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Abstract

During communication in real-life settings, the brain integrates information from

auditory and visual modalities to form a unified percept of our environment. In the

current magnetoencephalography (MEG) study, we used rapid invisible frequency

tagging (RIFT) to generate steady-state evoked fields and investigated the integration

of audiovisual information in a semantic context. We presented participants with

videos of an actress uttering action verbs (auditory; tagged at 61 Hz) accompanied by

a gesture (visual; tagged at 68 Hz, using a projector with a 1,440 Hz refresh rate).

Integration difficulty was manipulated by lower-order auditory factors (clear/

degraded speech) and higher-order visual factors (congruent/incongruent gesture).

We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies.

We furthermore observed a peak at the intermodulation frequency of the auditory

and visually tagged signals (fvisual − fauditory = 7 Hz), specifically when lower-order

integration was easiest because signal quality was optimal. This intermodulation peak

is a signature of nonlinear audiovisual integration, and was strongest in left inferior

frontal gyrus and left temporal regions; areas known to be involved in speech-gesture

integration. The enhanced power at the intermodulation frequency thus reflects the

ease of lower-order audiovisual integration and demonstrates that speech-gesture

information interacts in higher-order language areas. Furthermore, we provide a

proof-of-principle of the use of RIFT to study the integration of audiovisual stimuli, in

relation to, for instance, semantic context.
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1 | INTRODUCTION

During communication in real-life settings, our brain needs to inte-

grate auditory input with visual input in order to form a unified

percept of the environment. Several magneto- and electroencephalog-

raphy (M/EEG) studies have demonstrated that integration of non-

semantic audiovisual inputs can occur as early as 50–100 ms after

stimulus onset (e.g., Giard & Peronnet, 1999; Molholm et al., 2002;

Talsma, Senkowski, Soto-Faraco, & Woldorff, 2010), and encompasses

a widespread network of primary sensory and higher-order regionsOle Jensen and Eelke Spaak shared senior authorship.
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(e.g., Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004;

Calvert, 2001; Werner & Noppeney, 2010).

The integration of these audiovisual inputs has been studied using

frequency tagging (Giani et al., 2012; Regan, He, & Regan, 1995).

Here, an auditory or visual stimulus is periodically modulated at a spe-

cific frequency, for example, by modulating the luminance of a visual

stimulus or the amplitude of an auditory stimulus. This produces

steady-state evoked potentials (SSEPs, SSEFs for MEG) with strong

power at the tagged frequency (for frequency-tagging in the visual

domain and steady-state visual evoked responses (SSVEP), see for

example, Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015;

Vialatte, Maurice, Dauwels, & Cichocki, 2010; Gulbinaite et al., 2019

for frequency tagging in the auditory domain and auditory steady-

state responses (ASSR), see for example, Baltus & Herrmann, 2015;

Picton et al., 2003; Ross, Herdman, & Pantev, 2005; Ross, Draganova,

Picton, & Pantev, 2003). This technique is especially interesting in the

context of studying audiovisual integration, because it enables the

tagging of an auditory stimulus and a visual stimulus at two different

frequencies (fvisual and fauditory) in order to study whether and how

these two inputs interact in the brain. Previous work has suggested

that when the auditory and visual signals interact, this results in

increased power at the intermodulation frequencies of the two stimuli

(e.g., jfvisual − fauditoryj or fvisual + fauditory) (Regan & Regan, 1989). Such

intermodulation frequencies arise from nonlinear interactions of the

two oscillatory signals. In the case of audio-visual integration, the

intermodulation likely reflects neuronal activity that combines the sig-

nals of the two inputs beyond linear summation (Regan &

Regan, 1988; Zemon & Ratliff, 1984).

However, other authors have reported inconclusive results on the

occurrence of such intermodulation frequencies as a signature of

nonlinear audiovisual integration in neural signals. Furthermore, this

integration has so far only been studied in non-semantic contexts

(e.g., the integration of tones and gratings). For example, whereas

Regan et al. (1995) identified intermodulation frequencies (i.e., as a

result of tagging an auditory and visual stimulus) in an area close to

the auditory cortex, Giani et al., (2012) identified intermodulation fre-

quencies within (i.e., as a result of tagging two signals in the visual

domain), but not between modalities (i.e., as a result of tagging both

an auditory and a visual signal).

In both of these previous studies, frequency tagging was applied

at relatively low frequencies (< 30 Hz for visual stimuli, < 40 Hz for

auditory stimuli) (Giani et al., 2012; Regan et al., 1995). This might be

problematic, considering that spontaneous neuronal oscillations at

lower frequencies (e.g., alpha and beta oscillations) are likely entrained

by frequency tagging (Keitel, Quigley, & Ruhnau, 2014; Spaak, de

Lange, & Jensen, 2014). In the current study, we use novel projector

technology to perform frequency tagging at high frequencies (rapid

invisible frequency tagging; RIFT), and in a semantic context. Previous

work has demonstrated that neuronal responses to a rapidly flickering

LED can be driven and measured up to 100 Hz (Herrmann, 2001), and

can successfully be used to study sensory processing in the brain

(Herring, 2017; Zhigalov, Herring, Herpers, Bergmann, &

Jensen, 2019). We here leverage these rapid neural responses in order

to circumvent the issue of endogenous rhythms interacting with low-

frequency tagging signals.

We use speech-gesture integration as a test case for studying

RIFT in a semantic context. Speech-gesture integration is a form of

semantic audiovisual integration that often occurs in natural, face-to-

face communication. Previous behavioral and neuroimaging studies

have demonstrated that listeners process and integrate speech and

gestures at a semantic level, and that this integration relies on a net-

work involving left inferior frontal gyrus (LIFG), left-temporal regions

(STS/MTG), motor cortex, and visual cortex (Dick, Mok, Raja

Beharelle, Goldin-Meadow, & Small, 2014; Drijvers, Ozyurek, &

Jensen, 2018; Drijvers, Ozyürek, & Jensen, 2018; Drijvers, van der

Plas, Özyürek, & Jensen, 2019; Holle, Gunter, Ruschemeyer, Hen-

nenlotter, & Iacoboni, 2008; Holle, Obleser, Rueschemeyer, &

Gunter, 2010; Kircher et al., 2009; Straube, Green, Weis, &

Kircher, 2012; Willems, Özyürek, & Hagoort, 2007, 2009; Zhao, Riggs,

Schindler, & Holle, 2018). Using frequency tagging in such a context

to study whether intermodulation frequencies can be identified as a

signature of nonlinear audiovisual integration would provide a proof-

of-principle for the use of such a technique to study the integration of

multiple inputs during complex dynamic settings, such as multimodal

language comprehension.

In the present study, we set out to explore whether RIFT can be

used to identify intermodulation frequencies as a result of the interac-

tion between a visual and auditory tagged signal in a semantic con-

text. Participants watched videos of an actress uttering action verbs

(tagged at fauditory = 61 Hz) accompanied by a gesture (tagged at

fvisual = 68 Hz). Integration difficulty of these inputs was modulated

by auditory factors (clear/degraded speech) and visual factors (con-

gruent/incongruent gesture). For the visually tagged input, we

expected power to be strongest at 68 Hz in occipital regions. For the

auditory tagged input, we expected power to be strongest at 61 Hz in

auditory regions. We expected the interactions between the visually

tagged and auditory tagged signal to be nonlinear in nature, resulting

in spectral peaks at the intermodulation frequencies of fvisual and

fauditory (i.e., fvisual + fauditory and fvisual – fauditory). On the basis of previ-

ous work (e.g., Drijvers, Ozyurek, & Jensen, 2018; Drijvers, Ozyürek, &

Jensen, 2018; Drijvers, van der Plas, et al., 2019), we expected the

locus of the intermodulation frequencies to occur in LIFG and left-

temporal regions such as pSTS/MTG, areas known to be involved in

speech-gesture integration.

2 | METHODS

2.1 | Participants

Twenty-nine right-handed native Dutch-speaking adults (age

range = 19–40, mean age = 23.68, SD = 4.57, 18 female) took part in

the experiment. All participants reported normal hearing, normal or

corrected-to-normal vision, no neurophysiological disorders and no

language disorders. All participants were recruited via the Max Planck

Institute for Psycholinguistics participant database and the Radboud

DRIJVERS ET AL. 1139



University participant database, and gave their informed consent pre-

ceding the experiment. Three participants (two females) were

excluded from the experiment due to unreported metal in dental work

(1) or excessive motion artifacts (>75% of trials affected) (2). The final

data set included the data of 26 participants.

2.2 | Stimulus materials

Participants were presented with 160 video clips showing an actress

uttering a highly-frequent action verb accompanied by a matching or

a mismatching iconic gesture (see for a detailed description of pretests

on recognizability and iconicity of the gestures, [Drijvers & Ozyürek,

2017]). All gestures used in the videos were rated as potentially

ambiguous when viewed without speech, which allowed for mutual

disambiguation of speech and gesture (Habets, Kita, Shao, Ozyurek, &

Hagoort, 2011).

In all videos, the actress was standing in front of a neutrally col-

ored background, in neutrally colored clothes. We predefined the

verbs that would form the “mismatching gesture,” in the sense that

we asked the actress to utter the action verb, and depict the other

verb in her gesture. This approach was chosen because we included

the face and lips of the actress in the videos, and we did not want

to recombine a mismatching audio track to a video to create the

mismatch condition. Videos were on average 2000 ms long (SD =

21.3 ms). After 120 ms, the preparation (i.e., the first frame in which

the hands of the actress moved) of the gesture started. On average, at

550 ms (SD = 74.4 ms), the meaningful part of the gesture (i.e., the

stroke) started, followed by speech onset at 680 ms (SD = 112.54 ms),

and average speech offset at 1435 ms (SD = 83.12 ms) None of these

timings differed between conditions. None of the iconic gestures

were prescripted. All gestures were performed by the actress on

the fly.

All audio files were intensity-scaled to 70 dB and denoised using

Praat (Boersma & Weenink, 2015), before they were recombined

with their corresponding video files using Adobe Premiere Pro. For

80 of the 160 sound files, we created noise-vocoded versions using

Praat. Noise-vocoding pertains the temporal envelope of the audio

signal, but degrades the spectral content (Shannon, Zeng, Kamath,

Wygonski, & Ekelid, 1995). We used 6-band noise-vocoding, as we

demonstrated in previous work that this is the noise-vocoding level

where the auditory signal is reliable enough for listeners to still be

able to use the gestural information for comprehension (Drijvers &

Ozyürek, 2017). To achieve this, we band-pass filtered the sound

files between 50 and 8,000 Hz in 6 logarithmically spaced frequency

bands with cut-off frequencies at 50, 116.5, 271.4, 632.5, 1,473.6,

3,433.5, and 8,000 Hz. These frequencies were used to filter white

noise and obtain six noise bands. We extracted the amplitude enve-

lope of each band using half-wave rectification and multiplied the

amplitude envelope with the noise bands. These bands were then

recombined. Sound was presented to participants using MEG-

compatible air tubes.

F IGURE 1 (a) Illustration of the structure of the videos. Speech was amplitude-modulated at 61 Hz. (b) Illustration of the different conditions.
(c) Area used for visual frequency tagging at 68 Hz. (d) Illustration of luminance manipulation for visual-frequency tagging. Frequency tagging was
achieved by multiplying the luminance of the pixels with a 68 Hz sinusoid. Modulation signal was equal to 0.5 at sine wave zero-crossing to
preserve the mean luminance of the video, and was phase-locked across trials
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We manipulated integration strength in the videos by auditory

(clear/degraded) and visual (congruent/incongruent) factors (see

Figure 1). This resulted in four conditions: clear speech + matching

gesture (CM), clear speech + mismatching gesture (CMM), degraded

speech + matching gesture (DM) and degraded speech + mismatching

gesture (DMM). These stimuli have been thoroughly pretested and

used in previous work on speech-gesture integration (e.g., Drijvers &

Ozyürek, 2017; Drijvers, Ozyurek, & Jensen, 2018). All of the condi-

tions contained 40 videos. All verbs and gestures were only presented

once. Participants were asked to pay attention to the videos and iden-

tify what verb they heard in the videos in a 4-alternative forced

choice identification task.

2.3 | Procedure

Participants were tested in a dimly-lit magnetically shielded room and

seated 70 cm from the projection screen. All stimuli were presented

using MATLAB 2016b (Mathworks Inc, Natrick, USA) and the Psycho-

physics Toolbox, version 3.0.11 (Brainard, 1997; Kleiner, Brainard, &

Pelli, 2007; Pelli, 1997). To achieve RIFT, we used a GeForce GTX960

2GB graphics card with a refresh rate of 120 Hz, in combination with

a PROPixx DLP LED projector (VPixx Technologies Inc., Saint-Bruno-

de-Montarville, Canada), which can achieve a presentation rate up to

1,440 Hz. This high presentation rate is achieved by the projector

interpreting the four quadrants and three color channels of the GPU

screen buffer as individual smaller, grayscale frames, which it then

projects in rapid succession, leading to an increase of a factor

12 (4 quadrants * 3 color channels * 120 Hz = 1,440 Hz) (User Manual

for ProPixx, VPixx Technologies Inc., Saint-Bruno-de-Montarville,

Canada).

2.3.1 | Frequency tagging

The area of the video that would be frequency-tagged was defined by

the rectangle in which all gestures occurred, which measured 10.0 by

6.5� of visual angle (width by height). The pixels within that area were

always tagged at 68 Hz. This was achieved by multiplying the lumi-

nance of the pixels within that square with a 68 Hz sinusoid (modula-

tion depth = 100%; modulation signal equal to 0.5 at sine wave zero-

crossing, in order to preserve the mean luminance of the video),

phase-locked across trials (see Figure 1d). For the auditory stimuli, fre-

quency tagging was achieved by multiplying the amplitude of the sig-

nal with a 61 Hz sinusoid, with a modulation depth of 100%

(following [Lamminmäki, Parkkonen, & Hari, 2014]). In a pretest, we

presented 11 native Dutch speakers with half of the stimuli containing

the amplitude modulation, and half of the stimuli not containing the

amplitude modulation in both clear and degraded speech. Participants

were still able to correctly identify the amplitude modulated stimuli in

clear speech (mean percentage correct without amplitude modulation:

99.54, with amplitude modulation: 99.31) and in degraded speech

(mean percentage correct without amplitude modulation: 72.74, with

amplitude modulation: 70.23) and did not suffer more compared with

when the signal was not amplitude modulated.

Participants were asked to attentively watch and listen to the

videos. Every trial started with a fixation cross (1,000 ms), followed

by the video (2000 ms), a short delay period (1,500 ms), and a 4-

alternative forced choice identification task (max 3,000 ms, followed

by the fixation cross of the next trial as soon as a participant pressed

one of the 4 buttons). In the 4-alternative forced choice identification

task, participants were presented with four written options, and had

to identify which verb they heard in the video by pressing one of

4 buttons on an MEG-compatible button box. This task ensured that

participants were attentively watching the videos, and to check

whether the verbs were understood. Participants were instructed not

to blink during video presentation.

Throughout the experiment, we presented all screens at a

1,440 Hz presentation rate. Brain activity was measured using MEG,

and was recorded throughout the experiment. The stimuli were pres-

ented in four blocks of 40 trials each. The whole experiment lasted

�30 min, and participants were allowed to take a self-paced break

after every block. All stimuli were presented in a randomized order

per participant.

2.4 | MEG data acquisition

MEG was recorded using a 275-channel axial gradiometer CTF MEG

system (CTF MEG systems, Coquitlam, Canada). We used an online

low-pass filter at 300 Hz and digitized the data at 1200 Hz. All partici-

pants' eye gaze was recorded by an SR Research Eyelink 1,000 eye

tracker for artifact rejection purposes. The head position of the partic-

ipants was tracked in real time by recording markers on the nasion,

and left and right periauricular points (Stolk, Todorovic, Schoffelen, &

Oostenveld, 2013). This enabled us to readjust the head position of

participants relative to their original starting position whenever the

deviation was larger than 5 mm. After the experiment, T1-weighted

structural magnetic resonance images (MRI) were collected from 24 of

26 participants using a Siemens 3 T MAGNETOM Skyra system.

2.5 | MEG data analysis

2.5.1 | Preprocessing

All MEG data were analyzed using the FieldTrip toolbox (version

20180221) (Oostenveld, Fries, Maris, & Schoffelen, 2011) running in a

Matlab environment (2017b). All data were segmented into trials

starting 1 s before and ending 3 s after the onset of the video. The

data were demeaned and line noise was attenuated using a discrete

Fourier transform approach at 50, 100, and 150 Hz. All trials that con-

tained jump artifacts or muscle artifacts were rejected using a semi-

automatic routine. The data were then down-sampled to 400 Hz.

Independent component analysis (Bell & Sejnowski, 1995; Jung

et al., 2000) was used to remove residual eye movements and cardiac-
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related activity (average number of components removed: 6.05). All

data were then inspected on a trial-by-trial basis to remove artifacts

that were not identified using these rejection procedures. These pro-

cedures resulted in rejection of 8.3% of the trials. The number of

rejected trials did not differ significantly between conditions.

2.5.2 | Frequency tagging analyses: Sensor-level

To investigate the response in auditory and visual regions to the

frequency-tagged signal, we first calculated event-related fields by aver-

aging time-locked gradiometer data over trials, over conditions, and over

participants. All tagged stimuli were presented phase-locked over trials.

We used an approximation of planar gradiometer data to facilitate inter-

pretation of the MEG data, as planar gradient maxima are thought

to be located above the neuronal sources that may underlie them

(Bastiaansen & Knösche, 2000). This was achieved by converting the axial

gradiometer data to orthogonal planar gradiometer pairs, which were

combined by using root-mean-square (RMS) for the ERFs. For the power

analyses, we computed the power separately for the two planar gradient

directions, and combined the power data by averaging the two. To visual-

ize the responses per tagging frequency (Figure 3), we used a notch

(i.e., band-stop) filter between 60 and 62 Hz to display the ERF at 68 Hz,

and a notch filter between 67 and 69 Hz to display the ERF at 61 Hz.

We then performed a spectral analysis on an individual's ERF

data pooled over conditions, in the time window in which both the

auditory and visual stimulus unfolded (0.5–1.5 s), and a post-

stimulus baseline (2.0–3.0 s). We chose this poststimulus time win-

dow as a baseline because, contrary to the prestimulus time

window, it is not affected by the button press of the 4-alternative

forced choice identification task. We chose the 0.5–1.5 s time win-

dow to focus our analysis on, because this time window captures

both the meaningful part of the gesture and the full speech signal.

We computed power spectra in frequencies ranging from 1 to

130 Hz for both the baseline and stimulus window using fast Fou-

rier transform and a single Hanning taper of the 1 s segments.

These data were then averaged over conditions, and the stimulus

window was compared with the baseline window.

2.5.3 | Frequency tagging analyses: Source-level

To reconstruct activity at the tagging frequencies, we calculated

coherence between a pure sine wave at either 61 or 68 Hz, reflecting

the tagged stimulus, and the observed MEG signal at those frequen-

cies. Although the phase of the tagging was designed to be identical

over trials, the projector that we used occasionally experienced a brief

delay in presenting the video material (in 16 of the 26 participants).

We corrected for this by translating any observed delays between

video onset and offset markers (recorded in a stimulus trigger channel)

into a phase-difference, which was then subtracted from the tagging

signal. Note that this correction only uses information in the stimulus

marker channel and the length of the original video files, and does not

rely on any information in the measured MEG signal.

We performed source analysis to identify the neuronal sources that

were coherent with the modulation signal at either 61 or 68 Hz, and

compared the difference in coherence in the stimulus and poststimulus

window. This was done pooled over conditions. Source analyses on

coherence values (for 61 and 68 Hz) and power values (for the inter-

modulation frequency at 7 Hz, see results), was performed using

dynamic imaging of coherent sources (DICS; [Gross et al., 2001]) as a

beamforming approach. We computed a common spatial filter per sub-

ject from the lead field matrix and the cross-spectral density matrix

(CSD) that was the same for all conditions. An individual's leadfield was

obtained by spatially co-registering an individual's anatomical MRI to

the MEG data by the anatomical markers at the nasion and left and

right periaucular points. Then, for each participant, a single-shell head

model was constructed on the basis of the MRI (Nolte, 2003). A source

model was created for each participant by warping a 10 mm spaced grid

defined in MNI space to the individual participant's segmented MRI.

The MNI template brain was used for those participants (2/26) for

which an individual MRI scan was not available.

After establishing regions that showed elevated coherence with

the tagged stimuli, we proceeded to test the effect of the experimen-

tal conditions (clear vs. degraded speech; matching vs. mismatching

gesture) within these regions-of-interest (ROIs). The ROIs for the

auditory and visual tagged signals were defined by taking the grid

points that exceeded 80% of the peak coherence difference value

between stimulus and baseline, across all conditions. For these ROIs,

coherence difference values were extracted per condition. Analo-

gously, the ROI for the intermodulation frequency at 7 Hz was

defined by taking those grid points that exceeded 80% of the peak

power difference value between stimulus and baseline. The 80%

threshold was chosen as an exploratory threshold.

2.5.4 | Statistical comparisons

As we predefined our frequencies of interest and have specific

regions of interest for analysis, we compared the differences between

conditions using 2 × 2 repeated measures analysis of variances

(ANOVAs), with the factors Speech (clear/degraded) and Gesture

(matching/mismatching).

3 | RESULTS

Participants watched videos of an actress uttering action verbs in clear

or degraded speech, accompanied by a matching or mismatching ges-

ture. After the video, participants were asked to identify the verb they

heard in a 4-alternative forced choice identification task, presented on

the screen in written form. Video presentation was manipulated by tag-

ging the gesture space in the video by 68 Hz flicker, while the sound in

the videos was tagged by 61 Hz amplitude modulation (see Figure 1).
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3.1 | Behavioral results

In our behavioral task we replicated previous results (see Drijvers, Ozyürek, et al.,

2018; Drijvers & Özyürek, 2018) and observed that when the speech signal was

clear, response accuracy was higher than when speech was degraded (F[1, 25]

= 301.60, p < .001, partial η2 = .92) (mean scores and SD: CM: 94.7% (SD = 4.0%),

CMM: 90.2% (SD = 5.6%), DM: 85.0% (SD = 8.2%), DMM: 66.5% (SD = 7.8%)).

Similarly, response accuracy was higher when a gesture matched compared to

mismatched the speech signal (F[1, 25] = 184.29, p < .001, partial η2 = .88). The

difference in response accuracy was larger in degraded speech than in clear

speech (F[1, 25] = 4.87, p < .001, partial η2 = .66) (see raincloud plots [Allen,

Poggiali,Whitaker,Marshall, & Kievit, 2019], Figure 2).

We observed similar results in the reaction times (RTs). Partici-

pants were faster to identify the verbs when speech was clear, com-

pared with when speech was degraded (F[1, 25] = 198,06, p < .001,

partial η2 = .89) (mean RTs and SDs: CM: 1086.3 ms, SD = 177.1 ms,

CMM: 1127.92 ms, SD = 153.84 ms, DM: 1276.96 ms, SD =

230.13 ms, DMM: 1675.77 ms, SD = 246.69 ms). Participants were

F IGURE 2 (a) Accuracy results per condition. Response accuracy is highest for clear speech conditions, and when a gesture matches the
speech signal. (b) Reaction times per condition. Reaction times are faster in clear speech and when a gesture matches the speech signal. Raincloud
plots reveal raw data, density, and boxplots for coherence change

F IGURE 3 Event-related fields show clear responses at the tagged frequencies. Auditory input was tagged by 61 Hz amplitude modulation
(a), Visual input was tagged by 68 Hz flicker (b). The insets reflect an enlarged part of the signal to clearly demonstrate the effect of the tagging
on the event-related fields. Tagging was phase-locked over trials. (a) Average ERF for a single subject at selected sensors overlying the left and
right temporal lobe. The highlighted sensors in the right plot reflect the sensors for which the ERF is plotted. (b) Average ERF for 68 Hz for a
single subject at selected sensors overlying occipital cortex. The highlighted locations in the right plot reflect the sensors for which the ERF is
plotted. ERFs show combined planar gradient data
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faster to identify the verbs when the gesture matched the speech sig-

nal, compared with when the gesture mismatched the speech signal (F

[1, 25] = 105,42, p < .001, partial η2 = .81). This difference in reaction

times was larger in degraded speech than in clear speech (F[1, 25]

= 187,78, p < .001, partial η2 = .88).

In sum, these results demonstrate that gestures facilitate speech

comprehension when the actress performed a matching gesture, but

hindered comprehension when she performed a mismatching gesture.

This effect was larger in degraded speech than in clear speech.

3.2 | MEG results: Frequency tagging

3.2.1 | Both visual and auditory frequency tagging
produce a clear steady-state response that is larger
than baseline

As a first step, we calculated the time-locked averages of the event-

related fields pooled over conditions. Auditory frequency tagging at 61 Hz

produced an auditory steady-state response over left and right-temporal

regions (see Figure 3a), and visual frequency tagging at 68 Hz produced a

clear visual steady-state response at occipital regions (see Figure 3b).

To explicitly compare the tagged signals between stimulus

(0.5–1.5 s) and poststimulus baseline (2.0–3.0 s) periods, we plotted

the difference in spectral power calculated from the ERF (i.e., power

of the time-locked average) in Figure 4. We observe that both visual

and auditory responses at the tagged frequency were reliable larger in

the stimulus period than in the baseline (see below for statistical

assessment at the source level). Note that the visual tagged signal at

68 Hz seems to be more focal and strong than the auditory tagged

signal at 61 Hz (see Figure 4). These analyses confirm that we were

able to induce high-frequency steady-state responses simultaneously

for both auditory and visual stimulation.

3.2.2 | Coherence is strongest at occipital regions
for the visually tagged signal (68 Hz) and strongest
when speech is clear

We proceeded to identify the neural generators of the tagged signals

using beamformer source analysis. We computed source-level coher-

ence coefficients for all conditions pooled together. This was done by

computing coherence between a visual dummy 68 Hz modulation sig-

nal and the observed MEG data. The relative coherence increase

between stimulus and baseline was largest in occipital regions (see

Figure 5a), in an area consistent with early visual cortex.

To compare conditions, we then formed a visual ROI by selecting

those grid points exceeding an exploratory threshold of 80% of the peak

coherence increase. For each participant, the percentage of change in

coherence between stimulus and baseline was computed in that ROI per

condition and compared in a 2 × 2 (Speech: clear/degraded, Gesture:

matching/mismatching) RM-ANOVA (see Figure 5b). Coherence change

F IGURE 4 (a) Power over auditory sensors peaks at the tagged frequency of the auditory stimulus (61 Hz). Note the visual 68 Hz tagged
signal is still observable at left- and right-temporal sensors of interest; 61 Hz power is stronger in the stimulus interval than in the baseline
interval, and is widely spread over posterior regions, with maxima at right-temporal regions. (b) A power increase is observed at the tagged
frequency (68 Hz) for the visual stimuli; 68 Hz power is larger in the stimulus than in the baseline window and is strongest over occipital regions
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was larger for videos containing clear speech than videos containing

degraded speech (F[1, 25] = 17.14, p < .001, partial η2 = .41), but did not

differ between matching or mismatching trials (F[1, 25] = 0.025, p = .87,

partial η2 = .001). We observed a significant interaction between Speech

and Gesture (F[1, 25] = 26.87, p < .001, partial η2 = .52). Post hoc pairwise

comparisons revealed a stronger coherence change in videos containing

clear speech and a matching gesture (CM) than clear speech and a

mismatching gesture (CMM) (t[25] = 3.26, p = .015), and a stronger coher-

ence change in videos containing degraded speech and a mismatching ges-

ture (DMM) than in videos containing degraded speech and a matching

gesture (DM) (t[25] = −4.03, p < .001). Coherence change was larger in

CM than in DM (t[25] = 6.59, p < .001), in CMM than DM (t[25] = 2.93,

p = .04), but not larger in CM than in DMM (t[25] = 2.02, p = .27), and not

larger in CMM compared to DMM (t[26] = −1.74, p = .48).

These results thus indicate that visual regions responded stronger

to the frequency-tagged gestural signal when speech was clear than

when speech was degraded. This suggests that when speech is clear,

participants allocate more visual attention to gestures than when

speech is degraded, especially when a gesture matched the speech

signal. When speech is degraded, participants allocate more attention

to mismatching than to matching gestures.

3.2.3 | Coherence is strongest at right-temporal
regions for the auditory tagged signal (61 Hz) and
strongest when speech is degraded

Similar to the visually tagged signal, we first computed coherence

coefficients for all conditions pooled together. This was done by com-

puting source-level coherence between a dummy 61 Hz modulation

signal (reflecting the auditory tagging drive) and the observed MEG

data. The coherence difference between stimulus and baseline peaked

at right temporal regions (Figure 5c), in an area consistent with (right)

early auditory cortex.

F IGURE 5 Sources of the visually tagged signal at 68 Hz (A/B) and sources of the auditory tagged signal at 61 Hz (C/D), and individual scores
in the respective ROI per condition (clear match/clear mismatch/degraded match/degraded mismatch. Z-coordinates of slices are in mm and in
MNI space. (a) Coherence change in percentage when comparing coherence values in the stimulus window to a poststimulus baseline for 68 Hz
(the frequency of the visual tagging), pooled over conditions. Only positive coherence change values are plotted (>80% of peak maximum).
Coherence change is the largest over occipital regions for the visually tagged signal. (b) Coherence change values in percentage extracted from
the 68 Hz ROI. Raincloud plots reveal raw data, density, and boxplots for coherence change. (c) Coherence change in percentage when comparing
coherence values in the stimulus window to a poststimulus baseline for 61 Hz (the frequency of the auditory tagging), pooled over conditions.
Only positive coherence values are plotted (>80% of peak maximum). Coherence change is largest over right-temporal regions. D: Coherence
change values in percentage extracted from the 61 Hz ROI. Raincloud plots reveal raw data, density, and boxplots for coherence change
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To compare conditions, we then formed the auditory ROI by

selecting those grid points exceeding an exploratory threshold of 80%

of peak coherence change. Again, coherence change values per condi-

tion and per participant were compared in a 2 × 2 RM-ANOVA (see

Figure 5d). Coherence change was larger in degraded speech condi-

tions than in clear speech conditions (F[1, 25] = 12.87, p = .001, partial

η2 = .34), but did not differ between mismatching and matching condi-

tions (F[1, 25] = 0.09, p = .77, partial η2 = .04). No interaction effect

was observed (F[1, 25] = 3.13, p = .089, partial η2 = .11). Post hoc

pairwise comparisons revealed that there was no difference in coher-

ence change when comparing CM and CMM (t[25] = −1.44, p = .81),

or between DM and DMM (t[25] = 1.38, p = .90). Coherence change

was larger in DM than in CM (t[25] = −4.24, p < .001), and in DMM

than in CM (t[25] = −3.90, p < .01) but not when comparing CMM to

DMM (t[25] = −1.40, p = .87). These results thus indicate that right-

lateralized auditory regions processed the frequency-tagged auditory

signal more strongly when speech was degraded than when speech

was clear. This suggests that when speech is degraded, participants

allocate more auditory attention to speech than when speech is clear.

3.2.4 | An intermodulation frequency was
observed at 7 Hz (jfvisual − fauditoryj), but not at 129 Hz
(fvisual + fauditory)

To test whether intermodulation frequencies (jfvisual − fauditoryj,
fvisual + fauditory) could be observed, we then calculated power spectra

of the ERFs in the stimulus time window and the post-stimulus time

window at 7 and 129 Hz. Only for 7 Hz a difference between stimulus

and baseline was observed at left frontal and left temporal sensors

(Figure 6a,c). No reliable differences were observed for 129 Hz

(Figure 6d). Interestingly, the spectral peak at 7 Hz during stimulus

was most pronounced for the clear/match condition (Figure 6e).

As a next step, we then took a similar approach as for the visual

and auditory tagged stimuli and calculated the coherence difference

between stimulus and baseline at 7 Hz, pooled over conditions. This

was done by computing source-level coherence between a dummy

7 Hz modulation signal (the intermodulation frequency of our 61 and

68 Hz tagging signals, specified as the multiplication of the 61 and

68 Hz dummy signal) and the observed MEG data. The coherence

analysis did not reveal any differences between stimulus and baseline

(see Figure 7a). It should be noted here that our frequency-tagged sig-

nals at fauditory and fvisual were exactly phase-consistent across trials,

since the phase was uniquely determined by the stimuli themselves.

However, it is possible that the phase of the intermodulation signal

has a much weaker phase consistency across trials, since it depends

not only on the stimuli but also on the nature of the nonlinear neural

interaction. If this is the case, we might still observe an effect on the

power at the intermodulation frequency, rather than the coherence.

We therefore performed source analysis on the power of the com-

bined conditions versus baseline. Here, we observed a power change

at 7 Hz in left frontal and temporal regions that mirrored the effect

we observed at sensor level (Figure 7b).

The condition-averaged effect at the intermodulation frequency

of 7 Hz is less striking than at the primary tagged frequencies of

61 and 68 Hz, potentially due to it being driven mainly by one of the

F IGURE 6 An intermodulation frequency could be observed at 7 Hz (jfvisual-fauditoryj) (a/c/e) but not 129 Hz (fvisual+fauditory). (d). (a) 7 Hz
power in the stimulus window is larger than baseline over left-temporal and left-frontal sensors. Only positive values are plotted. (b) Selected sensors
(based on visual inspection). The black highlighted sensors represent the sensors at which the power spectra of the ERFs was calculated. (c) Power
spectra of 7 Hz (stimulus>baseline). (d) No difference could be observed at 129 Hz between stimulus and baseline. (e) Power spectra per condition;
7 Hz power peaks strongest in the clear+match condition. (f) Power spectra of 61 and 68 Hz over selected channels of 7 Hz power peak (see B)
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four conditions only (see Figure 6e). Note that the 61 and 68 Hz signal

were still present over the left-frontotemporal sensors where we

observed the 7 Hz effect (see Figure 6f). As a next step, and sticking

to our a priori defined hypotheses and analysis plan, we again

proceeded by comparing conditions within an ROI defined by the

condition-averaged contrast in source space. As before, the ROI was

defined as those grid points exceeding an exploratory threshold of

80% of the peak power change from baseline to stimulus epochs. We

compared the strength of the 7 Hz signal at source level between con-

ditions by using a 2 × 2 RM-ANOVA (Figure 7c). Power change was

larger in clear speech conditions than in degraded speech conditions

(F[1, 25] = 10.26, p = .004, partial η2 = .29), but did not differ

between matching and mismatching trials (F[1, 25] = 0.01, p = .91,

partial η2 = .001), suggesting an effect of speech degradation, but not

of semantic congruency. No interaction effect was observed (F[1, 25]

= 1.27, p = .27, partial η2 = .05). Post hoc pairwise comparisons rev-

ealed that 7 Hz power was not different for CM compared to CMM (t

[25] = 1.14, p = 1), and not different for DM compared to DMM (t

[25] = −.67, p = 1). However, 7 Hz power was larger in CM than in

DM (t[25] = 3.01, p = .025), and larger in CM than in DMM (t[25]

= 2.82, p = .045). No difference was observed between CMM and

DMM (t[25] = 1.61, p = .6). To rule out that these differences in 7 Hz

power were due to general power differences in the theta band, we

compared the strength of 6 and 8 Hz between conditions, using two

2x2 RM-ANOVA's. Here, no differences between conditions were

observed (all p > .05), suggesting this was specific to the 7 Hz signal.

These results are also in line with previous MEG studies on speech-

gesture integration, where no differences in theta power were

observed (Drijvers, Ozyurek, & Jensen, 2018; Drijvers, Ozyürek, &

Jensen, 2018; Drijvers, van der Plas, et al., 2019).

In addition to our ROI-based analysis, we present the full

beamformer source maps of 7 Hz power (stimulus vs. baseline) for the

four conditions in Figure 7d. These reveal results fully compatible with

the aforementioned RM-ANOVA. Furthermore, they show that our

ROI selection on the condition-averaged response versus baseline

was likely suboptimal, since the source map for CM shows a more

clearly elevated intermodulation cluster than the average (in line with

the sensor-level results shown in Figure 6a).

These results thus demonstrate that we could reliably observe an

intermodulation signal when speech was clear and a gesture matched

the speech signal. Left-frontotemporal regions showed a stronger

intermodulation peak (reflecting the lower-order interaction between

the auditory and visually tagged signal) when speech was clear than

when speech was degraded. This suggests that the interaction

between the auditory and visual tagged signal is strongest when signal

quality was optimal and speech was clear.

4 | DISCUSSION

In the current MEG study we provide a proof-of-principle that RIFT

can be used to estimate task-dependent neuronal excitability in visual

and auditory areas, as well as the auditory–visual interaction. Coher-

ence was strongest over occipital regions for the visual-tagged input,

F IGURE 7 Sources of the intermodulation frequency (fvisual-fauditory) at 7 Hz and individual scores in the leftfrontotemporal ROI per condition
(clear match/clear mismatch/degraded match/degraded mismatch). Z-coordinates of slices are in mm and in MNI space. (a) Coherence change in
percentage when comparing coherence values in the stimulus window to a poststimulus baseline for 7 Hz (intermodulation frequency, fvisual–
fauditory), pooled over conditions. Only positive coherence values are plotted (>80% of maximum). No differences could be observed. (b) Power
change in percentage when comparing power values in the stimulus window to a poststimulus baseline for 7 Hz, pooled over conditions. Power
changes were largest in left-frontal and left-temporal regions. Highest peak value was at MNI coordinates −44, 24, 22, and extended from LIFG
to pSTS/MTG. Only positive coherence values are plotted (> 80% of maximum). (c) Power change values in percentage extracted from the 7 Hz
ROI in source space. Raincloud plots reveal raw data, density, and boxplots for power change per condition. (d) Power change in percentage when
comparing power values in the stimulus window to a poststimulus baseline for 7 Hz, per condition
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and strongest when speech was clear. Coherence was strongest over

right-temporal regions for the auditory-tagged input and strongest

when speech was degraded. Importantly, we identified an intermodu-

lation frequency at 7 Hz (fvisual − fauditory) as a result of the interaction

between a visual frequency-tagged signal (gesture; 68 Hz) and an

auditory frequency-tagged signal (speech; 61 Hz). In line with our

hypotheses, power at this intermodulation frequency was strongest in

LIFG and left-temporal regions (pSTS/MTG), and was strongest when

the lower-order integration of auditory and visual information was

optimal (i.e., when speech was clear). Below we provide interpreta-

tions of these results.

4.1 | Clear speech enhances visual attention to
gestural information

In occipital regions, we observed a stronger drive by the 68 Hz visual

modulation signal when speech was clear than when speech was

degraded. We speculate that this effect reflects that listeners allocate

more visual attention to gestures when speech is clear. This specula-

tive interpretation is in line with previous eye-tracking work that dem-

onstrated that when speech is degraded, listeners gaze more often to

the face and mouth than to gestures to extract phonological informa-

tion to aid comprehension (Drijvers, Vaitonytė, & Özyürek, 2019), as

well as previous work that revealed that the amplitude of SSVEPs was

enhanced by visual attention, irrespective of whether the stimuli were

task-relevant (Morgan, Hansen, Hillyard, & Posner, 1996; Müller

et al., 2006). Note that gestural information is often processed in the

periphery of a listener's visual field (Gullberg & Holmqvist, 1999,

2002, 2006; Gullberg & Kita, 2009). As listeners do not necessarily

need to extract the phonological information conveyed by the lips

when speech is clear, overt visual attention might be directed to a

“resting” position in the middle of the screen during clear speech

processing, resulting in stronger coherence with the visual drive when

speech is clear than when speech is degraded. Pairwise comparisons

of the conditions revealed that in clear speech, coherence was larger

when the gesture matched, rather than mismatched, the signal. In line

with the interpretation above, a listener might have reconsidered the

auditory input when noticing that the gesture mismatched the per-

ceived auditory input, and might have directed their attention to the

face/lips of the actress, which, in turn, reduces visual attention to the

gesture.

However, we observed the opposite effect when speech was

degraded; that is, a stronger coherence when the gesture mismatched,

rather than matched, the degraded speech signal. We speculate that

when speech is degraded and a gesture matches the signal, a listener

might more strongly allocate visual attention to the information con-

veyed by the face/lips, so that information conveyed by the lips and

the information conveyed by the gesture can jointly aid in disambigu-

ating the degraded speech signal (Drijvers & Ozyürek, 2017). How-

ever, when speech is degraded and a gesture mismatches the signal,

the uncertainty of both inputs may result in a reconsideration of both

inputs, and thus a less fixed locus of attention (see also Nath &

Beauchamp, 2011 for work on perceptual reliability weighting in clear

and degraded speech). These interpretations are rather speculative,

and further work is needed to disambiguate different interpretations.

For example, future work could consider tagging the mouth-region to

further investigate how a listener allocates visual attention to these

two visual articulators during comprehension

4.2 | Degraded speech enhances auditory
attention to speech information

In line with our hypotheses, we observed stronger drive by the 61 Hz

amplitude modulation signal in temporal areas overlapping with audi-

tory cortex when speech was degraded than when speech was clear.

This response was strongest at right-temporal regions, which is in line

with previous work that demonstrated that for speech stimuli, the ASSR

is often localized to right-lateralized sources (Lamminmäki et al., 2014;

Ross et al., 2005). Although both left- and right-hemispheres process

speech, a right-lateralized dominance is often observed because right-

lateralized regions are sensitive to spectral changes and prosodic infor-

mation, and processing of low-level auditory cues (Zatorre & Gandour,

2008; Scott et al., 2000).

Previous work has reported enhanced ASSR responses to

amplitude-modulated multi-speech babble when attention to this

input increases (Keitel, Schröger, Saupe, & Müller, 2011; Ross, Picton,

Herdman, & Pantev, 2004; Saupe, Widmann, Bendixen, Müller, &

Schröger, 2009; Talsma et al., 2010; Tiitinen et al., 1993). The

enhanced ASSR which we observed in the degraded compared to

clear speech conditions could thus reflect an increase in attention to

the speech signal when speech is degraded. Note that no differences

in coherence were observed when comparing matching and

mismatching gestures in either clear or degraded speech. As the ges-

ture congruency manipulation is a visual manipulation, this indicates

that modulation of the ASSR is modality-specific (Parks, Hilimire, &

Corballis, 2011; Rees, Frith, & Lavie, 2001).

4.3 | The auditory tagged speech signal and visual
tagged gesture signal interact in left-frontotemporal
regions

We set out to study whether intermodulation frequencies could be

identified in a multimodal, semantic context as a result of the interac-

tion of the visual and auditory tagged signals. In contrast to previous

work by (Giani et al., 2012) using lower frequencies, we did observe

an intermodulation frequency at 7 Hz (fvisual − fauditory), but not at

129 Hz (fvisual + fauditory). As responses in lower frequencies tend to be

stronger than in higher frequencies, the higher-frequency intermodu-

lation frequency might not have been identifiable as neurons cannot

be driven in this fast range.

Note that although we observed a stronger 7 Hz power peak at

sensor level in the stimulus interval compared to the baseline interval,

we did not observe stronger coherence between a 7 Hz dummy signal
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and the observed MEG data at source level. This indicates that the

phase of the intermodulation signal is not as consistent over trials as

the fvisual and fauditory signals, which in turn might imply that the time

point of interaction of the two signals differs across trials. This could

explain why we observed a clear difference between stimulus and

baseline when we reconstructed the sources of the intermodulation

frequency on the basis of power, but not coherence.

We observed a reliable peak at 7 Hz power during stimulation

when integration of the lower-order auditory and visual input was

optimal, that is, when speech was clear. In line with our hypotheses,

the source of the intermodulation frequency was localized in LIFG

and left-temporal (pSTS/MTG) regions. It has been shown that these

areas are involved in the integration of speech and gestures (Dick

et al., 2014; Drijvers, Ozyurek, & Jensen, 2018; Drijvers, Ozyürek, &

Jensen, 2018; Drijvers, van der Plas, et al., 2019; Holle et al., 2008,

2010; Kircher et al., 2009; Straube et al., 2012; Willems et al., 2007,

2009; Zhao et al., 2018). There are, however, important differences

between the interpretation of the intermodulation frequency in this

work, and the results observed in response to higher-order speech-

gesture integration in previous work.

First, although previous work has observed effects related to

higher-order integration in LIFG and pSTS/MTG, the observed inter-

modulation frequency in the current work is most likely related to

lower-order integration. Specifically, we observed that power at the

intermodulation frequency was stronger in clear speech conditions

than in degraded speech conditions, but we did not observe an effect

of gesture congruency. We therefore propose that, contrary to our

hypotheses, power at the intermodulation frequency does not reflect

the integration of higher-order semantic audiovisual integration, but

rather is a direct reflection of the nonlinear integration of lower-order

speech and gesture information. This difference might be explained

by considering that the intermodulation frequency is unable to cap-

ture higher-order effects that result from lexical access on the basis of

the auditory and visual input. Second, the current work is not able to

dissociate between the different roles of the LIFG and pSTS/MTG in

the speech-gesture integration process. The accuracy of source

modeling using MEG should be considered in the light of the inverse

problem (Baillet, 2017). This limits our ability to make precise claims

about the exact locus of the observed effect when comparing to fMRI

(see for example, Papeo et al., 2019, for a functional distinction of dif-

ferent subregions of the MTG in the speech-gesture integration pro-

cess). Furthermore, fMRI is sensitive to modulations in the BOLD

signal whereas MEG detects changes in neuronal synchronization. As

such, these techniques provide complementary but not necessarily

overlapping information on neuronal activation.

4.4 | Proof of principle: Using RIFT to study the
integration of complex and dynamic audiovisual
stimuli in a semantic context

The current MEG study provides a proof of principle of the use of

RIFT to study the integration of audiovisual stimuli, and is the first

study to identify intermodulation frequencies as a result of the lower-

order interaction between auditory and visual stimuli in a semantic

context. Note that although previous work has reported the occur-

rence of intermodulation frequencies in a nonsemantic context

(Regan et al., 1995), other studies have failed to identify between-

modality intermodulation frequencies (Giani et al., 2012). This could

be due to the fact that lower frequencies were used for tagging.

Another possibility is that this was due to the nature of the stimuli

used in these studies. As Giani et al., (2012) suggest, the occurrence

of intermodulation frequencies resulting from audiovisual integration

of nonsemantic inputs such as tones and gratings might reflect low-

level spatiotemporal coincidence detection that is prominent for tran-

sient stimuli, but less so for sustained steady-state responses. Simi-

larly, previous fMRI work that investigated the difference between

transient and sustained BOLD responses revealed that primary audi-

tory and visual regions were only involved in the integration of rapid

transient stimuli at stimulus onset. However, integration for sustained

responses did involve higher-order areas (Werner & Noppeney,

2011). The observed 7 Hz intermodulation frequency in response to

our semantic audiovisual stimuli was also localized to higher-order

areas, rather than early sensory regions. This again underlines the pos-

sibility that the observed intermodulation frequency in the current

study reflects the ease of lower-order integration of these audiovisual

stimuli in certain higher-order regions.

An important advantage of using RIFT is that spontaneous neuro-

nal oscillations in lower frequencies were not entrained by our tagging

frequencies. This might explain why a clear intermodulation frequency

was observed in the current study, but was less easy to identify in

previous work. Future studies might consider exploiting this feature

and using RIFT to study the interaction of these endogenous lower

frequency oscillations with the tagged signals, in order to elucidate

their role in sensory processing. However, future work should also

consider that high-frequency tagging might entrain spontaneous neu-

ronal oscillations at higher frequencies. Although this was not directly

relevant for the identification of the intermodulation frequency in this

study, and we did not observe any gamma band modulations in

response to the stimuli used in this study in earlier work (Drijvers,

Ozyurek, & Jensen, 2018), it should be noted that gamma band modu-

lations have been observed in other work related to linguistic seman-

tic processing (e.g., in the 30–50 Hz range in Mellem et al., 2013;

Wang et al., 2018).

5 | CONCLUSION

First of all, we provided a proof of principle that RIFT can be used to

tag visual and auditory inputs at high frequencies, resulting in clear

spectral peaks in the MEG signal, localized to early sensory cortices.

Second, we demonstrated that RIFT can be used to identify intermod-

ulation frequencies in a multimodal, semantic context. The observed

intermodulation frequency was the result of the nonlinear interaction

between visual and auditory tagged stimuli. Third, the intermodulation

signal was localized to LIFG and pSTS/MTG, areas known to be
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involved in speech-gesture integration. The strength of this intermod-

ulation frequency was strongest when lower-order signal quality was

optimal. In conclusion, we thus propose that the strength of this inter-

modulation frequency reflects the ease of lower-order audiovisual

integration, that RIFT can be used to study both unimodal sensory sig-

nals as well as their multimodal interaction in downstream higher-

order areas, and that RIFT has many use cases for future work.
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