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The role of oscillatory phase for perceptual and cognitive pro-
cesses is being increasingly acknowledged. To date, little is known
about the direct role of phase in categorical perception. Here we
show in two separate experiments that the identification of
ambiguous syllables that can either be perceived as /da/ or /ga/
is biased by the underlying oscillatory phase as measured with EEG
and sensory entrainment to rhythmic stimuli. The measured phase
difference in which perception is biased toward /da/ or /ga/
exactly matched the different temporal onset delays in natural
audiovisual speech between mouth movements and speech
sounds, which last 80 ms longer for /ga/ than for /da/. These
results indicate the functional relationship between prestimulus
phase and syllable identification, and signify that the origin of this
phase relationship could lie in exposure and subsequent learning
of unique audiovisual temporal onset differences.
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In spoken language, visual mouth movements naturally precede
the production of any speech sound, and therefore serve as a

temporal prediction and detection cue for identifying spoken
language (1) (but also see ref. 2). Different syllables are char-
acterized by unique visual-to-auditory temporal asynchronies (3,
4). For example, /ga/ has an 80-ms longer delay than /da/, and
this difference aids categorical perception of these syllables (4).
We propose that neuronal oscillations might carry the in-
formation to dissociate these syllables based on temporal dif-
ferences. Multiple authors have proposed (5–7)—and it has been
demonstrated empirically (7–9)—that at the onset of visual
mouth movements, ongoing oscillations in auditory cortex align
(see refs. 10–12 for nonspeech phase reset), providing a temporal
reference frame for the auditory processing of subsequent
speech sounds. Consequently, auditory signals fall on different
phases of the aligned oscillation depending on the unique visual-
to-auditory temporal asynchrony, resulting in a consistent re-
lationship between syllable identity and oscillatory phase.
We hypothesized that this consistent “phase–syllable” re-

lationship results in ongoing oscillatory phase biasing syllable
perception. More specifically, the phase at which syllable per-
ception is mostly biased should be proportional to the visual-to-
auditory temporal asynchrony found in natural speech. A natu-
rally occurring /ga/ has an 80-ms longer visual-to-auditory onset
difference than a naturally occurring /da/ (4). Consequently, the
phase difference between perception bias toward /da/ and /ga/
should match 80 ms, which can only be established with an os-
cillation with a period greater than 80 ms, that is, any oscillation
under 12.5 Hz. The apparent relevant oscillation range is
therefore theta, with periods ranging between 111 and 250 ms
(4–9 Hz). This oscillation range has already been proposed as a
candidate to encode information, and seems specifically impor-
tant for speech perception (13, 14).
To test this hypothesis of oscillatory phase biasing auditory

syllable perception in the absence of visual signals, we presented
ambiguous auditory syllables that could be interpreted as /da/ or
/ga/ while recording EEG. In a second experiment, we used
sensory entrainment (thereby externally enforcing oscillatory
patterns) to demonstrate that entrained phase indeed deter-
mines whether participants identify the presented ambiguous
syllable as being either /da/ or /ga/.

Results
Experiment 1.
Psychometric curves. First, we created nine morphs between a /da/
and a /ga/ by shifting the third formant frequency of a recorded /da/
from around 2,600–3,000 Hz (Fig. 1A). We determined the in-
dividual threshold at which participants would identify a
morphed stimulus 50% as /da/ and 50% as /ga/ by repeatedly
presenting the nine different morphs, and participants had to
indicate their percept (see SI Materials and Methods for details).
Indeed, 18 out of 20 participants were sensitive to the manipu-
lation of the morphed stimulus, and psychometric curves could
be fitted reliably (Fig. 1B; average explained variance of the fit
was 92.7%, SD of 0.03). The other two participants were ex-
cluded from further analyses.
Consistency of phase differences. We used the individually de-
termined most ambiguous stimuli to investigate whether ongoing
theta phase before stimulus presentation influenced the identi-
fication of the syllable. Therefore, we presented both the un-
ambiguous /da/ (stimulus 1) and /ga/ (stimulus 9) and the
ambiguous stimulus while recording EEG. Data were epoched
−3 to 3 s around syllable onset. To ensure that poststimulus ef-
fects did not temporally smear back to the prestimulus interval
(e.g., 15), we padded all data points after zero with the amplitude
value at zero. For every participant, we extracted the average
phase for each of the syllable types for the −0.3- to 0.2-s interval.
There were four syllable types: the /da/ and /ga/ of the unambiguous
sounds and the ambiguous sound either perceived as /da/ or /ga/.
Then, we determined the phase difference between /da/ and /ga/
for both the unambiguous and ambiguous conditions. In the
ambiguous condition, prestimulus phase is hypothesized to bias
syllable perception, and this should be reflected in a consistent
phase difference between the perceived /da/ and /ga/. In
the unambiguous condition in the prestimulus phase, time win-
dows should mostly reflect random fluctuations, because par-
ticipants are unaware of the identity and arrival time of the
upcoming syllable and generally identified stimulus 1 as /da/ and
stimulus 9 as /ga/, resulting in a low consistency of the phase
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difference. Note, however, that, in principle, phase differences
are possible in this condition, because we did exclude trials in which
participants identified the unambiguous syllables as the syllable at
the other side of the morphed spectrum. The mean resultant vector
lengths (MRVLs) of the phase difference between /da/ and /ga/
were calculated, and Monte Carlo simulations with a cluster-based
correction for multiple comparisons were used for statistical test-
ing. A higher MRVL indicates a higher phase concentration of the
difference. We found that the ambiguous sounds had a significantly
higher MRVL before sound onset (−0.25 to −0.1 ms) around 6 Hz
(cluster statistics 19.821, P = 0.006; Fig. 2 A and B). When re-
peating the analysis including a wider frequency spectrum (1–40 Hz),
the same effect was present (cluster statistics 18.164, P = 0.030),
showing the specificity of the effect for theta. Because any phase
estimation requires integration of data over time, the significant
data appear distant from the onset of the syllable. For example,
the 6-Hz phase angle is calculated using a window of 700 ms (to
ensure the inclusion of multiple cycles of the theta oscillation).
The closer the center of the estimation is to an abrupt change in
the data (such as a stimulus or the data padding to zero), the
more the estimation is negatively influenced by the “postchange
data” (e.g., 15).
Eighty-millisecond phase differences.A second hypothesis was that the
phase difference of the ambiguous stimuli judged as /da/ vs. /ga/
would match 80 ms, consistent with the visual-to-auditory onset
difference between /da/ and /ga/ found in natural speech (4).
Therefore, we took all of the significant time and frequency points
in the first analysis and tested whether the phase difference of all
participants was centered around 80 ms (the blue line in Fig. 2B

corresponds to an 80-ms difference). This is typically done with the
V test, which examines the nonuniformity of circular data centered
around a known specific mean direction. We found that the am-
biguous phase differences indeed centered around 80 ms for al-
most all tested data points, whereas for the unambiguous sounds
no such phase concentration was present (Fig. 2C).
From Fig. 2B it is evident that there is a consistent phase dif-

ference across participants between /da/ and /ga/ for the ambiguous
sounds. When looking at the consistency of the phases of the in-
dividual syllables /da/ and /ga/ this consistency drops (compare Fig.
2B with Fig. S1B). Statistical testing confirmed that the /da/ and /ga/
phases seemed distributed randomly (Fig. S1C). At this point, we
cannot differentiate whether this effect occurs due to volume con-
duction of the EEG or individual latency differences for syllable
processing (see also ref. 12). When repeating this analysis for each
participant, we did find a significant (uncorrected) consistency for
multiple participants and a significant different phase between /da/
and /ga/ (Fig. S2; for only two participants this effect survived cor-
rection for multiple comparisons).
The current reported effects could not be explained by any eye

movements (no significant differences between conditions) or
any artifacts due to data padding (Fig. S3).

Experiment 2. To investigate whether neuronal entrainment results
in oscillatory identification patterns, we experimentally induced
theta phase alignment using sensory entrainment (16–18) in 12
different participants. In this experiment, auditory stimuli of
broadband noise (white noise band pass-filtered between 2.5 and
3.1 kHz, 50-ms length) were repeatedly presented (presumably
entraining underlying oscillations at the presentation rate), after
which ambiguous sounds were presented at different stimulus onset
asynchronies (SOAs; 12 different SOAs fitting exactly two cycles).
If ongoing phase is important for syllable identification, the time
course of identification should oscillate at the presentation rate.
Indeed, the time course of identification showed a pattern varying
at the presentation rate of 6.25 Hz (Fig. 3A). To test the signifi-
cance of this effect, we calculated the relevance value (19). This
value is calculated by (i) fitting a sinus to the data and (ii) multi-
plying the explained variance of the fit by the variance of the
predicted values. In this way, the relevance statistic gives less
weight to models that have a fit with a flat line. Thereafter, we
performed bootstrapping on the obtained relevance values (of the
average curve) to show that of the 10,000 fitted bootstraps only
2.83% had a more extreme relevance value (Fig. 3B), suggesting
that, indeed, syllable identity depends on theta phase.
Three control experiments were performed. In the first two

experiments, the frequency specificity of the effect was in-
vestigated by changing the presentation rates of the entrainment
train to 1 and 10 Hz. In a third experiment, we wanted to rule out
the possibility that the effect already occurs at a lower perceptual
level instead of the syllable identification level. Therefore, we
band pass-filtered the syllables between 2.5 and 3.1 Hz, main-
taining the formant frequency at which the two syllables differ
but distorting syllable perception. Participants had to indicate
whether they felt the sound was of high or low frequency (this
experiment will from now on be called “frequency control”). As a
reference for what was considered a high or low frequency, the
band pass-filtered stimulus numbers 1 and 9 were both presented
at random order at the beginning of the trial.
Results show that for both the 1-Hz and the frequency control,

no sinus could be fitted reliably (Fig. 3 B and C; P = 0.80 and P =
0.69, respectively). In contrast, for 10 Hz, a sinus could be re-
liably fitted (P = 0.011). For all three presentation frequencies
there was entrainment at the expected frequency (Fig. 3D).

Discussion
In the current study, we investigated whether ongoing oscillatory
phase biases syllable identification. We presented ambiguous

Fig. 1. Results from morphed /daga/ stimuli. (A) Stimulus properties of the
used /da/ and /ga/ stimuli. Only the third formant differs between the two
stimuli (purple lines). (B) Average proportion of /da/ responses for the 18
participants in experiment 1. Error bars reflect the SEM.
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auditory stimuli while recording EEG and revealed a systematic
phase difference before auditory onset between the perceived /da/

and /ga/ at theta frequency. This phase discrepancy corresponded
to the 80-ms difference between the onset delays of the speech

Fig. 2. Prestimulus phase differences. (A) The mean resultant vector length across participants for the phase difference between /da/ and /ga/ for un-
ambiguous sounds and for the phase difference between perceived /da/ and /ga/ for ambiguous sounds. The white outlines indicate the region of significant
differences. (B) Phase differences of individual participants at 6 Hz at −0.18 s for unambiguous and ambiguous sounds. The blue line indicates the 80-ms
expected difference. The red lines indicate the strength of the MRVL. (C) V statistics testing whether the phase differences are significantly nonuniformly
distributed around 80 ms for all significant points in the MRVL analysis. The white outlines indicate at which time and frequency point the analysis was
performed (note the difference in the x and y axes between A and C). White dots indicate significance.

Fig. 3. Results from experiment 2. (A) Grand average proportion of /da/ of all of the participants, with the respective error bars reflecting the within-subject SEM
(plusses; vertical extension reflects the error bars) and the fitted 6.25-Hz sinus (solid line). (B) Bootstrap histograms for the relevance statistics for all four conditions. The
long solid and dotted red lines represent the relevance value of that dataset and the 95 percentile of all bootstrapped values, respectively. The short solid lines indicate the
12 relevance values when iteratively taking out one participant. The blue bars represent the individual relevance values of all the different bootstraps. (C) The grand
average of all participants, with the respective error bars reflecting the within-subject SEM (plusses; vertical extension reflects the error bars) for the three different control
conditions used in the experiment and their respective best-fitted sinus (solid line). (D) Intertrial coherence (ITC) plots for all three entrainment frequencies. Zero indicates
entrainment offset. (Left) The ITC averaged in the −0.5 to 0 interval (ITC range 0.08–0.12). All of the conditions show a peak at the respective entrainment frequency.
However, for 1 Hz, an evoked response of the last entrainment stimulus is present (around −0.8 s). For 10 Hz, and to a lesser extent for 6.25 Hz, evoked responses to the
target stimuli are present poststimulus (around 0–1 s). This effect only arises in these frequencies, because the interval target presented is much narrower than for 1 Hz.
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sounds /da/ or /ga/ with respect to the onset of the corresponding
mouth movements found in natural speech (4). Moreover, we
showed that syllable identification depends on the underlying
oscillatory phase induced by entrainment to a 6.25- or 10-Hz
presented stimulus train of broadband noise. These results re-
veal the relevance of phase coding for language perception and
provide a flexible mechanism for statistical learning of onset
differences and possibly for the encoding of other temporal
information for optimizing perception.

Audiovisual Learning Results in Phase Coding. The human brain is
remarkably capable of associating events that repeatedly occur
together (20, 21), representing an efficient neural coding mecha-
nism for guiding our interpretation of the environment. Specifi-
cally, when two events tend to occur together, they will enhance the
neural connections between each other, consequently increasing

the detection sensitivity of one event in case the associated event is
present (22). We propose that this could also work for temporal
associations. In a previous study, we showed that the onset between
mouth movements and auditory speech signals differs between
syllables, and that this influences syllable identification (4). For
example, a naturally occurring /ga/ has an 80-ms larger visual-to-
auditory onset difference than a naturally occurring /da/ (Fig. 4A)
(4). Recent theories propose that visual cues benefit auditory
speech processing by aligning ongoing oscillations in auditory
cortex such that the “optimal” high excitable period coincides with
the time point at which auditory stimuli are expected to arrive,
thereby optimizing their processing (Fig. 4B) (8, 10, 23). If this
indeed occurs, different syllables should be consistently presented
at different phases of the reset oscillation (green and blue lines in
Fig. 4B). A similar mechanism has also been proposed by Peelle
and Davis (14). Because humans (or rather our brains) likely
(implicitly) learn this consistent association between phase and
syllable identity, one could hypothesize that neuronal populations
coding for different syllables may begin to prefer specific phases,
biasing syllable perception at corresponding phases even when vi-
sual input is absent (Fig. 4C). The current data indeed support this
notion, as we show that the phase difference between /da/ and /ga/
fits 80 ms. The exact cortical origin of this effect cannot be
unraveled with the current data, but we would expect to find these
effects in auditory cortex.

Generalization of This Mechanism. Temporal information is not
only present in (audiovisual) speech. Therefore, any consistent
temporal relationship between two stimuli could be coded in a
similar vein as demonstrated here. For example, the proposed
mechanism should also generalize to auditory-only settings, be-
cause any temporal differences caused by articulatory processes
should also influence the timing of individual syllables within a
word; for example, the second syllable in “baga” should arrive at
a later time point as “bada.” It is an open question how these
types of mechanisms generalize to situations in which speech is
faster or slower. However, it is conceivable that when speaking
faster the visual-to-auditory onset differences between /da/ and /ga/
also reduce, thereby also changing their expected phase difference.
It has already been shown that cross-modal mechanisms rapidly
update changing temporal statistics in the environment (24), by for
example changing the oscillatory phase relationship between visual
and auditory regions (25).
Our results show that during 10-Hz entrainment an oscillatory

pattern of syllable identification is present. This frequency is
slightly higher than what is generally considered theta. This likely
reflects that the brain flexibly adapts to the changing environ-
ment, for example when facing a person who speaks very fast.
Thus, although under “normal” circumstances the effect seems
constrained to theta (as shown in experiment 1), altering the
brain state by entraining to higher frequencies still induces the
effect and shows the flexibility of this mechanism.

Excitability Versus Phase Coding.Much research has focused on the
role of oscillations in systematically increasing and decreasing
the excitability levels of neuronal populations (23, 26, 27). In this
line of reasoning, speech processing is enhanced by aligning the
most excitable phase of an oscillation to the incoming speech
signal (5, 6). Intuitively, our results seem in contrast to this idea,
as it appears that neuronal populations coding for separate syl-
lables have phase-specific responses. However, it could also be
considered possible that one neuronal population biases identi-
fication in the direction of one syllable, this bias succeeding when
excited and failing when suppressed. This interpretation is less
likely, considering that the exact phases at which syllable iden-
tification was biased varied across participants. Therefore, the
phase at which identification is biased toward one syllable does
not always fall on the most excitable point of the oscillation for

Fig. 4. Proposed mechanism for theta phase sensitization. (A) Dependent
on the natural visual-to-auditory (AV) delay, voiced-stop consonants are
identified as a /da/ or a /ga/ after presenting the same visual stimulus (4).
(B) When visual speech is presented, ongoing theta oscillations synchronize,
creating an optimal phase (black dotted line) at which stimuli are best-
processed. The phase at which a /da/ or a /ga/ in natural situations is pre-
sented is different (green and blue lines, respectively), caused by the dif-
ference in visual-to-auditory delay. (C) Syllable perception is biased at phases at
which /da/ and /ga/ are systematically presented in audiovisual settings even
when visual input is absent.
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each participant (unless the phases of the measured EEG signal
are not comparable across participants). Considering that there
are individual differences in the lag between stimulus pre-
sentation and brain response (e.g., 18), it would also follow that
the phase at which syllable identification is biased does not
match across participants. However, more research is needed to
irrefutably demonstrate that different neuronal populations code
information preferably at a specific oscillatory phase (28).

Conclusion
Temporal associations are omnipresent in our environment, and
it seems highly unlikely that these data are ignored by our brain
when information has to be ordered and categorized. The cur-
rent study has demonstrated that oscillatory phase shapes sylla-
ble perception and that this phase difference matches temporal
statistics in the environment. To determine whether this type
of phase sensitization is a common neural mechanism, it is

necessary to investigate other types of temporal statistics, espe-
cially because it could provide a mechanism for separating dif-
ferent representations (26, 29, 30) and offer an efficient way
of coding time differences (31). Future research needs to in-
vestigate whether also other properties are encoded in phase,
revealing the full potential of this type of phase coding scheme.

Materials and Methods
In total, 40 participants took part in our study (20 per experiment). All
participants gave written informed consent. The study was approved by the
local ethical committee at the Faculty of Psychology and Neuroscience
at Maastricht University. Detailed methods are described in SI Materials
and Methods.
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