I. INTRODUCTION

Rydberg atoms with high principal quantum number have exaggerated properties such as orbital sizes of thousands of Bohr radii, long radiative lifetime exceeding microseconds, and extreme sensitivity to static electric fields. The latter is due to their giant dipole moment and electric polarizability. These exotic features have made Rydberg atoms a widely studied platform for fundamental studies and applications such as quantum information processing [1], quantum nonlinear optics [2], and precision measurements [3]. There is a growing interest in the preparation and study of ultralong-range Rydberg molecules [4–7], which emerges from the binding of an alkali-metal atom to a Rydberg atom as a consequence of the elastic collisions of the Rydberg electron with the alkali-metal atom, and may lead to promising applications [8,9].

Ultracold Rydberg atoms can be trapped with high densities [10], enabling studies of strong long-range interactions [11,12] and many-body physics [13–15]. Rydberg atoms can resonantly exchange their excitation energy via Foster processes [16], which has been exploited in studies of gas-phase energy transfer [17] and the formation of ultracold plasmas [18–20]. Rydberg atoms can also exchange excitation energy in the microwave regime with molecular gases via Foster processes, which has been proposed as a tool for the nondestructive detection of molecular states in hybrid molecule-Rydberg systems [21,22]. Simultaneous trapping of ultracold Rydberg atoms and polar molecules may also be used for direct sympathetic cooling of molecules intro the ultracold regime—a longstanding goal in ultracold physics—through elastic van der Waals atom-molecule collisions [23,24]. In comparison with dipole-dipole processes, van der Waals collisions do not require molecules to be confined in low-dimensional traps in the presence of static electric fields for shielding detrimental attractive collisions that lead to trap loss [25]. Moreover, van der Waals interactions can be strong even if the relevant transition energies in the collision partners are not resonant, as opposed to Foster processes. Understanding the feasibility of these promising applications of molecule-Rydberg systems requires an accurate knowledge of the van der Waals interaction potentials.

For an atom-molecule system at low kinetic energies, the relevant scattering properties at distances beyond the LeRoy radius [26] are determined by the long-range interaction between particles [4]. For R being the distance between the center of mass of the molecule and the atom, the long-range interaction potential can be written as an expansion of the form $V(R) = \sum_{n} C_{n} R^{-n}$, with $n \geq 3$ for neutral particles. Since we consider atom-molecule interactions for molecules in their rovibrational ground state ($J = 0$), the lowest non-vanishing van der Waals coefficient is C_{6} [27–29]. Dipole-dipole contributions to the long-range potential scaling as $1/R^{3}$ can be ignored because rotational states do not have dipole moments in the laboratory frame. Energy-exchange dipole-dipole contributions do not vanish in principle for $J = 0$ molecules, but can also be ignored by choosing atomic levels that do not allow the resonance conditions for energy transfer.

In this work, we report a large set of van der Waals C_{6} coefficients that determine the long-range interaction between selected heteronuclear alkali-metal dimers (LiCs, RbCs, LiRb, and KRb) in their electronic and rovibrational ground state...
Ref. [27–29] to fine-structure states with high \(n \), as relevant for Rydberg states.

A. Interaction potential

Consider the charge distributions of molecule \(A \) and atom \(B \), separated by a distance larger than their corresponding LeRoy radii \([26]\). The long-range electrostatic interaction between a molecule \(A \) and atom \(B \) is given by the multipole expansion \([38]\),

\[
\hat{V}_{AB}(r) = \frac{1}{r} \left(\sum_{l_{A} = 0}^{\infty} \sum_{l_{B} = 0}^{\infty} \sum_{q = -l_{A}}^{l_{A}} \sum_{l_{B} = -l_{B}}^{l_{B}} \frac{f_{l_{A}l_{B}q}}{R^{l_{A}+l_{B}+2}} \hat{Q}_{l_{A}}^{q}(\hat{r}_{A}) \hat{Q}_{l_{B}}^{-q}(\hat{r}_{B}) \right),
\]

which is valid in the range \(40 \leq n \leq 150 \). The accuracy of the fitting increases with \(n \). We list the fitting coefficients for all the atom-molecule pairs considered in Table I for cesium and rubidium. The data set of computed \(C_{6} \) coefficients is provided in the Supplemental Material \([37]\).

We describe in Sec. II the theoretical and numerical methodology used to compute \(C_{6} \) coefficients. In Sec. III, we present the dispersion coefficients for selected atom-molecule pairs, and discuss their accuracy in Sec. IV. We conclude by discussing the possible implications of our results.

II. METHODOLOGY

In this section, we briefly review the theory of long-range interaction between a heteronuclear alkali-metal dimer (particle \(A \)) and an alkali-metal atom (particle \(B \)) in an arbitrary fine-structure level \(n^{2}L_{J} \), in the absence of external static or electromagnetic fields. Our work extends the results in
energies of the collision partners. This energy shift is the interaction potential $V_{AB}(R)$, which can be evaluated using second-order degenerate perturbation theory to read [40,41]

$$V_{AB}(R) = \sum_n \frac{C_n}{R^n}, \quad (5)$$

where C_n are the dispersion coefficients. Values of C_n are obtained by defining the zeroth-order eigenstates of the collision pair. In the absence of external fields, these are given by product states of the form $|\Phi_{AB}^{(0)} = |\Phi_A^{(0)}\rangle\langle\Phi_B^{(0)}|$, where in our case $|\Phi_A^{(0)}\rangle \equiv |X \ 1 \Sigma^+\rangle |v = 0, J = 0\rangle$ is the absolute ground state of an alkali-metal dimer and $|\Phi_B^{(0)}\rangle \equiv (n^2L_J)m_n$ is a general fine-structure state of an alkali-metal atom, with m being the projection of the total electronic angular momentum along the quantization axis.

The nondegenerate rovibrational ground state of a $^3\Sigma$ molecule has a definite rotational angular momentum, and thus parity. Therefore, the lowest nonzero contribution to the expansion in Eq. (5) is C_0/R^0. For molecules in an excited rotational state $J \geq 1$, quadrupole moments can give nonvanishing C_3 coefficients [27–29]. In this work, we only consider the ground rotational state (i.e., $C_3 = 0$). The second-order atom-molecule dipole-dipole interaction thus leads to a C_6 coefficient of the form

$$C_6 = -\frac{4}{\pi} \sum_{AB} \frac{1}{(E_A^{(0)} - E_B^{(0)}) + (E_B^{(0)} - E_B^{(0)})} \times \sum_{pq} \left[\frac{\langle \Phi_A^{(0)} | Q_{pq} | \Phi_A^{(0)} \rangle \langle \Phi_B^{(0)} | Q_{pq} | \Phi_B^{(0)} \rangle}{(1+q)!} \frac{\langle \Phi_A^{(0)} | Q_{pq} | \Phi_B^{(0)} \rangle \langle \Phi_A^{(0)} | Q_{pq} | \Phi_B^{(0)} \rangle}{(1+q')!} \right], \quad (6)$$

where $E_A^{(0)}$ and $E_B^{(0)}$ are the molecular and atomic asymptotic energies at $R \to \infty$. All projections of the dipole tensors $Q_{pq}^{(1)}$ are taken into account. Primed particle labels refer to intermediate states in the summation. Every intermediate rovibrational state $|\Psi_i^{(0)}\rangle$ in ground and excited electronic potentials is taken into account, as explained below. M is the projection of the total angular momentum of the molecule along the internuclear axis. For alkali-metal atoms, we take into account all possible intermediate states $|\Psi_B^{(0)}\rangle \equiv (n^2L_J)m_n$ up to convergence of C_6.

Following Ref. [42], we rewrite the sum over states in Eq. (6) in a more convenient form using the identities

$$\frac{1}{a+b} = \frac{2}{\pi} \int_0^\infty d\omega \frac{ab}{(a^2 + \omega^2)(b^2 + \omega^2)} \quad (7)$$

Table II

| Molecule | L | j | $|\Omega|$ | γ_0 | γ_4 | γ_5 |
|----------|-----|-----|-----------|-----------|-----------|-----------|
| | 5/2 | 1/2 | 3.298[9] | -2486 | 0.4228 | -2.302[3] |
| | 3/2 | 1/2 | 9.093[9] | 7469 | -12.55 | 0.01839 |
| | 5/2 | 1/2 | 5.808[10] | -1.796[4]| -1.099 | -0.01126 |
| | 5/2 | 1/2 | 5.978[10] | -2261 | -13.17 | 0.01667 |
and
\[\frac{1}{a-b} = \frac{2}{\pi} \int_0^\infty \frac{d\omega}{(a^2 + \omega^2)(b^2 + \omega^2)} + \frac{2a}{a^2 - b^2}, \] (8)
which hold for positive real parameters \(a \) and \(b \). For molecular states, we set \(a = E_{r}^{\nu}v^{J} - E_{0}^{\nu}v^{J} \), where \(v^{J} \) labels an intermediate electronic state. For atomic states, we set \(b = E_{nL^{\prime}J} - E_{nlJ} \) for upward transitions \((E_{nL^{\prime}J} > E_{nlJ})\), and \(b = E_{nlJ} - E_{nL^{\prime}J} \) for downward transitions \((E_{nL^{\prime}J} < E_{nlJ})\).

Atom-molecule dimers. For transition frequencies \((\omega = \omega_{k})\), only states within the ground electronic state can thus be written as
\[\alpha_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{mm} = \sum \langle n^{\prime}L^{\prime}j^{\prime}m^{\prime}|(n^{\prime}L^{\prime}j^{\prime})^{\dagger}(n^{\prime}L^{\prime}j^{\prime})|n^{\prime}L^{\prime}j^{\prime}m^{\prime} \rangle, \] (10)
and the molecular polarizability function \(\alpha_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{MM}(\omega)\) evaluated at the frequency \(\omega = \Delta E_{\nu^{J}v^{J}l^{\prime}m^{\prime}}\) in this work, we evaluate
\[\alpha_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{mm}(\omega) = \sum_{nL^{\prime}} \sum_{j^{\prime}m^{\prime}} (-1)^{j^{\prime}+j-m-m+q+1} \left[\frac{2(E_{nL^{\prime}j^{\prime}m^{\prime}} - E_{nlJ})}{(E_{nL^{\prime}j^{\prime}m^{\prime}} - E_{nlJ})^2 - \omega^2} (2j+1)(2L+1)(2j^{\prime}+1)(2L^{\prime}+1) \right] \times \left(\begin{array}{ccc} L^{\prime} & 1 & 1 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} L & j^{\prime} & j \\ L & j^{\prime} & j \end{array} \right) \left(\begin{array}{ccc} 1 & j^{\prime} & j \end{array} \right) \left(\begin{array}{ccc} 1 & j^{\prime} & j \end{array} \right) \left[\langle n^{\prime}L^{\prime}|\gamma|nL \rangle \right]^2. \] (12)

where circular and curly brackets correspond to \(3j\) and \(6j\) symbols [39], respectively. We use Eq. (12) to compute the nonzero components of the polarizability tensor for atomic Rydberg states \(\langle n^{\prime}L^{\prime}j|m \rangle\) with \(n \geq 15\), ensuring the convergence of the sum over intermediate states for each imaginary frequency \(i\omega_{k}\) that is relevant in the evaluation of the \(C_{6}\) integral in Eq. (9).

D. Polarizability of alkali-metal dimers

The dynamic molecular polarizability needed for the evaluation of the \(C_{6}\) integral is also given by an expression as in Eq. (11), but for eigenstates \(|k\rangle\) and energies \(E_{k}\) describing electronic, vibrational, and rotational state of alkali-metal dimers. For transition frequencies \((E_{k} - E_{k})/\hbar\) up to near infrared (\(\sim 1\) THz), only states within the ground electronic

both the integral and the downward contributions to \(C_{6}\) up to convergence within a cutoff \(\omega_{\text{cut}}\), as described below in more detail.

C. Polarizability of atomic Rydberg states

The dynamic atomic polarizability \(\alpha_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{mm}(\omega)\) in Eq. (9) can be written for a general atomic state \(|k\rangle\) as
\[\alpha_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{kk}(\omega) = \sum_{l} \langle k|\delta_{\nu^{J}v^{J}l}|l\rangle \langle l|\delta_{\nu^{J}v^{J}l}|k\rangle \left(\frac{E_{l} - E_{k} - \omega}{E_{l} - E_{k} + \omega} \right), \] (11)
where \(\omega\) is the frequency of the dipolar response, \(\delta_{\nu^{J}v^{J}l}\) is the \(l\)th component of the electric dipole operator in the spherical basis, \(E_{l}\) is the zeroth-order energy of state \(|l\rangle\), and the state summation runs over all other atomic states \(|l\rangle\), and the spectrum, with \(l \neq k\). For alkali-metal atoms, the relevant atomic states and energies are obtained by numerically solving the radial Schrödinger equation \([-\nabla^{2}/2 + V_{r}(r)]\Phi_{\nu^{J}v^{J}l}(r) = E_{nlJ}\Phi_{\nu^{J}v^{J}l}(r)\) with a pseudopotential \(V_{r}(r)\) that describes the interaction of core electrons with a single valence electron at distance \(r\) from the core (origin), including spin-orbit coupling. The angular part of the atomic wave functions correspond to spherical harmonics \(Y_{jm}(\theta, \phi)\). We solve for the radial wave function \(\Phi_{\nu^{J}v^{J}l}(r)\) as in Ref. [43], with atomic energies given by \(E_{nlJ} = -\hbar c R_{\infty}/(n - \delta_{nlJ})^{2}\), where \(\hbar c R_{\infty} = 1/2\) is the Rydberg constant (in atomic units). The fine-structure quantum defects \(\delta_{nlJ}\) used in this work are given in the Appendix, in terms of the Rydberg-Ritz coefficients for \(^{85}\text{Rb}\) and \(^{133}\text{Cs}\) atoms.

We use the atomic energies and radial wave functions to construct the sum over states in Eq. (11), for a desired atomic state \(|n^{\prime}L^{\prime}jm\rangle\). For convenience, the angular parts of the dipole integrals are evaluated using angular momentum algebra [39]. The nonvanishing elements of the polarizability can thus be written as
\[\alpha_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{\nu^{J}v^{J}l^{\prime}m^{\prime}}(\omega) = \sum_{\gamma^{J}v^{J}l^{\prime}m^{\prime}} \frac{2(-1)^{q}(E_{\nu^{J}v^{J}l^{\prime}m^{\prime}} - E_{\nu^{J}v^{J}l^{\prime}m^{\prime}})}{(E_{\nu^{J}v^{J}l^{\prime}m^{\prime}} - E_{\nu^{J}v^{J}l^{\prime}m^{\prime}})^2 - \omega^2} \times \langle X^{\nu^{J}v^{J}l^{\prime}m^{\prime}} | \hat{Q}_{\nu^{J}v^{J}l^{\prime}m^{\prime}}^{(1)} \rangle | X^{\nu^{J}v^{J}l^{\prime}m^{\prime}} \rangle. \] (13)

potential need to be explicitly included in the summation. The contribution of transitions between rovibrational states in different electronic states is taken into account separately, as explained in what follows.

In the space-fixed frame, Eq. (11) can be given an explicit form by introducing molecular states \(|\gamma, v, JM\rangle\) and energies \(E_{\gamma^{J}v^{J}l^{\prime}m^{\prime}}\), where \(\gamma\) labels the electronic state. Molecular polarizability components for a rovibrational state \(|X^{\nu J}v JM\rangle\) in the ground electronic state can thus be written as [44]
As anticipated above, for transition frequencies up to the midinfrared, the dominant contributions to the molecular polarizability come from rovibrational transitions within the ground electronic state. Therefore, Eq. (13) can be rewritten as

\[\alpha_{pq}^{X \Sigma vJM}(\omega) = \alpha_{pq}^{X \Sigma}(\omega) + \alpha_{pq}^{el}(\omega), \]

(14)

where \(\alpha_{pq}^{X \Sigma} \) and \(\alpha_{pq}^{el} \) are the rovibrational and electronic polarizabilities, respectively, given by

\[\alpha_{pq}^{X \Sigma}(\omega) = \sum_{v'J'M'} \frac{2(-1)^q (E_{X \Sigma v'j'} - E_{X \Sigma vj})}{(E_{X \Sigma v'j'} - E_{X \Sigma vj})^2 - \omega^2} \times \langle X \Sigma vJM | \hat{Q}_{v'j'}^{(1)} | X \Sigma v'J'M' \rangle \]

\[\times \langle X \Sigma vJM | \hat{Q}_{v'j'}^{(1)} | X \Sigma v'J'M' \rangle \]

(15)

and

\[\alpha_{pq}^{el}(\omega) = \sum_{v'J'M'} \sum_{\rho=1}^{6} \frac{2(-1)^q (E_{X \Sigma v'j'} - E_{X \Sigma vj})}{(E_{X \Sigma v'j'} - E_{X \Sigma vj})^2 - \omega^2} \times \langle X \Sigma vJM | \hat{Q}_{v'j'}^{(1)} | X \Sigma v'J'M' \rangle \]

\[\times \langle \gamma' \gamma'J'M' | \hat{Q}_{v'j'}^{(1)} | X \Sigma vJM \rangle \].

(16)

For evaluating the molecular dipole integrals in Eqs. (15) and (16), the space-fixed \(q \) component of the dipole operator is written in terms of the body-fixed \(p \) components through the unitary transformation \(\hat{D}_{pq} = \sum_{\rho} D_{p\rho}^{*} |\dot{\gamma}_{\rho}^{(1)} \rangle \), where \(D_{p\rho}^{*} \) is an element of the Wigner rotation matrix [39]. Transforming to the molecule-fixed frame is convenient since the electronic and vibrational eigenfunctions are given in the body-fixed frame by most quantum chemistry packages. The nonvanishing terms of the rovibrational polarizability \((q' = q) \) can thus be written as

\[\alpha_{pq}^{el}(\omega) = \sum_{v'J'M'} (2J' + 1)(2J + 1) \frac{2(E_{X \Sigma v'j'} - E_{X \Sigma j})}{(E_{X \Sigma v'j'} - E_{X \Sigma j})^2 - \omega^2} \times \frac{2\omega}{\omega^2 - \omega^2} \]

\[\times \bigg(\frac{J'}{0} \bigg) \bigg(\frac{J}{0} \bigg)^2 \bigg(\frac{M}{-q} \bigg)^2 \]

\[\times |\langle \gamma | \hat{Q}_{0}^{(1)} | \gamma' \rangle |^2, \]

(17)

where a redundant electronic state label has been omitted. The nuclear dipole integrals \(|\langle \gamma | \hat{Q}_{0}^{(1)} | \gamma' \rangle |^2 \) can be evaluated directly once the rovibrational wave functions \(|\gamma \rangle \) are known. These are obtained by solving the corresponding nuclear Schrödinger equation (i.e., vibrations plus rotations) using a discrete variable representation (DVR) as in Ref. [45], with potential energy curves (PECs) and Durand expansions for the energies \(E_{X \Sigma} \) given in Ref. [46] for the alkali-metal dimers used in this work.

For diatomic molecules, the electronic contribution to the polarizability in Eq. (14) is fully characterized in the body-fixed frame by the components \(\alpha_{i,0,0}(\omega) \) and \(\alpha_{1,1,0}(\omega) = \alpha_{-1,-1,0}(\omega) \) [47], which define the parallel polarizability \(\alpha_{i,0,0}(\omega) \) and the perpendicular polarizability \(\alpha_{1,1,0}(\omega) = -\alpha_{-1,-1,0}(\omega) \), with respect to its symmetry axis. For frequencies up to the near infrared, the dynamic electronic polarizability of alkali-metal dimers does not deviate significantly from their static values \(\alpha_{i,0}(\omega) \) and \(\alpha_{1,1}(\omega) \). Accurate static electronic polarizabilities for several alkali-metal dimers can be obtained from Ref. [48]. Explicitly, the space-fixed polarizability tensor for alkali-metal dimers in the \(^1\Sigma \) state is given by

\[\alpha_{pq}^{el}(\omega) = \sum_{J'M'} (2J' + 1)(2J + 1) \left(\frac{J'}{0} \right)^2 \left(\frac{J}{0} \right)^2 \left(\frac{M}{-q} \right)^2 \]

\[\times \bigg(\frac{J'}{0} \bigg) \bigg(\frac{J}{0} \bigg)^2 \bigg(\frac{M}{-q} \bigg)^2 \alpha_{i,0} + 2 \left(\frac{J'}{1} \bigg(\frac{J}{1} \right) \bigg)^2 \alpha_{1,1}. \]

(18)

For the rovibrational ground state, Eq. (18) reduces to its isotropic value \(\alpha_{i,0}^{el} = (\alpha_{i,0} + 2\alpha_{1,1})/3 \) for all \(q \) components. It was shown in Ref. [46] that for frequencies up to \(\sim 10^3 \) THz, the isotropic electronic molecular polarizability can be accurately approximated by

\[\alpha_{iso}^{el}(\omega) = \frac{2\omega_{C}}{\omega_{C}^2 - \omega^2} + \frac{2\omega_{T}}{\omega_{T}^2 - \omega^2}. \]

(19)

where the parameters \(\omega_{C} \) and \(\omega_{T} \) are the effective transition energy and dipole moment associated with the lowest \(\Sigma \rightarrow \Pi \) transition. The parameters \(\omega_{C}, \omega_{T}, d_{C}, d_{T} \) are associated with the lowest \(\Sigma \rightarrow \Pi \) transition. For the alkali-metal dimers used in this work, we take the parameters listed in Ref. [46] to estimate the electronic contribution to the molecular polarizability over the frequencies of interest.

Finally, we directly compute the downward transition terms that contribute to \(C_{6} \) in Eq. (9) by evaluating the total molecular polarizability in Eq. (14) at the relevant atomic transition frequencies, with an explicit evaluation of the atomic dipole integrals in Eq. (10).

III. RESULTS

The theoretical framework described above can be used to obtain \(C_{6} \) coefficients for any alkali-metal atom-molecule pair, provided the atomic quantum defects and the molecular polarizability are known. In this work, we restrict the analysis to atom-molecule pairs involving either \(^{85}\text{Rb} \) or \(^{133}\text{Cs} \) atoms, whose Rydberg levels have been widely studied [43]. For a given atom, we choose molecules that contain that specific atom in their structure. Such atom-molecule pairs can be expected to occur naturally in cotrapping experiments.

Specifically, we study the long-range interaction between two sets of collision partners: (i) \(^{133}\text{Cs} \) Rydberg atoms interacting with LiCs and RbCs molecules, and (ii) \(^{85}\text{Rb} \) Rydberg atoms interacting with KRb, LiRb, and RbCs molecules. We use Eq. (9) to compute the \(C_{6} \) coefficient of each atom-molecule pair considered, as a function of the principal quantum number \(n \) of the atomic Rydberg state \(n^2L_{J} \). We restrict our calculations to atomic states with \(L \leq 2 \).

The total angular momentum projection along the quantization axis,

\[\Omega = m + M, \]

(20)

is a conserved quantity for an atom-molecule collision. For molecules in the rovibrational ground state \((J = 0) \), we thus have \(\Omega = m \). Below we present \(C_{6} \) coefficients for each
FIG. 1. C_6 dispersion coefficients as a function the atomic principal quantum number n for the Cs-LiCs collision pair. Results are shown for several atomic Rydberg states n^2L_j, LiCs is in the electronic and rovibrational ground state. Panels show results for different total angular momentum projections $\Omega = m + M$: (a) $|\Omega| = 1/2$, (b) $|\Omega| = 3/2$, (c) $|\Omega| = 5/2$. Solid lines correspond to a fitted n^7 scaling.

allowed value of $|\Omega|$. $C_6 < 0$ correspond to attractive interactions and $C_6 > 0$ describe repulsive potentials.

A. Cesium + molecule

In Fig. 1, we plot the C_6 coefficients for ^{133}Cs Rydberg states n^2L_j interacting with LiCs molecules in the rovibrational ground state, as a function of the atomic principal quantum number n, for all allowed values of Ω. For concreteness, we restrict the atomic quantum numbers to the range $15 \leq n \leq 150$, for $L \leq 2$.

For Cs Rydberg atoms in $^2S_{1/2}, ^2P_{1/2},$ and $^2P_{3/2}$ states, the interaction with LiCs molecules is attractive over the entire range of n considered. As discussed in more detail below, this is due to the positive character of the atomic and molecular polarizability functions at imaginary frequencies $\alpha(\omega_0)$, which determine the value of the integral term in Eq. (9). On the other hand, Cs atoms in $^2D_{3/2}$ and $^2D_{5/2}$ Rydberg states give rise to repulsive $1/R^6$ potentials. This repulsive character of the atom-molecule interaction is due to the predominantly negative atomic polarizability function $\alpha(\omega_0)$, while the molecular polarizability function remains positive. This is consistent with n^2D Rydberg states having negative static polarizabilities $\alpha(\omega = 0)$ [49]. For both attractive and repulsive interactions, the magnitude of C_6 scales as $\sim n^7$ over a wide range of n, as shown explicitly in Fig. 1(c).

The C_6 coefficients for the Cs-RbCs collision pair exhibit the same qualitative behavior as the Cs-LiCs case, with repulsive potentials for 2D_j states and attractive interaction for 2S_j and 2P_j Rydberg states. We provide the complete list of all C_6 coefficients computed for the Cs-LiCs and Cs-RbCs collision partners in the Supplemental Material [37].

B. Rubidium + molecule

In Fig. 2, we plot the C_6 coefficients for ^{85}Rb Rydberg states n^2L_j interacting with KRb molecules in the rovibrational ground state, as a function of the atomic principal quantum number n, for $L \leq 2$. The results resemble those of the Cs-LiCs pair with $^2S_{1/2}, ^2P_{1/2},$ and $^2P_{3/2}$ atomic Rydberg states giving rise to attractive $1/R^6$ potentials that scale as $\sim n^7$, as shown explicitly in Fig. 2(b) for $^2P_{3/2}$ states. In this case, 2D_j states do not give repulsive potentials.

The C_6 coefficients for the interaction of Rb Rydberg atoms with RbCs and LiRb molecules exhibit the same qualitative behavior as the Rb-KRb case, giving attractive interaction for $^2S_j, ^2P_j,$ and 2D_j Rydberg states. We provide the complete list of all C_6 coefficients computed for the Rb-KRb, Rb-LiRb, and Rb-RbCs collision partners in the Supplemental Material [37].

C. Scaling of C_6 with n

For all the atom-molecule pairs considered in this work, we fit the computed C_6 coefficients as a function of the atomic principal quantum number n to the polynomial,

$$C_6 = \gamma_0 + \gamma_4 n^4 + \gamma_6 n^6 + \gamma_7 n^7.$$ \hspace{1cm} (21)

This scaling is valid in the range $n \approx 40–150$, with a fit quality that improves with increasing n. We list the fitting coefficients for Cs-LiCs and Cs-RbCs pairs in Table I for all of the considered atomic angular momentum states. The corresponding fitting coefficients for the collision pairs Rb-KRb, Rb-LiRb, and Rb-RbCs are given in Table II. The n^7 scaling found for C_6 is the same scaling of the static polarizability of Rydberg atoms [36]. This suggests that the long-range interaction potential is dominated by the giant Rydberg polarizability, as expected.

IV. DISCUSSION

Since the C_6 coefficients for the atom-molecule pairs listed in Tables I and II have yet to be experimentally measured, we estimate their accuracy from other considerations. The first question to address is the importance of the contribution to C_6 of the downward transition terms in Eq. (9). We find that for all of the considered atomic states n^2L_j, the downward
transition terms represent a negligible contribution to C_6 in comparison with the integral term that involves the atomic Rydberg polarizability function.

This conclusion is valid provided we exclude resonant contributions to the downward transition term that involve evaluating the molecular polarizability at the atomic transition frequency $\Delta E_{\omega} = 2B_e$, where B_e is the rotational constant. High-n Rydberg states with transition frequencies that are resonant with rotational excitation frequencies may instead contribute to energy-exchange processes that scale as $1/R^3$, which can be avoided by careful selection of n and L quantum numbers. After removing resonant contributions ($\Delta E_{\omega} = 2B_e$) from the summation, the contribution of the integral term to C_6 in Eq. (9) was found to be at least three orders of magnitude larger than the contribution of the downward transition terms, for all the atom-molecule pairs studied in the range $n \geq 15$.

One way to qualitatively understand this result is by comparing the n^7 scaling of the static atomic polarizability $\alpha(0)$ versus the n^2 scaling of the radial dipole integrals $\langle r^2 \rangle^{1/2}$ for Rydberg states. The ratio between the integral (polarizability) and downward transitions (dipole) in Eq. (9) can thus scale at least as n^3, which gives a ratio of the order of 10^4 for $n = 50$ and 10^6 for $n = 100$.

A. Error bounds on C_6 values

After safely ignoring the atomic downward transition contributions to C_6 for $n > 15$, we now focus on estimating the accuracy of the frequency integral contribution to Eq. (9). The rovibrational structure and electrostatic response of most alkali-metal dimers in the ground $X^1\Sigma^+$ state is well known from precision spectroscopy experiments and accurate ab initio studies [33,48,50]. Therefore, the molecular polarizability function $\alpha_{JM}^{\mu\nu}(i\omega)$ in Eq. (14) is assumed to be known with very high precision in comparison with the atomic polarizability function. In Fig. 3, we plot the molecular polarizability function evaluated at imaginary frequencies $\alpha_{JM}^{\mu\nu}(i\omega)$ up to the microwave regime for KRb, RbCs, LiRb, and LiCs molecules. The figure shows the decreasing monotonic character of all the studied molecular polarizability functions. As the frequency ω reaches the THz regime (not shown), all molecular functions $\alpha_{JM}^{\mu\nu}(i\omega)$ tend asymptotically to their isotropic static polarizabilities $\alpha_{\text{el}}^\text{iso}$ [Eq. (19)], and remain constant over a large frequency range up to several-hundred THz. In other words, over a broad frequency range up to ~ 100 THz, the contribution of the molecular polarizability to C_6 in Eq. (9) is always positive and can be considered to be bounded from above by its static value.

The accuracy of our computed atomic polarizability functions $\alpha_{mm}^{\mu\nu}(i\omega)$ is limited by the precision of the quantum

1Our computed static molecular polarizabilities differ from the results in Ref. [46] by less than 2%.
defects that are used, which we take from spectroscopic measurements [43]. For the considered atomic Rydberg states, the polarizability functions obtained from Eq. (12) are predominantly monotonic as a function of frequency, although we found specific states \(n^2L_j \) with nonmonotonic frequency dependence. We illustrate this in Fig. 4, where we show the polarizability functions \(\alpha_{ij}^{\text{mm}}(\omega) \) for several \(n^2L_j \) Rydberg levels of Rb and Cs atoms in the \(n = 80 \) manifold. Figure 4(a) shows that for the projection \(m = 1/2 \) of the \(80^2D_{3/2} \) Rydberg state of Rb, the function \(\alpha(i) \) is negative in the static limit, then has a maximum at \(\omega \approx 6.5 \) GHz, from where it decays to a positive asymptotic value up to a cutoff frequency \(\omega_{\text{cut}} \) of a few THz. This value at cutoff is five orders of magnitude smaller (not shown) than the maximum in the microwave regime. In general, for all of the considered atomic states, we find that \(|\alpha_{ij}^{\text{mm}}(\omega)| \) is always bounded from above by its value at \(\omega = 0 \).

The error of the computed \(C_6 \) coefficients can thus be estimated for \(n \geq 15 \) as follows. Ignoring the downward transition terms and the error in the molecular polarizability function, Eq. (9) can be written as \(\bar{C}_6 = C_6 \pm \Delta C_6 \), where \(\bar{C}_6 \) is the dispersion coefficient obtained in our calculations and the error is approximately given by

\[
\Delta C_6 \approx \sum_{q,q'} \int_0^{\omega_{\text{cut}}} K(q,q') \frac{d\omega}{2\pi} \Delta \alpha_{qq'}^{\text{mm}}(i\omega) \alpha_{q'-q}^{\text{MM}}(i\omega),
\]

where \(\Delta \alpha_{qq'}^{\text{mm}}(i\omega) \) is the error in the atomic polarizability function evaluated at imaginary frequencies. We can assume that the order of magnitude of \(C_6 \) and \(\Delta C_6 \) is dominated by the 00 components of the atomic and molecular polarizability functions. If we also assume that the relative error \(\Delta \alpha_{qq'}^{\text{mm}}(i\omega)/\alpha_{qq'}^{\text{mm}}(i\omega) \) remains constant over all frequencies up to the cutoff \(\omega_{\text{cut}} \), and use the fact that \(|\alpha(i\omega)| \) is bounded from above by its static value in the atomic and molecular cases, we can estimate an approximate error bound for \(C_6 \) as

\[
\left| \frac{\Delta C_6}{C_6} \right| \lesssim \frac{\Delta \alpha_{00}(i\omega)}{\alpha_{00}(i\omega)}.
\]

In other words, the accuracy of our \(C_6 \) calculations cannot be expected to be better than the accuracy of the static atomic polarizability. The static polarizabilities of several Rydberg states of \(^{85}\)Rb and \(^{133}\)Cs are known from laser spectroscopy measurements in static electric fields [51–53], and also from precision calculations using state-of-the-art \(ab \) \text{it} \(ito \) pseudopotentials [49]. Therefore, we can estimate \(\Delta \alpha_{00}(0) \) for several atomic Rydberg states \(n^2L_j \) by comparing with the available data. It proves convenient for comparisons to rewrite the atomic polarizability in Eq. (12) such that the Stark shift \(\Delta E_{(n^2L_j)im} \) of the Rydberg state \(|n^2L_j)im \rangle \) in the presence of the electric field \(E \) in the \(Z \) direction can be written in the standard form [47],

\[
\Delta E_{(n^2L_j)im} = -\frac{1}{2}\left[\alpha_0(j) + \alpha_2(j) \frac{3m^2 - j(j + 1)}{j(2j - 1)}\right]E^2,
\]

where \(\alpha_0(j) \) is the scalar polarizability and \(\alpha_2(j) \) is the tensor polarizability. The factor in square brackets is equal to \(\alpha_{ij}^{MM}(0) \) in Eq. (12).

In Fig. 5, we plot the the static polarizability of \(^{133}\)Cs atoms in selected angular momentum states, as a function of the principal quantum number \(n \). As a standard, we use \(ab \) \text{it} \(ito \) results from Ref. [49]. Our computed values agree with the standard with very high accuracy. For example, the average relative errors over the range \(15 \leq n \leq 50 \) are \(-0.02\%\) for \(^2S_{1/2} \) states [Fig. 5(a)], \(+0.27\%\) for \(^2D_{3/2} \) states with \(m = 5/2 \) [Fig. 5(b)], and \(+0.13\%\) for \(^2D_{3/2} \) states with \(m = 3/2 \) [Fig. 5(c)]. For other Rydberg states of \(^{133}\)Cs, we obtain similar accuracies.

In Fig. 6, we plot the the static polarizability of \(^{85}\)Rb atoms in selected angular momentum states, as a function of \(n \). For \(^{85}\)Rb atoms, all the static polarizabilities that we compute show excellent agreement with reference values (errors smaller than 1%), except for the Rydberg state \(n^2D_{3/2} \) with \(m = 1/2 \). For this atomic state, our results for \(\alpha_{ij}(0) \) have large relative errors around \(n = 45 \), as Fig. 6(c) shows. We can understand this by noting that for \(j = 3/2 \) and \(m = 1/2 \), Eq. (24) reads \(\Delta E = -\left(\alpha_0 - \alpha_2\right)E^2/2 \). For the \(n^2D_{3/2} \) states of \(^{85}\)Rb, experiments show that \(\alpha_0 \approx \alpha_2 \) in the range \(n = 30–60 \) [54], with \(\alpha_0 \lesssim \alpha_2 \) in the higher end of this range. This is confirmed by the \(ab \) \text{it} \(ito \) results in Ref. [49], which predict a change of sign in the static polarizability at \(n = 46 \), from
positive to negative. By separately comparing our results with experimental and theoretical values for α_0 and α_2 (not shown), we observe that our errors are of the same magnitude as the difference $\alpha_0 - \alpha_2$ in the range $30 < n < 60$, which makes the atomic polarizability calculations unreliable for this particular tensor component (α_{00}) and atomic quantum numbers. Errors can be traced to the empirical quantum defects that are used. We also show in Fig. 6(c) that over the same range of n in which $\alpha_{00}(0)$ exhibits large relative errors, other polarizability components that do not change sign behave smoothly.

Another possible source of error in our C_6 calculations is the choice of the high-frequency cutoff ω_{cut} in the numerical integration of Eq. (9). For every atomic Rydberg state that is considered, we tested the numerical convergence of the integration by increasing the value of the cutoff until the relative change $\delta C_6/C_6$ was smaller than a predefined tolerance value ε. For atom-molecule pairs involving both 85Rb and 133Cs atoms, the polarizability integral converges faster with increasing cutoff for intermediate and high values of $n \geq 30$, in comparison with low-n states. The latter result in slower integral convergence. We converged all our $n \approx 15$ integrals at $\omega_{\text{cut}} = 3$ THz with a tolerance $\varepsilon = 0.01$, which ensures convergence over an entire range of n.

B. Effect of the molecular dipole moment

In Fig. 7, we show the increase in the magnitude of C_6 as the permanent dipole moment of alkali-metal dimers increases, for selected states $n^2P_{1/2}$ of 85Rb. The C_6 coefficient for the Rb-LiRb pair is larger than the corresponding values for RbCs and KRb, which have a smaller dipole moment. The
same trend also holds for other n^2L_j states of ^{85}Rb, and for atom-molecule pairs involving ^{133}Cs atoms.

V. CONCLUSION

The characteristic length scale for the van der Waals interaction between a Rydberg atom and a ground-state alkali-metal dimer is the LeRoy radius R_{LR} [26], given by the average root-mean-square electron radius of the collision pair. For alkali-metal atoms in low-lying Rydberg states ($n \approx 15–20$), the typical mean atomic radius can be of the order of $100–1000a_0$, where a_0 is the Bohr radius, thus exceeding by orders the typical size of the electron radius of ground-state molecules of only a few Bohr radii. The ratio between atomic and molecular radial distances further increases with n. For the atomic states that are considered in this work, the van der Waals length is thus dominated by the LeRoy radius of the Rydberg atom, $R_{LR} \equiv \langle n^2L^2 \rangle^{1/2}$. Given the n^2 scaling of the Rydberg radius and the n^7 scaling of the atom-molecule C_6 coefficients, the van der Waals energy should thus approximately scale as $U_{vdW} \equiv C_6/R_{LR}^6 \sim n^{-5}$. We find this scaling to be most accurate for $n \geq 50$.

From the values of C_6 listed in Tables I and II, the van der Waals energy U_{vdW} can be estimated in absolute units. For example, for the LiCs–Cs system with ^{133}Cs in the $n^2D_{3/2}$ state and $\Omega = 5/2$, the van der Waals potential is repulsive (Fig. 1c)], with a collisional barrier reaching $U_{vdW} \approx 38$ MHz for $n = 20$. This should be sufficient to avoid short-range collisions for atom-molecule pairs with relative kinetic energy up to 1.82 mK. By increasing the atomic quantum number to $n = 40$, the potential barrier drops to $U_{vdW} \approx 0.43$ MHz for the same collision pair. Our results thus suggest that given a specific atom-molecule system of experimental interest, it is possible to find an atomic Rydberg state that gives an attractive or repulsive potential with a desired interaction strength.

We can extend the formalism in this work to also obtain van der Waals coefficients for excited rovibrational states of alkali-metal dimers. In this case, C_6 coefficients do not vanish in general [29]. The interplay between C_5 and C_6 with opposite signs at long distances can possibly lead to long-range potential wells that can support Rydberg-like metastable bound states accessible in photoassociation spectroscopy [4,27–29].

Repulsive van der Waals interactions may be used for sympathetic cooling of alkali-metal dimers via elastic collisions with ultracold Rydberg atoms. Since inelastic and reactive ultracold collisions [55,56] can lead to spontaneously emitted photons carrying energy away from a trapped system [23], it should be possible to measure the elastic-to-inelastic scattering rates and follow the thermalization process of a cotrapped atom-molecule mixture. Attractive van der Waals potentials can be exploited to form long-range alkali-metal trimers via photoassociation [7].

ACKNOWLEDGMENTS

F.H. is thankful for support from ANID through REDES ETAPA INICIAL Convocatoria 2017 Grant No. REDI170423 and Fondecyt Regular Grant No. 1181743. V.O. and F.H. are supported by Iniciativa Científica Milenio (ICM) through the Millennium Institute for Research in Optics (MIRO).

APPENDIX: QUANTUM DEFECTS

The quantum defects used in this work are collected from Ref. [43] in terms of the expansion

$$\delta_{nl,j} = a + \frac{b}{(n-a)^2} + \frac{c}{(n-a)^2} + \frac{d}{(n-a)^2} + \frac{e}{(n-a)^2},$$

where the Rydberg-Ritz coefficients (a, b, c, d, e) are given in Table III for ^{85}Rb and Table IV for ^{133}Cs atoms, together with the minimum value of n for which the expansion is estimated to be valid.

<table>
<thead>
<tr>
<th>L_j</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>n_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{1/2}$</td>
<td>4.049352(38)</td>
<td>0.238(7)</td>
<td>0.24044</td>
<td>0.12177</td>
<td>6</td>
</tr>
<tr>
<td>$P_{1/2}$</td>
<td>3.5916(5)</td>
<td>0.36(1)</td>
<td>0.34284</td>
<td>1.23986</td>
<td>6</td>
</tr>
<tr>
<td>$P_{3/2}$</td>
<td>3.5590(7)</td>
<td>0.38(1)</td>
<td>0.28013</td>
<td>1.57631</td>
<td>6</td>
</tr>
<tr>
<td>$D_{3/2}$</td>
<td>2.475454(20)</td>
<td>0.010(4)</td>
<td>-0.43324</td>
<td>-0.96655</td>
<td>5</td>
</tr>
<tr>
<td>$D_{5/2}$</td>
<td>2.466308(30)</td>
<td>0.015(6)</td>
<td>-0.43674</td>
<td>-0.74442</td>
<td>5</td>
</tr>
<tr>
<td>$F_{5/2}$</td>
<td>0.033587</td>
<td>-0.213732</td>
<td>0.70025</td>
<td>-3.66216</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE III. Rydberg-Ritz coefficients for ^{85}Rb.

TABLE IV. Rydberg-Ritz coefficients for ^{133}Cs.

FIG. 7. Bar plots $\log_{10}|C_6|$ for $n = 15, 50, 80$ for atom-molecule pairs involving ^{85}Rb atoms in the $n^2P_{1/2}$ state with KRb, RbCs, and LiRb molecules in the rovibrational ground state. The permanent dipole moment of each molecule is shown in parentheses on the horizontal axis [48].

