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EVALUATION OF MERCIER'S CRITERION 

IN 3D HELIAC EQUILIBRIA 

R. GroSmann, F. H~irnegger. J. NGhrenberg 
Max-Planck-Institut fUr Plasmaphysik 
EURATOM Association, D-8046 Garching 

Helically symmetric equilibria with strong .Q, .. 1 helical curvature and bean
shaped cross-section have attracted attention for a l ong time / 1/ because 
of their conjectured good finite-S MHD stability properties. This expecta
tion was verified stepwise with increasing cr edibility of the theoretical 
analyses /2, 3, 4/ to the point that <6> values of up to 0.3 were demon
strated as completely ideal MHD stable, i.e. stab l e to high-n ballooning as 
well as low-n internal and external modes /5/. The revived interest in to
r aida l versions of these equilibria /6/ (HELIAC) has prompted 3D finite-B 
computational stud ies /7, 8/ which verified the good gross equilibrium pro
perties as were expected on the basis of the standard estimate BeJ>::j\2/A and 
the large rotational t ransform (twist) per field period of 1 ..... 0.3 . In this 
paper, we continue the stability analyses /2 , 3/ of HELIAC e4uilibria on 
the basis of the JMC (currents J and Mercier Criterion) code for the evalua
tion of 3D computational equilibria wIth respect to Mercier's necessary 
stability criterion /9/ . First results concerning tests and the W VII-AS 
stellarator / 10/ have already been obtained with JMC / 11/ . We recall /4, 5/ 
that in the helically symmetric case of the type of equilibria considered 
here Mercier's criterion turned out to be sufficient. This stresses the 
interest of the results described here, although the sufficiency of Mercier's 
criterion in toroidal stellar ators /12/ has not yet been proved. 

The JMC code, which is to be described in detail elsewhere , is constructed 
as a diagnostic package applicable to the results obtained with a 3D energy 
minimizing equilibrium code which uses flux surfaces as one of the indepen
dent var i ables . Currently , the published version of the BBG code /13/ is 
being used and the only output needed concerns the geometry of the flux sur
faces. The linear problems as i) J . 'Vs ;: 0 , where J is the current density 
and s the flux label, ii) the currents I and J and t he one-dimensional part 
of the equilibrium equat i on p'V' .. I'FT' +J'Fp' (FT' Fp toroidal and poloidal 
fluxes, which are input func tions for the BBG code, V volume, ' - d/ds), 
Hi) the equation for X la j ,, /B are solved by the JMC code itself in a way 
which is appropriate for the evaluation of Mercier's criteri on. It is written 
i n the following form: 

KZ
Z - KIKj > 0 for Mercier stability, 

K2 _ 1.. (F ' F " - F 'F ") +IXB2Vg' lvsl - ZdUdV 
2 p T T P 

KI - I ' FT" +J ' Fp"-V"p ' +P,ZIB- ZVg'dUdV+ IXZB2!IlS!-2Vg'dUdV 

Kj - IBZVg' !vsl-ZdUdV . 

Here, s. u, v are t he independent variables and Vg' the Jacobian in the BBG 
code /13/ . 

The fo llowing type of helically symmetri c and toroidal HELIAC equilibria is 
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investigated . The plasma boundary is given by 

r - I:ll.£.mcos 2n[U. -l)u - my] 

z .. raf-msin 27f[(£. - I)u - my] 

l:.20"I , lIll :0.96,622 --0.24 or -0.29, ll.3 1 - 0 . 38 , 6 33 =0.11, {).445-0.04 

620= 1, °1 1=-0 . 96 , 622- 0 .24 or 0 . 29,63 1 "' ° .38, °33 =-0.11, 644 -0 . 04 

t:. im = 0tm = 0 for all other indices. 

Here, 6 22 .. -0 . 24 for th e "nonresonaot" case (where 0.274 5. 1 ~ 0.314) 
and 622 = -0.29 for the resonant case (where 0.32 5. lp ~ O.~6) . Thus , the 
resonance lp = 1/3 is considered in the second case . The lp interval indi 
cated gives the range occurring between the magnetic ax i s and the boundary. 
Figure 1 indicates the geometry of the non resonant case; the boundary in 
the resonant case differs only s lightly . The only difference between the 
helically symmetric and the toroidal case is that the major torus radius Rr 
i s chosen in such a way t hat an infinite (Rr ~ m) or finite (RT < ~) number 
N of field periods may be considered. The total twist is t =Nlp; the aspect 
ratio of a period is ~ ~ 2 . 5, and the toroidal aspect ratio is A = N~ . 
In the range of 8 value s considered the equilibria are net current free in 
good app r oximat i on, AdJ/dI ~ O. I. 

z 
1.5 

~ Cross- sections of flux surfaces at v s 0 and v 
sonant case with 4 periods and <8> = 0 .07S. 

R 

1/2 for the nonre-

First , an equilibrium with <8> = 0 . 075 and ap proximately parabolic (in the 
distance from the magnetic axis) pressure profile is considered. This case 
i s stable if helically synunetric. Considering N-13 , 10 , 6, and 4 , we find 
decreasing stabi lity, as is shown in Fig . 2 for s = 1/2, with a stability 
boundary at N ~ 7. Discussion of the various stabilizing and destabilizing 
terms in the criterion shows that the contributions of the first and second 
terms in KI as we l l as the influence of K2 are negligible, so that the sta
bility behaviour is governed by the last three terms of K1. Instability 
comes about by an increase of the fifth term, which contains the parallel 
current density. Unstable behaviour oc~urs first at the plasma boundary in 
keeping with t he fact that the pressur€ gradient is strongest there fo r the 
profile chosen . 
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Fig.2 : The ~eft p~rt ~f the figure shows the extrapolations of the values 
of the Merc~er crLterl0n at 5 c 1/2 to zero mesh size for the nonresonant 
case with <6> - 0.075 and N periods . The finest mesh used is 29/56/56, the 
coarsest 13/24/24 . The right-hand part of the figure shows the extrapolated 
values for <6> ·0.075 (c) and 0 . 13 (0) as functions of I/N. 

The above result cannot , however , be considered to yield a reliable stabi 
l i t y boundary for the following reasons. Considering N • 4 and the resonant 
case, the code result shows a large parallel current density with the 1/3-
resonance struct ure (see Fig.3). Accordingly, Mercier's criterion is formally 
st rongly vio la ted. We do not stress the credibility af this resu l t; more re
fined methods of investigating the actual structure which may occur at a 
low-order resonance a l ready exist /14, 15/. Rather, we would advocate the 
conclusion that avoiding low-orde r resonances is advisable. In the nonreso 
nant case (see Fig.3) , some resonance structure is still visible in accord
ance with the choice of the twist 1 = 0.294 , which avoids the resonances 
1/4 and 1/3. The main Fourier component of the current density here is the 
m- I . n - O component which is driven hy the toru~ effect. Thi s component 
(which has the s tructure of the original PS current ) likewi se occurs in 
an axisymmetric torus. It here brings about the Mercier unstable behaviour 
(see Fig .2). On the other hand . the extrapo l ation to zero mesh size is dif 
ficult , because in the cases considered here the extrapolation yields a 
value which is approximately one order of magnitude smaller than the sum of 
the absolute values of the three constituents. 

If the interpretation of the above results as Mercier instability at low N 
is correct, the unstable behaviour should be more obvious for a higher B 
va l ue. Considering <6> .. 0 .1 3, we indeed find a stability boundary of N~ 12 
at s '" 1/2 . Figure 2 shows the extrapolated results for <6> -0 . 075 and 0.13 . 
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Fi g . 3: X" j,,/B as a function of u and v at 5 = 1/2 and N = 4 , <8> = 0.075 . 
The left-hand part shows the resonant, the r ight-hand part the nonresonant 
case . 

Apart from the general comment that " strongly" three - dimens i ona l eq uilibr ia 
(i . e . equilib r ia with large twist per period and only few periods) may be 
considered with reserve, there are two obvious conc l usions f r om the above 
results: i) op t~ml.zatl.on may improve the stabi l ity behaviou r , i i) t h e He r d er 
instability study has to be complemented by low node number mode a nalysis . 
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