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Abstract

3D hand reconstruction from image data is a widely-studied problem in com-
puter vision and graphics, and has a particularly high relevance for virtual
and augmented reality. Although several 3D hand reconstruction approaches
leverage hand models as a strong prior to resolve ambiguities and achieve a
more robust reconstruction, most existing models account only for the hand
shape and poses and do not model the texture. To fill this gap, in this work
we present the first parametric texture model of human hands. Our model
spans several dimensions of hand appearance variability (e.g., related to gen-
der, ethnicity, or age) and only requires a commodity camera for data acqui-
sition. Experimentally, we demonstrate that our appearance model can be
used to tackle a range of challenging problems such as 3D hand reconstruc-
tion from a single monocular image. Furthermore, our appearance model
can be used to define a neural rendering layer that enables training with a
self-supervised photometric loss. We make our model publicly available.

Keywords

hand texture model, appearance modeling, hand tracking, 3D hand recon-
struction
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1 Introduction

Hands are one of the most natural ways for humans to interact with their
environment. And as interest in virtual and augmented reality (VR/AR)
grows, so does the need for reconstructing a user’s hands to enable intuitive
and immersive interactions with the virtual environment. Ideally, this re-
construction contains accurate hand shape, pose, and appearance. However,
it is a challenging task to capture a user’s hands from just images due to
the complexity of hand interactions and self-occlusion. In recent years, there
has been significant progress in hand pose estimation from monocular depth
[51, 28, 52, 1, 14, 24, 8] and RGB [55, 44, 7, 53] images. Although most
of these works estimate only joint positions, a few recent works attempt to
reconstruct the hand geometry as well [25, 6, 2, 54].

Despite these recent advances, there is little work that addresses the re-
construction of hand appearance. However, hand appearance personalization
is important for increasing immersion and the sense of “body-ownership” in
VR applications [21], and for improved tracking and pose estimation through
analysis-by-synthesis approaches. Without a personalized appearance model,
existing pose estimation methods must use much coarser hand silhouettes
[6, 2, 54] as an approximation of appearance. One approach to obtain a per-
sonalized hand texture is to project the tracked geometry to the RGB image
and copy the observed color to the texture map [10]. However, only a partial
appearance of the observed hand parts can be recovered with this method
and tracking errors can lead to unnatural appearances. In addition, without
explicit lighting estimation, lighting effects will be baked into the results of
these projection-based methods.

To address this gap, we present for the first time a data-driven parametric
model of hand appearance (see Fig. 1.1). We captured a large variety of hands
and aligned the scans in order to enable principal component analysis (PCA)
and build a textured parametric hand model. PCA compresses the variations
of natural hand appearances to a low dimensional appearance basis, thus en-
abling a more robust appearance fitting. Our model can additionally produce
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Figure 1.1: We present the first parametric hand texture model. Our model
successfully captures appearance variations from different gender, age, and
ethnicity.

plausible appearance of the entire hand from fitting to partial observations
from a single RGB image. Our main contributions can be summarized as
follows:

• We introduce a novel parametric model of hand texture that we make
publicly available. Our model is based on a dataset of high-resolution
hand scans of 51 subjects with variety in gender, age, and ethnicity.

• We register our scans to the popular MANO hand model [37] in order
to create a statistical hand appearance model that is also compatible
with MANO.

• We demonstrate that our new parametric texture model allows to ob-
tain a personalized 3D hand mesh from a single RGB image of the
user’s hand.

• We present a proof-of-concept neural network layer which uses the
MANO shape and pose model in combination with our proposed tex-
ture model in an analysis-by-synthesis fashion. It enables a self-supervised
photometric loss, directly comparing the textured rendered hand model
to the input image.

4



2 Related Work

The use of detailed, yet computationally efficient, hand models for hand
tracking applications is well studied [29, 33, 39, 46]. Nevertheless, many
such methods require time-consuming expert adjustments to personalize the
model to a user’s hand, making them difficult to deploy to the end-user.
Therefore, we focus our review to methods that can automatically generate
personalized articulated hand models from images. However, we will see that
almost all these methods exclusively consider shape personalization and do
not include texture or appearance.

2.1 Modeling Hand Geometry

Two types of personalizable hand models exist in the literature, i.e., heuristic
parameterizations that directly move and scale the geometric primitives of
the models [10, 45, 49, 35, 50], and data-driven statistical parameterizations
that model the covariance of hand geometry [22, 37]. Although heuristic ap-
proaches are expressive, infeasible hand-shape configurations can arise when
fitting such models to single images due to ambiguities between shape and
pose. Thus, existing approaches must perform the personalization offline over
a set of depth images [45, 49, 35], or design additional heuristic constraints
[50] to resolve these ambiguities. On the other hand, data-driven parame-
terizations [22] provide a low-dimensional shape representation and natural
priors on hand configurations. The recent MANO model [37] additionally
provides learned data-driven pose-dependent shape corrections to the geom-
etry to avoid artifacts in posing a hand model through linear blend skinning
(LBS). This model has been applied in many recent hand pose estimation
methods [6, 54, 2, 18, 2] and has been used to annotate hand pose estimation
benchmarks [56, 18, 17].

Nonetheless, and despite the popularity of the MANO model of hand
geometry, there exists no data-driven parametric texture model for providing
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realistic appearance. As such, in this work we present for the first time a hand
appearance model that is fully compatible with MANO. Although MANO
has a rather low-resolution mesh (778 vertices), our appearance model is
defined in texture space so that a much higher texture resolution is available.

2.2 Modeling Appearance

With a few exceptions [10, 11], the previously mentioned works do not model
hand texture. The works of de La Gorce et al. [10, 11] incorporate heuristic
texture personalization for hand-tracking using an analysis-by-synthesis ap-
proach. Their approach obtains only a partial estimate of the hand texture
using the current pose estimate, and relies on a smoothness prior to trans-
fer color to unobserved parts by a diffusion process on a per-frame basis.
Romero et al. [37] provide the raw RGB scans used to register the MANO
model, but they contain strong lighting effects like shadows and over-exposed
regions. Hence, it is not possible to recover accurate appearance from these
scans as we show in the supplementary document. Despite the lack of a
parametric hand texture model, the benefits of having such a model can be
readily seen in face modeling literature. For example, 3D morphable face
models (3DMM) [5, 20, 31, 15, 9] provide parametric geometry and appear-
ance models for faces that have been used to drive research in many recent
works in diverse applications [12]. For example, these 3DMMs were used
within analysis-by-synthesis frameworks for RGB tracking [36, 48], and as
unsupervised loss for learning-based methods [47]. Our proposed parametric
hand appearance model has the potential to drive similar advances in the
hand pose estimation and modeling community.
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3 Textured Parametric Hand
Model

Our hand texture acquisition pipeline is summarized in Fig. 3.1. First,
we record two image sequences observing the palm side and the backside
of the hand, respectively. Subsequently, we run rigid structure from mo-
tion (SfM) [3, 38] to obtain a 3D reconstruction of the observed hand side
(Sec. 3.1). Next, we remove the scene background, and register both (par-
tial) hands scans to the MANO model [37] based on nonlinear optimization.
Afterwards, the texture of the partial hand scans is mapped to the registered
mesh. We then remove shadows from the textures and stitch them to obtain
a complete texture of the hand (Sec. 3.2). The textured parametric model
in subsequently generated using PCA (Sec. 3.3).

3.1 Data Acquisition

In total, we captured 51 subjects with varying gender, age, and ethnicity (see
Fig. 3.2). To minimize hand motion during scanning, we record the upper
and lower hand sides separately, so that the subjects can rest their hand on
a flat surface. As such, for each subject we obtain four scans, i.e., back and
palm sides for both left and right hands. The scanning takes ∼90 seconds
for one hand side, so that the total scanning time of ∼6 minutes is required
per person.

To obtain 3D hand scans, we use SONY’s 3DCreator App [43]. The 3D
reconstruction pipeline includes three stages, i.e., initial anchor point ex-
traction, simultaneous localization and mapping (SLAM) with sparse points
[23], and online dense 3D reconstruction (sculpting) [42]. The output is a
textured high-resolution surface mesh (of one hand side as well as the back-
ground), which contains ∼6.2k vertices and ∼11k triangles in the hand area
on average. By design, our hand texture model is built for the right hand.
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Figure 3.1: Overview of our hand texture acquisition pipeline. We
run rigid structure from motion (SfM) on a set of input images to obtain
a scanned mesh for back and palm side of the hand, respectively. After
removing background vertices, we fit the MANO template mesh to extract
the texture from the scan. We remove lighting effects and seamlessly stitch
the front and back texture, resulting in a complete texture for the captured
hand (visualized on the 3D hand mesh from 2 virtual views on the right).

For model creation we mirror the left hand meshes, so that we use a total
of 102 “right” hands for modeling. We note that by mirroring we can also
use the texture model of “right” hand for the left hand. In the following,
we will abstract away this technical detail and describe our texture modeling
approach for a single hand.

3.2 Data Canonicalization

To learn the texture variations in a data-driven manner it is crucial that the
acquired 3D scans are brought into a common representation. Due to the
popularity and the wide use of the MANO model of hand geometry, we de-
cided to build the hand texture in the MANO space. This has the advantage
that existing hand reconstruction and tracking frameworks that are based on
MANO, such as [27, 6, 18], can be directly extended to also incorporate hand
texture. We point out that our texture model can also be used with other
models by defining the respective UV mapping. Our data canonicalization
comprises several consecutive stages, i.e., background removal, MANO model
fitting, texture mapping, shadow removal, and seamless stitching, which we
describe next.

3.2.1 Background Removal

For each hand we have reconstructed two textured meshes, one that shows
the hand palm-down on a flat surface, and one that shows the hand palm-up
on a flat surface (cf. Sec. 3.1). In both cases, the background, i.e., the flat
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Figure 3.2: Distribution of age, gender, and skin color for our 51 captured
subjects. We use the Goldman world classification scale [40] for classifying
skin color.

surface that the hand is resting on, is also reconstructed as part of the mesh.
Hence, in order to remove the background, we perform a robust plane fitting
based on RANSAC [13], where a plane is fitted to the flat background surface.
To this end, we sample 100 random configurations of 3 vertices, fit a plane
to the sampled points, and then count the number of inliers. Any point that
has a distance to the fitted plane that is smaller than the median edge length
of the input scanned mesh is considered as inlier. Eventually, the plane that
leads to the largest inlier count is considered the background plane. We have
empirically found that this approach is robust and able to reliably identify the
flat surface in all cases. Eventually, we use a combination of distance-based
and color-based thresholding to discard background vertices in the scanned
mesh. In particular, we discard a vertex if its distance from the background
plane is less than 1cm and the difference between the red and green channel
of the vertex color is smaller than 30 (RGB ∈ [0, 255]3). This yields better
preservation of hand vertices that are close to the background plane.

3.2.2 MANO Model Fitting

Subsequently, we fit the MANO hand model to the filtered hand mesh (i.e.,
the one without the background). To this end, we first obtain the MANO
shape and pose parameters based on the hand tracking approach of Mueller et
al. [27]. The approach uses a Gauss-Newton optimization scheme that makes
use of additional information based on trained machine learning predictors
(e.g., for correspondence estimation). Since their method was developed for
3D reconstruction and tracking of hands in depth images, we render synthetic
depth images from our partial hand scan meshes. Note that the approach [27]
was partially trained on synthetic depth images and thus we have found that
it is able to produce sufficiently good fits of the MANO geometry to our data.

However, since the MANO model is relatively coarse (778 vertices), and
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more importantly, it has a limited expressivity of hand shape (it only spans
the variations of their training set of 31 subjects), we have found that there
are still some misalignments. To also allow for deformations outside the
shape space of the MANO model, we hence use a complementary non-rigid
refinement. To this end, we use a variant of non-rigid iterative closet point
(ICP) [4] that optimizes for individual vertex displacements that further re-
fine the template, which in our case is the fitted MANO model. As our
objective function, we use 3D point-to-point and point-to-plane distances to-
gether with a spatial smoothness regularizer [16]. An accurate alignment is
especially important at salient points, like fingertips, to ensure high percep-
tual quality. Hence, we add prior correspondences for the fingertips and the
wrist to the non-rigid ICP fitting. We automatically obtain these correspon-
dences in the input scanned mesh using OpenPose [41]. The influence of the
prior correspondences is shown in our evaluation (see Section 5.1).

3.2.3 Texture Mapping

After having obtained an accurate alignment of the hand template, i.e., the
fitted MANO model plus non-rigid deformation for refinement, to our tex-
tured high-resolution hand scan, we transfer the scan texture to a texture
map. To this end, we have manually defined UV coordinates for the MANO
model template by unwrapping the mesh to a plane (see texture mapping
step in Fig. 3.1). We project each vertex in the high-resolution hand scan
to the closest point on the surface of the fitted MANO hand template. Us-
ing the barycentric coordinates of this projected point together with the UV
coordinates of the template mesh, we transfer the color to the texture map.
After performing this procedure for all vertices of our high-resolution hand
scan, there can still be some texels (pixels in the texture map) that are not
set (we have found that about 6.5% of the hand interior does not have a
defined texture). To deal with that, holes are filled based on inpainting with
neighboring texels.

3.2.4 Shadow Removal

While we aim to minimize the amount of lighting effects during scanning, the
obtained texture map still contains smooth shading (see Fig. 3.3a). Since the
shading effects have low frequency, they can be separated and removed using
a Laplacian image pyramid. To this end, we first build a Laplacian pyramid
with 5 levels from the texture map that we obtained in the previous step. We
observe that the deepest level separates the (almost) constant skin color as
well as the smooth shading from the texture details that are kept on earlier

10



a) b)

replace

Figure 3.3: Shadow removal. (a) Original texture and its Laplacian pyra-
mid decomposition. (b) The shading effects are removed by modifying the
deepest level.

levels of the pyramid. We replace this deepest level with a constant skin
color for palm and back side, respectively, effectively removing the smooth
shading. We obtain this constant skin color by averaging in the well-lit area
(see blue rectangles in Fig. 3.3). Note how the texture details from higher
levels are preserved in the modified texture map (see Fig. 3.3b).

3.2.5 Seamless Texture Stitching

Since so far this texture mapping is performed both for the palm-up and
palm-down facing meshes, we eventually blend both partial texture maps
to obtain a complete texture map of the hand. To this end, we use a re-
cent gradient-domain texture stitching approach that directly operates in
the texture atlas domain while preserving continuity induced by the 3D mesh
topology across atlas chart boundaries [32].

3.3 Texture Model Creation

Let {Ti}ni=1 be the collection of 2D texture maps that we obtain after data
canonicalization as described in Sec. 3.2. In order to create a parametric
texture model we employ PCA. We vectorize each Ti to obtain the vector
ti ∈ R618,990 that stacks the red, green and blue channels of all hand texels.
PCA first computes the data covariance matrix

C =
1

n− 1

n∑
i=1

(ti − t̄)(ti − t̄) , (3.1)

for t̄ = 1
n

∑n
i=1 ti being the average texture. Subsequently, eigenvalue decom-

position of C = ΦΛΦT is used to obtain the principal components Φ and
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the diagonal matrix of eigenvalues Λ. With that we obtain the parametric
texture model for the parameter vector α ∈ Rk as

t(α) = t̄+ Φα . (3.2)

The resulting PCA model has k = 101 parameters.

12



4 Applications

To demonstrate possible use cases of our parametric hand appearance model,
we present two applications. First, we consider 3D hand reconstruction and
personalization from a single monocular RGB image. Subsequently, we show
the usage as a neural network layer enabling a self-supervised photometric
loss.

4.1 3D Hand Personalization from a Single

Image

Given a single monocular RGB image of a hand, we aim to reconstruct a 3D
hand mesh that is personalized to the user’s shape and appearance. This
application consists of four steps: (1) initialization of shape and pose pa-
rameters of the MANO model, (2) non-rigid shape and pose refinement, (3)
partial texture extraction, and (4) estimation of appearance parameters of
our model.

4.1.1 Shape and Pose Initialization

We use the method of Boukhayma et al. [6] to obtain an initial pose and
shape estimate of the MANO template mesh from a single RGB image. As
discussed before, the MANO shape space is not always expressive enough
to perfectly fit the user’s hand shape. In addition, the results from the
method by Boukhayma et al. do not yield sufficiently accurate reprojection
of the mesh onto the image plane as shown in Fig. 4.1 (second from the left).
Hence, this initial mesh is further refined.
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Figure 4.1: 3D hand personalization from a single image. Starting
from a single RGB input image (left), we first initialize the mesh using the
method by Boukhayma et al. [6]. Next, we refine the fit non-rigidly and
extract the partial hand texture. By fitting our parametric texture model,
we are able to obtain a complete texture which minimizes the error to the
input texture (right).

4.1.2 Non-Rigid Refinement of the Initial Mesh

We non-rigidly refine the initial mesh estimate to better fit the silhouette of
the hand in the image. In particular, this is done by optimizing for the 3D
displacement of each vertex using ICP constraints on the boundary vertices.
We first define the set of boundary vertices of the hand mesh V̄ ⊂ V , i.e.,
the set of vertices on the silhouette. Let Π : R3 → Ω be the camera projec-
tion converting from 3D world coordinates to 2D pixel locations. For each
boundary vertex v̄i, we first find the closest hand silhouette pixel p̄i in the
image domain Ω as

p̄i = arg min
p∈Ω

||Π(v̄i)− p||2 s.t. n(p)>Π(n(v̄i)) > η . (4.1)

Here, n(p) is the 2D boundary normal at pixel p (calculated by Sobel filter-
ing), and Π(n(v̄i)) is the 2D image-plane projection of the 3D vertex normal
at v̄i. The threshold η = 0.8 discards unsuitable pixels based on normal dis-
similarity. We then use this closest hand silhouette pixel p̄i as correspondence
for boundary vertex v̄i if it is closer than δ (= 4% of the image size)

c̄i =

{
p̄i, if ||Π(v̄i)−p̄i||2 < δ

∅, otherwise
. (4.2)

We can then optimize for the refined 3D vertex positions using the computed
correspondences in the following objective function:

E(V) =
1

|V̄|
∑
v̄i∈V̄

||Π(v̄i)−p̄i||22 + wsmth

∑
vj∈V

∑
vk∈Nj

1

|Nj|
||(vj−vk)−(v0

j−v0
k)||22 ,

(4.3)
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where Nj is the set of neighboring vertices of vertex vj, and V0 = {v0
•} are

the vertex positions obtained from the previous ICP iteration. We use 20
ICP iterations in total where V ,V0 are initialized from the shape and pose
initialization step as described above.

4.1.3 Partial Texture Extraction

For each fully visible triangle, i.e., when all its 3 vertices are visible, we
extract the color from the input image and copy it to the texture map. This
yields a partial texture map where usually at most half the texels have a value
assigned and all other texels are set to ∅. We then obtain the vectorized target
texture map ttrgt (as for model creation in Section 3.3).

4.1.4 Estimation of Appearance Parameters

Subsequently, we find the appearance parameters of our model that best fit
the user’s hand by solving the least-squares problem with Tikhonov regular-
ization:

arg min
α∈Rk

∑
ttrgti 6=∅

(ttrgt
i − t(α)i)

2 + wreg||α||22 . (4.4)

Note that our proposed parametric appearance model enables us to obtain
a complete texture. In contrast to the extracted partial texture, the result
is free of lighting effects and artifacts caused by small misalignments of the
hand model.

4.2 Self-Supervised Photometric Loss

Several previous works have trained a neural networks to regress joint posi-
tions or MANO model parameters from RGB images [26, 55, 53, 7, 44, 56].
The most common loss is the Euclidean distance between the regressed and
ground-truth 2D or 3D joint positions. Some works have also explored a
silhouette loss between the MANO mesh and the hand region in the input
image [6, 2, 54]. Our proposed parametric hand texture model makes it
possible to use a self-supervised photometric loss, which can complement
the mentioned fully supervised losses. With that, when training a network
to predict shape and pose with such an approach, we additionally obtain
a hand texture estimate. To this end, we introduce a textured hand model
layer, which we explain now.
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4.2.1 Textured Hand Model Layer

Given a pair of MANO shape and pose parameters (β, θ), as well as the tex-
ture parameters α, our model layer computes the textured 3D hand mesh
M(β, θ, α). An image of this mesh is then rendered using a scaled ortho-
graphic projection. As such, this rendered image can directly be compared
to the input image I using a photometric loss in an analysis-by-synthesis
manner. We formulate the photometric loss as

Lphoto(β, θ, α) =
1

|Γ|
∑

(u,v)∈Γ

||render(M(β, θ, α))(u, v)− I(u, v)||2 , (4.5)

where Γ is the set of pixels which the estimated hand mesh projects to.
The use of a differentiable renderer makes the photometric loss Lphoto fully
differentiable and enables backpropagation for neural network training.

4.2.2 Network Training

We train a residual network with the architecture of ResNet-34 [19] to regress
the shape β, pose θ, and texture parameters α from a given input image. In
addition to the self-supervised photometric loss, we employ losses on 2D joint
positions, 3D joint positions, and L2-regularizers on the magnitude of the
shape, pose, and texture parameters. The network is trained in PyTorch [30],
using the differentiable renderer provided in PyTorch3D [34]. We assume a
single fixed illumination condition for training. We leave the joint estimation
of additional lighting and material properties to future work.
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5 Experiments

In this section, we evaluate our proposed parametric hand texture model,
explore different design choices in our hand texture acquisition pipeline, and
present results of our two example applications.

5.1 Texture Model Evaluation

5.1.1 Compactness

Fig. 5.1 (left) shows the compactness of our texture model. The plot describes
how much the explained variance in the training dataset increases with the
number of used principal components. The first few components already
explain a significant amount of variation since they account for more global
changes in the texture, e.g., skin tone. However, adding more components
continuously increases the explained variance.

5.1.2 Generalization

For evaluating generalization, we use a leave-one-subject-out protocol. We
remove the data of one subject, i.e., the two texture samples from left and
right hand, and build the texture PCA model from the remaining subjects.
Then, we aim to reconstruct the left-out textures using the built model and
measure the reconstruction error as the mean absolute distance (MAD) of
the vectorized textures. As shown in Fig. 5.1 (middle), our model is able to
obtain a low reconstruction error for all subjects.

5.1.3 Specificity

We also evaluate the specificity of our model, which quantifies the similarity
between random samples from the model and the training data. To this
end, we first randomly sample a texture instance from our model based on a
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Figure 5.1: Quantitative evaluation of our model in terms of compactness,
generalization and specificity. Note that the version with shadow removal
(“w/ sr”) substantially outperforms the version without shadow removal
(“w/o sr”).

multivariate standard Normal distribution (due to the Gaussian assumption
of PCA). Then, for this random texture we find the nearest texture in our
training dataset in terms of the MAD. We repeat this procedure 200 times,
and report the statistics of the MAD in the boxplot in Fig. 5.1 (right).

5.1.4 Influence of Shadow Removal

Fig. 5.1 also shows compactness, generalization, and specificity for a version
of the texture model that was built without shadow removal (“w/o sr”). It
can be seen that the version without shadow removal performs worse com-
pared to the one with shadow removal (“w/ sr”) in all metrics. When the
lighting effects are not removed, they increase the variance in the training
dataset. Hence, more principal components are necessary to explain varia-
tion and the reconstruction of unseen test samples has a higher error. In the
supplemental material, we also show visually that the principal components
for the model without shadow removal have to account for strong lighting
variation.

5.1.5 Influence of Prior Correspondences

To ensure a good alignment of the hand template mesh and the scanned
mesh, as explained in Section 3.2, for the non-rigid ICP-based refinement
step in our model building stage we make use of prior correspondences for the
fingertips and the wrist. Fig. 5.2 compares the textures obtained by running
the non-rigid ICP fitting with and without prior correspondences. Especially
for the thumb, the tip is often not well-aligned, resulting in a missing finger
nail in the texture. Using explicit prior correspondences alleviates this issue.
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w/ Prior Corrs.w/o Prior Corrs.

Figure 5.2: Using non-rigid ICP-based refinement with prior correspondences
for fingertips and the wrist improves the alignment of the hand template mesh
to the scanned mesh, yielding better textures (right). (Textures shown before
shadow removal.)

5.2 Application Results: 3D Hand Personal-

ization

Here, we show results for obtaining a personalized 3D hand model from a
single RGB image (see Section 4.1). As discussed in Section 4.1, since the
output mesh of state-of-the-art regression approaches [6] do not have a low
reprojection error, we use a non-rigid refinement step based on silhouettes.
To simplify segmentation in our example application, we captured the images
of the users in front of a green screen. We note that this could also be replaced
by a dedicated hand segmentation method, which we leave for future work.
Fig. 5.3 shows hand model fits as well as complete recovered textures from a

Input Image Model Fit Input Image Model Fit3D Mesh 3D Mesh

Figure 5.3: Hand personlization from a single RGB input image for different
subjects.
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Input Image Estimated Complete TextureExtracted Texture using Boukhayma et al.

Figure 5.4: Our parametric hand texture model comprises a low-dimensional
PCA space. Hence, fitting to noisy or partially corrupted input textures is
robust and yields a realistic and complete texture estimate.

single RGB image for several subjects. Since we use a low-dimensional PCA
space to model hand texture variation, we can robustly estimate a plausible
and complete texture from noisy or partially corrupted input (see Fig. 5.4).
In contrast, a texture that is directly obtained by projecting the input image
onto a mesh obtained by the method of Boukhayma et al. [6] contains large
misalignments and a significant amount of background pixels, and thus is
severely corrupted.

5.3 Application Results: Photometric Neu-

ral Network Loss

Our self-supervised photometric loss (see Section 4.2) enables to not only
obtain shape and pose estimates as in previous work, but in addition to also
estimate hand appearance. To demonstrate this we train our network on the
recently proposed FreiHAND dataset [56]. For details of the experimental
setup, please see the supplementary document.

In Fig. 5.5, we show hand model fits predicted by a neural network trained
with and without our photometric loss (cf. Sec 4.2). We note that the pose
and shape prediction with the photometric loss are quantitatively similar
to the predictions without (the mean aligned vertex errors (MAVE) are
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Predicted Texture With L𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Input Image Without L𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Figure 5.5: We show the predicted pose and texture from a neural network
trained using a photometric loss Lphoto enabled by our parametric hand tex-
ture model.

1.10 cm vs 1.14 cm respectively, and mean aligned keypoint errors (MAKE)
are 1.11 cm vs 1.14 cm respectively). In addition, these results are compara-
ble to the current state of the art [56] with a MAVE of 1.09 cm and MAKE of
1.10 cm. We stress that our method with the photometric loss additionally
infers a high resolution, detailed texture of the full hand, which the other
methods do not.
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6 Limitations and Discussion

We have presented a parametric hand texture model that can be success-
fully fitted to various users. Although our model contains detailed texture,
the underlying geometry of the MANO mesh is rather coarse (778 vertices).
This could be improved by using a mesh with higher-resolution and by ex-
tending the MANO shape space with more detailed geometry. Our proposed
model was built by using PCA decomposition. In follow-up works, different
techniques for building the model could be explored, e.g., learning a suitable
subspace with an autoencoder neural network. In our model creation pipeline
we explicitly remove lighting effects from the captured textures. When using
the hand texture model in our example applications, we did not explicitly
model or estimate the scene lighting. Hence, the model might not be able to
perfectly explain the input observations. In the future, texture parameters
and lighting could be estimated jointly, e.g., for texture personalization or
within an analysis-by-synthesis framework.
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7 Conclusion

In this work we introduced the first parametric texture model of human
hands. The model is based on data that captures 102 hands of people with
varying gender, age and ethnicity. For model creation, we carefully designed
a data canonicalization pipeline that entails background removal, fitting of
the geometric hand model MANO, texture mapping and shadow removal.
Moreover, we demonstrate that our model makes two highly relevant appli-
cations feasible: 3D hand personalization from a single color image, as well
as using differentiable rendering for employing an analysis-by-synthesis ap-
proach within a neural learning framework. We make our model publicly
available to the research community and thereby expect that in the future
this will spawn further works related to the modeling of human hands.
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Appendix A Experiment
Details for Hand Model Layer

The provided training dataset contains a total of 130,240 images: 32,560
unique images of hands with foreground masks, times 4 methods of back-
ground composition. However, 3 of the composition methods attempt to
blend the hand into the background, which introduces severe artifacts in the
hand appearance (see Fig. A.1).

We only use the unaltered 32,560 unique images for our training data
to avoid learning these artifacts for texture estimation. The provided fore-
ground masks were used to perform background augmentation without ad-
ditional image harmonization or image coloration. We train the ResNet-34
[19] using Adam, with a learning rate of 0.001, and for 200 epochs in all of
our experiments.

A full comparison of the pose and shape performance is provided in
Table A.1. Following the evaluation procedure of [56], the meshes were
aligned using Procrustes alignment as a rigid body transformation. Er-
rors are measured in Euclidean distance (cm) between corresponding vertex
points (Mesh) or keypoints (KP). Area under the percentage-of-correct-
keypoints curve (AUC) and F-scores at two different thresholds (F@5mm
and F@15mm) are additionally provided. Our method achieve slightly
better pose and shape performance with the photometric loss (Proposed)

Figure A.1: The provided composed Freihand data contain noticeable texture
artifacts. These images were not used for training.
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Table A.1: Evaluation of our method on the FreiHand dataset [56]. All
numbers are from the online leader board. Keypoint (KP) and Mesh errors
are measured in cm.

KP Error KP AUC Mesh Error Mesh AUC F@5mm F@15mm

Zimmerman et al. [56] 1.10 0.783 1.09 0.783 0.516 0.934
Boukhayma et al. [6] 3.50 0.351 1.32 0.738 0.427 0.895
Hasson et al. [18] 1.33 0.737 1.33 0.736 0.429 0.907

w/o Photometric 1.14 0.774 1.14 0.774 0.499 0.925
Proposed 1.11 0.781 1.10 0.781 0.508 0.930

than without (w/o Photometric), and it achieves similar accuracy to the
current state-of-the-art methods.
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Appendix B Principal
Components Without Shadow
Removal

It is desirable for the parametric texture model to not include lighting ef-
fects. Although we aimed to have uniform lighting while acquiring the scans,
there are still smooth shading effects, especially at the boundary to the flat
background surface. Without the shadow removal step in our pipeline, the
lighting effects contribute a large portion of the variation in the dataset.
Hence, lighting variations are present in some of the first principal compo-
nents of the PCA space. Refer to Fig. B.1 and the supplementary video for
visualizations.

component 0 component 1 component 2

-3σ

+3σ

Figure B.1: When we build the texture PCA model without shadow removal,
the principal components contain a significant amount of lighting variation.

26



Appendix C Shadow Removal
on Original MANO Scans

The original scans from which the MANO shape and pose model [37] was
built do also include vertex colors. However, they contain strong lighting ef-
fects like shadows and over-saturated areas. Fig. C.1 shows how our shadow
removal procedure fails when applied to textures extracted from the original
MANO scans. Note that even if more sophisticated approaches are applied,
it is inherently not possible to recover accurate appearance information from
completely dark or over-saturated areas. The strong shadows also contain
high-frequency components that are difficult to remove while preserving tex-
ture details.

R
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d

Figure C.1: Results of our shadow removal technique when applied to tex-
tures extracted from the original MANO scans. The appearance information
cannot be properly recovered due to strong lighting effects (left, middle). The
strong shadows also contain high-frequency components that are difficult to
remove (right).
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