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Stimulus categorization is influenced by oscillations in the brain. For example, we have shown that ongoing
oscillatory phase biases identification of an ambiguous syllable that can either be perceived as /da/ or /ga/. This
suggests that phase is a cue for the brain to determine syllable identity and this cue could be an element of the
representation of these syllables. If so, brain activation patterns for /da/ should be more unique when the syllable
is presented at the /da/ biasing (i.e. its “preferred”) phase. To test this hypothesis we presented non-ambiguous /
da/ and /ga/ syllables at either their preferred or non-preferred phase (using sensory entrainment)whilemeasuring
7T fMRI. Using multivariate pattern analysis in auditory regions we show that syllable decoding performance is
higherwhen syllables are presented at their preferred compared to their non-preferred phase. These results suggest
that phase information increases the distinctiveness of /da/ and /ga/ brain activation patterns.
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Introduction

Neuronal oscillations reflect subthreshold fluctuations inmembrane
potentials of neuronal ensembles. During one oscillatory period neuro-
nal ensembles move closer and further away from the threshold for an
action potential and so does the excitability level of these neurons.
The exact point (aka phase) of the oscillation is therefore a reflection
of the excitability level of the neuron. The role of oscillatory phases for
perception and cognition is becoming increasingly clear (Fell and
Axmacher, 2011; Kayser et al., 2009). While many studies have focused
on the role of phase for stimulus detection [e.g. (Fiebelkorn et al., 2013;
Henry et al., 2014; Ten Oever et al., 2015)], oscillatory phase also influ-
ences the categorization of stimuli (Ten Oever and Sack, 2015; Watrous
et al., 2015a).

It has been proposed that oscillatory phase can also influence speech
perception (Giraud and Poeppel, 2012; Schwartze and Kotz, 2015;
Schroeder et al., 2008). Specifically, oscillatory phase can bias categorical
perception of syllables when these syllables differ in their temporal prop-
erties (Peelle and Davis, 2012; Ten Oever and Sack, 2015). For example, /
da/ and /ga/ have varying delays between the speech articulation and the
speech sound (Ten Oever et al., 2013). Ongoing oscillatory phase as mea-
sured with electroencephalography (EEG) from central electrodes deter-
mineswhether an ambiguous syllable that can either be perceived as /da/
or /ga/ is identified as one or the other syllable (Ten Oever and Sack,
.nl (S. Ten Oever).
2015). In the same study, we entrained oscillatory patterns in the brain
to rhythmically presented sounds after which the same ambiguous sylla-
ble was presented at different onset delays (Fig. 1A). We found that de-
pending on the delay between the target syllable and the offset of the
entrainment (and thus the underlying phase) participants more likely
identified the syllable as /da/ or /ga/ (Fig. 1B). This suggests that oscilla-
tory phase is a cue for syllable identification and each syllable has one
“preferred” phase.

Patterns of activation in the (auditory) cortex have been shown to
reflect distributed representations of speech (Formisano et al., 2008;
Mesgarani and Chang, 2012; Staeren et al., 2009; Tsunada and Cohen,
2014). These representations likely reflect the collective activation of
numerous groups of neurons activated by different speech features
present in the external speech input. Generally, the more distinct two
different types of input are (e.g. by having multiple features that
differentiate the inputs), the more distinct their activation patterns
[or representations (Hausfeld et al., 2014)]. As oscillatory phase is a cue
for syllable identification (see (Ten Oever and Sack, 2015) for theoretical
background), it might also enhance the distinctiveness of the representa-
tion of a syllable.

Multi-variate pattern analysis (MVPA) in functional magnetic reso-
nance imaging (fMRI) has beenused successfully to discriminate between
distributed speech representations (Formisano et al., 2008; Kilian-Hütten
et al., 2011), and is more sensitive than classical univariate approaches to
dissociate these distributed patterns of activation (Haxby et al., 2001;
Haynes andRees, 2006).Weused thismethod to investigatewhether dis-
crimination performance between /da/ and /ga/ of this classifierwould be
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Fig. 1. Previous results and stimulation protocol. A) Entrainment stimulus after which a syllable is presented at different intervals. B) The results from the previous study [adapted with
permission from Ten Oever and Sack (2015)]. The red and green SOAs represent the preferred phase for /ga/ and /da/ respectively. C) In the current fMRI design, the stimuli were
always presented in the silent gap after image acquisition (AQ). Four different stimuli presentations are visualized in the figure; from top to bottom: at a stimulus onset asynchrony
(SOA) of 120 ms with an entrainment train of n = 11, an SOA of 120 ms with n = 13, an SOA of 200 ms with n = 11, and at an SOA of 200 ms with n = 13. While the syllable types
(red and green lines) are always presented at 12.2 (or 12.28) seconds after the first acquisition (see black dotted line) the entrainment trains (black) start at different time points
dependent on condition (see pink dotted line). D) The predicted BOLD response to the acquisition noise (black) and the syllable (grey) is displayed. Due to the long TR the response to
the acquisition noise is reduced while estimating the peak BOLD response of the syllable.
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better when both syllables were presented at their preferred compared
to non-preferred phase. This would support the notion that phase is a
cue that increases the distinctiveness of the representation or activation
patterns of /da/ and /ga/.

We induced brain oscillations by repeatedly presenting auditory
stimuli at a 6.25 Hz rate (i.e. auditory entrainment), similar as in our
previous study (Ten Oever and Sack, 2015). Non-ambiguous /da/ or /
ga/ syllables were presented at differing delays after the entrainment
finished, either corresponding to the syllable's preferred or non-
preferred phase (see red and green lines in Fig. 1). Non-ambiguous
stimuli were used to ensure that the classification discrimination
does not reflect neuronal top-down processes based on stimulus
identification (see (Kilian-Hütten et al., 2011)), but is a direct conse-
quence of presenting the syllable at one specific phase. To ensure
that the fMRI scanner noise did not influence the entrainment,
we had a repetition time of the scanner of 8.1 s and presented the
entrainment in the silent gap.WithMVPAwe calculated the accuracy
of syllable identity discrimination from the resulting activation
patterns. We found significantly better performancewhen both syllables
were presented at their preferred phase compared to their non-preferred
phase. These results show that syllable representations in auditory
regions are optimally processed at a preferred oscillatory phase and indi-
cate the potential of fMRI to map the spatial origin of these wide-spread
oscillatory patterns.
Materials and methods

Participants

Ten healthy native Dutch speakers participated in the study (4male,
age range: 26–32, mean age: 29.1). One participant was left-handed.
The study was approved by the local ethical committee at Maastricht
University. Participants gave written informed consent prior to par-
ticipation and filled out the safety screening from the Scannexus
MRI facilities at Maastricht University. Participants received monetary
compensation for participating. One participant was excluded from
the analysis as the full fMRI session was not completed.
Stimuli and experimental procedures

In each trial first an entrainment sequence was presented, which
consisted of band-passed noise-bursts (2.5 kHz–3.1 kHz, 50 ms) at a
presentation rate of 6.25 Hz. The entrainment sequences were 11, 12,
or 13 stimuli long to reduce temporal expectations of the arrival time
of the syllable. After the train finished, the sound of either the syllable /
da/ or /ga/ was presented. The original syllable used was a /da/ pro-
nounced by a Dutch female speaker, lasting approximately 300 ms.
This syllable was thenmorphed into a /ga/ by changing the third formant
frequency from a mean frequency of 3.0 kHz to 2.6 kHz using Praat
(Boersma and Weenink, 2013; Ten Oever and Sack, 2015). The syllables
were presented after the entrainment sequence either 120 or 200 ms
after the onset of the last noise burst (6 trials per run for each of these
four conditions), which corresponded with the preferred phase of /ga/
and /da/ respectively (Ten Oever and Sack, 2015). In another condition
the middle /da/-/ga/ morph was presented with reversed audio at either
120 or 200 ms (6 trials per run for each of these two conditions). In four
additional trials per run (condition type randomly selected) the last
stimulus in the noise sequence had a wider filtered broadband noise
(2.2 kHz–3.4 kHz). In total there were 40 trials per run, 200 in total.
Participantswere required to press a buttonwhen they heard this stim-
ulus sequence. These trials were not analyzed. All stimuli are online
available at https://osf.io/n4mrf/.
Scanning parameters

MRI data was collected on a 7-tesla Siemens Magnetom scanner
with a body gradient system with a whole brain coil at the Scannexus
facilities, Maastricht, The Netherlands. Anatomical images were
acquired via a T1 weighted MPRAGE sequence (TR = 3100 ms;
TI = 1500 ms; TE= 2.25 ms; 0.6 mm isotropic) and a proton density
(PD) weighted sequence with the same parameters (except the
TR = 1440) not using the inversion module. This sequence was
acquired to remove field inhomogeneities to improve image quality
by dividing the T1 weighted image by the proton density weighted
image (Van de Moortele et al., 2009). Five functional runs with 84
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TRs were acquired for all participants. A blood oxygenation level-
dependent (BOLD)-sensitive echo-imaging (EPI) sequence was used
(matrix = 128 ∗ 128; field of view = 192 ∗ 192 mm2; 66 slices; TR =
8100 ms; TE = 19 ms; acquisition time = 1.4 s resulting in a voxel
size of 1.5 ∗ 1.5 ∗ 1.5 mm3) with a GRAPPA acceleration factor of 2
(Griswold et al., 2002). Moreover, two slices were acquired simulta-
neously via an interleaved multiband sequence to improve the speed
of acquisition (Moeller et al., 2010). To correct for the direction of
acquisition 2 EPI sequences of 5 TRs were collected using both the
anterior-to-posterior and posterior-to-anterior direction [main functional
runs were acquired using the anterior-to-posterior acquisition direction
(Andersson et al., 2003; Bowtell et al., 1994; Jezzard and Balaban, 1995)].

EPI sequences inherently generate loud acoustic noise, thereby chal-
lenging auditory research in the scanner. Even more troubling for the
current paradigm is that the EPI sequence contains a strong rhythmic
component as the separate images are acquired. To ensure that entrain-
ment only occurs to our presented stream and not to the scanner noise
we used a sparse sampling paradigmwith a repetition time of 8100 ms.
In this way we could position our stimuli in between two acquisitions
such that our stimulus of interest (the syllable) would be presented 4
or 3.92 s before and 4.1 or 4.02 s after the start of the image acquisition,
thereby collecting the data around the peak of the BOLD response while
the signal related to scanner noise decreases (Fig. 1C and D). At the fol-
lowing acquisition interval no stimuli were presented to ensure that the
signal would recover the baseline. As the syllable positioning was fixed
at either 4000 or 3920 ms prior to acquisition, the onset of the entrain-
ment train was slightly different, depending on the specific condition.

Data preprocessing

Data preprocessingwas performedwith BrainVoyager QX 2.8 (Brain
Innovation,Maastricht, TheNetherlands) and FSL5.0 (www.fmrib.ox.ac.
uk). For anatomical data, the reconstructed MPRAGE T1 weighted
images were divided by the images by the PD images to reduce inho-
mogeneities of the signal (Van de Moortele et al., 2009). An additional
inhomogeneity correction was performed in BrainVoyager and the
images were resampled to 0.5 mm isovoxel resolution and rotated to
ACPC space. Then we performed automatic grey-white matter segmen-
tation in FSL and manually adjusted the segmentation in BrainVoyager.
A grey matter cortical mask of the temporal lobe was created to reduce
the amount of voxels present in the multivariate pattern classification.

Functional imagesweremotion corrected and temporal high-passed
filtered using three cosine cycles and a linear trend regressor for each run
separately. Slice acquisition timing was corrected with a sinc-weighted
interpolation. In FSL we used the TOPUP function to correct for suscepti-
bility induced distortions caused by the acquisition direction to improve
alignment with the anatomical data. Then images were co-registered
with the anatomical data. All following analyses are performed after
these pre-processing steps.

Data analysis

Univariate analysis
Due to our long TR we only had 2 data points to model the BOLD

response. Therefore, we estimated the activation patterns for each stimu-
lus by calculating the proportion of signal change subtracting the activity
of a single data point directly after the stimulus from the data point before
the stimulus (baseline) and further dividing by this baseline.We repeated
this calculation for all the stimuli, providing us with the features used for
the MVPA analysis. To obtain a group map of activation we performed
cortex based alignment of the surface maps (Goebel et al., 2006) and a
random effect GLMusing a step function as predictor for each sound con-
dition and run (with conditions /da/ time point 120, /da/ time point 200, /
ga/ time point 120, /ga/ time point 200, reverse, and control). The map
was corrected for multiple comparisons using false-discovery rate (FDR)
over the whole brain with a q of 0.05 (Benjamini and Yekutieli, 2001;
Genovese et al., 2002). The unthresholded statistical map is available at
https://osf.io/n4mrf/.

MVPA analysis
All MVPA analyses were performed in ACPC space. Support vector

machines (SVM) were used to decode the multivariate activation
patterns. As a first analysis we tested whether we could reliably decode
syllable identity irrespective on which time point on the entrainment
the syllables were presented. Training data consisted of randomly pick-
ing 96 out of the 120 trials (48 per syllable); the remaining trials were
used for testing. Features consisted of the proportion of signal change
as described above per voxel and per trial. Standardized z-scores were
calculated over each run. Excessive amounts of features can harm clas-
sification performances and it is therefore important having an appro-
priate amount of features as input to the classifier (Norman et al.,
2006). Therefore we repeated the classification using between 50 and
2500 most active voxels (overall activation of the single subject GLM
collapsed over all sounds restricted to temporal areas) in 15 logarithmi-
cally spaced steps and extracted the best classification (Kilian-Hütten
et al., 2011). Voxels with activation patterns stronger than 5 standard
deviations of themeanwere never included as this high activity pattern
likely does not arise from neuronal activity, but more likely from bigger
veins [see e.g. (Lee et al., 1995; Turner, 2002)]. This procedure (i.e. fea-
ture extraction, feature selection and classification) was repeated in ten
cross-validations. To investigatewhether the classification performance
was above chance level we performed permutation tests. Syllable labels
of both the training and testingwere permuted 100 times and the exact
same analysis was performed. Then we compared using a one-sided
Wilcoxon signed rank test whether the original classification perfor-
mance was higher than the average permuted labels for all participants.
The same analysis was performed to classify the two time points irre-
spective of the identity of the syllable. Confidence intervals (CI) were
determined by calculating bootstraps of all difference values (n =
10,000) and reporting the 5th percentile for one-sided tests and the
2.5th–97.5th percentile for two-sided tests.

Our main hypothesis was that decoding performance would increase
when syllables are presented at their “preferred” phase. Therefore, we
split the dataset in two parts to perform separate classifications: 1) sylla-
bles presented at their “preferred” (/ga/ at 120ms and /da/ at 200ms) and
2) syllables presented at their “non-preferred”phase (/da/ at 120ms and /
ga/ at 200ms). The rest of the analysis was the same as above except that
model training (testing) was based on 48 (12) trials. Additionally, to in-
vestigate whether one specific time point/phase would have a higher
classification performance we repeated the analysis, but performed the /
da/-/ga/ classification when both syllables were presented at 120 ms or
when both were presented at 200 ms. Moreover, we investigated
whether the time point classification was significantly different from
the preferred phase classification. Since the time point classification
has twice as many trials we performed permutation test by repeating
the analysis 100 times and selected the same amount of trials as in
the preferred-phase classification for each of the four conditions (i.e.
in total 60 trials per permutation; 48 and 12 for training and testing,
respectively; trials were pseudo-randomly selected). The average of all
these classifications was compared to the preferred phase classification.

Finally, we wanted to perform a generalization analysis in whichwe
trained the classifier to dissociate /da/ and /ga/ (independent of time
point) and tested whether the classifier would identify the ambiguous
syllable with reversed audio as a /da/ when it was presented at 120 ms
and as /ga/ when it was presented at 200 ms. For this analysis we per-
formed 6 cross-validations in which for each cross-validation 10 stimuli
per condition were left out randomly for the training. This left us with
100 stimuli for the training and 60 stimuli for the testing per cross
validation.

To investigate the spatial consistency of the voxels used for the
classification we created group discriminative maps for the /da/-/ga/
classification when syllables were presented at their “preferred” phase.
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Fig. 3. Classification performance. Classification performance for each participant (black
line) and the average (red dotted line) for the both original labels and permuted labels
for the contrast /da/ versus /ga/ (left panel) and 120 versus 200 ms SOA (right panel).
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Thesemaps represent the shared cortical locations that contributed to the
discrimination of the syllables. We created these maps in two different
ways. First, we created a map using all the voxels that went into the
final best classification level. This map shows the overlap over partici-
pants of all the voxels that were used for classification; however it does
not dissociate which voxels contributed more to the discrimination.
Moreover, the size of voxel sets varies over participants. Therefore, we
created a second map in which only the 150 most discriminating voxels
within the final best classification level were included. 150 voxels were
chosen as it corresponded with the amount of voxels used for the classi-
fication of the participant with the least voxels in the feature selection.
All mapswere then transformed to the surface representation of one par-
ticipant after cortex based alignment (Goebel et al., 2006).

Results

Univariate analysis

A random effect GLM of syllable presentation versus baseline showed
bilateral regions of activation mainly in primary auditory and auditory
association cortex. Additionally, parts of the right cingulate motor areas
were active (Fig. 2). This indicates that our sparse sampling method was
successful in eliciting reliable brain responses to spoken syllables. Other
areas known to be activated by syllables or phonemes (Desai et al.,
2008; Hickok and Poeppel, 2007; Liebenthal et al., 2005), such as inferior
frontal cortex and insula, showed responses when using a more liberal
threshold. Any direct contrast between /da/ or /ga/ or between the two
time points did not result in any significant difference [as estimated
using false discovery rate (Benjamini and Yekutieli, 2001)].

Multivariate analysis

/da/ versus /ga/
In afirst stepwewanted to replicate thefinding that syllable identity

can be decoded from fMRI BOLD patterns (Formisano et al., 2008).
Moreover, this findingwould show that our paradigm of sparse sampling
can be successfully used to perform classification. Therefore, we trained a
support vector machine classifier (seeMaterials andmethods for details)
to differentiate between /da/ and /ga/. We found a mean classification
accuracy of 0.578 (Fig. 3, left panel). Statistical testing of this performance
by permuting the labels of the syllables indicated that the accuracies of
Fig. 2. Univariate results. Overall activation map of all presented syllables versus baseline as me
participant after cortex-based alignment to this brain.
the original labels was higher than the empirical chance level (Z =
1.836; p = 0.038; 5th percentile = 0.0087). Note that the empirical
chance level for classification is higher than 0.5 as we optimized the
amount of voxels selected for the classification by using the classification
with the best performance. However, permutation testing controls for
this enhanced empirical chance level (Moeller et al., 2010).
Time point comparison
In a second step we classified the two time points (120 vs 200 ms)

irrespective of the syllable identity. Overall classification performance
was 0.574 which was higher compared to the empirical chance level
(Z = 1.659; p = 0.049; 5th percentile = 0.0063). When we repeated
the same analysis separately for the /da/ or /ga/ trials, we did not find
any significant effect (Z = −0.474; p = 0.682 and Z = 0.237; p =
0.406 for /da/ and /ga/ respectively). The lower classification accuracy
is likely due to the reduction in the amount of trials used in the analysis.
asured with a random-effect GLM. Results are presented on the surface of the brain of one
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/da/ versus /ga/ at the preferred versus non-preferred phase
Our main expectation was that classification performance should

be higher when syllables are presented at their preferred phase. This
analysis is orthogonal to the previous two analyses as each syllable is
presented in equal amounts at both phases. We split the data in two
and repeated the /da/ versus /ga/ classification eitherwhen the syllables
were both presented at their preferred or at their non-preferred phase.
We found a higher /da/-/ga/ classification performance (0.605) for the
preferred compared to the non-preferred phase (0.559; Fig. 4A, top
panel; Z = 2.140; p = 0.016; 5th percentile = 1.898). Moreover, we
found that only for the preferred phase the classification performance
was higher compared to the empirical chance level (Z = 1.778; p =
0.038; 5thpercentile=0.0135 and Z=−0.355; p=0.639; 5thpercen-
tile = −0.0257 for preferred and non-preferred phase, respectively).
The amount of voxels that went into the final preferred phase analysis
was: 618, 1891, 50, 153, 1891, 50, 267, 2500, and 116 for all nine partic-
ipants respectively. Finally, the classification for thepreferred phasewas
significantly higher compared to the pure time point classification
(Z = −2.369; p = 0.009; 5th percentile = 0.0232).
/da/ versus /ga/ at 120 or 200 ms
To test whether there was one specific phase that

increased classification accuracy, we repeated the previous analysis,
but testing /da/-/ga/ classification when both syllables were
presented at 120 ms or both presented at 200 ms. There was a
classification performance of 0.578 and 0.550 when both syllables
were presented at 120 ms or 200 ms, respectively. The
classification performance did not significantly differ (Z = 0.653; p =
0.514; 95% CI = −0.0176–0.0889; two-sided). Additionally, both
classificationswere not significantly different from the empirical chance
Fig. 4. Classification performance main contrasts. A) /da/-/ga/ classification performance for e
preferred phase (top panel). Bottom two panels reflect the comparisons with the actual lab
permuted labels. B). /da/-/ga/ classification performance when syllables where presented a
outlier participant. Error bars represent the within subject standard error of the mean.
level (Z = 0.71; p = 0.237; 5th percentile = −0.0166 and Z = 0.355;
p=0.361; 5th percentile=−0.0308 for 120 and 200ms, respectively).

Finally, we wanted to calculate the interaction between the factors /
ga/ phase and /da/ phase. To do so with a non-parametric test we
performed a signed rank test between two difference scores: 1) the
difference in /da/-/ga/ classification performance between the preferred
and non-preferred phase and 2) the difference in /da/-/ga/ classification
performance between120 and200ms. Initially, therewas no significant
effect (Z=0.355; p=0.143; 5th percentile=−0.0111). However, one
participant had an extreme value in the 120–200 ms classification
difference that wasmore than three standard deviations from the aver-
age (see Fig. 4B. One participant has a difference of almost 0.25). When
removing this participant, the difference was significant (Z = 1.890;
p = 0.027; 5th percentile = 0.0136 see Fig. 4C).

Generalization of ambiguous /daga/ with reversed audio
The generalization of the ambiguous stimulus with reversed audio

did not show any significant effect (Z = 0; p = 0.500; 5th percen-
tile = −0.0178). The absence of an effect is likely due the alignment
of the onsets of the audio of the reversed syllable and the regular syllable.
While a regular syllable has a very strong initial response, the reversed
audio of a syllable has slow onset and its main energy is at the end of
the stimulus. Subsequently, the brain most likely has a different readout
of these two sounds.

Discriminative maps
The spatial consistency of the voxels used for the classification was

investigated by creating group discriminative maps for the /da/-/ga/
classification when syllables were presented at their “preferred” phase.
Fig. 5A shows the overlap of all the voxels used for the final classification,
ach participant (black line) and the average (red dotted line) for the preferred and non-
els of the preferred phases (left) and non-preferred phases (right) and their respective
t the early or late time point. C) The average classification performance excluding one



Fig. 5. Discriminative maps of the /da/ vs /ga/ at their “preferred” phase. A) The spatial overlap over participants of all voxels used in the optimized classification. Colour indicates the
amount of participants. B) The spatial overlap over participants when only using the 150 most discriminative voxels. The overlap is highly reduced.

6 S. Ten Oever et al. / NeuroImage 141 (2016) 1–9
so the voxels having the highest percent signal change. The amount of
voxels was dependent on the participant as it was individually tailored
to optimize the classification. It is clear that only a small proportion of
voxels had overlap for more than 6 out of 9 participants, mostly over-
lapping around the left Heschl's sulcus (HS) and in the right hemisphere
anterior of Heschl's gyrus (HG) at the first transverse sulcus (FTS). Then,
we investigated the overlap only using the 150 most discriminative
voxels in the final classification (Fig. 5B). Voxels only showed overlap
for 3 to 5 participants. Fig. 6 shows for each individual the 150 most
discriminative voxels that resulted in the highest classification perfor-
mance. Although most participants have their most discriminative
voxels around the main auditory regions including bilateral superior
temporal gyrus (STG), FTS, planum temporale (PT), HG, and HS, the
exact distribution varied across participants.

Discussion

In the current study, we investigated whether oscillatory phase
information changes the distinctiveness of neural syllable representa-
tions as measured with fMRI. This study was based on our previous
results showing that syllable identification of an ambiguous stimulus
(either perceived as /da/ or /ga/) is biased when it is presented at a
specific phase of ongoing oscillation (Ten Oever and Sack, 2015; Ten
Oever et al., 2013). We used the same sensory entrainment paradigm
and presented /da/ and /ga/ stimuli either at their “preferred” or “non-
preferred” phase to investigate whether phase information would
change the fMRI activation patterns to these syllables. As we hypothe-
sized,we found that /da/-/ga/ classification from these activation patterns
(with MVPA) was more accurate when both syllables were presented at
their preferred compared to non-preferred phase. These results support
that syllable processing is phase-dependent and show that this informa-
tion can be extracted even with slow fluctuating BOLD responses.
Phase dependent syllable processing

Phase coding has been proposed as a mechanism to represent
information in the brain (Fries, 2005; Jensen et al., 2014; Watrous
et al., 2015a, 2015b). Different electrophysiological studies have
shown that adding phase information to classifiers aid classification
performance (Kayser and Logothetis, 2009; Lopour et al., 2013).
Moreover, neuronal populations coding for similar representations
seem to communicate with each other by synchronizing their firing
rates to a specific phase (Fries, 2005; Lisman and Jensen, 2013;
O'Keefe and Recce, 1993). Since specific syllable representations pre-
fer specific oscillatory phases (Ten Oever and Sack, 2015) neuronal
populations coding for one syllable might become active when
another syllable is presented at their preferred phase. This could be
reflected in, for example, /da/ sensitive neurons being active if a /
ga/ syllable is presented at a /da/ preferred phase. Alternatively, /
da/ sensitive neuronal populations might have more robust process-
ing for specific phases. In either way, syllable representations are
more distinctive from each other when syllables are presented at
their preferred phase. This effect was independent from top-down
influences of the identification process as the used syllables that
were not ambiguous.



Fig. 6. Individual discriminative maps for the /da/ vs /ga/ classification at the “preferred” phase. The top 150 discriminative voxels for each participant are shown for the right and left
hemisphere. The map labeled “overall map” shows all the top 150 discriminative voxels of all participants combined on one map. All voxels are plotted on the surface map of one
representative participant after cortex based aligned.
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Methodological considerations

The noisy scanner environment makes any type of auditory experi-
ment difficult (Cho et al., 1997; Griswold et al., 2002). In the current
design we chose to overcome this problem by having a very long repe-
tition time and only trying to sample the peak of the BOLD response to
the syllables. This has the drawback that the data points are limited.
However, we were still able to find normal activation patterns to audi-
tory stimuli and above chance level classification performance. The
increased signal-to-noise ratio of 7T MRI might have helped to increase
the overall activation levels. Moreover, the BOLD response to the scan-
ner noise that normally accompanies the BOLD response to the auditory
target stimuli might be significantly reduced (Bandettini et al., 1998;
Talavage et al., 1999). This shows the added value of high field fMRI
and the feasibility of this type of silent paradigms [see also (Amaro
et al., 2002; Zaehle et al., 2007)]. For most experiments this type of
sampling is not necessary, but if the rhythmic auditory patterns of the
scanner noise are too intrusive for the specific experimental set-up,
the proposed acquisition scheme represents one option to overcome
this limitation of fMRI.
Spatial overlap

Our discriminative maps (Figs. 5 and 6) indicated a limited spatial
overlap of the voxels used for the syllable classification. The only area
that showed some overlap when using the 150 most discriminative
voxels was left Helschl's sulcus bordering the Planum Temporale (PT).
Left Helschl's sulcus is involved in the primary auditory analysis and
largely part of the belt area (Moerel et al., 2014). It is normally sensitive
to a broader tuning width of sounds (Hackett et al., 1998; Moerel et al.,
2013; Rauschecker et al., 1995) and themost lateral part of theHelschl's
sulcus also seems speech/voice sensitive (Belin et al., 2000;Moerel et al.,
2014). In contrast, PT is viewed as a computational hub in which com-
plex spectrotemporal inputs arematched to storedmemories of audito-
ry objects (Griffiths andWarren, 2002). It has been shown that this area
plays an important role discriminating the perceived identity of an
ambiguous syllable (Kilian-Hütten et al., 2011). In sum, it seems that
the most discriminate areas in our study include areas that perform a
higher order acoustic transformation linking the acoustic input to stored
auditory categories (Obleser and Eisner, 2009). On a critical note, it
could be that the high activation of these broadly tuned areas is partly
induced by the broadband noise used in the entrainment. Moreover,
individual discriminative maps are much more diverse and include
more widespread areas, covering almost all auditory and auditory asso-
ciation areas.

Generalization of the effect

Previous studies have reported differential phase responses depen-
dent on stimulus type (Kayser et al., 2009; Watrous et al., 2015b).
Therefore, not only these reported syllables, but also other stimulus
types might have a preferred oscillatory phase. Hence, it is relevant to
investigate the contribution of phase information for stimulus identifi-
cation. The phase information effect we report (a mean percentage
classification difference of 4.5% between preferred and non-preferred
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phase presentation) is comparable to other fMRI MVPA studies investi-
gating for example attentional effects [significant changes from superior
temporal cortex ranging from ±3–8% (Bonte et al., 2014)], expectancy
effects (Kok et al., 2012 reported a±3% classification change), or learning
effects (a classification change of 6.5% was reported in Ley et al., 2012).
The currently presented results, togetherwith previously reported behav-
ioral effect (Ten Oever and Sack, 2015), indicate that phase information
might be an important determinant for the brain to categorize sensory
information.

Conclusion

In this study, we showed that oscillatory phase contributes to the
distinctiveness of the representation of /da/ and /ga/. These results
add to a growing literature showing the role of oscillatory phase in
perception and cognition (Cravo et al., 2011; Jensen et al., 2014; Lakatos
et al., 2008; Peelle and Davis, 2012). Furthermore, it indicates that
oscillatory properties in the brain might be an essential part of the
representation of categorical information. FMRI has thus far not
been used to investigate influences of oscillatory phase. We are one
of the first to demonstrate that slow fluctuating BOLD patterns are
indeed sensitive to this type temporal manipulation, if combined
with a sophisticated stimulation design. This opens a new way to
investigate phase, using the high spatial resolution that fMRI provides.
This is important, as the phase coding mechanism that we demonstrate
might be a unique strategy of the brain tomemorize and organize percep-
tual input and future studies should aim to unravel the principles of this
mechanism.
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