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Introduction
Communication is a key component in the lives of biological 
organisms and can occur through several channels, including 
acoustics, bioluminescence, and movement displays. Animals 
communicate to attract mates, to maintain relationships with 
one or more individuals, and to defend territories or resources.1,2 
Many animal species have been observed signalling over long 
distances to communicate with conspecifics. Attenuation and 
degradation of signals impose limits on communication.3 To 
ensure an effective transfer of information, the signal must be 
transmitted rapidly and accurately from the source to the 
receiver. The receiver must be capable of detecting the signal, 
discriminating the relevant characteristics that structure a sig-
nal and locating its origin.3,4 For effective communication to be 
established, one may try to avoid overlap during signalling5 
(although overlap is not necessarily a negative feature of a com-
munication system). However, signals that overlap in 1 dimen-
sion need not overlap in another. In animal communication, a 
dimension can be defined as a physical and perceptual charac-
teristic, such as fundamental frequency or peak amplitude. Two 
signals that overlap in time can be produced at different funda-
mental frequencies and might still be discriminated by the 
receiver. For the purpose of this article, signal overlap will be 
considered as the case where signals partly (or fully) occur at 
the same time.

Over the last few decades, the field of animal communica-
tion has seen an increasing focus on the temporal dimension of 
signals. In many species, rhythm, here defined as the temporal 
(possibly repeated) structure of signals, carries essential infor-
mation for communication between individuals.6–8 Physiologists 

have long been interested in the behavioural periodicity found 
in species across the animal kingdom. Examples of biological 
rhythmic activity include the beating of the heart, respiration, 
and locomotion.9,10 Focussing on a millisecond-second time-
scale, we find rhythmic signalling, which also relies on different 
neural circuitry from rhythms at the level of interacting cells. 
Some fascinating examples of interactive rhythms include the 
individual timing behaviours exhibited by animals living in 
aggregated communities which can result in striking natural 
phenomena such as the synchronous flashing of fireflies, and 
cricket choruses at dusk and dawn.11–13 Similar forms of collec-
tive behaviours can be achieved through different mechanisms, 
and similar mechanisms can produce very different forms of 
collective behaviours.

At present, only a handful of computational models of ani-
mal rhythmic behaviours have been developed to provide a bet-
ter understanding of the mechanisms behind group timed 
signalling.13–15 Most of the research in the literature has focused 
on modelling the communication systems of amphibians, 
insects, crustaceans, and some bird species.11,12,16–19 Models are, 
in a way, quantitative hypotheses that can be employed to test 
and predict interactive dynamics of rhythms in communica-
tion. Modelling is useful to test the internal consistency of 
these hypotheses and explore the hypotheses’ space before any 
experiment is run. Models also serve to call attention to mech-
anisms that would otherwise not have been recognized and can 
be used to compare predictions with observations of natural 
data. Quantitative formulations of a problem help scientists to 
be more rigorous and better consider the details of a system 
composed of interacting parts. Most importantly, modelling is 
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the necessary counterpart of empirical work: empirical findings 
should be summarised via mathematical/computational models, 
which can be used to advance new hypotheses that are then 
empirically tested. Finally, good models can become standard-
ised and serve as potential tools for cross-species comparisons. 
Still little is known about rhythmic communication in mammals, 
and, apart from humans, their rhythmic signalling is rarely 
modelled.

In this article, we provide an overview of several existing 
models that have been used in the study of animal rhythmic 
communication, including human speech and music. We first 
discuss some basic concepts of dynamical systems and the 
mathematics of timing. We then present a real-life example of 
each individual model along with the computational model 
resulting from simulated data. To uncover the key similarities 
and differences in the underlying mechanisms behind each 
observed example, the mathematical models are then com-
pared. The purpose of this article is 2-fold. It is a first step 
towards a common computational framework to describe tem-
poral interactions in animals.20–22 More importantly, it repre-
sents an open letter to the scientific community performing 
animal empirical work, stressing the need for using computer 
simulations to better understand animal timing in interaction.

From Oscillators to Models of Rhythm
The rhythms produced by species involved in long-distance 
signalling appear to be under the control of central nervous 
oscillators.9,13,20 Central nervous oscillations are the rhythmic 
patterns of neural activity found in the central nervous system. 
An oscillator is any system that executes periodic behaviours 
that fluctuate between 2 extremes, which can be illustrated 
using a characteristic sinusoidal waveform.23 Every oscillator 
has its own specific endogenous rhythm. Oscillator dynamics 
can be visualised by plotting their motion through a phase 
space. A phase space is a visual representation of a dynamical 
system in which each point corresponds to 1 possible state over 
time.24,25 In acoustic communication, this phase space can be 
used to visualise the time interval between onsets of adjacent 
signals as a function of time. 

The emerging patterns from the collective interactions 
between neighbouring individuals emerge from precisely timed 
phase relationships. Here, phase relationships refer to the frac-
tion of the oscillator cycle that has elapsed relative to the origin 
of the signal. These marked interactions can take the form of 
phase advances, phase delays, or changes in the endogenous 
rhythms of the oscillators of each individual.20 Stable-limit 
cycle oscillators are systems that, when perturbed by the signal 
of a neighbour, have their endogenous rhythm advanced or 
delayed, but eventually return to their original free-running 
period.10,23 These concepts, originally developed in physics and 
physiology, have been incorporated in different models of ani-
mal rhythms (see Supplemental Material and Table 1).

In large communities, each individual has its own free-
running rhythm, but this can be adjusted in response to the 

signals of nearby neighbours. Individuals from signalling 
species have precise timing abilities and often signal with 
specific phase relationships or lags (ie, delays) in response to 
the signals of conspecifics. The 2 best-known aggregate tim-
ing phenomena are synchrony and alternation, but combina-
tions of the 2 have also been documented in nature.20 In 
addition, synchrony and alternation are not always clear-cut: 
the signals of chorusing individuals may only partially over-
lap and alternating signalling can sometimes lead to short 
periods of synchrony. These observations are consistent 
across species using acoustic or bioluminescent communica-
tion channels.20

Here, we define synchrony as the precise temporal co-
occurrence of signals with an external rhythmic signal, so that 
signal and external signal have a phase angle close to 0°. 
Alternation is a form of non-synchronous coordination, with 
no overlap between the calling individuals and a relative phase 
angle of 180°.26

Oscillators can be coupled to the signals of nearby neigh-
bours. The most familiar mode of organisation of these 
oscillators is synchrony. In 1665, the clockmaker Christiaan 
Huygens noticed that if he hung 2 pendulum clocks side by 
side on the wall and desynchronised them, the pendulums 
would eventually swing in perfect synchrony.27 He theorised 
that the clocks were reciprocally influenced by tiny vibra-
tions in their common support. This pulse coupling turns 
out to be common in biological systems, but modelling this 
coupling requires modelling nonlinearities.23,28 For the case 
of animal rhythmic communication, nonlinear behaviours 
mean that the temporal properties of an individual signal-
ling are not a linear function of the temporal properties of a 
conspecific.

Fireflies are a good example of a ‘pulse coupled’ oscillator 
system as their rhythmic interactive behaviour is triggered only 
when one individual perceives the sudden flash of its neighbour 
and shifts its rhythm accordingly. Male winged beetles of the 
order Coleoptera, commonly known as fireflies, gather in trees 
during twilight. They conspicuously use bioluminescence to 
attract mates. Initially, their flickering is uncoordinated, but as 
the night deepens, their signals start coupling and they pulsate 
in synchronous flashes.11,12 Although some animal examples 
such as the flashing of fireflies approximate synchrony, ideal-
ized perfect synchrony never occurs in real populations. This is 
due to the large amounts of variation observed in nature, which 
results in different distributions of individual timing abilities 
found across species.29–31

Mechanisms of Individual Timing in Groups
As individual mechanisms for rhythmic inter-individual inter-
actions do not exist in a vacuum, one must study how species 
adjust their timing with respect to the timed behaviour of 
nearby neighbours.

The existing literature in animal interactive timing can be 
classified into categories based on the relationship between the 
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signaller and the receiver.5 A chorus is the interactive signalling 
between 2 or more individuals and often involves males, as 
observed in katydids.13 Duets, often occurring in songbirds and 
insects,19,32 are a special subset of choruses as they involve only 
2 individuals. Duetting can occur in male-female pairs (though 
see Snow33). Given the comparative aim of this article, as mod-
elling choruses becomes increasingly complex with each addi-
tional individual, only models of duets will be presented.

Precise temporal interactions can be discerned despite high 
signalling rates found in nature. Due to natural variations 
within and between individuals, species may need to adjust 
their timing relative to their neighbours to increase their repro-
ductive fitness. Species can adjust their timing using 2 classes 
of mechanisms.34 Species exhibiting homoepisodic mecha-
nisms detect the signal of their neighbour and respond nearly 
immediately by producing their own signal. In anurans, some 
species partially overlap their calls in this manner based on the 
stimuli produced by surrounding conspecifics.17 The homoepi-
sodic timing adjustment is thus mainly responsible for syn-
chronous onsets in collective rhythmic signalling. However, it 
cannot explain all synchronous interactions as the time interval 
between signals from adjacent neighbours is often shorter than 
the effector delay and sometimes even shorter than the time it 
takes for the signal to travel from one individual to the next. 
Proepisodic mechanisms are those where the focal individual’s 
signal is produced based on the previous signal(s) of the 
neighbour. For instance, proepisodic timing has been observed 
in humans playing music35 and some other non-human 
animals.26,36,37 Two types of proepisodic mechanisms have 
been identified in the field of animal rhythms: perfect synchrony 
and phase-delay synchrony. Due to the mostly non-human 

focus of this article, we refer to timing mechanisms using 
homoepisodic or proepisodic,20,34 as opposed to the loosely 
related distinction between reactive and predictive mecha-
nisms, more common in cognitive psychology.

Another dichotomy, coming from the human cognitive 
neuroscience literature, concerns the models of rhythmic behav-
iour, which can be explicit or implicit.26 Explicit models assume 
monitoring of signal lengths of discrete temporal units and 
comparison of preceding lengths to the average of those stored 
in memory.38,39 Instead, implicit timing models propose that 
timing abilities are dependent on neural oscillations, which are 
coupled to external signals.40

Behavioural responses to conspecific or experimentally gen-
erated stimuli can be used to infer whether an organism’s tim-
ing mechanism is proepisodic or homoepisodic. In the next 
sections, we will describe different models of animal rhythms 
and discuss the underlying mechanisms using mathematical 
and computational tools. For a comparison of some of these 
models with experimental animal data see Greenfield and 
Roizen13 and supplement in Ravignani.41

Formal Description of Alternative  
Timing Mechanisms
Individual rhythmic behaviours in inter-individual interactions 
can be summarised as functions of the signalling period of the 
focal animal Ti and the neighbour animal ′Ti  at time period i; 
the focal animal free-running period T ; the Uniform and 
Gaussian distributions U Nand , respectively; and scaling 
parameters a, b, c, kand .

Based on the models described below, we ran computer 
simulations. Simulations of each mechanism consisted of 

Table 1.  Definitions of key concepts in animal rhythmic communication.

Alternation The timing relationship between 2 signals whose phase relationship is 180°.

Antisynchrony The timing relationship between 1, 2, …, N signals whose phase relationship is 360°/k, where k = 1, 2, …, N. 
Alternation is a special case of antisynchrony, namely, when N = k = 2.

Effector A system that acts in response to a signal.

Focal Animal Individual whose behaviour is observed.

Inter-onset interval Time interval between the onsets of 2 adjacent calls.

Isochronous Series of events separated by a constant time interval. It is characteristic of 1 signal.

Lag (neural) Duration of neuronal signal transmission and consequent activation of an effector in response to that signal.

Neighbour Individual that affects the signal timing of the focal.

Phase change/shift Variation in the difference between the time of focal response relative to the signal of its neighbour, which can take 
the form of either an increase (relative advance) or decrease (relative delay).

Rhythm The temporal structure of signal events, possibly including repetition of temporal patterns. Musical rhythm is only 
loosely related to rhythm in animal signals, as the former entails cognitive concepts such as beat, tactus,  
and metre.

Signal sequence Train of signal units.

Synchronous Series of individual events co-occurring at the same time. The relationship of synchrony can hold between 2, or 
among multiple, signals.



4	 Evolutionary Bioinformatics ﻿

2 agents. A neighbour individual would produce a series of 
signals, either isochronously or with a constant drift, without 
paying attention to the other individual. The other, focal indi-
vidual would react to the partner’s signal by adopting one of the 
modelled mechanisms. Note that, in the simulations below, the 
signal length equalled 0 for the sake of simplicity. In addition, 
we posed the constraint that the focal individuals only pro-
duced 100 signals in each simulation. (These particular 100 
signals eliciting a response where randomly and uniformly 
sampled.) In the isochronous condition, neighbours’ inter-
onset intervals (IOIs) were sampled from a normal distribution 
with mean 1500 ms and standard deviation 150 ms. In the con-
stant-drift condition, partners’ IOI went from 1000 to 2000 ms 
in successive steps of 5 ms.

For these simulations, the scaling parameters were: 
a b c k= = = =1 2 1 10 1 5 4/ , / , / , . The free-running period of 
the simulated focal animal T  was arbitrarily chosen to equal 
1500 ms.

Visualizing Simulated Data
Delay-period plots can be used to visualise when a focal indi-
vidual will signal as a function of the time between the previ-
ous 2 signals of a conspecific. The x-coordinate of a point 
denotes the neighbour’s previous IOI. The y-coordinate of a 
point denotes the delay, the time elapsed between the last sig-
nal of a neighbour and the signal of the focal animal (ϕi  in the 
equations below). Although these scatterplots are similar to 
phase response curves, the crucial difference is that delay-
period plots show absolute, rather than relative, durations. 
Phase response curves are appropriate in all cases where a free-
running period exists. However, as our examples include cases 
of non-periodicity, we prefer using the delay-period plots. 
Delay-period plots can be interpreted biologically in different 
ways. Their main purpose is to represent temporal interactions 
at the level of single events (the dots) between an animal sig-
nalling rate (x-coordinate) and the time passed between an 
animal signal and a conspecific signal. In this graph, the dots 
forming a clear linear relationship may represent an individual 
delay in signalling proportional to the signalling rate of a 
conspecific.

Rose plots are a visualisation technique similar to histo-
grams. However, although histograms can potentially span any 
pair of arbitrary values (to include the maximum and minimum 
of the distribution), rose plots are circular, spanning 0° to 360° 
(equivalent to 0°). Area segments of a circle are used to convey 
the frequency distributions of phase angles in a particular phase 
angle bin. In rose plots, the bin size is usually constant and 
equal to 360° divided by the number of bins. Keeping the bins 
constant across rose plots is used to easily compare angular dis-
tributions. Here, rose plots show the frequency distribution of 
the focal (relative) phase, ie, the focal delay divided by the 
neighbour’s previous period. Rose plots can also have a number 
of biological interpretations. Their most 

straightforward interpretation is when an animal will signal if 
we treat a conspecific as a ‘metronome’. In other words, the 
points in time at which an animal signals are segmented and 
grouped relative to (ie, modulo) a conspecific call.

Baseline: The Arousal Model
The most basic model that can be described in the study of 
animal timing consists of the signals produced by an individual 
in the absence of a neighbour. An animal that is not influenced 
by the signals of its neighbour does not show a phase delay or 
phase advance with respect to a signal because that signal is 
absent. An individual, alone, will either not signal at all, or time 
its signals according to its endogenous or free-running rhythm. 
This is expected to be species-specific and show little variation 
across individuals of the same species.

Instead of the no-neighbour model, an ‘arousal model’ can 
be employed for baseline: the focal individual acts due to a sim-
ple arousal mechanism, the higher the number of a neighbour’s 
signals perceived, the higher the number of signals produced, 
with no temporal relation between these two. To our knowl-
edge, the arousal model has never been used in empirical 
research; however, an intuitive example could be the timing of 
contagious barking of dogs.

The delay of the focal animal relative to its partner, ϕi , in 
the arousal model equals41

	 ϕi = ′( )U ,Ti-0 1 	 (1)

In other words, the focal individual signals at a time that is 
randomly and uniformly sampled from the duration of the pre-
vious period of the neighbour. So, as the neighbour increases its 
period, the focal will be more likely to signal. The simulated 
data for this model are plotted as delay-period scatterplots 
(Figure 1) and rose plots (Figure 2). Notice that no particular 
pattern emerges, as this model constitutes a baseline with no 
particular time adjustments.

Self-synchronization and Neural Oscillators
In 1975, Peskin42 proposed a model of self-synchronisation 
using the heart’s natural pacemaker, a cluster of 10 000 cells 
known as the sinoatrial node. He modelled the cardiac pace-
maker as a large number of oscillators all coupled equally 
strongly to one another and all exhibiting the same dynamic. 
Each oscillator affects its neighbours only when it fires and can 
cause nearby oscillators to exceed their firing threshold, in a 
mechanism commonly known as the integrate-and-fire 
dynamic. This model shows that the whole system will eventu-
ally become synchronised. The mathematical proof comes 
from the notion of ‘absorption’, ie, the idea that if an oscillator 
causes another nearby oscillator to cross its threshold, both 
oscillators will remain in synchrony.43,44 Strong assumptions 
were made in this model as all oscillators have identical dynam-
ics. Moreover, synchronisation is more readily observed with 
increased coupling strength. However, weak oscillator coupling 
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can still lead to synchronisation if the observed frequencies are 
close to one another.43 Perpetual disorganisation in a system 
could occur if the oscillators behaved in a discontinuous fash-
ion, and this would never result in synchronous behaviour.43,44 
Alternatively, a system may break off into frequency-locked 
clusters because of weak coupling between clusters. Local 
synchrony would arise, and each cluster would fall out of syn-
chrony with neighbouring clusters, yielding global ‘non-
synchrony’. Different timing interactions are expected to arise 
if a model includes a spatial structure that focuses more on 

local interactions instead of assuming that all oscillators in the 
model are equally close neighbours. This would lead to some 
oscillators showing different dynamics. Neurons often behave 
as coupled oscillators.45 It is thus reasonable to expect the 
dynamics of neurons to resemble those of an oscillator network 
as described in Peskin’s natural heart pacemaker.23,44 The 
rhythms produced are caused by the combined interactions of 
actions potentials in the central nervous system. Although 
Peskin’s model is not directly associated with the rhythmic 

Figure 1.  Arousal model plotted using simulated data, showing lag-period plots for a simulated isochronous neighbour (left) and a constant-drift 

neighbour (right). In these graphs, the focal lag/delay (vertical) is plotted against the partner previous period (horizontal).

Figure 2.  Rose plots of the arousal model showing frequency distributions of relative phases, relative to a simulated isochronous neighbour (left) and a 

constant-drift neighbour (right).
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signalling of any species discussed here, its basic underlying 
ideas are present, to some extent, in most models discussed 
below.

For instance, related to Peskin’s ideas, the neural oscillator 
model assumes that the response timing of interacting oscilla-
tors depends on the intrinsic rate of a pacemaker in the central 
nervous system which is triggered by an effector lag, t.20 There 
is a minimum lag between perception of a signal and the reply 
that follows. The lag in response of the effector is a measure of 
the neurophysiological constraints of an organism, specifically 
its lowest temporal resolution in the perception-action cycle. It 
describes the velocity of neural transmission and the time it 
takes for the activation of an effector in response to that signal. 
Empirical measurements of t indicate values ranging from 50 
to 200 ms in insects such as katydids and fireflies.11,12,34 
Rhythms always fluctuate below and above the mean signalling 
rate as a result of variation in the signal period (T) and the 
effector lag (t). This model is also known as the saw-tooth 
oscillator model because the pacemaker ascends periodically 
from its basal to peak level, hence drawing a saw-tooth with its 
amplitude over time. Reaching the peak level triggers signal 
production. If undisturbed, the oscillator has its own endoge-
nous rhythm, which is in principle variable across individuals. 
Two variations of the neural oscillator model have been adapted 
to animal signalling: the phase delay (see below) and inhibitory 
resetting (see Supplemental Material) models.

Phase-Delay Model
Among species that seem to signal in a synchronous manner, 2 
mechanisms have been identified: perfect and phase-delay syn-
chronies. As mentioned above, perfect synchrony is hardly 
achievable in biological systems because of the large amount of 
variation present in nature. As a consequence, synchrony is 
detectable as arbitrarily small phase relationships (which would 
correspond to 1, large frequency bin centred at 0 in Figure 2). 
From the receiver’s perspective, organisms will identify 2 sig-
nals as synchronous if their phase difference is smaller than the 
organisms’ perceptual timing threshold.

Phase-delay synchrony occurs when an individual delays its 
signal by an interval equivalent to the delay between its previ-
ous signal and a neighbour’s signal (ie, the signal of a neigh-
bour). Male chorusing of neotropical katydids (Neoconocephalus 
spiza) illustrates this mechanism well.18 In this interaction, if a 
neighbour’s signal is presented just before the focal male’s sig-
nal, the signal will not be interrupted, but his next signal will be 
advanced with respect to the previous focal signal onset (see 
also inhibitory resetting model in Supplemental Material). 
This means that the first signal was already triggered prior to 
the signal of the neighbour. This can be explained by a 4-step 
mechanism where (1) the central nervous system pacemaker 
ascends slowly from basal to trigger level, (2) the pacemaker 
descends to basal level after being triggered, (3) external stimuli 
can instantaneously reset the pacemaker to its basal level, after 
which (4) the pacemaker resumes its endogenous rhythm. If 

males signal at similar rates with small fluctuations, the delays 
will cause rhythms to align within a single period, and syn-
chrony ensues. Even though synchrony and alternation can 
appear as dissimilar patterns, both phenomena can be achieved 
using the same phase-delay mechanism.

In its simplest variant, focussing on points (3) and (4) above, 
the delay of the phase-delay model equals13,15,20

	 ϕi N T bT= ( ), 	 (2)

In other words, the focal animal signals right after its partner, 
with a time delay that is randomly and normally distributed 
around the focal’s free-running period. Notice that this is a sim-
plified version of the model, with effector delay t = 0. Parameter 
b can be interpreted as the amount of jitter around an isochro-
nous delay: the lower the b, the more isochronous and predict-
able the signal produced in response to a conspecific.

The simulated data for this model are plotted as delay-
period scatterplots (Figure 3) and rose plots (Figure 4). In the 
delay-period plot (Figure 3), a clear pattern emerges. Data 
points are concentrated around 1500 ms on both axes. In the 
isochronous neighbour condition, the focal appears to partly 
adjust its next onset depending on the neighbour previous 
period. This is confirmed in the corresponding rose plot (Figure 
4, left side), with a high density of data points at or before 0°, 
equivalent to synchrony. Notice, however, that 1500 ms is in 
fact the average period of both individuals, which could be a 
reason for the high density of data points at 0°. The constant-
drift neighbour model does not perform as well in terms of its 
synchronisation precision. The right side of Figure 3 shows 
that as the period duration varies, the focal’s delay is almost 
constant. The right side of Figure 4 shows that there is a ten-
dency of the focal to signal within a range of (–90°, +90°) from 
or to the neighbour, which does not suffice to reach the levels 
of synchrony seen in the isochronous condition.

Synchrony reached in the isochronous variant of this model 
can be explained in evolutionary terms. In fact, it is an epiphe-
nomenon of competitive interactions between males: within 
the group display, males try to jam each other’s signals.13 
Leaders, whose rhythm is slightly advanced relative to their 
neighbours, will be more conspicuous, but still contribute to 
the overall near-synchrony. In many species of Orthoptera, 
females prefer males that signal before their neighbours in a 
specific sequence. Sexual selection thus drives males to strive to 
call in a leader position, as followers have lower reproductive 
success.32

Antisynchrony Model
Species that live in large populations with aggregated clusters 
must process a large quantity of signals and may adjust their 
signals respectively using a different mechanism. In 1971, 
Hamilton46 proposed the selfish herd theory. This model 
attempts to explain the spatial behaviour of animals living in 
aggregated communities. Hamilton’s model predicts that indi-
viduals within a population try to reduce predation risk by 
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physically putting other conspecifics between themselves and 
the predator. The basic assumption of this model is that in 
aggregations, predation risk is greatest on the periphery and 
decreases towards the centre. This classical mathematical 
model for animal behaviour uses the example of frogs living 
around a circular pond. In this example, frogs are at risk of 
predation by a water snake and, to minimize this risk, they 
jump in-between other conspecifics to minimize their ‘domain 
of danger’.

Recently, however, Hamilton’s model was adapted and 
applied to animal rhythmic communication,26,47 and tested in 

an experiment.41 Now, instead of each individual varying its 
location in space as seen in animal spatial aggregations, the 
caller shifts the ‘temporal location’ of its call onsets within a 
temporal-acoustic aggregation of conspecifics. In one version 
of the model, the caller times its vocalisations exactly in the 
shortest silent space between the calls of the nearby individuals. 
If all signalling animals try to do so either by delaying their 
next call or anticipating the next call of a conspecific, the 
silences between all calls will shorten until eventually their calls 
will end up in synchrony, or clusters.26 This will lead to a 

Figure 3.  Phase-delay model plotted using simulated data, showing lag-period plots for a simulated isochronous neighbour (left) and a constant-drift 

neighbour (right). In these graphs, the focal lag/delay (vertical) is plotted against the partner previous period (horizontal).

Figure 4.  Rose plots of the phase-delay model showing frequency distributions of relative phases, relative to a simulated isochronous neighbour (left) 

and a constant-drift neighbour (right).
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decrease in the conspicuousness of all signallers and lower their 
predation risk by signalling between the signallers. 

The same basic model, when reversed (signal during the 
longest silences), predicts that call timing will be dynamically 
shifted to occur at the midpoint or a fraction of the time period 
between 2 calls of a conspecific.41 The predicted outcome, in 
this case, is antisynchrony. Playback experiments with a lone 
harbour seal (Phoca vitulina) pup showed that the pup timed its 
calls in an antisynchronous manner. In fact, the seal timed its 
calls to occur approximately one-quarter of the playback 
period.41 The delay of the antisynchronous model equals26,41,46,47

	 ϕi =






′ ′N

k
T , a

k
Ti- i-

1
1 1 	 (3)

The formula says that the phase delay is sampled from a nor-
mal distribution whose mean is a fraction of the partner’s previ-
ous period, and whose standard deviation is proportional to that 
mean. In other words, the focal animal signals after its partner, 
with a time delay that is a fraction of the previous period of its 
partner. Parameter k can be interpreted as this fraction of a part-
ner’s period equalling the focal’s delay. Biologically, k could be 
influenced by the speed of a species’ nervous system, from the 
moment a sound reaches an auditory organ to the moment a 
sound is produced. In behavioural and evolutionary terms, k 
could be influenced by the group density of a vocal display: for 
a species where choruses are always duets, one could expect k = 2, 
namely, alternation; with larger choruses (and shorter signals), 
one would expect a higher k. Parameter a quantifies the amount 
of jitter around the constant phase angle parameterised by k. So, 

for instance, in a duet with k = 2, as a tends to 0, the duet tends 
to perfect alternation. Conversely, a large a represents a loosely 
tuned mechanism; for a large enough, the focal animal times its 
signals almost independently from the conspecific.

In simulations of the antisynchrony model, the focal ani-
mal vocalises in the silences, possibly to enhance her con-
spicuousness and make itself heard. In contrast to the 
example of the frogs avoiding predation from a water snake 
provided above, the seal times its calls by moving away in 
time from the signals of its neighbour, and therefore increas-
ing its conspicuousness. This results in antisynchrony and for 
seals it could be explained in evolutionary terms. Harbour 
seal pups produce mother attraction calls.48–50 These calls are 
individually distinctive and calls of different pups can be eas-
ily discriminated by mothers a few days after birth. When 
mothers return from foraging and come back to their colony, 
they must identify the right pup. The seal pup, by vocalising 
in the silences, may make itself heard, facilitating individual 
recognition by the mother. This form of timing adjustment 
may thus play an important role in the dynamics of mother-
pup recognition.41,49,50

Figures 5 and 6 plot simulated data for the antisynchrony 
model as delay-period plots and rose plots. Both versions of the 
model, when visualised in delay-period plots (Figure 5), show a 
clear similarity to the arousal model (Figure 1) and difference 
from the phase-shift model (Figure 3). There is a main visual 
difference between antisynchrony and arousal: data points for 
antisynchrony are more clustered at lower values of the y-axis 
(shorter delays on average). This intuition becomes clear when 
comparing rose plots. Although the arousal rose plot (Figure 2) 

does not have a clear phase pattern, the antisynchrony rose plot 

Figure 5.  Antisynchrony model plotted using simulated data, showing lag-period plots for a simulated isochronous neighbour (left) and a constant-drift 

neighbour (right). In these graphs, the focal lag/delay (vertical) is plotted against the partner previous period (horizontal).
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(Figure 6) features a high number of observations at around 
90°. This is consistent with the fixed phase angle described 
above.

Notice that the phase-delay model can yield either syn-
chrony or antisynchrony depending on the parameters. In the 
phase-delay model, antisynchronous alternation arises if the 
animal ‘rebounds’ from inhibition rapidly (relative to its free-
running period). So, why is an antisynchronous model needed? 
Among others, the main difference between the 2 models in 
explaining antisynchronous behaviour lies in their different 
tempo-dependent flexibilities. Although the phase-delay 
model will exhibit synchrony or antisynchrony only for a range 
of conspecific’s tempi, the antisynchrony will only exhibit 
antisynchronous behaviour, but for a much broader range of 
tempi.

Rhythmic Models in Humans: Period-Adjust/Linear 
Phase Correction in Music
Some rhythmicities such as breathing are generated at an 
endogenous neural level, but more complex rhythmic behav-
iours are dependent on externally supplied timing signals.10 
The effector lag mentioned in the neural oscillator model is 
species-specific. However, this sensorimotor reaction time can 
be circumvented via proepisodic timing. For example, when 
humans gather in groups to sing and dance, they synchronise 
their voices and bodily movements to a shared, repeated timing 
interval, known as the (musical) beat.51–54

Rhythmic behaviours in humans are frequently studied in 
the musical domain.54 For instance, in ensemble musical per-
formance, players do not always time their note onsets exactly 
as written on the score. This can be due to natural variation in 
timing abilities of each individual or because they introduce 
timing departures as a form of musical expressivity. Good 

auditory feedback information is thus needed to correct for the 
timing variations of other players. By adjusting their individual 
timings, the players restore relative phase with one another and 
maintain overall ensemble cohesion during performance. Wing 
et  al35 proposed a linear phase-correction model used for 
achieving synchrony in quartets. The asynchrony between a 
pair of note onsets produced by 2 performers is described as the 
phase error. Performers use this phase error to lengthen or 
shorten the time interval before the next tone onset. This 
ensures that the next pair of note onsets exhibits a smaller 
phase difference. The delay of the period-adjust model equals35,55

	 ϕi = ( )′T + c T -Ti- i- i-1 1 1 	 (4)

In other words, the new signalling time of the focal indi-
vidual equals its previous period length, adjusted to compen-
sate the mismatch between the previous periods of focal and 
partner. Hence, if the focal’s previous period is shorter than the 
partner’s, the focal’s new period will be lengthened by a fraction 
of this difference. If, instead, the focal’s previous period is 
longer than the partner’s, the focal’s new period will be short-
ened by a fraction of this difference. Parameter c represents the 
‘correction strength’35: the magnitude of the effect that the 
mismatch in synchrony from the previous period has on the 
current period. For a low c, a previous asynchrony will only be 
minimally corrected in the current period. A high c will try to 
correct the previous asynchrony, with the risk of ‘overcorrecting’ 
it in the direction opposite to the previous asynchrony.

The linear phase-correction model produces asynchrony 
autocorrelation functions that match the output data and esti-
mates the correction gain or strength for the pairs of players. 
Stable asynchrony time series can be described as those with 
gain changes between 0 and 2. Near-optimal improvement can 

Figure 6.  Rose plots of the antisynchrony model showing frequency distributions of relative phases, relative to a simulated isochronous neighbour (left) 

and a constant-drift neighbour (right).
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be found across string quartets but contrasting patterns of 
adjustment between pairs of players exist. Two quartets were 
analysed in the string quartet study, which showed that 2 alter-
native mechanisms can be employed in music ensembles to 
maintain overall synchronisation.35 In the first group, all play-
ers adjusted their timing to the leading player (see also 
Fuhrmann et al56 for a non-human animal parallel). This copy-
ing mechanism suggests that copying the immediately preced-
ing interval helps to maintain inter-individual synchrony. In 
the second group, the levels of gain correction of each player 
were similar. Synchronisation can therefore also be achieved by 
a central tendency or an average estimate of the prevailing unit 
duration over a number of previous beats in the sequence. This 
provides a more robust basis for period adjustment. Both 
mechanisms can coexist in generating a rhythmic behaviour. It 
is yet unknown how individuals switch between modes.

The simulated data for this model are plotted as delay-
period scatterplots (Figure 7) and rose plots (Figure 8). Notice 
how, in both delay-period plots (Figure 7), the data points lie 
on, or close to, the 45° grey line. A point on this line represents 
an observation for which a focal individual responded with a 
delay identical to the previous period of the neighbour. Also, 
the rose plots (Figure 8) show a very clear picture. The relative 
phase is close to 0°, suggesting synchronisation. In addition, the 
slight negative asynchrony in Figure 8 curiously mirrors that 
found in human tapping studies.57,58

Rhythmic Models in Humans: Turn-Taking  
in Speech

Another example of rhythmic behaviour in humans is turn-
taking during a conversation.59 Although this mode of interac-
tion has long been overlooked in language sciences,59,60 
mechanisms are in place to regulate when to speak. There are 
many different languages in the world and significant cultural 
differences can be found in the timing of turn-taking. Despite 
these differences, there exist clear universals in the pattern of 
response latency during conversation.61 The main opposing 
tendencies influencing response latency values are (1) avoid-
ance of overlap and (2) minimisation of silences between turns.

Across languages, the time difference between an individual 
offset and another’s onset averages 229 ms.61 To achieve this 
close timing, speakers resort to prosody, pragmatics, and gram-
mar to predict the timing of their turn.59,60 Moreover, a speaker 
may pressure the listener to respond more quickly when direct-
ing his or her gaze towards the listener.

A crucial difference between turn-taking and the models 
discussed above is that speech is not, from a purely behavioural 
perspective, strictly periodic. The brain circuits underlying 
speech perception and production do engage in periodic 
oscillations.54 The amplitude envelope of the speech signal 
shows some periodicities.62,63 However, from a purely behav-
ioural perspective, speech is much less periodic than, eg, 
(Western) music performance or insect choruses.54 Some of 
the periodicity speakers perceive in the speech signal may in 
fact be subjectively induced via top-down cognitive processes.54,64 
The most objectively rhythmic feature of speech and language 
may actually lie in interactive turn-taking, rather than individ-
ual speech acts.31,59,60,65 Although with extreme caution, we 
believe it is important to start developing computer 

Figure 7.  Period-adjust model plotted using simulated data, showing lag-period plots for a simulated isochronous neighbour (left) and a constant-drift 

neighbour (right). In these graphs, the focal lag/delay (vertical) is plotted against the partner previous period (horizontal).
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simulations for turn-taking behaviour and compare them with 
a century of results from animal chorusing.66,67 Below, we pre-
sent the simplest possible model to simulate the rhythm of 
turn-taking, namely, a delay between speakers, calibrated using 
empirical findings from world languages. In our simple formu-
lation, the delay of the turn-taking model equals61

	 ϕi = ( )N M ,SDStiv Stiv 	 (5)

where M SDStiv Stiv= =229.485 and 512.99 are estimates in 
milliseconds from cross-cultural human data by Stivers et al.61 
In other words, the focal individual signals right after its part-
ner, with a time delay that is randomly and normally distrib-
uted around the population’s delay. Analytically and prior to 
any simulation, when M =TStiv  and b = SD / MStiv Stiv , the 
turn-taking model is equivalent to the phase-delay model. 
Typically, however, human turn-taking will exhibit b >1, 
whereas insect phase-delay behaviour will exhibit b <1.

Notice that this very simple model makes many simplifica-
tions when abstracting away from the reality of turn-taking. In 
particular, it does not incorporate all the non-verbal signalling 
channels that enable an individual to predict when the neigh-
bour’s signal will stop. Nonetheless, we stress the importance 
of incorporating turn-taking as a variation of animal chorus-
ing, especially in discussions on the evolution of human 
behaviours.66,67

Figures 9 and 10 plot simulated data for the turn-taking 
model as delay-period plots and rose plots. Both versions of 
the model, when visualised in delay-period plots (Figure 9) 
show some similarities to the arousal and antisynchrony 
models (Figures 1 and 5) and differences from the phase-
shift and period-adjust models (Figure 3 and 7). This makes 
sense, because the latter 2 models are mechanisms used to 

achieve synchrony, whereas the 2 former models, together 
with turn-taking, either try to avoid synchrony or are neutral 
towards it. The rose plots (Figure 10) confirm and extend 
this intuition: there seem to be a tendency for the focal indi-
vidual to signal 180° after the neighbour. It is unclear why 
this alternation pattern emerges and whether it is a simple 
by-product of the specific numerical parameters chosen in 
the simulation.

Discussion and Conclusions
In this article, we (1) reviewed several models of interactive 
rhythm in animal communication, (2) formulated closed-
form equations to describe them (3) simulated the dynamic 
behaviour of a hypothetical focal organism responding to a 
conspecific according to one of these signalling strategies, and 
(4) plotted the simulated data points using 2 visualisation 
techniques. A brief comparison of plots across models may be 
useful.

When compared using delay-period plots, each model has 
its own unique feature, but cross-model similarities also 
emerge. The arousal model (Figure 1) has a random relation-
ship between x and y coordinates of each point: no particular 
trend is noticeable. The antisynchronous model (Figure 6), if 
observed alone and at first sight, would also appear quite ran-
dom. However, when compared with the arousal plot, the 
antisynchronous plot shows a higher concentration of values 
with shorter delays (lower values for the y-coordinate). In fact, 
a hypothetical fit line would capture the variance of the linear 
relation (y = 0.25 × x) present in the lower point clusters of 
both plots in Figure 5. Notice that the fit would not be perfect 
because this simulation contains half of the data points gener-
ated with the antisynchronous mechanism and the other half 
generated via the arousal mechanism. Visually, the closest plot 

Figure 8.  Rose plots of the period-adjust model showing frequency distributions of relative phases, relative to a simulated isochronous neighbour (left) 

and a constant-drift neighbour (right).
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to Figures 1 and 5 is Figure 9, the turn-taking simulation. 
Figure 9 has, however, also a peculiar feature, namely, that 
delay values can be negative, meaning that the focal individual 
would signal before the neighbour, possibly overlapping with 
it. The 2 remaining models, the phase-delay (Figure 3) and 
period-adjusted (Figure 7), have a commonality that no other 
plots share: their data points lie close to or on the grey diago-
nal line. This similarity reflects their common underlying pat-
terns when occurring in nature. Both models can explain quite 
well synchronous phenomena. A final feature is the potential 

similarity between Figures 3 and 9. The closed-form equations 
for the phase-delay and turn-taking models are actually equiv-
alent up to scaling parameters. This equivalence is weak 
because it is based on the many simplifying assumptions of the 
models. However, it may be potentially informative of the fact 
that cooperative behaviour, which is not required in the phase-
delay model but often assumed in turn-taking, may also be a 
minor factor when modelling turn-taking.67

Comparing rose plots also shows some unique features of 
each model and similarities across them. The arousal model 

Figure 9.  Turn-taking model plotted using simulated data, showing lag-period plots for a simulated isochronous neighbour (left) and a constant-drift 

neighbour (right). In these graphs, the focal lag/delay (vertical) is plotted against the partner previous period (horizontal).

Figure 10.  Rose plots of the turn-taking model showing frequency distributions of relative phases, relative to a simulated isochronous neighbour (left) and 

a constant-drift neighbour (right).
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(Figure 2) has a random, almost evenly spread distribution 
around the circle. This spread is present, but reduced for turn-
taking (Figure 10), and centred around approximately 180°. 
Similar, or less, spread appears in the phase-delay model (Figure 4), 
with the phase distribution centred at, or close to, 0°. Even less 
spread appears in the distributions of the remaining 2 models, 
the period-adjusted (Figure 8), centred close to 0°, and the 
antisynchronous model (Figure 6), centred close to 90°.

One key difference among models, which emerged through 
visualisation, is their propensity to produce or avoid synchro-
nised behaviours. This is particularly evident when comparing 
rose plots (Figures 2, 4, 6, 8, and 10). Synchronisation, as seen 
in the phase-delay and period-adjust models, is achievable 
across species via both homoepisodic and proepisodic mecha-
nisms. In music, prediction of the exact timing of the next sig-
nal via proepisodic mechanisms can enable synchronising to a 
specific tactus or beat. In the particular case of human musical 
rhythm, the structural grid of this isochronous pulse enables 
individuals to precisely time their rhythmic behaviour. A few 
animal species, with different evolutionary distances from 
humans, have a capacity to entrain to an isochronous pulse.54,68–70 
The best-known example can be found in a California sea lion 
(Zalophus californianus), named Ronan, that matched bobbing 
head movements to both simple and complex beats, and was 
capable of adjusting its timing in response to changes or 
perturbations.71 Its performance was well-captured by mathe-
matical models of coupled oscillators.71 Comparative cross-
species study of beat synchronisation can shed further light on 
the origin and evolution of flexible interactive timing.70,72

This article is limited in its scope along a number of dimen-
sions, namely: (1) it only reviews a small percentage of the 
literature on animal and human chorusing and turn-taking, 
while much more is available; (2) it limits interactive models to 
2 individuals, while a critical aspect of rhythm interaction is 
the number of interacting agents; (3) it only adopts 1 type of 
computational approach to simulate agents, and 2 ways of visu-
alising the outcomes of the simulations.

We have sketched the potential of adopting a computational 
approach in the behavioural study of animal rhythm and tim-
ing. We hope that the kind of modelling work we sketch here 
will serve as a baseline for future research, where computer 
simulations can help make predictions for, and compare results 
from, behavioural experiments.13,41
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