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ScienceDirect
Rare genetic variants that disrupt speech development provide

entry points for deciphering the neurobiological foundations of

key human capacities. The value of this approach is illustrated

by FOXP2, a transcription factor gene that was implicated in

speech apraxia, and subsequently investigated using human

cell-based systems and animal models. Advances in next-

generation sequencing, coupled to de novo paradigms,

facilitated discovery of etiological variants in additional genes in

speech disorder cohorts. As for other neurodevelopmental

syndromes, gene-driven studies show blurring of boundaries

between diagnostic categories, with some risk genes shared

across speech disorders, intellectual disability and autism.

Convergent evidence hints at involvement of regulatory genes

co-expressed in early human brain development, suggesting

that etiological pathways could be amenable for investigation in

emerging neural models such as cerebral organoids.
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Introduction
Following decades of speculation over genetic

contributions to distinctive human communication skills,

advances in molecular methods enabled scientists to

begin identifying critical genomic factors [1]. Much

research so far focused on linkage mapping and associa-

tion screening of developmental speech and language

impairments, revealing that while such disorders have a

complex genetic architecture, a significant subset of cases

involve rare high-penetrance variants disrupting single

genes [2]. Here, we discuss the importance of rare variants

as entry points for studying neurobiological pathways,
www.sciencedirect.com 
describe how next-generation sequencing and gene-

driven studies are transforming this field, and argue that

emerging cell-based models of human brain development

will be crucial for a fuller understanding of how gene

disruptions yield speech disorders.

Molecular perspectives on speech - the
example of FOXP2
FOXP2 was the first gene for which rare variants could be

implicated in a monogenic speech disorder (primarily

characterized by childhood apraxia of speech; CAS;

Table 1). Since the initial report describing a causative

point mutation in a multigenerational family, as well as a

translocation disturbing the gene in an independent case

[3], different genetic disruptions of FOXP2 have been

identified in multiple cases of speech/language disorder,

both inherited and de novo [4,5]. The discovery of FOXP2
led to an array of studies of its functions in the brain

(Figure 1) [2,5].

FOXP2 encodes a transcription factor with a high degree

of evolutionary conservation (both for protein sequences

and neural expression patterns), facilitating functional

analyses in animal models [6]. Conditional knockout

and targeted knockdown/overexpression strategies in

mice and birds are being used to dissect roles of FoxP2

in different parts of the brain (Figure 1). Studies of mouse

models build on a well-established genetic toolkit, as well

as rich literature on brain development, and can therefore

teach us about gene function for conserved molecular

mechanisms and behaviors. Mice are known to produce

sequences of ultrasonic vocalizations, but their abilities to

learn these appear limited, and the relevance of such

behaviors for gaining insights into biology of human

speech is much debated [7]. In contrast, although birds

are more distantly related to humans than are mice, some

species of songbird have sophisticated skills for auditory-

guided vocal learning, which involves integration of audi-

tory processing and motor learning, showing parallels to

processes underlying speech. Moreover, there is evidence

that birdsong and speech are coded in somewhat analo-

gous brain circuitries [8].

Recent work in murine and avian models has largely

(though not exclusively) centered on neuronal subpopu-

lations of the cortex, striatum and cerebellum, three key

sites where the gene is expressed [9��], which have been

independently highlighted by neuroimaging of humans

with FOXP2-related speech disorder [10,11]. Although it

is an established marker of deep cortical layers, selective

Foxp2 deletion from the developing mouse cortex does

not disturb lamination [12,13]. Even so, mice lacking
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Table 1

Brief description of the main neurodevelopmental disorders

mentioned in this review

Disorder Description

Childhood apraxia of

speech (CAS)

Developmental deficits in speech motor

planning and programming. Diagnostic

symptoms include inconsistent speech

errors, difficulties in speech sequencing

that worsen with increased complexity of

the utterance, and disrupted rhythm and

intonation. Also known as developmental

verbal dyspraxia (DVD).

Stuttering Speech fluency disorder that involves

interruptions in the flow of speaking,

characterized by involuntary repetitions (of

individual sounds, syllables, words, or

phrases), sound prolongations, blocks,

interjections, and revisions.

Developmental language

disorder (DLD)

Delayed or impaired acquisition and use of

language in the absence of a clear

biomedical cause, with a poor prognosis

and interfering with daily life (according to

CATALISE-2 definition from 2017 [33]).

Before CATALISE-2 study, other terms

were commonly used to classify these

kinds of problems, in particular Specific

Language Impairment (SLI).

Intellectual disability (ID) Heterogeneous group of disorders

involving general cognitive impairments

that significantly affect both intellectual

(learning, problem solving, judgement) and

adaptive functioning (communication,

independent living).

Autism spectrum

disorder (ASD)

Range of developmental conditions

characterized by impaired skills for

communication/interaction with others,

and restricted interests and repetitive

behaviors, impacting on the ability to

function in every-day life contexts (school,

work etc.)
cortical Foxp2 show abnormalities in tests of social behav-

ior and cognitive flexibility [13,14]. Single-cell transcrip-

tomics in cortical-specific mouse knockouts suggests that

the gene contributes to development and function of

dopamine-receptor expressing neurons [13].

Within the rodent striatum, Foxp2 is predominantly

expressed in D1-receptor-positive medium spiny neurons;

studies of global heterozygous knockout mice revealed

effects on inhibitory presynaptic strength of these cells,

implicating the gene in excitation/inhibition balance of

pathways underlying motor-skill learning [15]. Striatal-

specific Foxp2 knockouts show increased variability in

skilled motor behaviors, assessed via operant lever-pressing

tasks [9��]. Viral-based manipulations (knockdown versus

overexpression) of this brain region in adult mice demon-

strate post-developmental roles of Foxp2 in regulating cor-

ticostriatal synapse functions and associated behaviors [16].

Moreover, knockdown/overexpression experiments target-

ing Area X (a striatal nucleus involved in vocal production
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learning of male zebra finches) underline the importance of

this gene for learning of song by juvenile birds [17��], and its

maintenance in adulthood [18]. Regarding cerebellar func-

tions, mice with Purkinje-cell specific knockouts of Foxp2
display slower sequencing in lever-pressing tasks, and

reduced performance on tests of skilled locomotion. In vivo
electrophysiology indicates that Foxp2-deficient Purkinje

cellshaveincreased intrinsicexcitability, andshowabnormal

firing properties during limb movement [9��].

According to the latest human cell-based studies

(Figure 1), FOXP2 is part of a broader interacting network

of brain-expressed transcription factors [19�], promoting

pathways for neuronal maturation via chromosomal remo-

deling, while repressing genes that would maintain a

neural progenitor state [20�]. Of the molecules known

to be regulated by and/or interact with FOXP2, many are

themselves associated with brain-related disorders

[19�,20�]. Therefore, the FOXP2 interactome could pro-

vide useful inroads for defining and characterizing neuro-

biological pathways involved in speech development. An

example is the close paralogue FOXP1, which is co-

expressed with FOXP2 in a subset of brain structures,

where the transcription factors can heterodimerize to

potentially co-regulate targets. Rare variants disrupting

human FOXP1 cause a phenotype that is broader and

more severe than FOXP2-related disorder, including fea-

tures of autism and/or intellectual disability (ID) [21].

Human cell-based analyses of an etiological missense

variant in the DNA-binding domain of FOXP1, equiva-

lent to the most studied mutation of FOXP2, showed

comparable functional effects, suggesting that it is the

differences in neural expression patterns of the two

paralogues that account for distinctive phenotypes of

the associated disorders [22].

Taken together, these molecular studies uncover distinct

roles for FOXP2 in different brain regions that implicate the

gene in development and function of cortico-striatal and

cortico-cerebellar circuitries [9��,10–16,17��,18,19�,20�],
converging with identification of subtle cortical, striatal

and cerebellar abnormalities in patients with FOXP2 dis-

ruptions [10,11]. For example, integrating data from differ-

ent model systems, a recurrent finding is that striatal FoxP2

helps modulate neuronal plasticity involved in complex

motor skills of various kinds (locomotor behaviors, manual

skills and/or vocalizations) [9��,15,16], consistent with cell-

based studies showing roles of this transcription factor in

neuronal differentiation and maturation [20�]. Hence, the

development, plasticity and maturation of the relevant

circuits may be crucial for proficient speech, not only during

early development [9��,15,17��], but also at post-develop-

mental stages [16,18]. Of note, FoxP2 is also expressed in

other brain structures where its roles have been less well

studied, including the thalamus [23] and amygdala [24].

Moreover, the demonstration that this transcription

factor belongs within a strongly interconnected network
www.sciencedirect.com
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Figure 1
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Multiple approaches for studying the role of FOXP2 in the brain.
of brain-expressed regulatory proteins [19�] underscores

the complexity of pathways underlying human speech,

emphasizing that we can only reach a better understanding

by taking other genes into account.

With links to human speech disorder, and high conser-

vation throughout the animal kingdom, FOXP2 has also

received attention from the field of evolutionary biology.

One prominent focus has been on two amino-acid sub-

stitutions which occurred on the human lineage after

splitting from the chimpanzee, and which are reported to

affect striatal-dependent neurophysiology and behaviors

when introduced into transgenic mice [25]. However,

initial evidence of positive selection acting on intronic

regulatory sequences of FOXP2 in recent hominin evo-

lution [26] was not supported by subsequent systematic

next-generation sequencing of global populations [27].

The details are beyond the scope of the current article,

but are discussed further elsewhere (e.g. Ref. [28]).

Genomic screening of disorder cohorts
identifies novel risk variants
As illustrated by FOXP2, initial insights into the roles of rare

DNA variants in developmental speech disorders came

from analyses of pedigrees with multiple affected relatives

across successive generations [3]. In another example of

this strategy, genetic mapping in families with multiple

cases of persistent stuttering (Table 1) has implicated
www.sciencedirect.com 
variants in genes involved in intracellular trafficking [29]

followed up further using animal models [30].

The past decade has seen emergence of another way to

identify high-penetrance variants disrupting human brain

development, relying not on multiplex pedigrees, but instead

based around affected probands with a normal family history.

Large-scale genomic screening revealed that de novo muta-

tions (disruptive DNA variants found in an affected child, but

absent from unaffected parents) account for a substantive

proportion of cases of severe undiagnosed developmental

disorders, ID, and autism spectrum disorders (ASD), among

other major human disease phenotypes [31,32]. For speech/

language traits, progress has lagged behind, in part because

challenges for disorder ascertainment and diagnosis have

precluded systematic recruitment of large well-phenotyped

cohorts [2]. Lack of consistency in criteria for detecting and

classifying childhood language disorders led to establishment

of a special initiative, CATALISE, in which experts worked

toward consensus for the field [33]. However, issues continue

to be debated by some researchers/practitioners, for example

over relevance of information on general cognitive perfor-

mance when diagnosing language difficulties. For disorders

severely affecting speech production, like CAS, best-practice

diagnosticguidelines are available fromprofessional societies,

like the American Speech-Language Hearing Association

(e.g. https://www.asha.org/Practice-Portal/Clinical-Topics/

Childhood-Apraxia-of-Speech/) but there remains consider-

able variation in how such terms are applied in practice, both
Current Opinion in Genetics & Development 2020, 65:103–111
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clinically and for research. Identification of rare causal DNA

variants could also be enhanced incorporating data from

quantitative phenotyping, as has proved effective for other

developmental disorders [34].

So far, a handful of phenotype-driven genome-screening

studies reported rare variants in speech/language disorder

cohorts, including developmental language disorder

(DLD, previously often referred to as SLI) and CAS

(Table 1; Figure 2). With modest sample sizes, the

number of causal variants identified is small. For exam-

ple, the SLI consortium performed whole exome

sequencing (WES) in 43 unrelated DLD probands from

the UK, identifying a de novo missense variant in GRIN2A,
inherited co-segregating stop-gain variants in OXR1 and

MUC6, and putative pathogenic variants in a few other

genes, including SRPX2 and ERC1, previously implicated

in speech-related disorders [35]. WES was applied only to

probands, not parents; testing for de novo/inherited status

was performed post-hoc using Sanger sequencing. An

earlier study of this cohort used SNP-array data to inves-

tigate copy number variants (CNVs) in 127 cases,

385 first-degree relatives and 269 population controls.

DLD cases carried more CNVs than controls, and the

CNVs were of higher average size, but this overall

increased burden was mainly driven by common events

[36]. Subsequent array-based analyses of 58 severe DLD
Figure 2
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probands, 159 relatives and 76 controls, from Sweden,

found that rare CNVs tended to be larger in probands, and

that (both for probands and siblings) more coding genes

were affected [37�]. 4.8% of cases (2 of 42 tested) carried

de novo CNVs, and 6.9% (4 of 58) had clinically significant

rearrangements [37�], including two cases of 16p11.2

deletion, a CNV originally identified in ASD, which

has since been linked to speech/language deficits [38].

The first whole genome sequencing (WGS) study of a speech

disorder investigated nineteen probands from the USA with a

primary diagnosis of CAS [39��]. For nine probands, WGS

could also be carried out for unaffected parents, leading to

identification of de novo single-nucleotide variants disrupting

CHD3, SETD1A and WDR5 in three cases. In the other ten

probands (for whom parental DNA was unavailable) novel

loss-of-function variants were found in KAT6A, SETBP1,
ZFHX4, TNRC6B and MKL2. Through analyses of Brainspan

RNA-sequencing data these CAS-related genes were found

to belong to a co-expression module with high expression

during early human brain development (Figure 2) [39��].
More recently, WES and WGS in 34 Australian probands

ascertained for CAS identified twelve rare high-confidence

etiological variants, nine of which were de novo [40��]. In co-

expression analyses using Brainspan, the ten genes

highlightedinthis laterstudy(DDX3X,EBF3,GNB1,MEIS2,
SETBP1, UPF2, ZNF142, GNAO1, CDK13, POGZ) showed
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strong overlap with the early brain-expressed gene network

from the earlier WGS study of CAS, consistent with a shared

pathway [39��,40��].

Insights from gene-driven studies
Genome screening of CAS/DLD cohorts uncover novel

genetic disruptions linked to speech disorders, but

initial evidence implicating a particular gene may come

from one or perhaps a few index cases. Such findings are

followed-up with a gene-first approach, using informa-

tion-sharing across global networks of clinical geneti-

cists to identify independent high-risk variants in that

gene, ideally regardless of routes used for proband

recruitment. These efforts increase understanding of

the consequences of gene disruption, evaluating variant

pathogenicity through in silico analyses and lab-based

experiments (e.g. in cellular models), and gathering

data on phenotypic profiles observed in people who

carry them (Figure 2).

Often when a mutation is found in an index case with a

speech disorder, analyses of additional etiological var-

iants through gene-driven studies reveal a variable spec-

trum of phenotypic consequences in different individu-

als, including those with more severe impairments

affecting multiple cognitive domains, evidence of both

heterogeneity and pleiotropy (Table 2). For instance,

following identification of a de novo microdeletion span-

ning BCL11A in a child with severe speech impairments

and mild intellectual delays [41], heterozygous missense,

nonsense, and frameshift variants were shown to cause a

distinct syndrome involving ID (mild to severe; most

cases showing moderate dysfunction) and global devel-

opmental delays, with persistence of hemoglobin repre-

senting a non-neural biomarker [42]. More recently, a de
novo missense variant of POU3F3 in a child with severe

developmental speech/language disorder, ASD, and

mild ID, led to a gene-driven study of 19 mutation cases,

who showed a wide range of functioning, most having

borderline-to-moderate levels of ID and/or developmen-

tal delays [43]. All had delayed expressive language, and

almost all had received speech therapy; oral motor pro-

blems, word-finding difficulties, and social communica-

tion issues were common.

Variants uncovered in WGS/WES screens of CAS cohorts

[39��,40��] have facilitated subsequent gene-driven stud-

ies defining novel syndromes that were not previously

described. Identification of a missense variant disrupting

the helicase domain of CHD3 in a proband from the first

WGS screen of CAS [39��] led researchers to gather

34 other individuals with de novo variants in the gene;

overlapping features included global developmental

delay and/or ID, with many showing macrocephaly and

a distinctive facial phenotype [44]. Speech/language pro-

blems were common, but occurred against a wide back-

ground of levels of general cognitive dysfunction, without
www.sciencedirect.com 
an obvious relationship between the specific mutation

and severity.

Next-generation sequencing of CAS cohorts also iden-

tified variants in genes already investigated in earlier

gene-driven studies, for which loss-of-function variants

had been linked to an array of neurodevelopmental

disorders, such as SETD1A [45]. Etiological variants

found in probands ascertained for CAS thus expand

the phenotypic spectrum associated with several known

neurodevelopmental disorder genes. These observa-

tions are in line with a broad consensus that single-

gene disorders often show variable co-occurrence of

diverse neurodevelopmental features, and that pleiot-

ropy is a major theme, with the same gene being

implicated across multiple different syndromes, in ways

that are not yet fully understood [46]. Curiously,

FOXP2 appears to stand out somewhat; while new cases

have expanded the profile of deficits and range of

severity associated with rare disruptions [4,5], dispro-

portionate effects on speech and language skills are

consistently noted. We argue that valuable insights

about speech neurobiology can be gleaned from an

integrated approach — one that not only focuses on

the most specific cases of disorder, but also considers

data from genes linked to distinct speech phenotype

profiles in only a subset of the affected people, and/or

genes in shared neuromolecular pathways. Table 2

gives selected examples from the literature, with expla-

nations of why each gene could be of interest, including

evidence of known interactions with FOXP transcrip-

tion factors [3,21,22,35,39��,40��,41,43,44,45,47–57].

Effects of speech-related regulatory genes on
early brain development
The number of genes implicated in developmental

speech disorders is still too low for comprehensive

enrichment analysis, but it is intriguing that unbiased

screening of CAS cohorts converged on regulatory genes

co-expressed during early brain development [39��,40��],
with transcription factors and chromatin remodelers

being prominent in gene-driven studies in this area

[42–45,50,53]. Moreover, proteomic analyses of FOXP

transcription factors identified protein-protein interac-

tions with other brain-expressed regulatory molecules

linked to neurodevelopmental diseases [19�]. Involve-

ment of regulatory genes is a common theme in etiology

of brain-related disorders, including ID [58], and experi-

mental studies show that chromatin remodeling is crucial

for differentiation and maturation of the developing

brain [59–61]. So far, searches for rare gene disruptions

underlying speech disorders have mainly focused on

protein-coding variants, but the field could benefit from

newly emerging deep-learning tools to help identify

potential risk variants affecting chromatin state (Deep-

SEA [62]; ExPecto [63]).
Current Opinion in Genetics & Development 2020, 65:103–111
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Table 2

Selected examples of genes that could be of interest for studying the neurobiology of human speech, including information on gene

function, phenotypes associated with gene disruption in humans, and rationale for highlighting. This is not intended as a comprehensive

list of all potentially relevant genes, but an illustration of the broader approach discussed in the text

Gene Gene function Phenotypic profile associated with gene

disruptions

Reason for highlighting

BCL11A (MIM *606557) Transcriptional regulator – BAF

complex member

ID, variable dysmorphic features

including microcephaly, persistence of

fetal hemoglobin (MIM #617101)

Gene disruption initially identified in a

case of speech-sound disorder [41]

CHD3 (MIM *602120) Chromatin remodeler – NuRD

complex member

Mild to severe ID, dysmorphic features,

macrocephaly (MIM #618205)

Index case identified in genome-wide

screening of a CAS cohort [39��,44].
CHD3 is part of the FOXP2 interactome

[47]

DDX3X (MIM *300160) DEAD-box RNA helicase – involved

in transcription, splicing, RNA

transport, and translation

Mild to severe ID, variable dysmorphic

features including microcephaly and

polymicrogyria (MIM #300958)

Disruptions well established as one

cause of ID [48]. A mutation case

recently identified in unbiased

screening of a CAS cohort [40��]
ERC1 (MIM *607127) RIM-binding protein – regulating

neurotransmitter release

CAS, ID, psychiatric phenotypes Cases of overlapping 12p13.33

microdeletions involving ERC1

identified, with variable phenotype that

includes CAS [49]

FOXP1 (MIM *605515) Transcription factor Mild to severe ID, dysmorphic features,

speech delay, ASD (MIM #613670)

Close paralogue of FOXP2, with partially

overlapping neural co-expression and

potential to form heterodimers [21,22]

FOXP2 (MIM *605317) Transcription factor CAS, developmental delay (MIM

#602081)

First gene to be implicated in a

monogenic speech disorder [3]

GATAD2B (MIM *614998) Transcriptional regulator – NuRD

complex member

ID, dysmorphic features, severe speech

delay (MIM #615074)

Clinical features of mutation cases

include CAS [50]. Interaction partner of

CHD3 [50] and FOXP proteins [51]

GRIN2A (MIM *138253) N-methyl-D-aspartate (NMDA)

receptor subunit – expressed in

excitatory synapses

Focal epilepsy with speech disorder

with or without ID (MIM #245570)

Putative risk variant identified in a DLD

cohort study [35]. Speech disruptions

described by gene-driven studies [52]

POU3F3 (MIM *602480) Transcription factor Mild to moderate ID, dysmorphic

features, impaired speech and language

acquisition (MIM #618604)

Index case identified with a severe

developmental speech/language

disorder [43]. Binds a regulatory region

of the FOXP2 locus [43]

SATB2 (MIM *608148) Transcription factor Mild to severe ID, dysmorphic features,

teeth abnormalities, severe speech

delay (MIM #612313)

Disruptions well established as one

cause of ID [53]. Gene-driven studies

have described speech deficits [54].

Part of the FOXP interactome [19�]
SCN3A (MIM *182391) Voltage-gated sodium channel

subunit – expressed in central

nervous system

Familial focal epilepsy (MIM #617935),

Infantile-onset refractory epilepsy,

polymicrogyria (MIM #617938),

prominent speech and oral motor

dysfunction

Variants identified in cases with

prominent speech problems [55]

SETBP1 (MIM *611060) DNA-binding regulatory protein Mild to severe ID with speech delay

(MIM #616078), or severe ID with

multiple congenital malformations (MIM

#269150)

Variants identified in two independent

genome-wide CAS cohort screens

[39��,40��]

SETD1A (MIM *611052) H3K4 methyl transferase – HMT

complex member

Range of neurodevelopmental

disorders including severe

developmental problems and

neuropsychiatric phenotypes, including

schizophrenia

Implicated in developmental disorder

with a broad phenotype [45]. A mutation

case identified in unbiased screening of

a CAS cohort [39��]

SLC6A8 (MIM *300036) Creatine transporter – creatine

transport into the brain and muscle

Mild to severe ID, severe speech delay,

seizures (MIM #300352)

Described in a case of mild ID with

severely affected speech [56]

UPF2 (MIM *605529) Regulating nonsense-mediated

decay – Exon Junction Complex

member

Mild to severe ID, varied speech and

language deficits

A mutation case Identified in unbiased

screening of a CAS cohort [40��].
Speech phenotypes further described in

a recent gene-driven study [57]
As shown for FOXP2, animal models and cellular assays

can increase understanding of gene (dys)function. None-

theless, for disorders disturbing human capacities like

speech, and that involve regulatory genes with impacts on
Current Opinion in Genetics & Development 2020, 65:103–111 
early brain development, it could be especially valuable

to also adopt more physiologically relevant models. Brain

organoids [64], grown in the lab from human stem cells,

display species-specific developmental programs [65] and
www.sciencedirect.com
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capture the complex cellular diversity of the developing

human cortex [66], although see [67] for important lim-

itations. Applying such methods to patient-derived cells

is illuminating pathogenic mechanisms in neurodevelop-

mental disorders, including idiopathic autism [68]. Long-

term and pre-patterned cultures can model complex

events, including neuronal activity and cellular migration

[69,70], with recent studies demonstrating neuronal net-

work formation [71,72]. Ever more sophisticated gene-

editing technologies (CRISPR and beyond) allow

researchers to insert causal variants into isogenic cell-

lines and/or repair mutations in patient-derived tissue,

while single-cell transcriptomics facilitates systematic

analyses of molecular and cellular consequences. Appli-

cation of this powerful new tool-kit to rare variants

implicated in developmental speech disorders could shed

light on fundamental neurogenetic pathways underlying

unique aspects of human biology.
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