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Background: Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC
functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological
classifier of schizophrenia has not yet been evaluated.
Methods:We conducted a data-driven approach using resting-state functional MRI data to explore differences in
PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia
(FES) anddemographicallymatched healthy controls (HC). Discriminative PCC FCswere selected via false discov-
ery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subse-
quently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-
state data acquired on a different MRI scanner.
Results: Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions,
left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal
regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected
with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a rel-
atively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples,
while selected voxel-wise connectivity yielded an accuracy of 68.72%.
Conclusion: FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to
predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differ-
ential feature revealing underpinnings of neuropathophysiology for schizophrenia.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Schizophrenia is a severe and complexpsychiatric disorder associated
with aberrant brain functional connectivity (FC). Prior neuroimaging
studies have demonstrated schizophrenia has abnormal connectivity in
the default mode network (DMN), which is the most frequently studied
network in resting-state functional magnetic resonance imaging (rs-
fMRI) (Bluhm et al., 2007; Ebisch et al., 2018; Garrity et al., 2007;
Rotarska-Jagiela et al., 2010). The posterior cingulate cortex (PCC) is a
crucial component of DMN, which plays a central role in gathering infor-
mation, retrieving episodic memory, supporting internally-directed
h Centre, West China Hospital,
ichuan 610041, China.
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cognition, and regulating the focus of attention (Fransson and Marrelec,
2008; Greicius et al., 2003; Leech and Sharp, 2014; Raichle et al., 2001).
Patients with schizophrenia had altered connectivity between the PCC
and other brain regions associated with the DMN (Bluhm et al., 2007;
Rotarska-Jagiela et al., 2010;Whitfield-Gabrieli et al., 2009). The anoma-
lous connectivity of PCC could be associated either with predisposition
to, or a greater risk for schizophrenia (Whitfield-Gabrieli et al., 2009). Ad-
ditionally, both positive and negative symptoms in schizophrenia con-
tributed to modulate the altered connectivity with the PCC (Bluhm
et al., 2007; Garrity et al., 2007; Rotarska-Jagiela et al., 2010; Zhou et al.,
2008). Furthermore, the reduced gray matter volume of PCC could be
linked with poor outcome of schizophrenia (Mitelman et al., 2005). The
abnormal glucose metabolism in PCC and microstructure anomalies of
cingulum were also revealed in patients with schizophrenia (Haznedar
et al., 2004; Leech and Sharp, 2014; Samartzis et al., 2014). In fact,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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there is limited direct evidence available to indicate whether the
aberrant PCC connectivity may be a useful biomarker to predict
schizophrenia.

The dysconnectivity of brain networks in schizophrenia underly-
ing rs-fMRI has been identified in seed-based analysis studies (Yu
et al., 2012). Using the PCC as a region-of-interest (ROI) brain area,
in patients with schizophrenia, hypoconnectivity between the seed
and the lateral parietal, medial prefrontal, and cerebellar regions
have been observed (Bluhm et al., 2007; Rotarska-Jagiela et al.,
2010). Increased FCs also have been reported in the PCC and the fron-
tal lobe in patients diagnosed with schizophrenia (Venkataraman
et al., 2012; Whitfield-Gabrieli et al., 2009). The divergent findings
of prior research may be due to a number of factors including differ-
ences in data preprocessing, statistical approaches, and biological
and clinical heterogeneity of features of symptomatology in schizo-
phrenia (Liang et al., 2019). Further analysis of large independent
samples is necessary to confirm which specific brain regions and
their FCs contribute most to schizophrenia.

Considering the computational load of appropriate analysis in
this context, quite often the input feature dimensionality is re-
stricted in the attempt to examine voxel-wise connectivity studies
(Meng et al., 2016). Applying a high-dimensional voxel-based
brain-wide strategy combinedwith region-based analysis to further
verify the results, may provide both greater confidence and accu-
racy in identifying aberrant connectivity patterns of schizophrenia
(Cheng et al., 2015). Hence, we proposed to use via machine learn-
ing analysis of PCC-based/brain-wide voxel-wise searching com-
bined with regional FCs.

We attempted to conduct a brain-wide seed-based approach in rs-
fMRI data to discover PCC-based region- and voxel-wise FCs to distin-
guish patients with first-episode schizophrenia (FES) from healthy
control individuals (HC). We replicated our key findings in terms of
neurobiological distinction in an independent “holdout” cohort, to pro-
vide most robust evidence for alterations of brain functional connectiv-
ity in schizophrenia.
2. Materials and methods

2.1. Participants

A total of 360 right-handed Chinese subjects (187 FES patients and
173 HC) participated in this study. All subjects provided informed con-
sent in accord with requirement of the ethics committee of the West
China Hospital of Sichuan University. Dataset 1 including 100 patients
with FES (mean age 24.50 years, 49 females) and 93 controls (mean
age 24.68 years, 58 females), was used to identify the highest degree
of discriminative functional connectivity and train classification model
to predict FES patients. Dataset 2 including 87 patients with FES (mean
age 24.91 years, 49 females) and 80 controls (mean age 26.13 years,
41 females), was applied to validate the classification models. Dataset
1 was acquired with 3.0 Tesla (T) Philip MRI machine, and Dataset 2
with 3.0 T GE MRI machine. In each dataset, age and sex were demo-
graphicallymatched for patientswith FES andHC. Subject demographics
are displayed in Tables S1 & S2. Symptom severity was evaluated using
the Positive and Negative Scale (PANSS). Further subject details are pro-
vided in Supplementary material.
2.2. Image acquisition

Resting-state fMRI and high-resolution T1-weighted imaging data
were acquired from each participant. All subjects were instructed to
rest and keep awake (eyes closed) during scanning, and monitored via
a video camera in the scanner console room. See detailed scanning pa-
rameters in Supplementary material.
2.3. Data preprocessing

All datasets were preprocessed using FSL tools (www.fmrib.ox.ac.
uk/fsl) (Smith et al., 2004). fMRI volumeswere registered to the individ-
ual's structural scans and standard space images using FMRIB's Linear
Image Registration Tool (FLIRT) (Jenkinson et al., 2002). Here, temporal
bandpass filtering (0.01–0.08 Hz) was used to reduce the effect of low
frequency drift and high frequency physiological noise. Nuisance signal
(6motion parameters, whitematter, cerebrospinal fluid, and global sig-
nal for each individual) were eliminated using linear regression. Sub-
jects with framewise displacement N0.3 mm were excluded from all
further analysis steps (Power et al., 2012). After quality control, dataset
1 had 93 patients and 90 controls left and no subjects were excluded in
the dataset 2.

Considering findings reported that global signal variability may be el-
evated, especially in patients with schizophrenia (Gotts et al., 2013; Yang
et al., 2014), we examined separately results without implementing
global signal regression (GSR); all other analysis remained unchanged.

2.4. Seed-based region-wise analysis

For each participant's rs-fMRI data, seed-based correlation approach
was used to extract the time course from the PCC. The seed was con-
structed by forming a 10-mm sphere centered at foci as defined by
MNI space (0, −53, 26) (Andrews-Hanna et al., 2007; Van Dijk et al.,
2010). Then, for each subject, we computed the Pearson correlation co-
efficient between time course from the PCC and the time course from90
brain regions identified in the automated anatomical labeling (AAL)
atlas. Temporal correlation coefficients relative to the PCC were con-
verted to z-scores using Fisher's r-to-z transformation. Multiple linear
regression was conducted to control for age and sex related effects on
FCs.

2.5. Brain-wide seed-based voxel-wise analysis

Based on the AAL atlas, each rs-fMRI image included 47,636 voxels
(Cheng et al., 2015). Seed-to-voxel FCs were calculated as the correla-
tion coefficient between time courses from thePCC and the time courses
from all voxels using temporal correlation followed by Fisher z-
transformation for each subject. Effect of age and sex were regressed
out for each dataset at this step.

2.6. Machine learning analysis

All analyses were computed based on scikit-learn (Pedregosa et al.,
2011) and Nilearn (https://nilearn.github.io/index.html). Fig. 1 illus-
trates the main steps in data analysis pipeline.

2.6.1. Feature selection
SelectFdr (f_classif) of scikit-learn was applied to identify significant

FCs to differentiate patients with FES from HC with FDR correction
(false discovery rate, Pcorrected b 0.05). In region-wise analysis, the most
discriminative features were selected from FCs between the PCC and
ninety regions defined in the AAL atlas. We also studied the association
between the selected FCs and severity of clinical symptoms. In voxel-
wise analysis, the most differential features were selected from FCs be-
tween the PCC and all 47, 636 voxels. Considering the selected voxels
were distributed sparsely across the brain, we employed a “26-con-
nected neighborhood” strategy as the connectivity criterion (Bazin
et al., 2011; Meng et al., 2016). BrainNet Viewer was used to visualize
the seed-based FCs (Xia et al., 2013).

2.6.2. Classification analysis
We implemented the Gradient Boosting Decision Tree (GBDT) - an

ensemble machine learning algorithm to distinguish patients with FES
from HC. GBDT is an improved boosting algorithm for classification

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
https://nilearn.github.io/index.html


Fig. 1. Data analysis flowchart. PCC, posterior cingulate cortex. GBDT, gradient boosting decision tree. FC, functional connectivity. ROI, region-of-interest. AAL, automated anatomical
labeling atlas. FDR, false discovery rate.
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problems (Friedman, 2001). With high flexibility and robust in multi-
variate application, GBDThas beenwidely used in classification andpre-
diction of psychiatric disorders (Chekroud et al., 2016; Liang et al., 2019;
Natekin and Knoll, 2013).

2.6.2.1. Training and testing classification models in Dataset 1. Dataset 1
was shuffled 30 times to avoid any element of bias/patterns in the
split datasets. After each shuffle, Dataset 1, with the selected features
(region- and voxel-wise FCs), were separated into training model set
(80%) and testing set (20%). In training model set, grid search with 5-
fold cross-validation was employed to determine the optimal parame-
ters. The procedure was repeated 30 times, and obtained 30 classifier
models. Then testing set were fed into the trained classifiers and thus
obtained the averaged performance including mean accuracy, sensitiv-
ity, specificity, positive and negative predictive values, and the area
under the receiver operating characteristic curve (AUC).

2.6.2.2. Testing classification models in Dataset 2. We tested classifiers in
an independent replication data set (Dataset 2). The identified PCC-
based region-/voxel-wise FCs were extracted from Dataset 2. Then the
selected featureswere fed into the trainedmodels to classify FES patients
from HC. As described above, to reflect model performance objectively
and conservatively, average classification measures were computed for
the independent cohort. More details on the classification procedure
are described in Supplementary material.

3. Results

3.1. PCC-based region-wise connectivity

In region-wise analysis, FCs between the PCC and twenty-one brain
regions were identified as the most distinctive features to distinguish
patients with FES from HC in Dataset 1. Fig. 2 illustrates the seed-
based region-wise FCs. The details of brain areas are listed in the
Table S3. Compared toHC, patientswith FES had decreased FCs between
the PCC and the bilateral supplementarymotor area (SMA), the bilateral
precuneus (PCUN), right middle frontal gyrus (MFG), right opercular
part of inferior frontal gyrus (IFGoperc), right triangular part of inferior
frontal gyrus (IFGtriang), right orbital part of inferior frontal gyrus
(ORBinf), right insula (INS), right inferior parietal lobule (IPL), left or-
bital part of middle frontal gyrus (ORBmid), left parahippocampal
gyrus (PHG), and left anterior cingulate cortex and paracingulate gyri
(ACG). Patients with FES had increased FCs between the PCC, and the
left inferior temporal gyrus (ITG), and left olfactory cortex (OLF).

In patients with FES, FCs between the PCC and the right IFGoperc
was correlated with the positive and negative symptoms (r = −0.29,
Puncorr = 0.003; r =−0.28, Puncorr = 0.004). And connectivity between
the seed and the right IFGtriang was associated with the positive and
negative symptoms (r = −0.27, Puncorr = 0.02; r = −0.24, Puncorr =
0.02). Estimated with the selected FCs, an accuracy of 70.17% and an
AUC of 70.07% were achieved in Dataset 1. The results of this study
yielded an accuracy of 72.28% and an AUC of 72.77%, on the basis of
the region-wise FCs in Dataset 2.

3.2. PCC-based voxel-wise connectivity

In voxel-wise analysis, FCs between the PCC and 2157 voxels were
selected as the most distinctive features to classify patients with FES
from HC in Dataset 1. Fig. 3, Figs. S1 and S2 illustrate the brain-wide
voxel-wise selected clusters. Patients with FES relative to HC had
hypoconnectivity between the PCC and the bilateral ACG, right
IFGoperc, right IFGtriang, right ORBinf, right MFG, right SMA, right IPL,
right PCUN, and left PHG at the voxel-wise level. Patients with FES had
hyperconnectivity between the PCC, and the left ITG, and left middle
temporal gyrus (MTG). Voxel-wise clusters differentiating patients
from HC largely overlapped with region-wise selected brain areas that
were functionally connected with PCC.

Using the seed-based voxel-wise FCs, an accuracy of 73.42% and an
AUC of 73.41% were achieved in Dataset 1. The results of this study
yielded an accuracy of 68.72% and an AUC of 69.07% using the selected
voxel-wise FCs in Dataset 2.

Fig. S3 displays the comparison of classification accuracy of region-
and voxel-wise FCs based on Dataset 1 and on Dataset 2. Averages and
standard deviations of the classification performancemeasures are pre-
sented in the Supplementary Table S4 for these two datasets. Using
seed-based voxel-wise FCs, classification accuracy was lower in Dataset
2, which was probably due to the high dimensionality of the data. The
classification model based on the region-wise FCs achieved a more ro-
bust and relatively higher accuracy in Dataset 2.

As described earlier, considering the effects of global signal on the
identified patterns, the significant features were also selected from
Dataset 1 without GSR. The results based on the data without GSR



Fig. 2. Differential PCC-based region-wise functional connectivity for FES and HC. A HC, healthy controls. B FES, patients with first-episode schizophrenia. C comparisons between HC and
FES in selected twenty-one PCC-based region-wise functional connectivity. Reddots represent selected brain areas functionally connectedwith PCC. L, left. R, right. PreCG, precentral gyrus.
SFGdor, dorsolateral superior frontal gyrus. MFG, middle frontal gyrus. ORBmid, orbital part of middle frontal gyrus. IFGoperc, opercular part of inferior frontal gyrus. IFGtriang, triangular
part of inferior frontal gyrus. SMA, supplementarymotor area. OLF, olfactory cortex. INS, insula. ACG, anterior cingulate and paracingulate gyri. PHG, parahippocampal gyrus. CUN, cuneus.
IPL, inferior parietal lobule. SMG, supramarginal gyrus. PCUN, precuneus. TPOmid, temporal pole of middle temporal gyrus. ITG, inferior temporal gyrus.
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yielded accuracies of 70.26% and 73.85% for PCC-based region- and
voxel-wise FCs, respectively. Independent two-sample t-test was con-
ducted to compare the classification accuracies based on Dataset 1
with and without GSR (see Fig. S4). No significant statistical differences
were found in classification accuracies neither in region-wise FCs (T =
−0.51, Puncorr = 0.96) or in voxel-wise FCs (T = −0.20, Puncorr =
0.84) between Dataset 1 with and without GSR.

4. Discussion

In the current study, we applied a data-driven approach with the
PCC-based region- and voxel-wise FCs to investigate abnormal brain
patterns in patients with FES. Voxel-wise clusters corresponded well
to region-wise selected brain areas which were functionally connected
with the PCC that differentiated the category of patients with FES from
HC. These brain areas included ACG, PHG, PCUN, IFGoperc, IFGtriang,
MFG, ITG, SMA, and IPL. Notably, the PCC-based region-wise connectiv-
ity revealed a relatively high discriminatory ability in classifying indi-
viduals with FES from HC, with average accuracy as 72.28% in the
independent sample set. In addition to the findings above, one of most
important strength of our current study is that patients with FES exhib-
ited concurrent increases and decreases in PCC-based connectivity ab-
normalities, but mostly reduced connectivity between the PCC and
brain areas associated with the DMN.

A prior study using brain-wide PCC-based FC maps combined with
support vector machine, achieved an accuracy of 55.6% to distinguish
patients with FES from HC (Mikolas et al., 2016). Additionally, in a pre-
vious study based on the AAL atlaswith linear discriminant analysis, pa-
tients with schizophrenia relative to healthy comparisons exhibited
predominately weaker inter-regional connectivity pattern, which
could be used to predict the disorder with an accuracy of 76.34% (Li
et al., 2019). In this study, we adopted an ensemble learning method –
GBDT as classifier to two relatively large and independent sample sets
of patients with FES (themajority were treatment-naïve). Classification
accuracy based on differential region-wise FCs was moderate but more
robust, confirmed in an independent cohort in our subsequent analysis.
The classification performance of the current study based on resting-
state FCwas very similar to our prior findings of structural and diffusion
tensor imaging study (Liang et al., 2019).

Most previous rs-fMRI studies have attempted to remove brain global
signal to better isolate functional networks (Ciric et al., 2017; Lin et al.,
2016). Related evidence has concerned that global signal may affect the
findings in group-level comparisons between patients with psychiatric
disorders and healthy individuals (Gotts et al., 2013; Yang et al., 2014).
It is unclearwhether global signalmight influence theperformance todis-
tinguish patients with FES from HC. The present study attempted to rule
out confounding factors of chronicity of the illness and treatment effects,
and examined possible effects of brain global signal. Findings of this study
suggested that global signal might not impact on the accuracy to discrim-
inate patients with FES from HC at the individual level.

In the present study, patients with FES had reduced connectivity be-
tween the PCC and the frontal areas, ACG, PHG, and IPL, which were



Fig. 3. Differential PCC-based voxel-wise functional connectivity for FES and HC. A HC, healthy controls. B FES, patients with first-episode schizophrenia. Red dots are voxel-wise clusters
overlapped with the selected region-wise brain areas functionally connected with PCC. Green dots are clusters identified in voxel-wise analysis. L, left. R, right. ORBmid, orbital part of
middle frontal gyrus. ACG, anterior cingulate and paracingulate gyri. MTG, middle temporal gyrus.
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consistentwith thefindings of prior neuroimaging studies (Bluhmet al.,
2007; Gao et al., 2018; Garrity et al., 2007; Rotarska-Jagiela et al., 2010;
Zhang et al., 2018). This study also indicated that the abnormal FCs be-
tween the PCC and the inferior frontal areas were correlated with the
severity of positive and negative symptoms in patientswith schizophre-
nia. Similar findings have been reported in the previous research
(Bluhm et al., 2007; Garrity et al., 2007). Prior studies showed that pa-
tients with schizophrenia had abnormal glucose metabolism, reduced
gray matter volume, and white matter microstructure anomalies in
the PCC (Haznedar et al., 2004; Leech and Sharp, 2014; Mitelman
et al., 2005; Samartzis et al., 2014). Additionally, a post-mortem autora-
diography study revealed that patients with schizophrenia had in-
creased cannabinoid receptors (CB1) in the PCC (Newell et al., 2006).
The CB1 receptor in positron emission tomography neuroimaging
showed that binding levels (distribution volume) in the PCCwere asso-
ciated with the increased severity of positive symptoms in schizophre-
nia (Wong et al., 2010). Furthermore, hypoactivation within the PCC
significantly was correlated with the positive symptoms induced by ke-
tamine, which suggested that N-methyl-D-aspartate (NMDA) receptor
hypofunction in the PCC was related to the pathophysiology of schizo-
phrenia (Northoff et al., 2005). Combined with findings in this study,
the structural and functional alterations of PCC may represent part of
the neuronal basis of schizophrenia.

Brain regions identified as parts of DMN include PCC, PCUN, medial
prefrontal gyrus, lateral temporal cortex, ACG, PHG, and IPL (Greicius
et al., 2003; Raichle et al., 2001). DMN is involved in self-referential pro-
cessing, social cognition and autobiographical memory retrieval, mem-
ory consolidation, monitoring one's own internal state and emotions
(Buckner et al., 2008; Ebisch et al., 2018; Fransson and Marrelec,
2008; Leech and Sharp, 2014; Spreng et al., 2009). As known, PCC
plays a pivotal role in DMN (Fransson and Marrelec, 2008; Leech and
Sharp, 2014). The disrupted connectivity between the PCC and other
brain areas of DMNwas related to the long-term clinical outcome of pa-
tients with schizophrenia (Du et al., 2016; Lee et al., 2019). Polymor-
phism in schizophrenia risk gene microRNA-137 was associated with
the reduced functional and structural connectivity between the PCC
and the anterior cingulate cortex and its adjacent prefrontal cortex in
healthy controls, which could be a key aspect of brain mechanisms
linked to the underlying genetics of the disorder (Zhang et al., 2018).
In the current study, patients with FES exhibited a pattern of both in-
creased and decreased PCC-based connectivity, as hypoconnectivity
between the PCC and the frontal areas, ACG, PHG, and IPL, and
hyperconnectivity with respect to the lateral temporal regions. The
present study manifested that patients with FES were related to
the predominant hypoconnectivity between the PCC and other
DMN areas. This study, in conjunction with previous research,
might help to elucidate that the anomalous connectivity patterns
could be the brain circuit mechanisms underlying the pathophysiol-
ogy of schizophrenia.

5. Limitations

Limitations should be considered. First, the sample size of this study
was relatively small, which could limit the generalizability of prediction
models (Jollans et al., 2019). Here, we only used rs-fMRI in the current
study. Larger sample size with additional neuroimaging modalities,
such as structural neuroimaging and diffusion tensor imaging, could
be added to improve classification performance in this context. Second,
using a seed-based approach, FC patternswere based on the predefined
seed region, the addition of an independent component analysis ap-
proachwould be advantageous in future studies. Third, the potential co-
morbidities (metabolic syndrome, obsessional traits, and disturbances
of circadian rhythm) on brain connectivity in participants with schizo-
phrenia requires further investigations. Fourth, we were unable to ac-
count for the possible effect of pharmacological treatment even in a
limited numbers of affected participants. Fifth, cardio-respiratory re-
lated physiological noise during scanning were not removed in this
study.

6. Conclusion

In the current study, we identified the differential PCC-based func-
tional connectivity which greatly contributed to distinguishing patients
with FES from HC individuals. Using the PCC-based regional-wise con-
nectivity, in combination with machine learning algorithm, robustness
was established with replication across the independent dataset.
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Findings of the current study demonstrated that the proposed method
not only achieved a promising classification performance for
distinguishing schizophrenia patients from HC, but also identified dis-
criminative brain pattern of predominant hypoconnectivity between
the PCC and other DMN regions that were likely significant in relation
to the neuronal underpinnings of pathophysiology in schizophrenia.
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