
i=k+1

σ2i )

1
2

. (6.26)

As before, the unique solution to the minimization problem in (6.26) is again given
by T = Ak . For more details on the singular value decomposition (SVD) we refer the
reader to [2], pages 31–41.

The advantage of the SVD is that it offers optimal low-rank solutions in both the
2-induced and the Frobenius norms. At the same time, one disadvantage is given by
the fact that the method (full SVD) has cubic complexity with respect to min(m, n) (in
the classical set-upwhen applied to densematrices). Taking into account this possible
downside, we seek ways of circumventing the usage of the classical SVD and investi-
gate other matrix decompositions. It is worth mentioning that SVD complexity can be
faster than cubic for a low-rank approximation with iterative algorithm. In the latter,
a randomized version of SVD (r-SVD) will reveal this robust behavior.

6.3.2 The CUR decomposition

A challenging aspect of data-driven approximation methods is the choice of a rele-
vant and meaningful low dimensional subset of the (usually large-scale) data set. In
some cases, this subset can be used to preserve relevant characteristics of the dynam-
ics for the model described by the original data. In this framework, it is of interest to
devise procedures that can extract relevant information from large-scale sets of mea-
surements. The end goal is to construct reduced order models suitable for tasks such
as control, design, and simulation.

Nowadays, the dimension of data sets for various applications can easily reach
≈ 𝒪(106). In such cases, computing the SVD of large and full matrices becomes pro-
hibitive.

One appealing alternative is the so-called CUR decomposition. As before, the goal
is to approximate theoriginalmatrixA ∈ ℂn×m, by aproduct of three low-rankmatrices
Â = CUR. Here, the columns of the matrix C ∈ ℂn×c are represent a subset of the
columns of A while the rows of the matrix R ∈ ℂr×m form a subset of the rows of A.
Finally, the matrix U ∈ ℂc×r is constructed such that the factorization Â = CUR holds.

In this new set-up, the left and right singular vectors appearing in the SVD are
replaced by columns and rows of the initial matrix A. Hence, the CUR factorization
provides a way of identifying important sets of rows and columns of a matrix A.

For more details on the CUR decomposition and some of its applications, we refer
the reader to [19, 26, 27, 28, 47, 51, 54, 63].

The CUR factorization is hence an important tool for analyzing large-scale data
sets which offers the following advantages over SVD:
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1. If the matrix A is sparse, then the matrices C and R are also sparse (unlike the
matrices X and Y in the SVD approach).

2. The CUR factorization computes an approximation of A in terms of some of the
rows and some of the columns of A. In contrast, the SVD computes approximants
in terms of linear combinations of orthonormal bases generated by the rows and
columns of A.

3. ConsiderA ∈ ℝm×n,m > n. The complexity for computing the full SVD ofA isO(n3)
flops, using for instance the QR factorization, O(mn2) flops, using iterative meth-
ods as in ARPACK, and O((m + n)k) flops per iteration, for approximate incremen-
tal methods where the k dominant singular triples are determined approximately
(for details see [12]). On the other hand the CUR factorization of order k requires
O(k3 + k2(m + n)) flops per iteration (for details see [47]).

6.3.2.1 CUR approximation of the Loewner matrix

In this section, we apply the CUR factorization to the Loewner matrix. We follow [47],
where CUR is applied to Hankel matrices instead.

Definition 6.3. With 𝕃 ∈ ℝn×n, let ℐ = {i1, . . . , ir} and 𝒥 = {j1, . . . , jr} denote the r-
subsets (r ≪ n) of row and column indices, respectively. If (⋅)MP denotes the pseudo
inverse, then the CUR factorization of the Loewner matrix 𝕃 is given by

𝕃r := 𝕃(:,𝒥 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒥 -columns

⋅𝕃(ℐ,𝒥 )MP ⋅ 𝕃(ℐ, :)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℐ-rows
. (6.27)

In practical applications, large-scale data matrices are only approximately of low
rank (when data can be for instance corrupted by noise). In this case, the sets ℐ and
𝒥 need to be chosen in such a way that the approximation error ‖𝕃 − 𝕃r‖ is small.
Many approaches for selecting the sets of rows and columns have been proposed. In
the following we mention only some of them.
1. Selection based on a maximum volume sub-matrix in [54].
2. Selection based on minimizing the approximation error in the Chebyshev norm

(“skeleton” approximation) in [26, 27].
3. Procedure based on the “cross-approximation” algorithm in [55].
4. Selection based on a discrete empirical interpolation method (DEIM) approach in

[63].

6.3.2.2 The Loewner CUR algorithm

We introduce a data-driven approximation algorithm for the SISO case based on CUR
approach. This constructs a reduced ordermodel bymeans of an adaptive selection of
the rows and columns via the cross-approximation algorithm in [55]. The steps of the
procedure are included in Algorithm 6.3.
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Algorithm 6.3: Loewner CUR-cross-approximation based – SISO [44].

Input: S = [s1, . . . , sN ] ∈ ℂN , F = [ϕ1, . . . ,ϕN ] ∈ ℂ
N with N , r ∈ ℕ, and tolerance

values δ, ϵ.
Output: Ê ∈ ℝr×r , Â ∈ ℝr×r , B̂ ∈ ℝr×1, Ĉ ∈ ℝ1×r with r ≪ N .

1. Form the left and right sets as (μj, vj), j = 1, . . . , q and (λi,wi), i = 1, . . . , k
2. Form the Loewner matrices 𝕃 and 𝕃s as in Algorithm 6.1 and step 2.
3. Transform all the complex data to real as explained in Section 6.2.5.4.
4. 𝒥0 = [j1, . . . , jr] ⊂ 𝒥n an initial set of column indices.
5. [ℐr , ∼, ∼] = crossapprox([𝕃 𝕃s],𝒥0, δ, ϵ).
6. [∼,𝒥r , ∼] = crossapprox([ 𝕃𝕃s ], ℐr , δ, ϵ).
7. Ê = −𝕃(ℐr ,𝒥r), Â = −𝕃s(ℐr ,𝒥r), B̂ = 𝕍(ℐr), Ĉ = 𝕎(𝒥r).
8. The rational approximant is given by

Hr(s) = Ĉ(sÊ − Â)
−1B̂.

For the practical implementation of the function “crossapprox”, used in steps 5 and
6 of the above algorithm, we refer the reader to Algorithm 1 in [47], or to the original
reference [55].

Remark 6.6. Instead of using the cross-approximation algorithm, one can use the
DEIM (Discrete Empirical Interpolation Method) algorithm from [63]. Hence, steps 5
and 6 in Algorithm 6.3 need to be modified accordingly. As a result, singular value
decompositions are performed in order to construct left and right singular vector
matrices (for which the DEIM procedure is applied to). In order to avoid the SVD, an
incremental QR factorization can be instead used, as proposed in [63].

Remark 6.7. TheCUR factorization directly reveals the dominant rows/columns of the
data, while the SVD does not. More precisely, the leading singular vectors give only
linear combinations of the underlying features. Whereas, with the CUR one gets an
actual subset of the initial features (columns) together with the corresponding rows.
Consequently, a first benefit of the CUR is that it preserves the physical meaning and
structure of the initial data. Additionally, another advantage is that the sparsity is pre-
served.

6.3.3 Choice of left and right interpolation points

This section deals with the problem of selecting the initial interpolation points in the
Loewner framework. More specifically, we investigate how the choice of the initial in-
terpolation points affects the quality of the reduced order model. We take into consid-
eration different point distributions in 1D or in 2D.
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Moreover, several splitting techniques are analyzed. These are related to the par-
tition of the data set into two disjoint subsets, which is performed in the beginning of
the algorithms in the Loewner framework.

6.3.3.1 Distribution of the interpolation points

We present various distributions of the initial interpolation points for the one-dimen-
sional case (1D) as well as for the two-dimensional case (2D).

1D interpolation grid 2D interpolation grid

equispaced; equispaced (“same areas”);
logarithmic spaced; logarithmic spaced;
Chebyshev nodes; Padua points;
Uniformly random Uniformly random

In Figure 6.4, we depict different distributions of initial interpolation points. One way
of selecting points is that of equispaced or linearly spaced points, commonly used for
Fourier analysis. This represents a natural choice because of the usage of trigonomet-
ric periodic functions.

Figure 6.4: A visual representation of different interpolation grids.

In some practical applications, under the assumption that the energy decreases ex-
ponentially as time or frequency approach infinity (on an unbounded domain), the
choice of logarithmic distributed points is more appropriate.

Naturally, a dense sampling grid can be used in the beginning of the experiment
(e. g., for a lower frequency range or for small time instances). The motivation for this
approach stems from the assumption that themeaningful quantities (with high energy
or with relevant oscillations) appear in the beginning, hence requiring more samples.
Afterwards, a more sparse distribution grid of points can be instead chosen as the
energy level decays (or as relevant oscillations decay in time).
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Additionally, the choice of Chebyshev-type points is motivated by their usage in
polynomial-based interpolation on bounded domains due to for example, the elimi-
nation of the Runge phenomenon4 (high degree polynomials are generally unsuitable
for interpolation with equispaced points).

Finally, randomly distributed sampling points often appear in stochastic experi-
ments that are characterized by randomness.

6.3.3.2 Partition of the data points and values

Data splitting is one of the first steps in the classical Loewner algorithm (presented
in Section 6.2). In this section, we mention various splitting schemes and how they
affect the Loewner matrix singular value decay and also the approximation quality of
the Loewner interpolants.

The data set (n = even) is composed of

{
Sample points : S = [ω1,ω2, . . . ,ωn] ∈ ℝ

n, with ω1 < ω2 < ⋅ ⋅ ⋅ < ωn,

Sample values : H = [H(ω1),H(ω2), . . . ,H(ωn)] ∈ ℂ
n.

(6.28)

We analyze four different types of data splitting that are mentioned in the following.
1. First type: disjoint splitting.

– μ = [ω1, . . . ,ωn/2] and𝕍 = [H(ω1), . . . ,H(ωn/2)],
– λ = [ωn/2+1, . . . ,ωn] and𝕎 = [H(ωn/2+1), . . . ,H(ωn)].

2. Second type: alternate splitting.
– μ = [ω1,ω3, . . . ,ωn−1] and𝕍 = [H(ω1),H(ω3), . . . ,H(ωn−1)],
– λ = [ω2,ω4, . . . ,ωn] and𝕎 = [H(ω2),H(ω4), . . . ,H(ωn)].

3. Third type: magnitude splitting (in this case the set S is first sorted with respect
to the magnitude of the set H).
– μ = [ω1, . . . ,ωn/2] and𝕍 = [H(ω1), . . . ,H(ωn/2)],
– λ = [ωn/2+1, . . . ,ωn] and𝕎 = [H(ωn/2+1), . . . ,H(ωn)].

4. Fourth type: magnitude alternate splitting (in this case, the set S is first sorted
with respect to the magnitude of the set H and then alternating splitting is ap-
plied).
– μ = [ω1,ω3, . . . ,ωn−1] and𝕍 = [H(ω1),H(ω3), . . . ,H(ωn−1)],
– λ = [ω2,ω4, . . . ,ωn] and𝕎 = [H(ω2),H(ω4), . . . ,H(ωn)].

As observed in practice, when splitting the data as for the first type, the Loewner ma-
trix has a very fast decay of the singular values. Moreover, in this case, the computed
reduced models usually provide low approximation quality.

4 Runge’s phenomenon is a problem of oscillation at the edges of an interval that occurs when us-
ing polynomial interpolation with polynomials of high degree over a set of equispaced interpolation
points.
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On the other hand, for the second separation type (alternate splitting), the left
and right sets of sample points can be chosen ϵ-close to one another (element-wise).
Hence, as ϵ → 0, Hermitian interpolation conditions are enforced (which involve
matching the first derivative at those points).

Other observations that hold in the case of second type splitting are that the nu-
merical rank of the Loewner matrix is usually larger than that of the Loewner ma-
trix constructed based on the first type. Additionally, for the second type, the condi-
tion number is smaller than that computed for the first type. For the above-mentioned
cases, bounds on the singular value decay of the Loewner matrix are provided in [15].

6.4 Case studies

In this sectionwe illustrate the concepts developed in thepreceding sections bymeans
of examples. In particular the following seven examples will be analyzed.
1. The benchmark CD player (n = 120).
2. The function f (x) = exp(−x) sin(10x), x ∈ [−1, 1].
3. The inverse of the Bessel function of the first kind, in [0, 10] × [−1, 1]j.
4. An Euler–Bernouli beam.
5. A heat equation with transfer function H(s) = exp(−√s), s ∈ [0.01, 100]j.
6. Approximation of f = y/ sinh(y), y(x) = 100π(x2 − 0.36), x ∈ [−1, 1].
7. The sign function in the interval [−b, −a] and [a, b], a > b > 0.

6.4.1 The CD player

Consider the CD player benchmark example which is a MIMO dynamical system of
dimension 120with 2 inputs and 2 outputs. Herewewill consider the (2, 1) sub-system,
i. e. the SISO system from the first input to the second output.

The goal is to approximate the transfer function in the Loewner framework. We
start by considering 400 interpolation points ±jωi, i = 1, . . . , 200, where ωi are loga-
rithmically spaced in the interval Ω = [10−1, 105]. Thus Ω = {ω1,ω2, . . . ,ω200}, where
ωi < ωi+1, for all i. We now define the left/right interpolation points in four different
ways as explained in section 6.3.3.2 and depicted in Figure 6.5 (up).

As can be seen in Figure 6.5 (down), the decay of the Loewner matrix singular
values is faster for “half-half” (disjoint) splitting than for “alternating” splitting.

The next step is to choose the truncation order and to determine the level of ap-
proximation. We propose two different ways for this purpose.
1. By choosing equal truncation orders r.
2. By choosing for each separation themaximum truncation order so that σrσ1 , is equal

to a fixed tolerance value.
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Figure 6.5: The four different splitting schemes (up) and the decay of the singular values ( σiσ1 , i =
1, . . . , 100) of the Loewner matrix for each type (down).

First experiment: equal truncation orders
Here, we fix the truncation order to r = 10, and compute σr

σ1
. The results are presented

in Table 6.2.

Table 6.2: Normalized singular values corresponding to r = 10 for each splitting.

Case 1st 2nd 3rd 4th

r 10 10 10 10
σr
σ1

1e − 8 1e − 6 1e − 4 1e − 4

The frequency response of the original system with those of the four reduced systems
(corresponding to eachdifferent splitting) is shown inFigure 6.6.Note that allmethods
produce similar approximation quality.

Figure 6.6: Frequency response comparison: original system vs. the reduced ones with equal trunca-
tion orders (r = 10).
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Next, the approximation error for each reduced systems is depicted in Figure 6.7. For
the first partition type, the error curve displays a ‘V’ shape form near the middle of
the sampling interval. This is where the left and right sampling points are very close
to each other.

Figure 6.7: Approximation error with the four splitting schemes.

Second experiment: reaching machine precision5

The tolerance of normalized singular value σr
σ1
is now fixed (e. g. 10−14). This implies

the truncation order r. The results are presented in Table 6.3

Table 6.3: Different truncation orders for all splitting schemes and for a fixed tolerance.

Case 1st 2nd 3rd 4th

r 16 51 23 48
σr
σ1

1e − 14 1e − 14 1e − 14 1e − 14

The truncation order for the first splitting type is more than three times smaller than
that for the second splitting type (16 vs 51).

The frequency response of the original systems with the four reduced systems in
depicted in Figure 6.8. All methods produce good approximation quality, with a slight
deviation in the high frequency range observed for the first splitting type.

Finally, Figure 6.9 shows the approximation error for each reduced system.
Notice that the blue curve in Figure 6.9 has a ‘V’ shape in the middle of the sam-

pling interval. The lowest approximation error is recorded for the second splitting type
(alternate selection).

5 Machine precision is the smallest number ϵ such that the difference between 1 and 1 + ϵ is nonzero.
This is approximately 10−16.
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Figure 6.8: Frequency response comparison: original system vs. the reduced ones by reaching ma-
chine precision.

Figure 6.9: Approximation error for the four splitting schemes.

6.4.2 Approximation of an oscillating function

We collect N = 4,000 measurements {(sk ,ϕk) : k = 1, . . . ,N} of the following function:

ϕ(x) = e−x sin(10x), x ∈ [−1, 1]. (6.29)

Assume that the interpolation points s = [s1, s2, . . . , s4000] ⊂ [−1, 1] are equispaced;
next we remain with two types of splitting.
1. First type: disjoint splitting.

– Left: μ = [s1, s2, . . . , s2000] ⊂ [−1,0)
– Right: λ = [s2001, s2002, . . . , s4000] ⊂ [0, 1]

We construct the Loewner pencil and the underlying rank is 11.
2. Second type: alternate splitting.

– Left: μ = [s1, s3, . . . , s3999] ⊂ [−1, 1]
– Right: λ = [s2, s4, . . . , s4000] ⊂ [−1, 1].

We construct the Loewner pencil and the underlying rank is 15.
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Figure 6.10 shows the entries of the Loewner matrix in logarithmic scale for the
two ways of sampling point separation. Next, the interpolation data is compressed,
making use of the following methods: (a) the singular value decomposition SVD, (b)
the randomized version rSVD, (c) CUR, implemented with DEIM and (d) CUR imple-
mented with cross approximation. The parameters for the latter two methods are:
ϵ = 0.001 and δ = 0.01.

Figure 6.10: Entries of the Loewner matrix for the first splitting (left) and the second splitting (right).

Table 6.4: Results for the first splitting type (disjoint) with an i5-CPU 2.60 GHz.

Reduction – r for ≈ 𝕃 rank(𝕃r×r ) cond(𝕃r×r ) =
σmax
σmin

Error ‖⋅‖F Time (s)

SVD 11 9.7313e + 10 6.7367e − 10 4.166029
CUR-CrossApprox 11 7.6582e + 10 1.5621e − 09 0.528352
CUR-DEIM 11 1.3898e + 11 2.2283e − 09 4.101303
randomized SVD 11 9.7314e + 10 1.1281e − 10 0.030148

In Figure 6.11 the error curves for the first splitting are shown. The red Xs indicate the
selected points with CUR-cross-approximation method while the green crosses (+) in-
dicate the selected points with CUR-DEIM method. In Figure 6.12 the error curves for
the second splitting are shown. As opposed to the previously shown results (in Fig-
ure 6.11), the error in this case (Figure 6.12) is distributed more uniformly. Additional
qualitative measures (e.g., the condition number) under different splitting schemes
with the same reduced-order are presented in Tables 6.4 and 6.5.

Table 6.5: Results for the second splitting type (alternate) with an i5-CPU 2.60 GHz.

Reduction – r for ≈ 𝕃 rank(𝕃r×r ) cond(𝕃r×r ) =
σmax
σmin

Error ‖⋅‖F Time (s)

SVD 11 8.8199e + 4 0.0020 4.261075
CUR-CrossApprox 11 1.0228e + 5 0.0062 0.563411
CUR-DEIM 11 9.3343e + 4 0.0245 4.152420
randomized SVD 11 8.8199e + 4 0.0020 0.024586
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Figure 6.11: Selected points and approximation error for the disjoint splitting.

Figure 6.12: Selected points and approximation error for the alternate splitting.

As seen in the above experiments, the splitting of the data influences both the Loewner
singular value decay and the quality of approximation. Inmost of the experiments that
follow, we choose the alternate way of splitting the data.

6.4.3 Approximation of a Bessel function

In this sectionwe investigate the approximation of the inverse of a Bessel function in a
domain in the complex plane. If this function is considered to be the transfer function
of a dynamical system, this system is infinite dimensional; furthermore it is not stable
as there are poles in the right-half of the complex plane.

In particular we consider the inverse of the Bessel function of the first kind and
order n ∈ ℕ. It is defined by the following contour integral:

Jn(s) =
1
2πi
∮ e(

s
2 )(t−

1
t )t−n−1dt. (6.30)

Here, we consider only the case n = 0. Our aim is to approximateH(s) = 1
J0(s)

, s ∈ ℂ, in-
side the rectangle Ω = [0, 10] × [−1, 1] ⊂ ℂ. In Figure 6.13 (left pane) the function H(s)
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Figure 6.13: Left pane: The inverse of the Bessel function of the 1st kind. Right pane: A subset of
10,000 Padua point grid over Ω = [0, 10] × [−1, 1] domain are shown.

is shown in the domain Ω. The three spikes correspond to the unstable poles of the
underlying system. These are three of the zeros of the Bessel function. Here we con-
struct approximantsHr(s), of order r, ofH(s), using the interpolation points as shown
in Figure 6.13 on the right pane. The distribution of the two-dimensional initial grids
is 5,000 Padua points with the conjugates. This grid is used to reduce the Runge phe-
nomenon. For more details in approximation theory (i. e. Runge phenomenon, Padua
points, barycentric interpolation, etc.), we refer the reader to [64]. In [43, 44], the same
experiment with other types of grids (random uniformly, structured) is presented.

In the Loewner framework, the singular value decomposition (SVD) plays a key
role. This factorization allows us to extract the numerical order of the rational model
which approximates the original non-rational one.

In Figure 6.14 (left pane), we show the distribution of the normalized singular val-
ues σj

σ1
, j = 1, . . . ,N, of the augmented matrices [𝕃 𝕃s] and [ 𝕃𝕃s ].

Figure 6.14: Left pane: Singular value decay of 10,000 values. Right pane: Pole/zero diagram with
the three original poles (zeros of Bessel) which recovered with 15 digits accuracy.

By takingmeasurements as in Figure 6.13 (right pane) the decay of the singular values
Figure 6.14 – left pane, leads to a reduced order r = 12 with σ12

σ1
= 4.887 ⋅ 10−13. In

Figure 6.14 on the right pane the pole/zero diagram is presented which includes the
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results fromallmethods.MethodsVF, andLoewner(SVDorCUR) construct real strictly
rational models with degree (11, 12)6 with D = 0, as opposed to AAA algorithm which
constructs complex proper rational model of degree (12, 12) with a non-zero D term.

By using the methods LoewCUR-cross and AAA, points from the sampling grid
are selected. Applying the LoewSVD method the point selection is obtained by com-
pressing the initial grid. This can be achieved by using the first r columns (r: singu-
lar vectors) of the singular matrices as projection matrices and by solving two (r ×
r-dimension) generalized eigenvalue problems as explained in Section 6.2.5.3. Under
this way, we compress the original grid with N = 10,000 points into a much smaller
set of only 2r = 24 points which are exact interpolation points for the approximant. As
it turns out, the projected points lie in the domain Ω; see also left pane in Figure 6.15.

Figure 6.15: Left pane: Support and compressed points for every method over Ω domain with LSVD(r)
→ LoewSVD projected right points, LSVD(l)→ LoewSVD projected left points. Right pane: The error
for every method.

The LoewCUR-cross and AAA methods select points among the initial interpolation
points but with different criteria. The AAA algorithm selects support points by mini-
mizing themean squared errorwith the rest of themeasurementswhile LoewCURuses
cross approximation, which maximizes the absolute value of the determinant (maxi-
mum volume) of the sub-matrix of dimension (r × r).

In Figure 6.15 on the right pane, the error for each method is shown. The normal-
ized error is computed as |H(s)−Hr(s)|

|H(s)| with 25,000 evaluation points in Ω. It should be
mentioned that the above special choice of the original interpolation grid as Padua
points, indeed reduced the Runge phenomenon.

Next we wish to visualize the approximation error outside Ω. Towards this goal
we chose 25,000 equispaced evaluation points inside the domain [−3, 13] × [−3, 3]. Re-
sults with log-contour level error of increasing order 10−16, . . . , 10−4 are presented in
Figure 6.16.

6 The notation (m, n) indicates that the order of the numerator polynomial is m and the order of de-
nominator polynomial is n.
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Figure 6.16: Extrapolation error as log |H(s) −Hr(s)| in [−3, 13] × [−3, 3]j ⊂ ℂ. The symbol ‘+’ is for the
original poles.

All methods constructed accurate rational approximants. Notice, however, that the
Loewner approach reaches similar precision with AAA without performing any op-
timization step. Finally, in terms of computational complexity, the CUR method per-
formed the best.

6.4.4 An Euler–Bernoulli beam

In this subsectionwe analyse the approximation of an Euler–Bernoulli clamped beam
[18]. The underlying PDE describes the oscillation of the free end. As shown in [18], the
non-rational transfer function is given by

H(s) = sn(s)
(EI + scdI)m3(s)d(s)

, where

m(s) = [ −s
2

EI + cdIs
]

1
4

, d(s) = 1 + cosh(Lm(s)) cos(Lm(s)),

n(s) = cosh(Lm(s)) sin(Lm(s)) − sinh(Lm(s)) cos(Lm(s)).

(6.31)

Usually, the next step consists of a discretization of the PDE involved. We bypass this
step and instead take frequency response measurements making use of the transfer
function above. The parameter specification is as in [18].7 Thus, we have the frequency
response of the beam as in Figure 6.17 and on the left pane.

7 Young’s modulus (elasticity constant): E = 69GPa = 6.9 ⋅ 1010 N/m2, moment of inertia: I = 3.58 ⋅
10−9m4, damping constant: cd = 5 ⋅ 10−4, length: L = 0.7m, base: b = 0.07m, height: h = 0.0085m.
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Figure 6.17: Left pane: Original frequency response of the beam. Right pane: The approximant which
constructed with the Loewner framework.

The next step is to collect 2,000 measurements on the imaginary axis (frequencies
jωi, i = 1, . . . , 2000), spaced logarithmically from 1 rad/s to 105 rad/s. These points are
depicted in the left pane of Figure 6.18.

Figure 6.18: Left pane: 2,000 sampling points alternating as left and right. Right pane: The singular
value decay.

The singular value of the Loewner matrices decay is as shown in Figure 6.18 on the
right pane. Thus, we construct a reduced model with dimension r = 44 and the
Loewner approximant in Figure 6.17 (right pane) is depicted.

Finally, the poles and zeros for every method are presented in Figure 6.19. The
quality of the approximation is given for each method in Figure 6.20 where the evalu-
ation is in the frequency range from 1 to 105.5. The error outside the sampling domain
increases thus indicating the difficulty of approximation outside of the sampling do-
main for infinite dimensional systems.

6.4.5 Heat equation

Next, we investigate an one-dimensional heat equation [13]. The corresponding PDE
describing the diffusion of heat leads to the following non-rational transfer function:

H(s) = e−√s, s ∈ ℂ. (6.32)
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Figure 6.19: Pole/Zero diagram for every method (LoewSVD, LoewCUR-cross, LoewCUR-DEIM, VF and
AAA).

Figure 6.20: The error distribution with 8,000 evaluation points grid.

The aim is to construct reducedmodels bymeans of the Loewner framework and com-
pare the results with the TF-IRKA used in [13]. Iterative Rational Krylov Algorithm -
IRKA [14] builds optimal reduced models by minimizing theℋ2 error [39].

By collecting 1,000 values of the transfer function on the imaginary axis, the re-
sulting reduced order was chosen to be r = 6 (as in [13]). For this truncation order,
σ6
σ1
≈ 6 ⋅ 10−3. In Figure 6.21c, the pole/zero distribution for every method is depicted;

in Figure 6.21d, the selected points are shown. It is worthmentioning that the Loewner
SVD method produced poles near to the optimal set computed by means of IRKA; see
Figure 6.21c. Approximation results are in Figure 6.22.

6.4.6 Approximation of a two-peak function

In this section we present an example involving a hyperbolic sine from [22]. The diffi-
culty here results from the two differentiable peaks. More precisely, the function is

f (x) = 100π(x2 − 0.36)
sinh(100π(x2 − 0.36))

, x ∈ [−1, 1],
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Figure 6.21: Approximation of the heat equation with LoewSVD, LoewCUR, VF, AAA, TF-IRKA.

Figure 6.22: Approximation results for the heat equation with various interpolation methods.

and is shown Figure 6.23 (left pane). We approximate this function by choosing 1,000
equispaced points in [−1, 1] as on the right pane in Figure 6.23. The singular values of
the Loewnermatrix are shown in Figure 6.24 on the left panewhile the selected points
are shown on the right pane of the same figure. The order is selected to be r = 38 with
( σ38σ1 ≈ 10

−12). In Figure 6.25, the distribution of the poles and zeros for each method is
shown. On the other hand, AAA looks quite different because it does not impose real
symmetry.

Remark 6.8. In Figure 6.24, right pane, the different supports points are shown. In the
case of the LoewSVDmethod two almost pure imaginary projected points are obtained
even if the initial sampling points were real.
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Figure 6.23: Left pane: The function f with two very sharp differentiable picks. Right pane: 1,000
sampling points and zoom in close to one pick.

Figure 6.24: Left pane: Singular values decay. Right pane: Various points for every method and the
projected points from the Loewner framework.

Figure 6.25: The pole/zero diagram.

Finally we observe a good fit for every method, with slightly better performance at-
tained for the Loewner SVD method (see the error plot in Figure 6.26).

6.4.7 Approximation of the sign function

Our final case study problem concerns the approximation of the sign function, known
as Zolotarev’s fourth problem. Here, we compare the approximation obtained using
the Loewner SVD with the optimal solution that is explicitly known [1]. Given two dis-
joint closed complex sets E and F, Zolotarev’s fourth problem is to find the rational
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Figure 6.26: The error profile with 5,000 evaluation points over [−1, 1].

function r(x) = p(x)
q(x) , where p, q are polynomials of degree k, that deviates least from

the sign function

sign(x) = { −1, x ∈ E,
+1, x ∈ F,

on E ∪ F. For general sets E and F, the solution to Zolotarev’s fourth problem is not
known; however, there are special cases where the rational function can be given ex-
plicitly. For the real disjoint intervals, E = [−b, −1], and F = [1, b]with b > 1, an explicit
(optimal) solution to Zolotarev’s fourth problem is known [1]. Here, we investigated
howwell the Loewner framework can approximate this discontinuous function in two
symmetric real intervals. We choose b = 3 and N = 2,000 initial interpolation points
from [−3, −1] ∪ [1, 3]. We perform two experiments. Firstly, we choose initial interpo-
lation points as equispaced and secondly, as Chebyshev nodes. For each choice, we
split the data as “half-half” and “alternating” as discussed previously. The left pane
in Figure 6.27 shows the plot of the sign function.

Figure 6.27: Left pane: The sign function. Right pane: 200 Chebyshev points in [−3, −1] ∪ [1, 3].

In [17] the explicit solution of this optimization problem is computed. We start by tak-
ing N = 2,000 measurements as Chebyshev nodes as in Figure 6.27 on the right pane.
The above sampling way leads to the following singular value decay of the Loewner
matrices as in Figure 6.28 on the left pane.
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Figure 6.28: Left pane: The singular value decay of the Loewner pencil. Right pane: Pole/Zero dia-
gram for the Loewner and the optimal approximant with order r = 4.

From the rank-revealing factorization in the left pane in Figure 6.28, we chose r =
4 with σ4

σ1
= 1.657 ⋅ 10−4. In Figure 6.28 on the right pane is the distribution of the

pole/zero diagram which is derived from the Loewner SVD method, in comparison
with the optimal set is presented.

In Figure 6.29 (left) the Loewner approximant is shown. It is quite close to the op-
timal one by choosing the Chebyshev nodes and splitting the left and right points as
“half–half”. Indeed, the error distribution as presented in the optimal interpolant in
Figure 6.30 with the blue line has the equioscillation property of the optimal approx-
imant in the infinity norm - ‖x‖∞ = max(|x1|, . . . , |xn|). Thus the equioscillation of the
error | sign(x) − r(x)| on both intervals shows the optimality of the approximant. The
Loewner framework succeeds in constructing an approximant very close to the opti-
mal. Another aspect is shown in Figure 6.29 (right pane). More specifically, note that
the projected points are indeed interpolation points.

Figure 6.29: Left pane: A comparison between the Loewner approximant with the optimal one order
r = 4. Right pane: The projected points are approximated interpolation points.

Remark 6.9. If the choice of the splitting is disjoint—“half–half” as in this experi-
ment, the constructed approximant interpolates the data as in Figure 6.29(right pane).
If the choice is “alternating” by mixing left and right, then the projected low order
model approximates the values and the derivatives at the interpolation points as in
Figure 6.31.
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Figure 6.30: Error plot with the Loewner approximant and the optimal solution as well with order
r = 4.

Figure 6.31: By splitting the data as “alternating”, the projected Loewner model approximates the
first derivative as well (Hermite interpolation conditions).

6.5 Epilogue

Interpolatorymethods formodel identification and reductionwere studied in this con-
tribution. The main focus was on the Loewner framework. The aim was to introduce
the Loewner framework by providing results which connect this rational interpolation
tool with system theory. At the same time, algorithms that make the Loewner frame-
work a complete numerical tool for approximation with ease of implementation are
offered. Several case studies illustrate the effectiveness of the method. Implementa-
tion issues like the splitting of the data in left and right were addressed. Finally, con-
nections with the SVD, the r-SVD, CUR, VF and IRKA have been detailed.
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