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Abstract

■ There is a range of variability in the speed with which a sin-
gle speaker will produce the same word from one instance to
another. Individual differences studies have shown that the
speed of production and the ability to maintain attention are
related. This study investigated whether fluctuations in produc-
tion latencies can be explained by spontaneous fluctuations in
speakers’ attention just prior to initiating speech planning. A
relationship between individuals’ incidental attentional state
and response performance is well attested in visual perception,
with lower prestimulus alpha power associated with faster man-
ual responses. Alpha is thought to have an inhibitory function:
Low alpha power suggests less inhibition of a specific brain re-
gion, whereas high alpha power suggests more inhibition. Does
the same relationship hold for cognitively demanding tasks

such as word production? In this study, participants named pic-
tures while EEG was recorded, with alpha power taken to index
an individual’s momentary attentional state. Participants’ level
of alpha power just prior to picture presentation and just prior
to speech onset predicted subsequent naming latencies.
Specifically, higher alpha power in the motor system resulted
in faster speech initiation. Our results suggest that one index
of a lapse of attention during speaking is reduced inhibition
of motor-cortical regions: Decreased motor-cortical alpha
power indicates reduced inhibition of this area while early
stages of production planning unfold, which leads to increased
interference from motor-cortical signals and longer naming la-
tencies. This study shows that the language production system
is not impermeable to the influence of attention. ■

INTRODUCTION

Producing words does not happen at one constant
speed. From decades of research on language produc-
tion, we know that several linguistic factors can influence
the speed of production. For instance, highly frequent
words are produced more quickly than less frequent
words (Jescheniak & Levelt, 1994). Similarly, it takes lon-
ger to initiate speech for a disyllabic word compared with
a monosyllabic word (Meyer, Roelofs, & Levelt, 2003).
However, even producing the same word will sometimes
be slower than other times. Here, we test whether slow
production that cannot be explained by linguistic factors
alone may in part be explained by the neural attentional
state of the speaker just prior to initiating the processing
required for production. There is ample evidence from
visual or auditory discrimination and judgment tasks that
the attentional state of an individual can influence the
speed of the required manual response (i.e., Mazaheri
et al., 2014). Relatedly, the brain state before a slow re-
sponse is distinctively different from the brain state be-
fore a fast response (Weissman, Roberts, Visscher, &

Woldorff, 2006). In this study, we test whether the same
may be true when the requisite response is preceded by
a cascade of linguistic processing.

Models of word production agree that this cascade of
linguistic processing consists of at least a meaning stage
and a form stage that lead to articulation (Levelt, Roelofs,
& Meyer, 1999; Dell, 1986). Performing a meta-analysis of
chronometric and neuroimaging studies of word pro-
duction, Indefrey and Levelt (2004) linked specific time
windows and brain areas to different stages of word pro-
duction. They followed the word production model of
Levelt et al., which consists of the following production
stages: conceptual preparation; lemma retrieval; form en-
coding; and finally, articulation. For picture naming, first a
preverbal conceptual message is formulated; this process
is thought to take on average ∼200 msec and is linked to
activation in occipital and ventral temporal cortical re-
gions. Next, the corresponding lemmas or lexical entries
are activated and selected. A lemma represents syntactic
information such as word class or grammatical gender.
The retrieval of a lemma is proposed to take ∼75 msec,
and the model links this stage to activation in the left
middle temporal gyrus. For selected lemmas, correspond-
ing sound properties are retrieved during the form encod-
ing stage. This stage is further separated into phonological
code retrieval (at ∼275 msec and linked to activation in
superior temporal gyrus), syllabification (at ∼355 msec
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and linked to activation in inferior frontal gyrus), and pho-
netic encoding (at ∼455 msec and linked to activation in
precentral gyrus and SMA). Articulation is then initiated at
∼600 msec and is linked to activation in sensorimotor
brain regions.

Increased complexity for each of these stages can
cause prolonged processing and lead to later speech
onset (Meyer et al., 2003; Jescheniak & Levelt, 1994).
Delayed speech can, however, also result from difficulties
in nonlinguistic processes. For instance, several studies have
shown that word production is susceptible to domain-
general processes like attention. Attention is an umbrella
term that covers several different abilities. According to an
influential theoretical proposal by Posner (2012), attention
consists of executive control, orienting, and alerting. Exe-
cutive control is the ability to remain goal-directed in the
face of distraction, orienting is the ability to shift the locus
of processing towards a particular spatial position, and alert-
ing is the ability to achieve and maintain alertness, either
briefly (e.g., in response to a warning signal or stimulus)
or prolonged over extended periods of time (called sus-
tained attention; see Sarter, Givens, & Bruno, 2001). In this
study, we examined how word production depends on the
ability tomaintain attention. Attention waxes and wanes dur-
ing continuous and repetitive task performance. As James
(1890) stated, “There is no such thing as voluntary attention
sustained for more than a few seconds at a time” (p. 420).
Consequently, task performance is characterized by “in-
termittent failures in efficiency interspersed with normal
performance” (Broadbent, 1971, p. 128). We examined the
possibility that a slow picture naming trial is (at least in part)
due to reduced sustained attention of the participant just
prior to the onset of the to-be-named picture.

There is accumulating evidence that language pro-
duction is influenced by attention (e.g., Shao, Meyer, &
Roelofs, 2013). Importantly for our study, individual dif-
ferences studies have shown that the speed of production
and the ability to maintain attention in the task at hand are
related: Individuals with a worse alerting (i.e., reduced sus-
tained attention) ability exhibit a larger number of very
slow picture naming response trials than individuals with
better alerting ability (Jongman, Meyer, & Roelofs, 2015;
Jongman, Roelofs, & Meyer, 2015). These very slow re-
sponses were interpreted as trials reflecting lapses of sus-
tained attention, as previously proposed by Unsworth,
Redick, Lakey, and Young (2010). For the purposes of
our study, we operationalize lapses of sustained attention
in precisely this way: relatively slower responses on task.

In this study, the goal was to test for neural evidence
that lapses of sustained attention affect word production.
We investigated participants’ brain states during both
slow and fast speech trials under the assumption that
slower responses result from momentary lapses of atten-
tion. A similar approach has been used previously for
simple discrimination or judgment tasks with electro-
physiological measures such as EEG and magnetoen-
cephalography. Prestimulus electrophysiological signals

can be compared for slow versus fast trials. In particular,
research has focused on rhythmic neuronal activity, also
known as oscillations. Several studies have found that as
RTs decrease, prestimulus oscillatory power in the alpha
frequency band (8–12 Hz) decreases (Kelly, Gomez-
Ramirez, & Foxe, 2009; Thut, Nietzel, Brandt, & Pascual-
Leone, 2006). In other words, a phasic decrease in alpha
power corresponds to improved performance in speeded
RT tasks. This relationship between phasic alpha power
and RTs appears to be specific to the brain region typically
responsible for processing the type of information relevant
for the task at hand: Mazaheri et al. (2014) found the rel-
evant relationship between RTs and alpha power over vi-
sual cortical regions when participants performed a visual
orientation discrimination task, whereas the same relation-
ship was present over superior temporal gyrus during an
auditory discrimination task. Besides the relationship
between alpha power and RTs, prestimulus alpha power
has been shown to predict perception performance
(Hanslmayr et al., 2007), perception errors (Mazaheri,
Nieuwenhuis, van Dijk, & Jensen, 2009), and self-reported
attentional state (Macdonald, Mathan, & Yeung, 2011).
The precise link between prestimulus alpha and per-
ceptual performance is, however, still a hotly debated is-
sue, with some studies suggesting that higher alpha
power may reflect a more conservative response criterion
(bias), possibly to guard against false positives (Iemi,
Chaumon, Crouzet, & Busch, 2017; Limbach & Corballis,
2016). On the other hand, a recent study (Iemi & Busch,
2018) convincingly demonstrated that the level of presti-
mulus alpha power reflects the degree of perceptual rather
than response bias by comparing this relationship for a
visual detection and a visual discrimination task (see
Iemi & Busch, 2018, for details).
Romei, Gross, and Thut (2010) provided evidence that

the relationship between prestimulus alpha power and
subsequent stimulus processing is not merely correlative.
Using TMS, they stimulated visual areas via short trains of
rhythmic TMS. When the visual areas were stimulated at a
frequency of 10 Hz, a frequency in the alpha band, visual
target detection was impaired in the hemifield opposite
the stimulated hemisphere and enhanced ipsilaterally.
These effects were not observed for stimulations at 5 Hz
(theta band) and 20 Hz (beta band). This suggests that
there may be a causal link between alpha power and
target detection performance. It has been proposed that
oscillations in the alpha range play a role in selective at-
tention by regulating information flow through inhibition
of task-irrelevant brain areas (Jensen & Mazaheri, 2010;
Klimesch, Sauseng, & Hanslmayr, 2007). This is sup-
ported by studies showing not only a decrease in alpha
power in task-relevant brain areas but also an accompany-
ing increase in alpha power in task-irrelevant regions, for
instance, in a tactile discrimination task (Haegens, Luther,
& Jensen, 2012). Furthermore, Kelly, Lalor, Reilly, and
Foxe (2006) showed that the hemisphere ipsilateral to
a visual stimulus that needed to be ignored (i.e., the
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hemisphere that would have processed that stimulus
were it attended) exhibited increased alpha power, sug-
gesting that alpha may function as an attentional sup-
pression mechanism.
This inhibitory role of alpha oscillations (along with its

facilitatory role in upregulating task-relevant brain re-
gions discussed earlier) is one of our primary interests
in this study. It is certainly true that alpha power may ful-
fill different functional roles in different paradigms, but in
the context of this study, the role of alpha oscillations in
the inhibition of premature motor cortical activity is of
particular interest. This is because our picture naming
task requires the appropriately timed use of an effector
to produce motor output in response to the sensory in-
put. There is converging evidence that under such con-
ditions, perceptual or cognitive processes can modulate
activity in the motor system, such that motor cortical
activity can be used to “read out” the accumulation of
perceptual evidence in favor of making a particular response
(Song & Nakayama, 2009). In a study by de Lange, Rahnev,
Donner, and Lau (2013), for instance, participants indi-
cated visual motion direction (left/right) by button press
using the hand congruent to the detected motion direc-
tion. Expectation for a particular motion direction was
cued on some proportion of trials, and prestimulus alpha
(and beta) power in sensorimotor cortices (mu power)
decreased contralateral to the anticipated motion direc-
tion (and hence also contralateral to the hand with which
a response was expected to be made). The level of pres-
timulus alpha power was related to participants’ bias in
perceptual judgments brought about by the expectation
cue. In occipital regions, prestimulus alpha power was
higher for trials that did compared with trials that did
not have an expectation cue, suggesting that when the di-
rection of motion was unpredictable (no cue), the brain
allocated additional resources to the visual system for pro-
cessing motion direction. Importantly, even on neutral tri-
als sensorimotor prestimulus alpha power lateralization
was predictive of motion direction response (although
the relationship was not as strong as on cued trials), sug-
gesting that the state of the motor system prior to stimu-
lus onset has a direct influence on the eventual motor
response. These findings show that prestimulus alpha
power in the motor system behaves similarly to alpha in
the sensory cortices, with higher or lower power re-
spectively signaling more or less inhibition of the motor
system and a greater or lesser degree of “readiness” (like-
lihood of release from inhibition) to execute a manual re-
sponse. In the context of a picture, naming the relevant
response is articulation, and we may expect that the level
of prestimulus alpha power in the motor system provides
a useful index of the degree to which the motor system is
inhibited (or disinhibited) while stages of speech plan-
ning prior to articulation unfold and is thus predictive of
subsequent naming times.
Unlike for perceptual discrimination tasks, for picture

naming a cascade of cognitively more complex linguistic

processing takes place between the prestimulus period
and eventual response. This intervening processing likely
requires the motor system to remain in a state of “read-
iness” without actually executing a response until the
necessary linguistic processing has reached the appropri-
ate production stage (phonetic encoding or articulation).
We may therefore expect that higher prepicture alpha
power in sensorimotor regions should result in a greater
ability to suppress an immediate motor response while
the necessary linguistic processing stages for production
unfold. This would suggest a negative relationship be-
tween the level of prepicture alpha power and subse-
quent naming times (i.e., higher alpha in motor cortical
regions leads to shorter naming latencies).

To summarize, in this study, we measured EEG and
used prestimulus alpha power as an index of attention
while participants named pictures. We hypothesized that
if naming latencies are long (at least in part) due to a
lapse of sustained attention, the level of alpha power
should differentiate between fast and slow trials. Which
direction this relationship between alpha power and
naming speed will take should depend on the functional
locus of the lapses in attention. In picture naming, even
before all the linguistic processing stages unfold, the first
thing that needs to take place is visual processing of the
picture. A participant must recognize the object on the
screen to be able to prepare the verbal message. If lapses
of attention exert their influence on picture naming by
affecting visual processing of the picture, then this is ex-
pected to be characterized by higher prepicture alpha
power over occipital brain regions in relation to longer
naming latencies, a positive relationship. This would be
in line with many previous studies on visual perception
that have shown alpha power decreases over the parietal
and occipital cortices (important task-relevant brain regions
for visual perception) to relate to better performance (e.g.,
Kelly et al., 2009; Thut et al., 2006).

We hypothesize that the reverse relation between
prepicture alpha power and naming latencies may be
found over the motor cortex, such that higher alpha
power would lead to faster naming, a negative relation-
ship. As discussed above, previous research has shown
that when prestimulus alpha power is high over task-
irrelevant brain regions, performance improves (Haegens
et al., 2012; Kelly et al., 2006). We argue that, in the case
of picture naming, the motor cortex is initially a task-
irrelevant brain region: While visual and early linguistic
processing stages unfold, task performance will be im-
proved if any premature speech response (or correspond-
ing motor cortical activity) can be successfully withheld.

The main goal of this study was to examine the extent
to which prestimulus alpha power is predictive of pic-
ture naming latencies. The relationship between presti-
mulus alpha and response performance has been well
attested and is therefore likely to provide a useful index
of whether serendipitous periodic fluctuations in the at-
tentional state of the brain influence word production.
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As a secondary aim, we explored the influence of alpha
power after picture onset and immediately prior to
speech onset on naming latencies. For prespeech alpha,
we expected to find the well-established alpha power
desynchronization prior to movement (articulation)
onset (e.g., Pfurtscheller & Lopes da Silva, 1999) and
tested whether this movement-related alpha was related
to naming latencies, on the one hand, and to prestimu-
lus alpha power on the other hand.

METHODS

Participants

Thirty-seven students from Radboud University, Nijmegen,
or the Hogeschool van Arnhem en Nijmegen participated.
All participants were Dutch native speakers, had normal/
corrected-to-normal vision, and no language impairment.
The average age was 21.6 years (range: 19–29 years), with
26 female participants. Participants were paid for participa-
tion. Ethical approval was granted by the Ethics Board of
the Faculty of Social Sciences of the Radboud University,
Nijmegen. Participants provided written informed consent
before the start of the experiment.

Materials

Participants were presented 60 black-and-white drawings,
with each picture shown 10 times. The objects were se-
lected from a database of normed pictures (Severens,
Van Lommel, Ratinckx, & Hartsuiker, 2005). The object
names varied in frequency (mean lemma frequency: 47 to-
kens per million, range: 1–247; values taken from CELEX;
Baayen, Piepenbrock, & Gulikers, 1995) and in length,
with words consisting of one to three syllables (mean
length: 1.6 syllables). Pictures were selected for high name
agreement (mean = 96.4%, range = 79–100%).

Procedure

Before the start of the experiment, participants were
given a booklet with the 60 pictures and corresponding
names and were asked to go through the booklet twice.
After EEG setup, participants were tested in a dimly lit
room, seated in front of a 19-in. (Samsung Syncmaster
961BF) screen, at a distance of ∼100 cm. Stimuli were
presented using Presentation software (Neurobehavioral
Systems). Participants’ vocal responses were recorded
(Sennheiser ME64), and speech onsets were determined
manually using Praat (Boersma & Weenink, 2012). A
short practice block of 10 trials was presented to familiar-
ize participants with trial timing. These trials allowed for
adjustment of the voice key to ensure it was reliably trig-
gered by speech onset.

A trial started with a fixation cross in the center of the
screen, presented for a random duration ranging between
1500 and 2000 msec. Then, a picture was presented in the

center, fit to a virtual square of 300 × 300 pixels. The object
disappeared from the screen 500 msec after the voice key
was triggered or after 3000 msec. Finally, five hashtags were
presented for 1000 msec where participants could blink. All
stimuli were presented in white on a black background.
Ten runs of the 60 pictures were presented. Presen-

tation was pseudorandomized such that a particular start-
ing phoneme of a name never occurred twice in a row.
Moreover, objects from the same semantic category
never followed one another. In total, 600 trials were pre-
sented, with self-timed breaks after 200 and 400 trials.
The experimental session lasted ∼50 min.

EEG Data Acquisition

The EEG was continuously recorded using an EEG cap
containing 59 active electrodes (see Figure 1). In addition
to the electrodes in the cap, one electrode was attached
below the left eye to monitor for blinks, and two elec-
trodes were directly placed on the left and right mas-
toids. All electrodes were online referenced to the
electrode placed on the left mastoid. The impedance
was kept below 10 kΩ for all electrodes. The EEG was
digitized at a rate of 500 Hz and recorded with a low cut-
off filter of 0.01 Hz and a high cutoff filter of 200 Hz.

EEG Preprocessing

Initial preprocessing was performed using Brain Vision
Analyser (Brain Products, Version 2.0.2). First, the data

Figure 1. Electrode montage.
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were re-referenced using the average of the left and right
mastoid electrodes and then a high-pass filter of 0.1 Hz
and a low-pass filter at 30 Hz was applied. The EEG signal
was demeaned and corrected for ocular artifacts, using the
Gratton andColes (1989) correction: bipolar vertical electro-
oculography (EOGV) and horizontal electrooculography
(EOGH channels were derived from the difference be-
tween electrode 50 in the cap and the electrode on the sub-
orbital ridge for the EOGV and the difference between
electrode 51 and 59 in the cap approximating the positions
of the outer canthi for the EOGH. For stimulus-locked
analyses, epochs of −1500 to 1000 msec were created
starting from the onset of picture presentation; for
response-locked analyses, the data were segmented from
−1100 to 3500msec relative to picture onset. Trials with a
voltage step over 50 μV and trials with an absolute differ-
ence greater than 200 μV were rejected.
Remaining preprocessing and other analyses were car-

ried out using the FieldTrip toolbox (Oostenveld, Fries,
Maris, & Schoffelen, 2011) running in a MATLAB environ-
ment (R2014b; The MathWorks, Inc.). Preprocessing was
performed separately for stimulus-locked and response-
locked data (see below). For every participant and trial,
data were segmented between −1500 and 500 msec rel-
ative to the onset of the picture for stimulus-locked data
and between −1500 and 1500 msec relative to the onset
of speech for response-locked data. The EEG signal at
bad electrodes was reconstructed from a combination
of surrounding electrodes (two electrodes in one partic-
ipant; one electrode in another). Any remaining artifact-
containing trials were removed from the data by visual
inspection. Finally, trials for which the RTs in the picture
naming task were below 400 msec or above 2000 msec
were deemed irregular responses and removed from fur-
ther analyses. This resulted in between 386 and 525 (M=
465.5; SD = 35.86) usable trials per participant for the
stimulus-locked data and between 303 and 485 (M =
415.93; SD = 53.78) usable trials per participant for the
response-locked data after preprocessing and data
cleaning.

Relationship between Alpha Power and
Naming Times

To address our primary hypotheses, EEG data were
analyzed time-locked to picture onset (stimulus-locked
data). These were followed up by more exploratory anal-
yses time-locked to speech onset (response-locked data).

Time–Frequency Analysis of Power

For each participant, single-trial time–frequency repre-
sentations of power were computed using a sliding win-
dow of 300 msec tapered with a single Hanning taper.
This results in temporal precision of 300 msec and intrin-
sic frequency precision of 3.33 Hz. Power estimates were
obtained separately for each electrode in frequency steps

of 1 Hz from 2 to 30 Hz and in time steps of 20 msec from
−1300 to 300 msec relative to picture onset for stimulus-
locked data and from −1500 to 1500 msec relative to
speech onset for response-locked data. Single-trial power
values were baseline normalized by expressing them as a
relative change from mean power in a baseline period
between −1300 and −1000 msec relative to picture on-
set (same baseline period used for both stimulus- and
response-locked data) and log10 transforming the resul-
tant values to express power as a decibel change from
baseline.

Power–RT Relationship

To test for a relationship between alpha power and
picture naming RTs, a cross-trial regression analysis was
performed for each participant (cf. Cohen & Donner,
2013). For every electrode–frequency–time triplet in
the stimulus-locked data (all scalp electrodes; 2–30 Hz,
−1000 to 300 msec), an independent samples t statistic
was computed based on the output regression coefficient
and error term when regressing the baseline normalized
power value at that data point against the log-transformed,
z-scored RT associated with that particular trial. Spearman
correlations were employed to minimize potential effects
of nonnormally distributed data. The same approach was
used to test for a relationship between source-level (see
below) alpha power and RTs in the response-locked data
(2–30 Hz, −1300 to 1300 msec).

Cluster-based permutation statistics (Maris & Oostenveld,
2007) were subsequently used to test for relationships be-
tween power and RTs that were consistent in time, space,
and frequency across participants. For stimulus-locked data,
our main hypothesis focused on a relationship between pre-
picture alpha power and subsequent RTs. For complete-
ness, we also tested for a relationship between postpicture
power and RTs. Mean prepicture alpha (8–12 Hz) range
correlation t values were compared with zero across partic-
ipants at every electrode–time couplet between−1000 and
0 msec relative to picture onset using dependent-samples
t tests. A cluster threshold of p = .05 was chosen, and data
points where t values did not correspond to p values below
this threshold were discarded. Remaining t values were then
grouped into clusters based on adjacency in space (neigh-
boring electrodes) and time, and t values for each cluster
were summed to produce a cluster t statistic. This pro-
cedure was then repeated 5000 times, each time with
condition labels (correlation t values or zeros) randomly in-
terchanged across participants to construct a Monte Carlo
distribution. Cluster t statistic values falling in the upper
or lower 2.5th percentile of this Monte Carlo distribution
were considered statistically significant. The same proce-
dure was repeated for mean postpicture alpha (0–300 msec
relative to picture onset) to test for a relationship between
postpicture power and RTs.

For response-locked data, the same cluster-based ran-
domization approach (forming clusters only in time at
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each source ROI; see below) was used to test for a con-
sistent relationship across participants between mean
prespeech (−1300 to 0 msec relative to speech onset)
alpha and RTs. Because four source ROIs were tested
separately, a Bonferroni corrected alpha level of p =
.0125 was considered statistically significant for these
response-locked analyses.

Source Analysis

For source analyses, preprocessed artifact-attenuated data
were re-referenced to the average of all scalp electrodes
(common average reference), and the DC offset was re-
moved from each trial. Estimates of source power in
time–frequency regions exhibiting statistically reliable
sensor-level relationships with picture naming RTs (and cor-
responding baseline periods) in the stimulus-locked data
were computed using a frequency-domain adaptive spatial
filtering algorithm (dynamic imaging of coherent sources
[DICS]; Gross et al., 2001). With this approach, an optimized
spatial filter is constructed for each specified grid location
(“voxel”) based on the cross-spectral density (CSD) matrix
obtained from the data. CSD matrices were obtained for
the alpha (10 Hz center frequency) frequency range using
a multitaper (Mitra & Pesaran, 1999) fast Fourier transform
and 3-Hz frequency smoothing. CSD matrices were ob-
tained for each of baseline picture (−1300 to −1000 msec
relative to picture onset; BASE_ALPHA), prepicture (−560
to 0 msec relative to picture onset; PRE_ALPHA), and post-
picture (0–300 msec relative to picture onset; POST_ALPHA)
alpha individually, as well as for combined baseline pic-
ture, prepicture, and postpicture alpha (for the compu-
tation of common spatial filters).

For a single participant, an anatomical T1-weighted
MRI of their brain was acquired with a magnetization-
prepared, rapid-acquisition echo sequence on a 1.5-T
Siemens Magnetom Sonata system. For the same partici-
pant, corresponding electrode positions relative to the
scalp were recorded (Polhemus Patriot). A realistic three
compartment (brain, skull, and scalp) volume conduc-
tion head model was constructed using the boundary
element method (Fuchs, Kastner, Wagner, Hawes, &
Ebersole, 2002) based on this participant’s anatomical
MRI (segmented using SPM 8). This volume conduction
model and set of electrode positions were used to com-
pute leadfields for all participants. The MRI used to con-
struct the volume conduction model was warped to a
template MRI (Montreal Neurological Institute [MNI]),
and an 8-mm resolution 3-D dipole grid in MNI space
was constructed. Leadfields were computed separately
for every participant for each grid point in the source
model.

For each participant and at each grid point corre-
sponding to a position within the brain, the CSD matrices
based on combined data from all time periods of interest
in the stimulus-locked data were used in combination
with the constructed leadfields to compute common

spatial filters for the alpha effects identified in the
sensor-level analysis. Source-level spectral power esti-
mates were then obtained by applying these common
spatial filters separately to the CSD Fourier output for
each alpha (BASE_ALPHA, PRE_ALPHA, POST_ALPHA)
data segment of interest. Single-trial source-level spectral
power estimates were then averaged for each data seg-
ment of interest. Next, decibel power change from base-
line was computed by dividing mean spectral power from
the pre- and postpicture data segments by mean spectral
power from the corresponding baseline data and per-
forming a log10 transform.
To identify anatomical ROIs for further analyses, grand-

averaged source-level spectral power values across partic-
ipants were computed at each grid point, and positive
and negative spectral peak MNI coordinates were iden-
tified in each data segment of interest (PRE_ALPHA,
POST_ALPHA). Region labels were assigned using the
Automated Anatomical Labeling Atlas (Tzourio-Mazoyer
et al., 2002), MNI coordinates of the homologue region
in the opposite hemisphere were also identified for com-
parison. Identified anatomical ROIs are listed in Table 1.
Leadfield matrices were then computed for each partici-
pant at grid positions corresponding to these identified
ROIs. These ROIs were used to construct source-level
time series for both stimulus- and response-locked data.
To obtain source-level time series data for each partic-

ipant at each identified anatomical ROI, a time-domain
spatial filtering algorithm was employed (linearly con-
strained minimum variance [LCMV]; Van Veen, Van
Drongelen, Yuchtman, & Suzuki, 1997). This algorithm
used the covariance matrix obtained based on the full
length (−1500 to 500 msec relative to picture onset for
stimulus-locked data; −1500 to 1500 msec relative to
speech onset for response-locked data) of the data from
the processing stage immediately following artifact rejec-
tion, to construct separate spatial filters at each grid loca-
tion of interest based on the computed leadfield matrices
at those grid points. For every participant, these spatial
filters were then applied to the EEG data to obtain a time
series (only time series for the dominant dipole orienta-
tion at each location were used) at each anatomical ROI
for each trial. This procedure was carried out separately
for the stimulus- and the response-locked data. Time–
frequency analyses of power were then conducted on
resultant time series, employing identical parameters to
those used for sensor-level analyses described above.
For each source ROI, baseline normalized mean power
values in time–frequency alpha regions identified as exhi-
biting a relationship with RTs from sensor-level analyses in
the stimulus-locked data were extracted for every trial for
each participant. These values were then entered into
linear mixed-effects modeling analyses (Baayen, Davidson,
& Bates, 2008) to investigate whether variability in the
data related to item-specific characteristics (e.g., word
length or frequency) may be (partially) driving the observed
power–RT relationships for each source ROI.
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Mixed-effects Models

For both prestimulus and poststimulus alpha, a linear
mixed-effects model was run using R (R Core Team,
2012) and the R packages lme4 (Bates, Maechler, &
Bolker, 2013) and language R (Baayen, 2011). The
mixed-effects models included alpha power for the two
relevant regions (pre-stim: paracentral lobule and supe-
rior orbitofrontal; post-stim: SMA and cuneus), hemi-
sphere and trial number, as well as all interactions as
fixed effects. Trial number was included, as it has been
shown that alpha power systematically increases over
time (Benwell et al., 2019). If naming latencies also
change systematically over time (e.g., a learning-related
speeding up due to repetition of items), any correlation
between alpha and RTs could be mediated by these (po-
tentially) independent relationships with time on task.
Including trial number as a fixed effect should account
for any such epiphenomenal relationship. The models
also included participant and item as random effects to
account for RT variability across participants and item-
specific variability (e.g., word length; frequency). Fixed
effects that did not reliably contribute to model fit were
dropped; models were compared using a likelihood ratio
test. We present the best-fitting model only, which pro-
vides estimates, standard errors, and t values for each
coefficient. Factors with absolute values of t > 2 were
considered to significantly contribute to explaining the
dependent variable (Baayen, 2008). To interpret ob-
served interactions with trial number (time on task), we
determined the slope for the influence of alpha power in
a particular region on RTs while holding the value of trial
number constant from 0 to 600 in steps of 100 trials (sim-
ilar to binning the data for selected time periods of inter-
est). Slopes for which the 95% confidence interval did
not cross zero were considered statistically significant.

RESULTS

Prepicture and Postpicture Alpha Power Predict
Picture Naming Times

The cluster-based permutation output for the stimulus-
locked data revealed a statistically reliable ( p = .00080)
negative relationship between prepicture alpha power
and subsequent RTs (Figure 2A and B). The higher alpha
power was between −560 and 0 msec relative to picture
onset, the faster the subsequent picture naming response.
A statistically reliable ( p = .00040) negative relationship
between postpicture alpha power and subsequent RTs
was also present (Figure 2C and D). Higher alpha power
between 0 and 300 msec relative to picture onset (the en-
tire postpicture interval analyzed) resulted in faster picture
naming responses.

Using a DICS beamforming approach to reconstruct
cortical sources of prepicture alpha power in the time in-
terval exhibiting a statistically reliable relationship with
RTs resulted in the selection of dipoles exhibiting peak
alpha power synchronization in left and right paracentral
lobule ROIs (Figure 2A) and dipoles exhibiting peak al-
pha power desynchronization in left and right superior
orbitofrontal ROIs (Figure 2B; see Table 1). Mean alpha
power between −560 and 0 msec relative to picture
onset was extracted from time–frequency data based on
reconstructed time courses at each of these dipole loca-
tions (LCMV beamformer) to test whether prepicture
alpha power synchronization or desynchronization (or
both) drives the negative power–RT correlations and to
control for item variability, which was not accounted
for in the cluster-based analyses. The best-fitting linear
mixed-effects model showed a significant effect of Alpha
Power in the paracentral lobule (β = −0.006, SE = 0.001,
t=−4.74, 95% CI [−0.0079,−0.0033]), of Trial Number (β
= −0.020, SE = 0.001, t = −15.60, 95% CI [−0.0230,

Table 1. Identified Anatomical Source ROIs

Anatomical Region Label MNI Coordinates [x y z] Peak Power Polarity

Prepicture alpha

Left paracentral lobule [−12 −40 72] Positive

Right paracentral lobule [12 −40 72] Positive

Left superior orbitofrontal [−18 68 −4] Negative

Right superior orbitofrontal [18 68 −4] Negative

Postpicture alpha

Left supplementary motor area [−6 −24 62] Positive

Right supplementary motor area [6 −24 62] Positive

Left cuneus [−20 −88 26] Negative

Right cuneus [20 −88 26] Negative
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−0.0178]), and of the interaction between Superior
Orbitofrontal Alpha and Trial Number (β = −0.001, SE =
0.000, t = −2.55, 95% CI [−0.0014, −0.0002]) on RTs.
Exploring the interaction, the slope of the relationship
between superior orbitofrontal alpha and RTs becamemore
negative for trials appearing later in the experiment (−0.00
[−0.00, 0.00],−0.30 [−0.07,−0.53],−0.60 [−0.13,−1.06],

−0.89 [−0.20, −1.59], −1.19 [−0.27, −2.11], −1.49
[−0.33,−2.64],−1.78 [−0.40,−3.17]). All slopes were sta-
tistically significant apart from the first. Note that there was
no main effect of Superior Orbitofrontal Alpha, suggest-
ing that the observed adaptation effect (negative relation-
ship between alpha and RTs that increases in size with
time on task) in this region is likely to be epiphenomenal

Figure 2. Relationship between alpha power time-locked to picture onset and subsequent RTs. (A) A negative relationship was identified between
prepicture alpha power increase and RTs in paracentral lobule. (B) A negative relationship was identified between prepicture alpha power
decrease and RTs in superior orbitofrontal cortex. (C) A negative relationship was identified between postpicture alpha power increase and RTs in
SMA. (D) A negative relationship was identified between postpicture alpha power decrease and RTs in the cuneus. Time windows exhibiting
statistically significant relationships with RTs are indicated with black boxes.
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(finding a relationship between alpha and RTs depends
on the inclusion of time on task).
To summarize, after accounting for time on task, more

pronounced alpha power synchronization in paracentral
lobule between 560 and 0 msec prior to picture onset re-
sulted in faster picture naming responses. In addition,
RTs became shorter, and a negative relationship between
alpha in the superior orbitofrontal ROI and RTs was not
present from the beginning but appeared and grew larger
for trials presented later in the experiment. We thus can-
not rule out that this latter relationship between superior
orbitofrontal alpha and RTs may be driven by time on
task (i.e., time on task increases alpha and time on task
increases RTs, perhaps leading to an epiphenomenal
relationship between alpha and RTs).
The same DICS beamforming approach in the postpic-

ture interval where alpha power exhibited a statistically
reliable relationship with RTs resulted in the selection
of dipoles exhibiting peak alpha power synchronization
in left and right SMA ROIs (Figure 2C) and dipoles exhi-
biting peak alpha power desynchronization in left and
right cuneus ROIs (Figure 2D; see Table 1). Mean alpha
power between 0 and 300 msec relative to picture onset
was extracted from time–frequency data based on recon-
structed time courses at each of these dipole locations
(LCMV beamformer) as for prepicture alpha. The best-
fitting mixed-effects model included mean postpicture
alpha power values for the SMA (β = −0.007, SE =
0.001, t = −5.89, 95% CI [−0.0093, −0.0046]), but not
for the cuneus ROI. Furthermore, Trial Number was a sig-
nificant predictor (β = −0.019, SE = 0.001, t = −16.22,
95% CI [−0.0213, −0.0167]). More pronounced alpha
power synchronization in SMA between 0 and 300 msec
after picture onset resulted in faster picture naming
responses. An adaptation effect was also observed, with
responses becoming faster as time on task increased.

Prespeech Alpha Power Predicts Picture
Naming Times

Having identified a robust relationship between both pre-
and postpicture onset alpha power and RTs for picture
naming, we next investigated whether the well-established
alpha desynchronization prior to and during movement
execution (Pfurtscheller & Lopes da Silva, 1999; in our
case, the movement in question is articulation) was predic-
tive of RTs, and whether this desynchronization is related
in any way to prepicture alpha power in the time region
(−560 to 0 msec relative to picture onset) already identi-
fied as related to RTs in the stimulus-locked data. This
would provide support for the interpretation that the level
of prepicture alpha power in the motor system determines
the degree of preparedness of the motor system. To
probe this relationship, we computed response-locked
alpha power (8–12 Hz) between −1500 and 1500 msec
relative to speech onset for source-level time course data
reconstructed in the paracentral lobule and SMA ROIs

from our stimulus-locked analyses. All preprocessing,
source reconstruction, and time–frequency analysis details
are the same as for the stimulus-locked source analyses,
and any relevant differences are noted in the respective
parts of the Methods section above. To identify time
regions exhibiting a consistent relationship between pre-
speech alpha power and RTs, the same cross-trial regres-
sion approach used for sensor-level data in the stimulus-
locked analysis was employed with the response-locked
source data.

The cluster-based permutation output for these response-
locked data revealed a statistically reliable negative rela-
tionship between prespeech alpha power and RTs in left
paracentral lobule ( p = .00040) between −740 and
−160 msec relative to speech onset, right paracentral
lobule ( p = .00040) between −880 and −180 msec rela-
tive to speech onset, left SMA ( p= .0012) between−740
and−200 msec relative to speech onset, and right SMA ( p=
.0024) between −640 and −200 msec relative to speech
onset (Figure 3). To investigate whether observed effects
were robust to item variability, mean alpha power in identi-
fied time intervals (−880 to−160msec relative to speech on-
set for paracentral lobule; −740 to −200 msec for SMA) was
extracted from each cortical ROI and entered into linear
mixed-effects modeling analyses. The model details are the
same as for the stimulus-locked analyses, except that
the relationship between power and RTs was only tested
for the paracentral lobule and SMA ROIs, in one model.

The best-fitting model showed a statistically significant
effect of Alpha Power in the paracentral lobule (β=−0.023,
SE = 0.001, t = −17.56, 95% CI [−0.0255, −0.0204]), Trial
Number (β = −0.018, SE = 0.001, t = −12.63, 95% CI
[−0.0203, −0.0148]), and a three-way interaction between
Trial Number, SMA, and Paracentral Lobule (β = 0.003,
SE = 0.001, t = 2.90, 95% CI [0.0009, 0.0046]). To explore
the three-way interaction, we tested the same model, re-
placing the three-way interaction with all the involved
two-way interactions. None of these approached signifi-
cance (SMA × Trial Number: β = −0.002, SE = 0.002,
t = −0.917 [−0.0050, 0.0018]; Paracentral Lobule ×
Trial Number: β = 0.001, SE = 0.002, t = 0.77, 95% CI
[−0.0021, 0.0047]; SMA × Paracentral Lobule: β =
0.000, SE = 0.001, t = 0.28, 95% CI [−0.0017, 0.0022].
Thus, there was no clear pattern in the relationship be-
tween trial number and alpha power in the two ROIs.

To summarize, naming became faster for trials appear-
ing later in the experiment. Importantly, the main effect
of alpha power was present even after accounting for
time on task: Higher alpha power in paracentral lobule
between 880 and 160 msec prior to speech onset re-
sulted in faster picture naming responses.

Onset versus Amplitude of Prespeech
Alpha Desynchronization

Next, we hypothesized that the identified relationship be-
tween prespeech alpha power and RTs may be a result of
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the prespeech alpha desynchronization in the time in-
terval between 880 and 160 msec prior to speech onset
beginning closer in time (i.e., later within that time
window) to speech onset. Rather than the level of alpha
power, it appears to be the timing of the onset of alpha
desynchronization that determines the speed of response.

When this desynchronization occurs closer in time to
speech onset or put another way when it occurs later in
the identified time window between 880 and 160 msec
prior to speech onset, the result is higher power within
this time window, precisely because alpha power stays
higher for longer within that window. To test this

Figure 3. Relationship between alpha power time-locked to speech onset and subsequent RTs. A negative relationship between prespeech alpha
power increase and RTs was present in both (A) paracentral lobule (top) and (B) SMA (top). Time windows exhibiting statistically significant
relationships with RTs are indicated with black boxes. Bottom panels zoom in on these time windows, illustrating the time course of mean alpha
power within these windows for longer and shorter RTs (median split), as well as for all RTs together. It is clear from these figures that prespeech
alpha desynchronization begins closer in time (later in each time window) to speech onset for faster responses. Error bars indicate SEM.
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hypothesis, we performed a median split of the time–
frequency data from left and right paracentral lobule
ROIs based on RTs and directly compared the level of al-
pha power for the fastest to the slowest responses using a
t test (Bonferroni corrected alpha level = .025). As pre-
dicted, shorter RTs exhibited significantly higher alpha
power between 880 and 160 msec prior to speech onset
than longer RTs in both the left ( p = .0000058) and right
( p= .0000078) paracentral lobule ROIs. In combination with
Figure 3, clearly demonstrating the differences in onset of
prespeech alpha desynchronization for short versus long
RTs in this time interval, this provides suggestive evidence
that the later the onset of this desynchronization (the
closer it occurs in time to speech onset), the faster the pic-
ture naming responses.

Motor Cortical “Readiness” Predicts Prespeech
Alpha Desynchronization

Finally, we tested the hypothesis that resting motor cortical
alpha power prior to picture onset is related to subsequent
movement-related motor cortical alpha desynchronization
prior to speech onset. This was only tested for the cortical
ROIs exhibiting a relationship between prespeech alpha
power and RTs, namely, left and right paracentral lobule.
As in all previously described models, the random structure
included participant and item intercepts. Because previous
models indicated that hemisphere does not play a role, it
was not included as a predictor in this analysis. There-
fore, only Paracentral Lobule, Trial Number, and their inter-
action were included as fixed effects. All fixed effects were
present in the best-fitting model: Alpha Power (β = 0.710,
SE = 0.018, t = 38.71, CI [0.6740, 0.7459]), Trial Number
(β= 0.443, SE= 0.018, t= 24.18, CI [0.4075, 0.4794]), and
their interaction (β = 0.072, SE = 0.018, t = 3.91, CI
[0.0359, 0.1082]). The slopes of the relationship between
paracentral lobule alpha and RTs became more positive
for trials appearing later in the experiment (0.71 [0.67,
0.75], 7.92 [4.30, 11.53], 15.12 [7.89, 22.35], 22.32 [11.48,
33.18], 29.54 [15.07, 44.00], 36.74 [18.67, 54.82], 43.95
[22.25, 65.64]). All slopes were statistically significant. The
main effect of Power suggests higher prepicture alpha
power in left and right paracentral lobule was related to
higher prespeech alpha power in these cortical ROIs, which
we argued in the previous section is the result of a shorter
delay between the onset of prespeech alpha desynchroniza-
tion and speech onset itself. The main effect was enhanced
with more time on task, suggesting that the relationship
between prepicture alpha power and the temporal preci-
sion of prespeech alpha desynchronization in anticipation
of articulation increased over time, possibly reflecting the
adaptation effects reported previously.

DISCUSSION

We tested whether the speed of picture naming can be
(partially) explained by our attentional state just prior

to and during the preparation of speech. Participants
named 60 familiar pictures 10 times while their rhythmic
neural activity was measured prior to picture onset and
prior to speech onset. The focus was on oscillatory power
in the alpha frequency band (8–12 Hz) as prestimulus al-
pha power has been shown to relate to response speed
in visual and auditory judgment tasks (Mazaheri et al.,
2014; Kelly et al., 2009; Thut et al., 2006). Importantly,
for the interpretation of our findings, it has been proposed
that alpha plays a role in attentional gating by regulating
information flow, through the inhibition of task-irrelevant
brain regions (Jensen & Mazaheri, 2010; Klimesch et al.,
2007). In this study, we tested whether people’s momen-
tary level of attention as indexed by alpha power in task-
relevant and task-irrelevant brain regions prior to picture
onset predicts subsequent naming latencies. Furthermore,
we investigated how both poststimulus and prespeech
alpha power were related to subsequent naming latencies
in a more exploratory fashion. In the following, it is impor-
tant to bear in mind the limited spatial precision of source
reconstruction with EEG. Claims about localization of
power changes should be interpreted with this in mind,
and throughout the discussion, we try to limit claims to
brain systems (e.g., motor system vs. visual system) rather
than precise locations.

Alpha Power in Visual Regions Is Not Predictive of
Naming Latencies

A negative relationship between naming times and alpha
desynchronization was present, both before (in superior
orbitofrontal regions) and after (in the cuneus) picture
onset (Figure 2B and D). This suggests that lower alpha
power in superior orbitofrontal regions before picture
onset and in the cuneus after picture onset resulted in
slower naming responses. We hypothesized precisely
the reverse relationship, a positive relationship, between
prepicture alpha power and naming latencies, specifically
for the brain regions responsible for visual processing of
the picture. These posterior brain regions are task-
relevant areas during the initial stage of picture naming:
First and foremost, the picture needs to be identified
through visual processing and then linguistic processes
such as finding the right concept and lemma can com-
mence. Prestimulus alpha power is typically decreased
for faster responding (Kelly et al., 2009; Thut et al.,
2006), yet we found the opposite pattern for the superior
orbitofrontal regions and cuneus.

It is possible that this unexpected relationship reflects
faster naming when superior orbitofrontal regions, not
directly related to the task of picture naming, are more
inhibited (higher alpha). It is important to note that the
relationship between superior orbitofrontal alpha and
RTs exhibited adaptation, because the effect was not
present as a main effect but only as an interaction with
trial number. In other words, both alpha and RTs could
be independently changing with time, likely reflecting an
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epiphenomenal relationship between the two. The rela-
tionship between postpicture alpha in the cuneus (visual
system) and RTs is more difficult to explain. Both these
surprising findings were, however, no longer statistically
significant when accounting for item variability (e.g.,
word length, word frequency). This suggests that both
desynchronization results were sensitive to the system-
atic relationship between alpha power and variability in
the characteristics of individual picture-word combina-
tions. Our data thus suggest that reduced preparatory ac-
tivation of cortical regions responsible for processing the
picture or for speech planning does not appear to be the
locus of slower naming responses (a proxy for lapses in
attention in the context of our study).

Alpha Synchrony in Motor Areas Is Predictive of
Naming Latencies

We observed a negative relationship between alpha
synchronization in the motor system and subsequent
naming latencies, both before (in the paracentral gyrus)
and after (in the SMA) picture onset (Figure 2A and C).
This suggests that higher alpha power in the motor sys-
tem directly before and directly after picture onset re-
sulted in faster naming responses. The final stages of
word production—phonetic encoding and articulation—
activate the motor and premotor cortices, specifically
the precentral gyrus, SMA, and sensorimotor regions in-
volved in mouth movement (Indefrey & Levelt, 2004).
This suggests that our observed alpha synchronization
in these regions, just prior to and just after picture onset,
serves to inhibit the motor cortex and as such to inhibit
an immediate motor response to allow for visual identifi-
cation and early word planning processes to be carried
out without interference from signals related to motor
preparation or execution. Support for this interpretation
comes from studies showing an alpha increase in brain
regions that are not relevant for the particular task at
hand (Haegens et al., 2012; Kelly et al., 2006). For a cog-
nitively demanding task such as word production, motor
cortical regions are initially task-irrelevant, and they typi-
cally only become task-relevant approximately 450 msec
after picture onset. In other words, just before and just
after picture onset, the motor cortex is a task-irrelevant
brain region and should therefore initially be inhibited
for improved task performance. This interpretation fits
well with our observed relationship between prepicture
motor cortical alpha and naming latencies.

Although postpicture alpha synchronization may be ar-
gued to index more deliberate inhibition of the motor
system during early stages of speech production, in our
study, the observed prepicture alpha synchronization is
necessarily incidental. People’s attentional states are
known to spontaneously fluctuate over time (e.g., Kucyi,
Hove, Esterman, Hutchison, & Valera, 2017) and our pri-
mary measure of interest—prestimulus alpha power—
was chosen to capture precisely this phenomenon. It is

certainly possible to influence the allocation of attention
before a stimulus is presented (and by extension people’s
level of prestimulus alpha power) by changing the ex-
pectedness of the stimulus onset for instance (e.g., de
Lange et al., 2013), but our study specifically aimed to in-
vestigate how participants’ incidental level of attention
prior to picture onset affected subsequent naming laten-
cies. Stimulus onset in our study was therefore not pre-
dictable, and neither was the content of the stimulus
(picture identity). Nevertheless, we observed a robust re-
lationship between prestimulus alpha power in the
motor system and subsequent naming latencies. We
therefore speculate that the incidental level of attention
determines the incidental state of the motor system prior
to picture onset. This is reflected in the level of motor-
cortical alpha power, which in turn influences how ame-
nable the motor system is to initiating a motor program
for articulation. Interference may occur when the motor
cortex is less inhibited during early stages of speech
production, before motor program execution is actually
required. The precise details of this proposed relation-
ship between sustained attention and motor-cortical
readiness in the context of word production will require
further testing in future studies.

Prespeech Alpha Is Also Predictive of
Naming Latencies

We also analyzed alpha power in the period directly
preceding speech onset and showed that the level of pre-
speech alpha power exhibited a negative relationship with
subsequent naming latencies (Figure 3). A well-established
finding is mu (alpha over sensorimotor regions) desyn-
chronization during movement preparation and execu-
tion, with the onset of desynchronization beginning just
prior to movement onset (e.g., Pfurtscheller & Lopes da
Silva, 1999). The onset of desynchronization is thought
to reflect the onset of movement preparation, and the
timing of this onset is known to be influenced by partici-
pants’ level of attention (Pineda, 2005). We thus hypothe-
sized that the negative relationship between prespeech
alpha power and naming latencies may be driven by the
timing of the onset of this desynchronization relative to
speech onset, which is reflected in the level of power in
this period when averaging over the entire prespeech time
window of interest. If this desynchronization occurs closer
in time to speech onset for instance, alpha power would
be higher in the prespeech time window because it stays
higher for longer, whereas an earlier onset of desyn-
chronization (a longer time prior to speech onset)
would lead to lower mean alpha power in this same pre-
speech time window. Indeed, when short and long RTs
(categorized by a median split) were compared, the on-
set of alpha desynchronization occurred closer in time
to speech onset in fast than in slow trials (Figure 3),
and this was reflected in higher alpha power in the
prespeech time window.
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Not only did higher prespeech movement-related
alpha power lead to faster naming, but the level of pre-
speech alpha was also positively related to the level of pre-
picture inhibitory alpha power. This suggests that the level
of attention prior to the onset of the picture—indexed by
the level of pre-picture inhibitory alpha power—may also
influence the precision of the timing of the onset of pre-
speech mu desynchronization. We have argued that this
prespeech mu desynchronization reflects the onset of
preparation for articulation. One may wonder why an
earlier onset of movement preparation relative to speech
onset would lead to slower (and not faster) naming. We
speculate that this may be related to interference from
motor cortical signals with later stages of speech pro-
duction that may not yet be complete if preparation for
articulation begins prematurely. On this account, when
the timing of prespeech mu desynchronization is more
precise (the onset is closer in time to the onset of artic-
ulation), the cascade of processing that is necessary for
speech production is already closer to completion, and
with minimal interference from motor-cortical signals, ar-
ticulation can occur without much delay. In combination
with the known relationship between attentional state
and premovement mu desynchronization noted above,
this relationship between the onset of prespeechmudesyn-
chronization and the level of prepicture inhibitory alpha
power in the motor system naturally suggests this process-
ing stage as an additional candidate for how fluctuations in
participants’ attention prior to picture onsetmay influence
subsequent naming latencies.

Implications and Future Directions

Our results suggest that premature speech preparation
and/or execution should be minimized while the plan-
ning processes of speech production are unfolding to
quickly produce a word. In this context, participants’ in-
cidental level of motor cortical inhibition as measured by
alpha power over motor cortical regions prior to picture
onset plays an important role. It will be important for
future studies to try to identify which planning stages
are most affected by a lack of motor inhibition. We have
shown that alpha power over motor cortices both prior
to and during planning is predictive of naming latencies,
suggesting a general effect of alpha inhibition on word pro-
duction. It is possible, however, that attentional lapses in-
dexed by modulations of alpha power specifically impact
certain stages of speech production more than others.
This could be tested by increasing the processing load for
a specific stage of speech production and investigating how
this interacts with people’s levels of alpha power prior to
and after the onset of production planning.
Negative effects of momentary lapses of attention may

be minimal in healthy speakers—slow speech every now
and then does not necessarily hamper communication.
Lapses may, however, be more disturbing for individuals
suffering from attention deficit disorder or specific lan-

guage impairment (SLI). For children with SLI, it has
been shown that they exhibit deficits in sustained atten-
tion compared with typically developing children. These
children also tend to make more speech errors. Further-
more, children’s sustained attention abilities are corre-
lated with the speed of their word production (Jongman,
Roelofs, Scheper, & Meyer, 2017). A potentially important
deficit in children with SLI may therefore be a lack of
consistent inhibition over their motor-cortical regions
during speech production.

Conclusion

In this study, we have demonstrated that the speed with
which people are able to overtly produce the names of
pictures presented to them depends on the level of alpha
power in their motor cortices both immediately before
picture onset and immediately before speech onset. We
have argued that this reflects the influence of people’s mo-
mentary state of attention on their inhibition of motor-
cortical signals related to the preparation and execution
of a motor response (articulation) while the planning
stages required for speech production unfold. Reduced
motor-cortical alpha power is thought to lead to a reduc-
tion in this motor-cortical inhibition and result in slower
picture naming responses. The precise stage of speech
production planning at which this motor-cortical inter-
ference plays a role will be an important avenue for future
research and has the potential to inform work on speech
production deficits in clinical populations who exhibit co-
morbid deficits in attentional processing.
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