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24 Abstract. Deformation microstructure heterégeneities, play a pivotal role during

25 dislocation patterning and interface network restructuring. Thereby, they affect

26 indirectly how the microstructure recrystallizes. Given this relevance, it has become

;; common practice to study the evolution of defermation microstructure heterogeneities

29 with 3D experiments and full-field crystal plasticity computer simulations including

30 tools such as the spectral method.

31 Quantifying material point tongrain orsphase boundary distances, though, is

32 a practical challenge with spectral method crystal plasticity models because these

33 discretize the material volume rather than mesh explicitly the grain and phase

34 boundary interface network:wThis limitation calls for specific data post-processing

35 methods to quantify the spatial correlations between state variable values at each

36 material point and the points™ corresponding distance to the closest grain or phase

37 boundary.

38 This work contributes, to the development of advanced such post-processing

39 routines. Specifically, two' grain reconstruction and three distancing methods are

2(1) developed for solving,. above challenge. The individual strengths and limitations of

4 these methods§ surplus the efficiency of their parallel implementation is assessed with

43 an exemplary DAMASK large scale crystal plasticity study. We apply the new tool
to asséss/the evolution of subtle stress and disorientation gradients towards grain

44 b 18

45 oundaries.
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54 1. Introduction

55

56 Heterogenéities of constitutive and microstructural state variables, such as stress,

57 straimgp.orientation, or dislocation density, play a pivotal role during metal forming and

58 . -

59 downstream annealing treatment [1-3]. These heterogeneities form as a consequence of
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local differences during dislocation self-organization [1,4-7] or geometrical constraints
which the crystal interfaces imprint on the individual deformation mechanisms 48].
The accumulation of misorientation and dislocation density at such interfaces [9-12],
in turn, generates local conditions and gradients which facilitate the formationhef
dynamic or static recrystallization nuclei [13-17]. Therefore, considerable experimental
effort [8,18] has been devoted to the characterization of these deformatiofmicrostruetuse
heterogeneities, both in 2D [19-24] and recently also 3D [25,26]. Nowadays, itis,common
practice to investigate the evolution of the deforming microstructure with full-field 3D
crystal plasticity representative volume element (RVE) computer modeling[27-29] and
compare explicitly such results to experiments [18,30-38].

Most commonly, such computer simulation studies reportdeseriptive statistics
of tensorial state variable values. These are either presented asdiistograms of state
variable values or colorful renditions of the RVE domain ordspecific RVE sections. For
characterizing how state variable values are distributed in thetRVE volume, though,
one should instead quantify the distance of each RVE“material point to its closest
interface point and evaluate the distributions of state wariable values as a function
of these distances.

We acknowledge that such quantification taskifaees, challenges when one aims in
addition for highest possible statistical significance/andimSes full-field spectral method
models [38-45]: firstly, simulations for heterogeneity build-up demand for substantially
finer spatially resolved RVE domains thanarestypically used for flow curve predictions.
This increases numerical costs because statistical significance for texture and gradients
demands to include not only as manymgrains,but also an as fine as possible spatial
resolution for each of them; all to reflect accurately that dislocation density and
orientation gradients build-upfin 3D as a funetion of grain orientation and neighborhood
[11]. For such costly simulations the key advantage of spectral method models with
periodic boundary conditions are loweér numerical costs than compared to similarly
resolved finite element crystalplasticity models [44]. Nevertheless, this advantage comes
with a second challenge: finstead of probing explicit interface networks, now additional
post-processing costs accrue to recover and characterize the interface network.

The requirement to,analyze distances in the deformed configuration, i.e. distances
as they are measured in an'experiment, defines a third challenge: the successive shape
distortion of the, RVE domain has to be accounted for. This is challenging for periodic
boundary conditions:, idéally, the grains in contact with the RVE domain should get
analyzed as/wellfas 0 met make compromises in statistics. The grains are, though,
frequently notionly physically fragmented but also logically represented by a composite
of fragments on opposite sides of the RVE domain. Another challenge to master
during any quamtification of spatial correlations is to collect statistics with strongest
significance. “For simulations with several million material points and eventually dozens
of ‘strain steps this calls for efficiently parallelized post-processing tools to enable
terabyté@wolume analysis productivity. As a fifth challenge, any post-processing of state-
variable-to-interface-distance correlations for spectral method models calls for grain
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reconstruction methods because as the grains get deformed they accumulate internal
misorientation.

At least for the grain reconstruction challenge, advanced post-processing {ools
were developed in the SEM/EBSD community [46-51]. Consequently, we assessed
these [49,52-54] for their potential and application to solve above reconstruetion and
distancing task. Not a single tool, though, combined grain reconstruction functionality
for three-dimensionally distorted surplus periodically constrained point cloudidata with
documented application for multi-hundred million points.

This gap motivated our research which contributes methods that eope with all
above listed challenges. Specifically, we implement statistical quantification methods
which characterize how state variable values are distributed asq@afunction of material
point distance to grain boundaries. We implement two grain/recofistruction methods
and apply these in combination with three different distan¢ing methods to compile a
comparative assessment of long range spatial distributions for state variable values. The
case study in this work focuses on single-material-point-resolved quantification of the
Cauchy stresses and disorientation with respect to the mean érientation of the grain.
These are exemplar quantities of frequent interest and controversy with respect to their
tendency to form spatial gradients at interfaces.

Furthermore, we report how such methods caft bensifhplemented into an efficient
strong and weak scaling tool supplementing the Diisseldorf Advanced Material
Simulation Kit (DAMASK [38]). Open souzce tools like this should encourage the
crystal plasticity community to explore also their'3D RVE data in further quantitative
detail.

2. Methods

2.1. Defining the data analysis task

This work presents a spe€ific analy$is workflow to post-process DAMASK [38, 43,
44, 55] simulation results,. TWo grain reconstruction, three material-point-to-interface
distancing methodsiyand additienal post-processing algorithms were developed. The
workflow enables the quantification of spatial correlations between specific material
point state variable values and each material points’ closest projected distance to an
interface. The4individual steps of the workflow are detailed in the appendix. The
workflow wag@implemented into a parallelized original C/C++ program. Given that the
entire source code is\provided as open source, it suffices to report the key steps of the
workflowsand the strategies to their efficient implementation.

The workflow answers the following data mining question: how are state variable
valuesidistributed spatially as a function of the projected distance to the nearest interface
for a giventcollection of strain steps? We define a strain step as a state variable value
dataset which is probed from an RVE crystal plasticity simulation at a specific true
strain value. From now on, it is assumed that this dataset contains results for every



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - MSMSE-104116.R1

material point which supports the RVE domain.

Interfaces are either grain boundaries or phase boundaries. In this paper, we,foeus
on single phase microstructures. The methods are formulated general enough to be
applicable for phase boundaries, provided their geometry is sampled by materialfpoints.
We report 3D applications of the methods. The simplification to 2D is straightforward,

Under above provision the input data for each strain step consists of'all N material
points. Identified as p;, these define positions z; in the deformed configuration. The
results are defined and analyzed in the laboratory Cartesian coordinate system & R3.
As such, all local displacements of a material point versus its initialyposition in the
unloaded case are accounted for [43]. This makes the results comparable to the situation
in experiments where a plastically deformed microstructure isgprobed typically by a
posteriori sample preparation. For this coordinate system congentiefi the initial grid of
integration points becomes successively and irregularly distérted (Figd 3a). This calls
for the development of point cloud processing methods which“back out the geometry
of each grain and consider the fact that typical DAMASK, simulations use full three-
dimensional periodic boundary conditions.

Each material point ¢ has an associated set of state variablevalues {s;}. Members of
this state variable set are for instance the local defermation gradient F; or the orientation
g;. Although not all these variables are state variables iiwfhe microstructural sense, we
have opted, for simplicity, to refer to these computed quantities as state variables.

Different strategies are in place in the erystal plasticity community to define an
initial grid of integration points for sampling thésmicrostructure in the RVE volume.
Cubic grids are the most commonly employed strategy. Also full-field spectral method
crystal plasticity simulation tools like tBAMASK [38, 44] use such grid. This avoids
explicit bookkeeping of the intérface networkigeometry and thus cuts numerical costs. As
a disadvantage, though, the interfaeces have to be reconstructed through post-processing
to enable a quantification of @bove distance correlations. Below workflow presents an
original solution to solve thissfask; implemented as a supplemental DAMASK post-
processing data mining teol, galled damaskpdt for short. Here, the acronym pdt stands
for post data treatment.

2.2. Pre-processing stage

The processing ofythe strain step data is distributed across the nodes of a cluster
computer. Hach proeess handles complete strain steps (at least one). The processes
read independently all material point and respective state variable values from the
simulation resultgfile. In this work, data are parsed from the traditional binary container
format file. Am extension of the tool to use the HDF5 based container format in
DAMASK[38¢45] remains as a task for the future.

After doading the strain step data, each process executes a pre-processing stage.
Thisvincludes the calculation of the material point positions z; in the deformed
configuration, the equivalent stress and strain tensors for each material point, and an
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RVE-averaging of these quantities using methods previously described [38, 43,44, 55].
Next, three point clouds are defined for each strain step: the first point cloud is R° 4 It
specifies the ensemble of the original N material points in the deformed configuration.
The second point cloud P2¢ specifies the ensemble PY surplus all its 26 periodi€ image
points inside a bounding box with thickness ¢ about the bounding box to RY. Here,
€ defines a small fraction of the largest edge length of the box. The third point eloud
P! specifies all members of P? surplus all their 26 periodic image points. Subsequerit
processing involves region queries on all three point clouds. Special datastructureswere
used to accelerate these queries (section 2.5). The purpose of using multiple point clouds
instead of always the complete set P} is to optimize and reduce memory utilization. As
an example, it suffices to work with P2 instead of P! whensquerying /meighboring
material points at the RVE boundary within radii of at most e duringthe disorientation
based distancing. Further details to the purpose of the pointhelouds are provided in the
algorithms in the appendix.

2.8. Grain reconstruction

Remark on classical grain reconstruction with DAMASK  Attempts were made in the
past to reconstruct the grains through application of elusger search algorithms on P? :
the grains were built as a cluster of material points with the same texture ID within a
critical distance and less than an a priori defined diserientation accumulated among each
other. Unless a very large critical distance 18 chesen, though, this method cannot merge
all periodic images of a grain, thus,reducing the significance of the analysis. Large
distances, though, will occasionally“merge Second- or even higher-order neighboring
grains into a single object. Especially so when these neighbors have similar orientations.

Instead, two different appreaches are proposed to reconstruct the grains. The
methods borrow conceptually from aghievements made in the SEM/EBSD community
46,49, 54] but add support foryperiodic boundary conditions and hierarchical software
parallelization. Identifyingthe aiape of the grains is a key step of every interface network
reconstruction. With this process, material points get labeled as grains based on their
orientation and pointicighborhood. In what follows, two methods are specified for such
labeling of the polyerystalline,aggregate:

Modified grain reecomnstruction methods developed in this work The first method relabels
the texture D from the. DAMASK microstructure synthesis step as the grain ID. This
has been the @ommon strategy so far when studying in-grain orientation gradient
build-ups eithertexplicitly [9,12] or implicitly by reporting orientation spread via pole
figures [11]. This grain reconstruction method is tagged TEX in the results section.
The second method addresses the challenge that when grain fragmentation becomes
significant{ referring still to the initially instantiated grains is no longer correct. Instead,
the individual grain fragments should be distinguished. Useful methods for this task
meet three requirements: they work for irregular point cloud data, successfully handle
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three-dimensional periodic boundary conditions, and are sensitive to gradual build-up
of orientation gradients.

Graph clustering is one method which fulfills all above criteria. Application
examples for characterizing microstructures with graph clustering methods, ghough,
remain few. One is known in the SEM /EBSD community as Fast Multiscale @Glustering
(FMC) [56,57]. Other examples, on which this work settles, are commmunity deteetion
algorithms [58,59], which find frequent application in analyzing human gommunication
and interaction patterns among individuals on social media platformsgThis work uses
the community detection method employed in [59]. Specifically, we usesthelopen source
implementation of the Louvain community detection method by Blondel ethal. [60,61].
This grain reconstruction method is tagged LOU in the results seétion.

~

Extraction of a single periodic image per grain and bounding box sensemble After
labeling each material point one can in principle compute the distance correlations.
For arbitrarily deformed domains with periodic boundary genditions, though, practical
challenges remain: first, macroscopic and microscopic shape distortions of the RVE
domain walls have to be accounted for. Second, grains in contact with the RVE walls
are fragmented into multiple pieces. Therefore, itfistuseful to merge the fragments into
a single grain with simpler geometry. Placing it(in adcubeidal box is even better because
it decouples all downstream processing into grain-local/operations.

Consequently, a geometry simplification step is executed. Therein, the individual
periodic fragments are first fused using a DBScan [62] clustering algorithm. Specifically,
all grain fragment neighbors within & thzeshold radius of R = /3L, with Ly specifying
the initial point-to-point distance are fused. Next, the closest replicate periodic image
to the center of P? is chosen dhd the associated material points are packed into a grain-
local bounding box. Once boxed up, efficient multithreaded processing methods from
the grain growth modeling community [63-65] speed up the grain-local analyses.

After the geometry simplification the global bounding box to all grains’ local
bounding boxes are computed (Eig. 2b) and define a rediscretization of this global
bounding box. The, aetuabrediseretization, though, is applied inside each grain-local
box only to improveefficiency. Once rediscretized, the information contained in P} is
used to identify the nearestimeighboring material point to each voxel. Cubic voxels of
edge length 0.5 Ly were used.

2.4. Distanc¢e quantification

Disorientation based For this distancing method, tagged DIS in the results section, the
challenge of grain reconstruction is ignored completely. Instead, position and orientation
datarfér points in P2 are used. The quantity e defines a guard zone thickness that
was choseni as 0.1 times the initial RVE domain edge length. The distance values are
computeddy finding for all material points in PY all their respective neighbors within a
region of radius R = 0.1, where R is again in multiples of the initial RVE domain edge
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Next, the identified neighbors are sorted in increasing order with respect to,their
Euclidean distance to the inspected material point. Finally, the distance value for the
closest, above a critical threshold ©,. disoriented pairing, is taken as the digfancing
result. In this work, a threshold of ©, = 15° was used. If no closest neighber among
the candidates was found, the material point made no contribution to‘the correlation
statistics.

In a nutshell, the advantage of the DIS distancing method is that it zequires nojgrain
reconstruction as long as no disorientation-to-distance correlationssare desired. The
independence of each material point is another advantage which makes thedalculations
trivial parallelizable. Without taking the spatial arrangements6f meighboring points
into account, though, a disadvantage of DIS distancing is that/onlyealar distances are
accessible.

Signed distance / voxelization based Enabling the identification of normal distances
to the grain boundary is the motivation for and key/strength of the second distancing
method. It is tagged as SDF in the results sectionggThe key“idea is to evaluate signed
distance level set functions in combination withdatest method developments achieved
for scalable grain coarsening simulations [65-68]. y

Level set function methods parameterize the position of interfaces implicitly as
the iso-contour of a real-valued level set funetion ®(r) to an a priori defined iso-value.
Defining a signed distance level set function (SDE)yin combination with each boundary
contour of a grain being defined @s Pw=_{z,€ Q | ®(z) = 0} with ' € Q € R?
is a particular useful choice. Namely,‘his choice, i.e. ®(z) € Q € R?, has the key
advantage that |[V®(z)|| = 4hholds for mest points € R3 one practically encounters

inside and outside the contours= Censequently, a consistent outer unit normal vector
Vo(z) _ Vo(x)
Ve — 1

numerically. In effect, thissallows, calculating arbitrarily projected distance vectors to

can be computed to each poilnt on thelgontour by evaluating n(x) =

the contour.

A two step progedure was employed to compute a signed distance function for each
grain. The procedure builds on the previously defined discretization of the bounding
boxes about each gnerged grain. First, ®(z) was initialized to positive values (+h) for
all voxel assigned to the grain under inspection and negative values (—h) for points
outside. The sealar hywas set equal to the cell width used for the global rediscretization
of the domain. In a second step, the distance information was propagated with the fast
sweeping method [63,69].

Tessellation based Also the third method, tagged VOR in the results section, delivers
vegtorial distances. Furthermore, it explicitly reconstructs a contour hull for each grain.
Theykey idea of the method is to build up each grain from a collection of Voronoi
polyhedra. These can be directly obtained for each grain from a Voronoi tessellation
of 'the, respective material point cloud. Formally, the VOR method is based on the
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approach of Bachmann et al. [54]. We introduce two improvements, though: first,
a generalization of the method for applications on distorted point clouds with periodic
boundary conditions. Second, we introduce a hybrid-parallelized solution which executes
substantially faster and might provide an avenue to explore for MTEX in the futuze
as well. This parallelization alleviates much of the higher numerical costs, athich the
VOR method has in comparison to the DIS or SDF methods. VOR dées not réquizé
a rediscretization of the bounding box to each grain k but operates direetly on the
grain-local subset of material points from P} .

In a first step, this local point cloud is extracted and each Voromei cellhcomputed.
Each Voronoi cell ets labeled with the respective grain ID k£ and material poiaat TD. Next,
the algorithm identifies which of the cell facets have first-order®mneighboring Voronoi
cells with a different associated grain ID than the currently processéd. Such difference
is a signature that the currently processed Voronoi cell makes contact with the grain
boundary.

The resulting collection of all such facets of Voronoi eells about points tagged with
the grain ID under inspection is used to construct thefshape of the exterior contour hull
(Fig. 1b). The contour hull extraction algorithm igsexecutediin parallel for each grain
k.

The Voro++ tessellation library [70] was used towptocess the individual grain-
local tessellations. Specifically, we re-implemented the library wrapping approach of
Peterka et al. [71] around calls to thistlibrary. To avoid truncating Voronoi cells
of the inspected grain, the individual grainslocalsbounding boxes were enlarged by a
guard zone of three times the inifial"peint-to-point distance. Furthermore, possible
Voronoi cell contact with the local bounding box domain walls was detected using
Voro++ library functionalitie§y These stepsieured any possibly truncated Voronoi cell,
eventually through a recomputation, after fattening the guard zone locally.

Once the exterior contour hull hag'been defined, the material point to contour hull
distances can be computedsmGiven that projections on the polyhedron facets can be
used, the VOR methods [computes projected distances. The implementation is tricky,
though, in detail because ‘consistence and speed are desired:

Algorithm to computenveetorial distances within VOR Using the edge circulation
conventions of the Voro++ library, first a consistent outer unit normal vector for each
contour hull facet is eomputed. Next, the normal and geometry of the facet is evaluated
to compute a consistent right-handed local Cartesian coordinate system for each contour
hull facet..Sueh coordinate system can be defined because each Voronoi cell is a convex
polyhedron [72]s By virtue of construction each facet is a convex polygon in 3D space
that is reduced, thanks to the local coordinate system to two dimensions. These local
cogrdinate systems accelerate point to polygon inclusion tests.

It remains to compute the distances. First, the general approach used is explained.
Second,we detail how the processing of the facets gets accelerated with bounded volume
hierarchy querying algorithms. The distances are Voronoi cell interior-point-to-exterior-
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contour-hull-projected point distances. Distances were evaluated for each interior point.
It suffices to sketch the procedure for a single interior point. The main task is togrebe
which facet of the contour hull lays closest to the point. While probing the facets for the
absolute shortest projected distance the algorithm works as follows: firstly, eachdntetior
point gets normal projected onto the facet plane.

Secondly, it is probed whether the projected point lays inside the facet polygen or
on its contour respectively or outside. The distance value is eventually used to update
the currently closest distance.

If, though, the projected point is outside the polygon, one preeecdsyby normal
projecting the currently tested interior point on each edge segment of thefpolygon. If
such a projected point lays on the edge, the computed distance e¥entually uipdates the
current closest distance. -

If none of these projections map on a polygon edgedsegment, ave evaluate the
Euclidean distance of the currently tested interior point to eachiwertex of the polygon
and update eventually thereby also the current closest distance. Once finished with the
vertices, the algorithm proceeds with the next facet of thexcontour hull until no further
facets remain for processing.

To the best of our knowledge advanced procedures like above are necessary to
handle cases where, due to the possible non-convexity of the composed contour hull, a
consistent normal distance is not immediately defined. In fact, such cases are frequently
possible. One particular simple example isillustrated with the grayed-out region in Fig.
la. Evidently, there is not necessarily a prejectéd, point on a contour facet for every
position inside an arbitrarily shaped némseonvex polygon (here for the brighest yellowish
region). At least not if one projects exelusively parallel to the direction of the facets’
outer unit normals.

While getting access to a.defined contour hull for each grain surplus projected
distances is a clear advantage, the WOR method has also disadvantages: most
importantly, higher numesicaleostsé’ More subtle, the edge-on compositing of a
contour hull from a collegtionfof polygons faces discontinuities of the curvature at the
polygon edges. Thesescanibe cured, though, with state of the art SEM/EBSD grain
reconstruction softwarey49, 52] which is another possible avenue to explore and use for
reconstruction of the'interfage network in DAMASK in the future.

A strategy forsaecelerating the distance computations Without additional tricks, the
algorithm deéfinegla quadratic time costly computational geometry task — for each interior
point each.contour facet needs inspection. Therefore, a pruning strategy was designed
to reduce the tetal number of facets tested. The key idea is to use the shorter and
shorter ‘identified distance values to occasionally requery which contour hull facets
require testing. Therefore, a bounded volume hierarchy (BVH) was built from the
contour hull facets [73-76]. This utility data structure organizes the locations of the
facet polygons into spatial regions, such that with narrowing down the search fewer and
fewer,candidates need testing.
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(a) Distancing contours with mixed curvature (b) Exemplar graim,contour hull

signs

Figure 1: a) Compositing Voronoi cells into a larger pelyhedron can result in a
polyhedron with concave and convex sections. Thissdemands additional care when
computing projected distances to the contour hull facets. &) An exemplar result of the
tessellation based contour hull extraction algorithm. A random subset of outer unit
normal vectors is shown.

First, we probe an arbitrary candidatexand query the BVH for the resulting distance
value. This value is used for querying the,BVH to narrow down which candidate facets
to probe next. Thereafter, theralgorithm continues iteratively: each time the distance
value gets lower than 0.9 of the“last query, the candidate list gets updated until the
finding the absolute shortest distance per interior point.

N
Distilling spatial distributions of disorientation and stress The results of each
damaskpdt tool runaré twe ensembles of Cauchy stress tensor/distance and orientation
quaternion/distance value pairs per material point. These data were finally processed
with MATLAB (y2017a), /"MTEX [77, 78] texture toolbox (v5.0.3) scripts to obtain
spatial distributions of stress and disorientation.

A two stepped protocol was executed to quantify the disorientation of each
material point t0 the respective mean orientation of the reconstructed grain: first, a
mean oriemtation was computed for each grain. Documented methods for inferential
quaternion statistics [79] were used for this task. Secondly, these mean orientations
were.evalunated against the individual orientation of each material point.

The sogenerated value/distance pairs were binned into distance bins on the interval
[0.0,24.0] using 0.2 step. Length units are reported in multiples of the initial [100]-
direction point-to-point distance between neighboring material points Ly. Quantile
valuiespof the resulting sub-distributions were quantified with MATLAB . Grain size
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distributions report how many material points were assigned per grain.

2.5. Parallel implementation and orchestrated hierarchical data placement

Above workflow was implemented into a hybrid-parallelized tool. Inherent parallelism
in the data mining task was exploited: for the reason that each, strain step is
independent, we distribute the processing of the strain step ensemble viaéprocess data
parallelism. Specifically, calls to the Message Passing Interface (MPI) libraryf80, 81]
were implemented. Strain steps were distributed across the MPI processes in round-
robin fashion. In addition, the processing of each strain step was aécelerated wia Open
Multi-Processing (OpenMP) [65, 82-87]. Instead of using the commonly employed
referencing of data items via global arrays, we actively enforée a paxtitioning of the
material point positions and state variable values. Specifically, alldderived quantities are
split into thread-local data chunks. These chunks are placed preferentially in memory
locations with fast connection to the execution core. Thigifacilitatesifaster reading from
memory through closer packing of data and less cache,coherency traffic. We admit
that our implementation currently uses a static load(partitioning scheme whereby load
imbalances may be stronger than for dynamic worklead distributing. This is a possible
disadvantage to investigate in the future. N

To efficiently execute all linear algebra operations of the workflow, fast Fourier
transformations (FFT), singular value decomposition; and eigenvalue decomposition
functionalities of the Intel Math Kernel Libraryn(IMKL) were used.

The subsequent grain segmentation and eharacterization of the spatial descriptive
statistics involves range querying tasks. Spe€ifically, they demand the identification of
all neighboring points inside a,spherical volume of radius R. Using 3D box binning with
cubic buckets of width R for R%¢ | and P, enabled constant time complex queries.
A disadvantage of this techniguie compared to other established fast position querying
techniques [73,88,89] is the larger memory footprint. This detail remains as future work
for a possible code optimigationaiming at a lower memory consumption.

2.6. Verification andwalidationssimulation setup

Microstructure instantiation’ We applied above methods for studying the evolution
of the spatial distribution of stresses and disorientation in full-field crystal plasticity
simulations. Simulations were executed with the DAMASK spectral solver [38, 44, 55]
and used the DAMASK Poisson-Voronoi tessellation microstructure synthesis and
orientationg,sampling routines. Specifically, a 3D face centered cubic single phase
polycrystal RVE was instantiated. Full three-dimensional periodic boundary conditions
were used. The/RVE domain contained 500 grains. These were discretized by 256 grid
points, i.e.. material points. In effect, each grain has an average spherical equivalent
radius of 20 material points. Grain orientations were sampled randomly and assigned
in a spaftially uncorrelated manner.
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Process layer: mapping single strain steps

,4_)

Single point data

, 0} 1
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(a) Hierarchical data partitioning and map- (b) Bounding box ensemble

ping approach

Figure 2: a) The processing of the strain step ensemble isipartitioned hierarchically:
processes are assigned always complete strain steps.n These are machined off using
OpenMP multithreaded data parallelism. Each process paritions the heavy data further
to allow for a mapping of thread-local data into gpecific memory sections to improve
spatial and temporal memory locality.

Distance verification To the best 6f ourknewledge there is no analytical solution which
quantifies the distribution of shortest projected distances for an arbitrarily distorted
point cloud to a given grain“beoundary interface network. As such, the verification
of above methods is challengings=For, Poisson-Voronoi microstructures, though, one can
find exact linear algebra solutions for a, given point cloud and evaluate them numerically.
By virtue of construction the"above defined microstructure is a discrete approximation
of a specific Poisson-Voronoi tessellation.

Consequently, wemverified our implementation as follows. First, the center positions
of above grains were taken to define the corresponding fully-periodic Voronoi tessellation
in continuous spage. Segend, the shortest projected distance to all facets of the enclosing
Voronoi cell wagsprobed for each material point. The resulting distances were binned
using the samé protocels.

Constitutive model 4 A phenomenological crystal plasticity model [90] was used. The
tensor of elasticfeonstants was parameterized based on experimental data for Aluminium
[91]. Theytensor components were C1; = 106.75 GPa, Cj5 = 60.41 GPa, and Cy =
28134 GPaarespectively. Dislocation slip on the 12 primary slip systems was assumed as
the exclusive deformation mechanism. The phenomenological model was parameterized
with a reference strain rate of 7o = 0.001s~! and a stress exponent of nsiip = 20. Stress
parameters of this constitutive model were set to 7y = 31 MPa, 7,,; = 63 MPa, the
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hardening parameters were assumed as ag;, = 2.25 and hy = 75 MPa, respectively.
Isothermal conditions and initially stress free grains were assumed.

oNOYTULT D WN =

Load case The RVE was subjected to uni-axial compression along the z-axis, si
by a deformation gradient rate F' (Eq. 1) with setting Piola-Kirchhoff P stres
conditions (Eq. 1). Stars identify unconstrained values. 4
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F,, the first Piola-Kirchhoff stress tensor P, orientation quaternion q, and a reference
ID, the so-called texture ID 7;. The latter integer specifies the discrete orientation,I, of
each material point. The resulting binary spectralOut file occupied 162 GB disk space.

Simulation data post-processing Post-processing was executed on TALOS ga cluster
computer (Tab. 1). Different levels of hybrid, i.e. process and thread’parallelization
were benchmarked. Computing nodes were used exclusively and threads pinned
(OMP__PLACES=cores). Explicit calls to the MPI_Wtime and emp get Swtime
functions were used to monitor how much time the individual workflowisteps took.
I/O and non-I/O operations were distinguished. The main virtaal and@esident set
size memory consumption was probed at the node level by parsing on,the fly from the
/proc/self/stat system file. -

The strong multithreading speed of the tool was bemehmarked/with runs on a
single TALOS node. Specifically, quasi-sequential runs with oneprocess spawning one
thread were compared to repetitive runs of the same studypwith ene process spawning
40 threads. The multi node weak scalability was probed by comparing the single node
results with runs employing 28 MPI processes eachgof which'spawning 40 threads. 1/O
operations were performed using a GPFS parallelffile system built on top of 12 logical
disks. Files were striped across a RAID6 array with 10¥disks each (in 8+P+Q [92]
configuration). The low level stripe size was 4 MB. Supplemental MTEX post-processing
was performed sequentially using a desktop PC. Given that the processing consumed
only a few core hours in total, these analyses weréynot benchmarked.

2.7. Software details

DAMASK (git commit ID: v2:0:1-992-g20d8133) was compiled with GNU v8.2 using
02 optimization. The program wasiinked against the PETSc v3.11.0 numerical and
the MPICH v3.3 MPI libraries. The damaskpdt post-processing tool (git commit ID:
caea9c52848809e0635ba7d0afbih3a592e3d0dd) was compiled with the Intel Compiler
and Performance Suite (v2048.4) using O3 Skylake optimization. The program was
linked against the cofresponding Intel Math Kernel Library (IMKL) and Intel MPI
versions. Additionally, Beost,(v1.66) [93] and the Voro++ (v0.4.6) [70] libraries were
linked to the tooll

Table 1: Technical details of the computing systems used. C/S means hyperthreading
core pairs per socket, Mem stands for main memory in GB.

System CPU C/S Mem Operating system
Workstation® Xeon Gold 6150 18/2 576 Ubuntu 18.04.2 LTS
Cluster Xeon Gold 6138 20/2 188 SUSE Linux Enterprise Server 15
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3. Results

3.1. Verification of the distance computations

First, we verify the distribution of distances through comparison to solutiong for the
initial configuration. Figure 4a reports the distances in multiples of Ly, i.e. €he point-
to-point distance in the unloaded configuration. Like at yield, in this configurationjthe
shape of the RVE is undistorted. Exemplified for the method combinatiomDIS/TEX the
histograms show quantization effects inasmuch as all the possible voxelsto-voxel eenter
distances are recovered (Lo, V2L, and \/§L0). This approximates weéll'the‘analytically
accurate distribution of the actual normal distances of the voxel center to‘the Voronoi
facets in continuous space. The figure substantiates that witheut inje\cting additional
local grain boundary normal information, our methods are voxel aecurate only. Given
that a fixed number of material points is probed, a larger ntimber of gases with shorter
distances implies finding a lower number of the absolute largest distances in the RVE
when comparing to the continuous space solution.

3.2. Quantifying the spatial distribution of stresses“towards grain boundaries

Figure 4 summarizes the results from applying @aboyve methods to quantify how stresses
are distributed in the RVE volume with respect to the/distance of each material point
to the nearest grain boundary. Using the twe developed grain reconstruction methods
in combination with the three distancing methods,allowed for rigorous and comparative
analyses on the same dataset. Thefresults doeument the statistics at final strain when
the stress distributions are broadest and highest in terms of absolute values.

All methods identify wigh very similar, significance and quantile values that the
average os3 compressive Cauchy’stress is 140 MPa. Only an at most 10 % absolute
variation from this average valtie is observed when probing deeper into the grain interior.
Distances larger than approxixrqtely 15 distance units from the boundary should not be
interpreted because the gorresponding numerical support is finite counting limited, i.e.
only very few points belong#o these distance bins given the average grain radius of 20
voxels.

Comparing thesdistributions for each distance bin and method combination (Fig.
4a) conveys thatlall methods capture the flattening of the grains in the compression
direction. Consequently,/higher counts for the same distance bin are observed for the
strain step at yield versus the one at final strain.

The results for the lower distance classes document a rigorous quantification of the
numerical effects‘inherent to spectral based methods in general, and those specific for
the DAMASK spectral solver: stresses at material points in the vicinity of numerical
disgontinuities; here the grain boundaries, show consistently different mean stresses
(Figs. 4b/4c) (10% to 14%). Finding this difference consistently for material points
at thepdiscontinuities suggests that this is attributable to the Gibbs phenomenon
[94,95]. Latter is known as a systematic intensity overshooting in frequency space
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Figure 4: Cauchy stress spatial distributions as a function of the distance to the nearest

boundary, here exemplified for the largest stress component o33 and comparing specific

quantiles of the distancerand the state variable distributions. Theory details the results

for the analysis of fhe distances of the voxel center to the Voronoi cell facets in continuous

space.

Abbreviations discern the distancing methods: disorientation (DIS), signed

distance / voxelization«(SDF), or tessellation (VOR) based, the grain reconstruction

method (texturefindéx TEX or Louvain LOU based), and whether large disorientations
within a-eluster, were strongly (SP, & = 1000) or weakly (WP, k = 75) penalized.
Grayed-out regions detail where numerical effects of the spectral method are expected

strongest = either due to numerical effects or finite counting.

when attempting to Fourier expand at discontinuities.
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3.3. Quantifying grain orientation spread accumulation towards boundaries

Motivation for this second application exercise comes from frequent literature findings
which reported that material volume in the vicinity of grain [96] and phase boundaries
[97] is differently disoriented than volume in the grain interior. Possible presencg of such
localized volume with different orientation has been identified as one reason why, static
and dynamic recrystallization nuclei [98] originate frequently from the facestor junctions
of the grain boundary network [16,17,99].

T T
Yield Final

Final strain step
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Figure 5: Key quantile values of theidistribution of material point disorientation to
the mean orientation of the seconstructedigrain. Abbreviations discern like in Fig. 4
the distancing methods: disorientation (DIS), signed distance / voxelization (SDF), or
tessellation (VOR) based, and how diserientations during grain reconstruction with the
Louvain method were penalizeQ (strongly SP or weakly WP). The distribution mean
and the upper quantile (0.99)detail the spread of the distributions. In a) distributions
are plotted at yield and final’strain, while b) pulls focus on the final strain. As in Fig. 4
grayed-out regions detail where either numerical or finite counting effects are strongest.

The results,'in Fig. )\ 5 deliver quantitative evidence that spatial gradients of
disorientationqare detectable with all grain reconstruction and distancing methods:
material points £in gheéy proximity of a grain boundary show on average larger
disorientation'to the/mean orientation of the grain than do points in the grain interior.
It can /be excluded that these differences are the result of averaging orientations
from multiple material points, as it is the case when measuring e.g. kernel average
migorientations (KAM) at boundaries using the SEM/EBSD technique. In fact, when
quantifying KAM values a kernel with multiple neighboring material points is evaluated.
Probingmwith the kernel would contribute high disorientation values only if insufficiently

Strong criteria are set with respect to how much disorientation noise is allowed for a
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given kernel. In this work, though, no kernel was used. Instead, the disorientation
values were computed independently to only one value for each material pointy- ghe
respective grain mean orientation.

It can also be excluded that the observed gradients are random spatial corvélations
for the following reasoning: if a grain contains multiple material points imydifferent
orientations in the fundamental zone, it is expected that non-directionally correlated
point-to-point disorientations are measured if one eventually compares the diserientation
for two arbitrarily picked material points. If the orientation variation is,strong and the
grain small, i.e. the grain has few points support, eventually larger diserientations
are measured on average. However, this scatter should also beé correlated if there
are orientation gradients with a strong component normal to theérinterface within the
grain. Vice versa this scatter should remain practically uncorrelated if such gradients
are absent or the grain contains practically uncorrelated stmall regions with spurious
higher disorientation.

Given the strength of the gradient and mean disorientation value, we conclude that
the grains are in an incipient stage of fragmentationd They hawe not yet accumulated
localized regions of significant point-to-point disoriemtation inithe high-angle boundary
regime (15°), except for a minority population offmaterial points in an at most 2 pixel
wide zone at the boundaries. Qualitatively, their Higher @isorientation is expected as
also the absolute Cauchy stress values are,slightly higher in this zone (Figs. 4).

There are two additional observationsito make with practical significance for
characterizing orientation gradients: first,“enly“the methods with normal distancing

capability (SDF, VOR) report similar, gradient slope (= 1;; ). Compared to
disorientation based distancing, the slope is moderately lower. Second, disorientation
gradient characterization withathe graph clustering method shows a strong parameter

sensitivity (Fig. 5b).

4. Discussion N

4.1. Comparing the two grain reconstruction methods

We identified that one practical challenge of using the graph clustering method for grain
reconstructing is the strong parameter sensitivity. Therefore, it was worth studying the
grain size distributions (Fig. 6a) and consistency with which individual grains were
(re-)identifiable (Fig.w6b) as a function of the penalization parameter K (algorithm
B). Figure 6 summarizes the key findings.

Thedarger thedpenalization parameter K is set the stronger every accumulation
of highfdisorientation between nodes of the same community gets penalized. In effect,
moresgrains with lower in-grain orientation variation are found on average for a stronger
penalization (K, = 1000).

Neither the values for a low nor for a high penalization can avoid systematic
challenges when using the reconstructed grain ensemble for characterizing the distance
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N
Figure 6: Texture ID versus graph clustering grain reconstruction: compared in terms

of how many grains,were rédonstructed and how individual grains were (re-)identifiable
for different penalization. Initial versus the final strain step results are compared.

correlations. Infact, if the penalization is weak, the algorithm reconstructs different
grains and comes not even close to the initially synthesized number. Figure 6b proofs
that this is ‘@& systematic eonsequence of the method’s tendency to merge neighboring
grains with low disérientation at low K values.

Ineffect, The mean orientation of many grain pairs is an average of at least
twogorientation ensembles with low intra ensemble but possible noticable inter
ensemble disorientation. With respect to spatial disorientation gradients this has two
consequences: first, such gradients are flatter and second they are shifted to larger
disorientation on average. This explains why the gradients for weakly penalized graph
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clustering (Fig. 5b) are shallower.

One could avoid the possible bias introduced by the systematic grain merging
through applying a stronger penalization, such that eventually the initial grains are
re-identified (Fig. 6a). Figure 6a shows the detrimental effect of such proecedure
when applying it to analyze the (highly) deformed configurations: we, observe
oversegmentation with an associated qualitative change of the grain size distribution
from unimodal to bimodal. A detailed inspection of the respective material points
identified that this spreading into eventually bimodality is a consequence of the fact
that the strongest disoriented material points at the grain boundary getyrnow,segmented
into a decoration of the boundaries with very small grains. These findings have a
methodological and a practical implication.

The methodological implication is that graph clustering baged gr@in reconstructions
should always be backed up by rigorous quantitative parameter sensitivity studies. One
strategy could be to report always unnormalized distributions of'grain sizes as a function
of the segmentation parameter. Otherwise, different physical conclusions might be
drawn even though one uses the same method. Omne example'is exemplified in Fig.
5b: disorientation accumulates at boundaries or nots

The practical implication reads as follows: sgrain fragmentation should be better
characterized ideally via the evolution of the grain'boum@ary network rather than to
continue insisting logically on the initial grain as the decisive object. In fact, not
the homogeneous regions within a deformed grain but the heterogenecities are the key
microstructure locations and first descriptors to imnvestigate where and how annealing
microstructure evolution initiates.

4.2. Implications of numerics=induced scatter for non-local and coupled crystal
plasticity /interface migration speetral method models

Evincing such numerics-induced scatter suggests to apply above quantification protocol
in the future regularly. Especﬁlly, it should be applied in so-called non-local crystal
plasticity models. These predict the local material point values via evaluating a kernel
of neighboring material pointssxamples are continuum scale crystal plasticity solvers
with incrementally_andlecally coupled dislocation flux sub-models, such as the one
from [31,100] or full-fieldycrystal plasticity models with incremental coupling to phase-
field solvers [35].

One shotld always start inspecting such solvers from an in-depth monitoring of the
(state variable)#alues andithe non-local flux terms for each material point as a function
of straing Metheds; such as the ones developed in this paper, could be used to assess
via such . monitoring in how far numerical noise remains uncorrelated and low to avoid
a systematie biasing of the results towards larger strains.

Another example in which rigorous quantitative monitoring of state variable
valuesyis useful are incrementally coupled grain boundary migration / crystal plasticity
models. These typically evolve microstructures along complex transients. As such,
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any permeation of correlated numerical noise into the flux or interface migration terms
should be reduced as best as possible to keep rigorously controlled conditions, physical
accuracy, and precision.

Knowledge in the discrete dislocation dynamics community teaches as™ that
uncontrolled stress spikes should better remain numerically controlled, fominstance
by supplementing the integration with some time trajectory before “making choices
[101,102]. For these future challenges the work delivers an approach based omwhich to
build further tools for assessing the numerical and physical quality of such predictions.

4.3. Comparing computational efficiency

Strong scaling multithreading performance Figure 7 summarizes wallk¢lock timings to
document the tools’ strong scaling efficient multithreading capabilities. Furthermore,
the figure documents key computing time contributions for all,combinations of above
post-processing methods applied to the same data, uging the ‘same computer, and
exclusive execution. The left column of each method egelummypair shows the sequential
execution time. The results identify that SDF, in combination with either of the two
grain reconstruction methods, is the least costly combination. Results for a single
strain step and sequential execution are available after 2h approximately. Given the
capability to identify normal distances is another argument to choose the SDF method
over disorientation based distancing.

Figure 7 documents that all methods eoncentrate at least 87.5% to 99.3% of the
total execution time in at most three algorithmic code sections. For the disorientation
based distancing these steps are the queryingéfneighboring points and computing point-
to-point disorientation angles. For the sighed distancing method it is the identification
of periodic images, volume rediseretization, and the remapping of every voxel to a closest
unique material point. For tessellation based distancing the evaluation of the projected
normal distances for each material point demands contour facet querying.

In this work, all thesé most costly steps are parallelizable. Thus, specific care was
taken to implement them'in parallel. In addition, data placement was orchestrated such
that GB-sized data chiinks weresplaced close in the memory of the executing core taking
into account the memory hierarchy of the cluster computer.

In effect, this speeds up the execution of every method combination by 13.6 to
24.4 times the sequential ‘baseline. With 40 OpenMP threads required to achieve this,
a strong scaling efficiency between 61 % to 34 % is documented. The main obstacle
to achieve higher efficieney in this study was load imbalance. Such was strongest for
the tessellation (WVOR) method because grains were distributed to the threads statically
in round-robin fashion. When building tessellations, however, the grain size critically
affegtShowmany facets the contour hull contains; and thus how dissimilar the distancing
costs are for different grains. In light of this, the distributing of only 500 grains across 40
threads will equip each thread with possibly too few grains to compensate for the large
variety of grain sizes. In effect, the cost and facet count in the contour hull processing
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Figure 7: Key results from benchmarking all three mmethoels in combination with both
grain reconstruction protocols using the,same strain step (€,5;7 = 0.21) and the same
cluster computer. The numbers above the right celumn of each column pair denote
the respective speedup achieved when executing in parallel for the most costly method
specific processing step. Abbreviations, identify the disorientation based (DIS), the
signed distance/voxelization based (SDE), andthe tessellation based distancing (VOR).
Grain reconstruction was based either onthe initial assignment (i.e. texture ID based
TEX) or graph clustering (LOU). Sequential execution is compared with multithreaded
execution. Analyses using the'LOU method have a different sequential bottleneck than
when using TEX (indicated €.y for DIS/LOU, 40 by the green column portion): the,
in this work not parallelized, gommunity detection stage.

stage differs.

A possible improvement for the future is to change the implementation and employ
dynamic work seheduling via for instance OpenMP tasking. This, though, demands a
compromise:sthe eurrént round-robin distributing procedure allows to place the grains
in controlled memory loeasions [84]. Dynamic scheduling, in turn, will likely keep the
cores more‘frequently busy but at the cost of typically more memory traffic.

Another potential improvement of this work, with immediate practical benefit, is
to parallelize also the graph clustering algorithm for which CPU- and GPU-parallelized
communityidetection solvers have been developed in the past [103-106].

The pesults document additional practical improvements in which the present
work advances the field: the first is improved speed, when compared to hitherto
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reported values for DAMASK post-processing [38]. This was achieved with sequential
optimization of the file accessing strategy surplus employing parallelized 1/O to cut IO
costs by at least an order of magnitude.

As an additional strategy to improve sequential performance, state of the arf linear
algebra libraries were used to compute point-wise tensor quantities. Such improvement
is of practical use not only for executing numerics within DAMASK when solving _an
RVE but also for post-processing flow curves. As the second improvement,ithis work
details how to combine these strategies with multithreaded executiom surplus trivial
data parallel processing of strain steps on multiple nodes of a clustezsgomputer.

Having the possibility to construct contour hulls to each grain in the deformed
configuration is the third improvement. On the one hand becauserit allows to quantify
a volume for each grain not only by counting the number of material points it contains
but by accumulating the volume of its supporting Voronoi aélls."The resulting polygon
mesh allows for volumetric rendering of the grain as a polyhedrent, as exemplified in
Fig. 1b. These may be useful to allow further analyseshyusing lother microstructure
characterization tools like DREAMS3D [53] or QUBE/52].

Hybrid execution performance During hybrid exéettiomevery MPI process evaluates a
different strain step and spawns an own group 6f thfeadsr Data are read independently
from a priori known sections of the DAMASK results file. In effect, this enabled to
evaluate all 28 strain steps at once using, 1120 cores. Figure 8 summarizes the key
results for this hybrid execution mode. Specifically, two sets of common analysis cases
were probed: a flow curve extraction Wersus amalyses of aforementioned state variable
values to boundary distance correlationgysix of them in total.

There are two key findingsief practical importance. First, hybrid processing enables
to cut wall clock time by an additional order of magnitude. In effect, the evaluation of
a flow curve, which took damaskpdt 3.2h sequentially, was solvable in 76 s when using
parallelism. Similarly, distameing, results for all strain steps were analyzed after 1.5h
when using tessellation (VOR), the most costly method. Distances were even faster
accessible, namely in §minyusing the signed distance method.

The practical benefit of these findings is put in perspective by the following
observation. While thesSDEfmethod was already finished for the entire ensemble, the
classical DAMASK post-processing routines had not even completed the processing of
the flow curvedor the fizst strain step.

The se¢ond key dinding is that parallel performance gains are limited. Respective
arguments.for{ the anultithreaded analyses were already identified (Fig. 7). Not
parallelizing ally post-processing computational steps is another apparent reason for
limited ‘sealability [107]. The most significant obstacle to cut execution time further,
though, are microstructure-induced differences. Specifically, differences which are caused
by interface networks with dissimilar shape and distribution of facet area across the
strain stép ensemble. Consequently, the individual algorithms show different solving
time,resulting in workload differences across the strain step ensemble.
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Figure 8: Key results from benchmarking all three methods in cembination with both
grain reconstruction protocols on the entire strain stepsensembles Different computing
costs are quantified via the wall clock time. The résults‘identify that the amount of
computational work is different across the strain stepiensemble. Taking the first strain
step as the reference, relative complexities were establisbed through monitoring e.g.
how many voxel were processed for the ensemble of grain bounding boxes and how
many Voronoi facet polygon inclusion andiedge comparison tests were required to find
the closest distances.

Two observations are important toadd here. First, these inter strain step work load
differences would remain evemyif the multithreaded execution of each strain step gets
better work load partitioned. Secomd, it is in fact the successive reduction of the relative
numerical complexity for a strain step with increasing strain which limits primarily the
hybrid performance of MPlgpatallelization. Provided there were more strain steps to
process very likely even fmor€e precesses could be employed. This is one of the key
advantages to our true seientific/computing performance solution for post-processing
DAMASK simulations.

One exampleds wisiblerfor signed distance based distancing. Given that the RVE
shape change results in a'moderate increase in the total bounding box volume, more
voxel have togbe probed for the higher than the lower strain steps. Another, by
far stronger; example for, microstructure induced work load imbalances is visible for
tessellation based distancing (Fig. 8).

When using the strongly penalized grain reconstruction, more grains are detected
at higher strains. Therefore, also more boundary area is generated on average, as
a gonsequenee of which the material points lay closer to a boundary, providing for
faster distancing operations. In addition also different contour hull shape and facet
compositions are generated. This modifies the composition of the individual bounded
volue hierarchies, and thus their individual response and pruning effectiveness during
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querying them.

It is useful to compare the computational costs of post-processing to the actmal
simulation costs. The DAMASK deformation simulation occupied 36 cores for 354h
wall clock time, i.e. 12744 core hours were spent in total. The post-processing of the
entire strain step ensemble using the most costly distancing method kept 1420 cores
busy for 4822s wall clock time, i.e. 1500 core hours in total, or at most 11.8 % of.the
simulation costs.

Lastly, the memory consumption of the simulation and post-precessing ‘should
be reported. DAMASK allocated a total of 230 GB virtual memery, 1. 14.3kB
per material point. Post-processing demands less virtual memory per pfocess when
evaluating the flow curve only (21 GB). However, virtual memery eonsumption peaks
at 134 GB for the most costly strain step and using the VOR/LOU. distancing method.
One reason for the larger memory consumption are the stérage demands for position
values for a portion of the 26 periodic images to all material points.  Another reason is
that Voronoi polyhedra and their facets have to be storedafor tessellation based grain
reconstruction.

Another contribution is due to the conservativesstrategy we used to implement the
querying structures. This could be optimized in ghefuture with potential for a memory

footprint reduction of at least a factor two. y

5. Conclusions

A set of strong and weak scaling postsprocessing methods were developed to quantify
the accumulation of state variable values at grain boundaries in 3D full-field spectral
method crystal plasticity simulations. Exemplified for the DAMASK spectral solver and
a phenomenological constitutive erystal plasticity model the results substantiate:

e Voxel accurate methods were developed which reconstruct successfully the grain
boundaries and operate om acrbitrarily deformed and periodically confined RVE
domains with respeet o the deformed configuration. This allows for direct
comparison togexperiments{and rigorous numerical assessment of the spectral
method.

e Long range gradients of material point disorientation, with higher values to the
boundary than in the grain interior, were quantified. They are a signature of
incipient' grain fragmentation.

e As an altérnative meéthod to capture the individual fragments, also a graph
clugbering grain reconstruction method was assessed. Compared to the classical
method of assigning grain IDs based on the initial conditions, though, the
quantifieation of the gradients is very parameter dependent.

e Three methods were detailed to quantify the distance of a material point to the
boundary.
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e All performance critical computational tasks were implemented distributed and
shared memory parallel. Therewith, processing the entire set of 28 straingsteps
from a 256 RVE cube DAMASK simulation, worth 162 GB, was possible in470.s
wall clock time using 28 processes each spawning 40 threads. Compared to exelusive
multithreaded (11063s) or sequential execution (150000s), this hybridgapproach
allowed for 320 times faster post-processing. The efficiency could be impreved
further if heterogeneous work load across the individual strain step.datay, whichis
method dependent, gets better balanced and remaining sequential code pettions
parallelized.

Data and code availability
~

The source code of the tool and its supplementary MATLAB gcripts with which we post-
processed all results are open source software. They are publiely, aecessible [108]. All
DAMASK and post-processing parameter settings files; including the SLURM batch
system submission scripts are available for download [109].““Fhe entire repository of
compressed post-processed data occupies 844 GB. It is available from the authors upon

serious request.
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Appendices

A. Detailed spécification of the post-processing workflow

Algorithmic“details In what follows, the individual steps of the post-processing
workflow are detailed. For all steps with a larger than linear time complexity
O(N,NygN, := N), additional details are commented. In every step, N denotes the
total.number of unique material points supporting the RVE. Indices n specify the strain
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step. Three point cloud sets are distinguished: the first contains the N unique material
1

points of the original domain P° € R3. The second, P%™¢ | contains P surp
periodic images of P? which lay inside a cuboidal bounding box about a cuboidal
bounding box to P° . The outer bounding box is fattened by € = 0.1 in leng

of the initial RVE domain. The third point cloud set, P, contains N} poing
members of PY surplus all their 26 periodic copies. The members i of the”

ensemble P? have positions P?,n which are defined by their initial locati
0

in the reference configuration [38, 44] 27, surplus a deformation-indu
which maps into the deformed configuration in the laboratory coordin
Every material point has associated state variable values s; ,,. In adg
and periodic image variant ID is stored to track which periodic i
to which unique material point of P? . This allows dereferenci

sin rather than duplicating them. IMKL specifies in which e Iatel Math Kernel

Library is used.
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Algorithm 1 Post-processing workflow

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:

25:
26:

27:
28:

29:

procedure DAMASKPDT
I/O parse parameter and initialize MPI
I/O parse spectralOut file layout to identify content
Partition NV, strain increments round robin on MPI processes
for ¢, «+ 1, N,, do

Process parallelized MPI I/O spectralOut file reading

> State variable values s;,, per poitrx, Fy, Fp, P, q
Spatial distributing of material point cloud to OpenMP thteads
Threaded stresses and strains Vi € P? via IMKl4
RVE averaging F, P, 51, €t
Threaded displacements Az, via IMKL > O(Nlog(N))
Compute periodic images PY+¢
Build a spatial index B%*¢ that partitions P2
Threaded grain reconstruction

~

if Initial assignment / texture ID bésed then
RECONSTRUCT _GRAINSATEXTUREID (see B)

if Community detection based then
RECONSTRUCT_GRAINS LOUVAIN (see B)

GRAIN_GEOMETRY_SIMPLIFICATION (see B)
Threaded state variable/distance to boundary quantification

if Disorientation thresholdingsbased scalar distances then
ANALYZE_DIS (see @)

if Signed distaneey/ voxelization based normal distances then
ANALYZE. SDF (see C)

if Tessellation l{ased contour hull normal distances then
ANALYZEC VOR' (see D)

MPL parallel 1/O binary results (d, o, q),;,,V voxel or i

MPIaggregate flow curve data (e,nr, owar),,

[/O flow curye, internal profiling results, finalize MPI and exit

B. Detailed specification of the grain reconstruction methods

Texture ID baséd grain reconstruction 7T; specifies the initial texture ID assigned during
microstfucture synthesis DAMASK [38, 44].
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4

5

6 Algorithm 2 Texture based grain reconstruction

: I: procedure RECONSTRUCT GRAINS TEXTUREID

9 2: for 1< 1, N do

1(1) 3: Assign point ¢ a grain ID G;,, :=T;

12

13 Graph clustering based grain reconstruction N,,, specifies the number offexecuted node
1;’ relabeling operations in the current iteration step, ¢ the Newman-Girvan modularity
16 [58] using a critical quality value of Q. = 0.01. K, specifies the penalizationystrength,
17 i.e. whether a weak K = 75 or a strong K = 1000 penalization{was uséd. ||[ginl,|l
13 denotes the rotation angle argument of the disorientation quaterfiion. rLhe search radius
20 during graph edge construction was chosen as RY = ﬁ distance units.

21

;g Algorithm 3 Louvain community based grain reconstruction

24 1: procedure RECONSTRUCT__GRAINS_ LOUVAIN

;2 2 for i +— 1, N do

>7 3 Find all neighboring points p;,, € P2 [llin — zjnl < RY}

28 4 Compute disorientation angle [g; )4 3

;g 5: Compute edge weights w; j, = exp(Kr, £(]|[diynloll — 1))

31 6 Add one graph edge with weighthw; ;,, fomevery position pair p; ,, pjn

32 7 do

gi 8 Iterative graph clusteringpaccording to [59-61, 110]

35 9: while N,,, > 0 and @ > Q.

36 10: for i <+ 1, N do

;; 11: Assign ¢ the final labelof the top-level community as grain 1D

39

2(1) Grain geometry simplification, QN L, and Nj . respectively are the number of material
42 points supporting the k#th grain. in P? and P! respectively. Ay, specifies a tight
43 axis-aligned bounding, bex{about the positions N ,in A, is the tight cuboidal
2: global bounding box which“eontains all Aj,. In this work a cell size of half the
46 normalized initial smaterialypoint point-to-point distance was used, i.e. dey = ﬁ.
47

48

49

50

51

52

53

54

55

56

57

58

59
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Algorithm 4 Threaded extraction of a single periodic image per grain
1: procedure GRAIN GEOMETRY SIMPLIFICATION
2:  Re-organize members of P into disjoint sub-sets P}, per grain k ¥ n
what follows, multithreaded processing V£ grains
3: Threaded memory initialization
4: Threaded periodic images P,;n and bounding boxes Ay,
5: Threaded building of sparse spatial index By, via B},
6: Threaded merging of possible grain fragments via DBScan [62] >
O(Nilog(Ny)) )
7 Threaded picking of one representative per grain Ay,
8: Identify global bounding box A4, enclosing all flkn .
9: Define a global voxelization £,, of volume A,, with cellsize d..j
10: Fuse members of By, , into one global spatial index B},
C. Detailed specification of the distancing methods
Disorientation based distancing A disorientatiempangle of ©, = 15° was used for

thresholding. L

Algorithm 5 Disorientation thresholding based scalar distances

procedure ANALYZE DIS
for 7 < 1, N do > Multithreaded, dynamic scheduling
Find all N; neighbors p) ™ @PI | {x; 5 — @ nll < R}
| > O(N;log(N;))

1:

2

3

4 Sort by distances dpj, = ||Tin DTjn
5: for j <1, N, do

6 Compute disorientation angle ©; ; ,,
7 if ©;;, > Ogathen

8 Report/(d; 4, Simn)

9

break . . .
> ignore ¢ if no pair found

Signed distance [/ wvozelization based normal distances Abbreviations denote a
signed distance function (SDF) and the fast sweeping method (FSM) [65, 69].

Algorithm'6 _Signed distance / voxelization based normal distances

procedure ANALYZE_SDF
2: Threaded voxelizing of k according to L,,, dey using B
Specifically, V voxel € B,;n identify closest member of P?
45 Threaded initialization of SDF @ ,,(x)o
Thireaded spreading of SDF via FSM &y ,,(2); as in [65]
6: Threaded report (@, (), 8j,n) V voxel with @, (z) >0
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D. Tessellation based contour hull normal distances

.»Zl;m specifies an axis-aligned bounding box about the identified single periodic Tmage
3

of grain k. The box is fattened by a guard zone of thickness 5z of the normalized
initial material point-to-point distance. The fattening assures that the volume about
each material point belonging to the grain k£ can be tessellated and no Voronoi cell gets
arbitrarily cut off by the bounding box walls. The query structure of the Vore++ library
was configured to include five points per spatial bin on average. For each grain Kiinterior
points are distinguished from exterior points with respect to their logical identity when
building the exterior contour hull of the grain. Specifically, interiox points ipreriginate
from a material point in P? with grain ID k. BVH is short for bounded volume hierarchy.
N ]’f denotes the number of exterior facets identified for each grain k. AA’; is the number
of interior points per grain k. Exterior facets to a Voronoi ‘eell’of an interior point

are all facets to the first order neighboring cells of an exteriorypointgif any such exist.

Algorithm 7 Tessellation based contour hull normal distanees

procedure ANALYZE_ VOR > VEk
: Threaded pulling of all points Ay, from BX
Threaded mapping periodic image point'to uniquegmaterial point
Threaded Voro++ build spatial index to ag¢celerate tessellator

Threaded Voro++ exterior facets, eonsistent outer unit normal
procedure IDENTIFY_ NORMAL, DISTANCES
Threaded construction of‘@aBVHSwith all facet polygons

1:
2
3
4
5: Threaded Voro++ tessellate all Voronoi cellssfor points
6
7
8
9 for ip 1, N}, do

10: Pool all nf facetsif.of the contour as initial candidates

11: while f < nf do

12: Normal projeetion interior point z;, on facet plane :cgmj

13: if 2p0; cover?d by facet polygon = false then

14: forle<41, N/ do > Circulate facet edges e of f
15: Normal projection z;, on e

16: if z75,; on the edge = true then

17: Eventually update current shortest distance

18: Eventually re-query facet candidate pool

19: for.v < 1, N/ do > Circulate facet vertices v of f
20: Compute distance diy, o, = ||Tin — ||

21: Eventually update current shortest distance

22: Eventually re-query facet candidate pool

23 else

24 Eventually update current shortest distance

25: Eventually re-query facet candidate pool

26: Threaded report value pairs (dip,., Sip,n) Vip
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