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1 | INTRODUCTION

During communication in real-life settings, our brain needs to inte-

grate auditory input with visual input in order to form a unified

Ole Jensen and Eelke Spaak shared senior authorship.

Ole Jensen® |

Eelke Spaak*

Abstract

During communication in real-life settings, the brain integrates information from
auditory and visual modalities to form a unified percept of our environment. In the
current magnetoencephalography (MEG) study, we used rapid invisible frequency
tagging (RIFT) to generate steady-state evoked fields and investigated the integration
of audiovisual information in a semantic context. We presented participants with
videos of an actress uttering action verbs (auditory; tagged at 61 Hz) accompanied by
a gesture (visual; tagged at 68 Hz, using a projector with a 1,440 Hz refresh rate).
Integration difficulty was manipulated by lower-order auditory factors (clear/
degraded speech) and higher-order visual factors (congruent/incongruent gesture).
We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies.
We furthermore observed a peak at the intermodulation frequency of the auditory
and visually tagged signals (fyisual — fauditory = 7 Hz), specifically when lower-order
integration was easiest because signal quality was optimal. This intermodulation peak
is a signature of nonlinear audiovisual integration, and was strongest in left inferior
frontal gyrus and left temporal regions; areas known to be involved in speech-gesture
integration. The enhanced power at the intermodulation frequency thus reflects the
ease of lower-order audiovisual integration and demonstrates that speech-gesture
information interacts in higher-order language areas. Furthermore, we provide a
proof-of-principle of the use of RIFT to study the integration of audiovisual stimuli, in
relation to, for instance, semantic context.

KEYWORDS
ASSR, audiovisual integration, frequency tagging, gesture, intermodulation frequency,

magnetoencephalography, multimodal integration, oscillations, speech, SSVEP

percept of the environment. Several magneto- and electroencephalog-
raphy (M/EEG) studies have demonstrated that integration of non-
semantic audiovisual inputs can occur as early as 50-100 ms after
stimulus onset (e.g., Giard & Peronnet, 1999; Molholm et al., 2002;
Talsma, Senkowski, Soto-Faraco, & Woldorff, 2010), and encompasses
a widespread network of primary sensory and higher-order regions
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(e.g., Beauchamp, Argall, Bodurka, Duyn, & Martin, 2004,
Calvert, 2001; Werner & Noppeney, 2010).

The integration of these audiovisual inputs has been studied using
frequency tagging (Giani et al., 2012; Regan, He, & Regan, 1995).
Here, an auditory or visual stimulus is periodically modulated at a spe-
cific frequency, for example, by modulating the luminance of a visual
stimulus or the amplitude of an auditory stimulus. This produces
steady-state evoked potentials (SSEPs, SSEFs for MEG) with strong
power at the tagged frequency (for frequency-tagging in the visual
domain and steady-state visual evoked responses (SSVEP), see for
example, Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015;
Vialatte, Maurice, Dauwels, & Cichocki, 2010; Gulbinaite et al., 2019
for frequency tagging in the auditory domain and auditory steady-
state responses (ASSR), see for example, Baltus & Herrmann, 2015;
Picton et al., 2003; Ross, Herdman, & Pantev, 2005; Ross, Draganova,
Picton, & Pantev, 2003). This technique is especially interesting in the
context of studying audiovisual integration, because it enables the
tagging of an auditory stimulus and a visual stimulus at two different
frequencies (fisyar and fauditory) in order to study whether and how
these two inputs interact in the brain. Previous work has suggested
that when the auditory and visual signals interact, this results in
increased power at the intermodulation frequencies of the two stimuli
(e.g., [fuisual — fauditory| OF fuisual + fauditory) (REgan & Regan, 1989). Such
intermodulation frequencies arise from nonlinear interactions of the
two oscillatory signals. In the case of audio-visual integration, the
intermodulation likely reflects neuronal activity that combines the sig-
nals of the two inputs beyond linear summation (Regan &
Regan, 1988; Zemon & Ratliff, 1984).

However, other authors have reported inconclusive results on the
occurrence of such intermodulation frequencies as a signature of
nonlinear audiovisual integration in neural signals. Furthermore, this
integration has so far only been studied in non-semantic contexts
(e.g., the integration of tones and gratings). For example, whereas
Regan et al. (1995) identified intermodulation frequencies (i.e., as a
result of tagging an auditory and visual stimulus) in an area close to
the auditory cortex, Giani et al., (2012) identified intermodulation fre-
quencies within (i.e., as a result of tagging two signals in the visual
domain), but not between modalities (i.e., as a result of tagging both
an auditory and a visual signal).

In both of these previous studies, frequency tagging was applied
at relatively low frequencies (< 30 Hz for visual stimuli, < 40 Hz for
auditory stimuli) (Giani et al., 2012; Regan et al., 1995). This might be
problematic, considering that spontaneous neuronal oscillations at
lower frequencies (e.g., alpha and beta oscillations) are likely entrained
by frequency tagging (Keitel, Quigley, & Ruhnau, 2014; Spaak, de
Lange, & Jensen, 2014). In the current study, we use novel projector
technology to perform frequency tagging at high frequencies (rapid
invisible frequency tagging; RIFT), and in a semantic context. Previous
work has demonstrated that neuronal responses to a rapidly flickering
LED can be driven and measured up to 100 Hz (Herrmann, 2001), and
can successfully be used to study sensory processing in the brain
2017;
Jensen, 2019). We here leverage these rapid neural responses in order

(Herring, Zhigalov, Herring, Herpers, Bergmann, &

to circumvent the issue of endogenous rhythms interacting with low-
frequency tagging signals.

We use speech-gesture integration as a test case for studying
RIFT in a semantic context. Speech-gesture integration is a form of
semantic audiovisual integration that often occurs in natural, face-to-
face communication. Previous behavioral and neuroimaging studies
have demonstrated that listeners process and integrate speech and
gestures at a semantic level, and that this integration relies on a net-
work involving left inferior frontal gyrus (LIFG), left-temporal regions
(STS/MTG), motor cortex, and visual cortex (Dick, Mok, Raja
Beharelle, Goldin-Meadow, & Small, 2014; Drijvers, Ozyurek, &
Jensen, 2018; Drijvers, Ozylirek, & Jensen, 2018; Drijvers, van der
Plas, Ozyirek, & Jensen, 2019; Holle, Gunter, Ruschemeyer, Hen-
nenlotter, & lacoboni, 2008; Holle, Obleser, Rueschemeyer, &
Gunter, 2010; Kircher et al., 2009; Straube, Green, Weis, &
Kircher, 2012; Willems, Ozy(rek, & Hagoort, 2007, 2009; Zhao, Riggs,
Schindler, & Holle, 2018). Using frequency tagging in such a context
to study whether intermodulation frequencies can be identified as a
signature of nonlinear audiovisual integration would provide a proof-
of-principle for the use of such a technique to study the integration of
multiple inputs during complex dynamic settings, such as multimodal
language comprehension.

In the present study, we set out to explore whether RIFT can be
used to identify intermodulation frequencies as a result of the interac-
tion between a visual and auditory tagged signal in a semantic con-
text. Participants watched videos of an actress uttering action verbs
(tagged at fauditory = 61 Hz) accompanied by a gesture (tagged at
fuisual = 68 Hz). Integration difficulty of these inputs was modulated
by auditory factors (clear/degraded speech) and visual factors (con-
gruent/incongruent gesture). For the visually tagged input, we
expected power to be strongest at 68 Hz in occipital regions. For the
auditory tagged input, we expected power to be strongest at 61 Hz in
auditory regions. We expected the interactions between the visually
tagged and auditory tagged signal to be nonlinear in nature, resulting
in spectral peaks at the intermodulation frequencies of fy;s.. and
fauditory (-84, fuisual + fauditory aNd fyisual = fauditory)- ON the basis of previ-
ous work (e.g., Drijvers, Ozyurek, & Jensen, 2018; Drijvers, Ozyturek, &
Jensen, 2018; Drijvers, van der Plas, et al., 2019), we expected the
locus of the intermodulation frequencies to occur in LIFG and left-
temporal regions such as pSTS/MTG, areas known to be involved in

speech-gesture integration.

2 | METHODS

2.1 | Participants

Twenty-nine right-handed native Dutch-speaking adults (age
range = 19-40, mean age = 23.68, SD = 4.57, 18 female) took part in
the experiment. All participants reported normal hearing, normal or
corrected-to-normal vision, no neurophysiological disorders and no
language disorders. All participants were recruited via the Max Planck

Institute for Psycholinguistics participant database and the Radboud
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University participant database, and gave their informed consent pre-
ceding the experiment. Three participants (two females) were
excluded from the experiment due to unreported metal in dental work
(1) or excessive motion artifacts (>75% of trials affected) (2). The final

data set included the data of 26 participants.

2.2 | Stimulus materials

Participants were presented with 160 video clips showing an actress
uttering a highly-frequent action verb accompanied by a matching or
a mismatching iconic gesture (see for a detailed description of pretests
on recognizability and iconicity of the gestures, [Drijvers & Ozylirek,
2017]). All gestures used in the videos were rated as potentially
ambiguous when viewed without speech, which allowed for mutual
disambiguation of speech and gesture (Habets, Kita, Shao, Ozyurek, &
Hagoort, 2011).

In all videos, the actress was standing in front of a neutrally col-
ored background, in neutrally colored clothes. We predefined the
verbs that would form the “mismatching gesture,” in the sense that
we asked the actress to utter the action verb, and depict the other
verb in her gesture. This approach was chosen because we included
the face and lips of the actress in the videos, and we did not want
to recombine a mismatching audio track to a video to create the
mismatch condition. Videos were on average 2000 ms long (SD =
21.3 ms). After 120 ms, the preparation (i.e., the first frame in which

(a) prep. gesture onset speech onset

| stroke onset |

the hands of the actress moved) of the gesture started. On average, at
550 ms (SD = 74.4 ms), the meaningful part of the gesture (i.e., the
stroke) started, followed by speech onset at 680 ms (SD = 112.54 ms),
and average speech offset at 1435 ms (SD = 83.12 ms) None of these
timings differed between conditions. None of the iconic gestures
were prescripted. All gestures were performed by the actress on
the fly.

All audio files were intensity-scaled to 70 dB and denoised using
Praat (Boersma & Weenink, 2015), before they were recombined
with their corresponding video files using Adobe Premiere Pro. For
80 of the 160 sound files, we created noise-vocoded versions using
Praat. Noise-vocoding pertains the temporal envelope of the audio
signal, but degrades the spectral content (Shannon, Zeng, Kamath,
Wygonski, & Ekelid, 1995). We used 6-band noise-vocoding, as we
demonstrated in previous work that this is the noise-vocoding level
where the auditory signal is reliable enough for listeners to still be
able to use the gestural information for comprehension (Drijvers &
Ozyurek, 2017). To achieve this, we band-pass filtered the sound
files between 50 and 8,000 Hz in 6 logarithmically spaced frequency
bands with cut-off frequencies at 50, 116.5, 271.4, 632.5, 1,473.6,
3,433.5, and 8,000 Hz. These frequencies were used to filter white
noise and obtain six noise bands. We extracted the amplitude enve-
lope of each band using half-wave rectification and multiplied the
amplitude envelope with the noise bands. These bands were then
recombined. Sound was presented to participants using MEG-
compatible air tubes.

“ritsen” (to zip)

retraction onset

I ! MWW_” (tagged at 61 Hz)
video onset | 1 1 1 video offset

0 120 400 550 700 800

1200 1380 1600 2s

» ¥y

¥y

)

ll

| |
/ f

7

Matching Gesture Mismatching gesture (C)

-~

degraded speech clear speech

FIGURE 1

A A A
Video inside gesture box
Video outside gesture box

0.1+

ol . . .
0 0.02 0.04 0.06 0.08 0.1
Time (s)

(a) lllustration of the structure of the videos. Speech was amplitude-modulated at 61 Hz. (b) lllustration of the different conditions.

(c) Area used for visual frequency tagging at 68 Hz. (d) lllustration of luminance manipulation for visual-frequency tagging. Frequency tagging was
achieved by multiplying the luminance of the pixels with a 68 Hz sinusoid. Modulation signal was equal to 0.5 at sine wave zero-crossing to
preserve the mean luminance of the video, and was phase-locked across trials
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We manipulated integration strength in the videos by auditory
(clear/degraded) and visual (congruent/incongruent) factors (see
Figure 1). This resulted in four conditions: clear speech + matching
gesture (CM), clear speech + mismatching gesture (CMM), degraded
speech + matching gesture (DM) and degraded speech + mismatching
gesture (DMM). These stimuli have been thoroughly pretested and
used in previous work on speech-gesture integration (e.g., Drijvers &
Ozyiirek, 2017; Drijvers, Ozyurek, & Jensen, 2018). All of the condi-
tions contained 40 videos. All verbs and gestures were only presented
once. Participants were asked to pay attention to the videos and iden-
tify what verb they heard in the videos in a 4-alternative forced
choice identification task.

2.3 | Procedure

Participants were tested in a dimly-lit magnetically shielded room and
seated 70 cm from the projection screen. All stimuli were presented
using MATLAB 2016b (Mathworks Inc, Natrick, USA) and the Psycho-
physics Toolbox, version 3.0.11 (Brainard, 1997; Kleiner, Brainard, &
Pelli, 2007; Pelli, 1997). To achieve RIFT, we used a GeForce GTX960
2GB graphics card with a refresh rate of 120 Hz, in combination with
a PROPixx DLP LED projector (VPixx Technologies Inc., Saint-Bruno-
de-Montarville, Canada), which can achieve a presentation rate up to
1,440 Hz. This high presentation rate is achieved by the projector
interpreting the four quadrants and three color channels of the GPU
screen buffer as individual smaller, grayscale frames, which it then
projects in rapid succession, leading to an increase of a factor
12 (4 quadrants * 3 color channels * 120 Hz = 1,440 Hz) (User Manual
for ProPixx, VPixx Technologies Inc., Saint-Bruno-de-Montarville,
Canada).

231 | Frequency tagging

The area of the video that would be frequency-tagged was defined by
the rectangle in which all gestures occurred, which measured 10.0 by
6.5° of visual angle (width by height). The pixels within that area were
always tagged at 68 Hz. This was achieved by multiplying the lumi-
nance of the pixels within that square with a 68 Hz sinusoid (modula-
tion depth = 100%; modulation signal equal to 0.5 at sine wave zero-
crossing, in order to preserve the mean luminance of the video),
phase-locked across trials (see Figure 1d). For the auditory stimuli, fre-
quency tagging was achieved by multiplying the amplitude of the sig-
nal with a 61 Hz sinusoid, with a modulation depth of 100%
(following [Lamminmaki, Parkkonen, & Hari, 2014]). In a pretest, we
presented 11 native Dutch speakers with half of the stimuli containing
the amplitude modulation, and half of the stimuli not containing the
amplitude modulation in both clear and degraded speech. Participants
were still able to correctly identify the amplitude modulated stimuli in
clear speech (mean percentage correct without amplitude modulation:
99.54, with amplitude modulation: 99.31) and in degraded speech
(mean percentage correct without amplitude modulation: 72.74, with

amplitude modulation: 70.23) and did not suffer more compared with
when the signal was not amplitude modulated.

Participants were asked to attentively watch and listen to the
videos. Every trial started with a fixation cross (1,000 ms), followed
by the video (2000 ms), a short delay period (1,500 ms), and a 4-
alternative forced choice identification task (max 3,000 ms, followed
by the fixation cross of the next trial as soon as a participant pressed
one of the 4 buttons). In the 4-alternative forced choice identification
task, participants were presented with four written options, and had
to identify which verb they heard in the video by pressing one of
4 buttons on an MEG-compatible button box. This task ensured that
participants were attentively watching the videos, and to check
whether the verbs were understood. Participants were instructed not
to blink during video presentation.

Throughout the experiment, we presented all screens at a
1,440 Hz presentation rate. Brain activity was measured using MEG,
and was recorded throughout the experiment. The stimuli were pres-
ented in four blocks of 40 trials each. The whole experiment lasted
~30 min, and participants were allowed to take a self-paced break
after every block. All stimuli were presented in a randomized order

per participant.

24 | MEG data acquisition

MEG was recorded using a 275-channel axial gradiometer CTF MEG
system (CTF MEG systems, Coquitlam, Canada). We used an online
low-pass filter at 300 Hz and digitized the data at 1200 Hz. All partici-
pants' eye gaze was recorded by an SR Research Eyelink 1,000 eye
tracker for artifact rejection purposes. The head position of the partic-
ipants was tracked in real time by recording markers on the nasion,
and left and right periauricular points (Stolk, Todorovic, Schoffelen, &
Oostenveld, 2013). This enabled us to readjust the head position of
participants relative to their original starting position whenever the
deviation was larger than 5 mm. After the experiment, T1-weighted
structural magnetic resonance images (MRI) were collected from 24 of
26 participants using a Siemens 3 T MAGNETOM Skyra system.

2.5 | MEG data analysis

251 | Preprocessing

All MEG data were analyzed using the FieldTrip toolbox (version
20180221) (Oostenveld, Fries, Maris, & Schoffelen, 2011) running in a
Matlab environment (2017b). All data were segmented into trials
starting 1 s before and ending 3 s after the onset of the video. The
data were demeaned and line noise was attenuated using a discrete
Fourier transform approach at 50, 100, and 150 Hz. All trials that con-
tained jump artifacts or muscle artifacts were rejected using a semi-
automatic routine. The data were then down-sampled to 400 Hz.
Independent component analysis (Bell & Sejnowski, 1995; Jung

et al., 2000) was used to remove residual eye movements and cardiac-
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related activity (average number of components removed: 6.05). All
data were then inspected on a trial-by-trial basis to remove artifacts
that were not identified using these rejection procedures. These pro-
cedures resulted in rejection of 8.3% of the trials. The number of

rejected trials did not differ significantly between conditions.

2.5.2 | Frequency tagging analyses: Sensor-level
To investigate the response in auditory and visual regions to the
frequency-tagged signal, we first calculated event-related fields by aver-
aging time-locked gradiometer data over trials, over conditions, and over
participants. All tagged stimuli were presented phase-locked over trials.
We used an approximation of planar gradiometer data to facilitate inter-
pretation of the MEG data, as planar gradient maxima are thought
to be located above the neuronal sources that may underlie them
(Bastiaansen & Knosche, 2000). This was achieved by converting the axial
gradiometer data to orthogonal planar gradiometer pairs, which were
combined by using root-mean-square (RMS) for the ERFs. For the power
analyses, we computed the power separately for the two planar gradient
directions, and combined the power data by averaging the two. To visual-
ize the responses per tagging frequency (Figure 3), we used a notch
(i.e., band-stop) filter between 60 and 62 Hz to display the ERF at 68 Hz,
and a notch filter between 67 and 69 Hz to display the ERF at 61 Hz.
We then performed a spectral analysis on an individual's ERF
data pooled over conditions, in the time window in which both the
auditory and visual stimulus unfolded (0.5-1.5 s), and a post-
stimulus baseline (2.0-3.0 s). We chose this poststimulus time win-
dow as a baseline because, contrary to the prestimulus time
window, it is not affected by the button press of the 4-alternative
forced choice identification task. We chose the 0.5-1.5 s time win-
dow to focus our analysis on, because this time window captures
both the meaningful part of the gesture and the full speech signal.
We computed power spectra in frequencies ranging from 1 to
130 Hz for both the baseline and stimulus window using fast Fou-
rier transform and a single Hanning taper of the 1s segments.
These data were then averaged over conditions, and the stimulus

window was compared with the baseline window.

2.5.3 | Frequency tagging analyses: Source-level

To reconstruct activity at the tagging frequencies, we calculated
coherence between a pure sine wave at either 61 or 68 Hz, reflecting
the tagged stimulus, and the observed MEG signal at those frequen-
cies. Although the phase of the tagging was designed to be identical
over trials, the projector that we used occasionally experienced a brief
delay in presenting the video material (in 16 of the 26 participants).
We corrected for this by translating any observed delays between
video onset and offset markers (recorded in a stimulus trigger channel)
into a phase-difference, which was then subtracted from the tagging

signal. Note that this correction only uses information in the stimulus

marker channel and the length of the original video files, and does not
rely on any information in the measured MEG signal.

We performed source analysis to identify the neuronal sources that
were coherent with the modulation signal at either 61 or 68 Hz, and
compared the difference in coherence in the stimulus and poststimulus
window. This was done pooled over conditions. Source analyses on
coherence values (for 61 and 68 Hz) and power values (for the inter-
modulation frequency at 7 Hz, see results), was performed using
dynamic imaging of coherent sources (DICS; [Gross et al., 2001]) as a
beamforming approach. We computed a common spatial filter per sub-
ject from the lead field matrix and the cross-spectral density matrix
(CSD) that was the same for all conditions. An individual's leadfield was
obtained by spatially co-registering an individual's anatomical MRI to
the MEG data by the anatomical markers at the nasion and left and
right periaucular points. Then, for each participant, a single-shell head
model was constructed on the basis of the MRI (Nolte, 2003). A source
model was created for each participant by warping a 10 mm spaced grid
defined in MNI space to the individual participant's segmented MRI.
The MNI template brain was used for those participants (2/26) for
which an individual MRI scan was not available.

After establishing regions that showed elevated coherence with
the tagged stimuli, we proceeded to test the effect of the experimen-
tal conditions (clear vs. degraded speech; matching vs. mismatching
gesture) within these regions-of-interest (ROIls). The ROIs for the
auditory and visual tagged signals were defined by taking the grid
points that exceeded 80% of the peak coherence difference value
between stimulus and baseline, across all conditions. For these ROls,
coherence difference values were extracted per condition. Analo-
gously, the ROI for the intermodulation frequency at 7 Hz was
defined by taking those grid points that exceeded 80% of the peak
power difference value between stimulus and baseline. The 80%

threshold was chosen as an exploratory threshold.

2.54 | Statistical comparisons

As we predefined our frequencies of interest and have specific
regions of interest for analysis, we compared the differences between
conditions using 2 x 2 repeated measures analysis of variances
(ANOVAs), with the factors Speech (clear/degraded) and Gesture
(matching/mismatching).

3 | RESULTS

Participants watched videos of an actress uttering action verbs in clear
or degraded speech, accompanied by a matching or mismatching ges-
ture. After the video, participants were asked to identify the verb they
heard in a 4-alternative forced choice identification task, presented on
the screen in written form. Video presentation was manipulated by tag-
ging the gesture space in the video by 68 Hz flicker, while the sound in
the videos was tagged by 61 Hz amplitude modulation (see Figure 1).
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3.1 | Behavioral results

In our behavioral task we replicated previous results (see Drijvers, Ozytirek, et al,
2018; Drijvers & Ozylirek, 2018) and observed that when the speech signal was
dlear, response accuracy was higher than when speech was degraded (F[1, 25]
=301.60, p < 001, partial n2 = 92) (mean scores and SD: CM: 94.7% (SD = 4.0%),
CMM: 90.2% (SD = 5.6%), DM: 85.0% (SD = 8.2%), DMM: 66.5% (SD = 7.8%)).
Similarly, response accuracy was higher when a gesture matched compared to
mismatched the speech signal (F[1, 25] = 184.29, p < 001, partial n = .88). The
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difference in response accuracy was larger in degraded speech than in dear
speech (F[1, 25] = 4.87, p < 001, partial nz =.66) (see raincloud plots [Allen,
Poggiali, Whitaker, Marshall, & Kievit, 2019], Figure 2).

We observed similar results in the reaction times (RTs). Partici-
pants were faster to identify the verbs when speech was clear, com-
pared with when speech was degraded (F[1, 25] = 198,06, p < .001,
partial n2 =.89) (mean RTs and SDs: CM: 1086.3 ms, SD = 177.1 ms,
CMM: 112792 ms, SD =153.84ms, DM: 1276.96ms, SD =
230.13 ms, DMM: 1675.77 ms, SD = 246.69 ms). Participants were
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Event-related fields show clear responses at the tagged frequencies. Auditory input was tagged by 61 Hz amplitude modulation

(a), Visual input was tagged by 68 Hz flicker (b). The insets reflect an enlarged part of the signal to clearly demonstrate the effect of the tagging
on the event-related fields. Tagging was phase-locked over trials. (a) Average ERF for a single subject at selected sensors overlying the left and
right temporal lobe. The highlighted sensors in the right plot reflect the sensors for which the ERF is plotted. (b) Average ERF for 68 Hz for a
single subject at selected sensors overlying occipital cortex. The highlighted locations in the right plot reflect the sensors for which the ERF is

plotted. ERFs show combined planar gradient data
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faster to identify the verbs when the gesture matched the speech sig-
nal, compared with when the gesture mismatched the speech signal (F
[1, 25] = 105,42, p < .001, partial n2 = .81). This difference in reaction
times was larger in degraded speech than in clear speech (F[1, 25]
= 187,78, p < .001, partial n° = .88).

In sum, these results demonstrate that gestures facilitate speech
comprehension when the actress performed a matching gesture, but
hindered comprehension when she performed a mismatching gesture.

This effect was larger in degraded speech than in clear speech.

3.2 | MEG results: Frequency tagging

3.2.1 | Both visual and auditory frequency tagging
produce a clear steady-state response that is larger
than baseline

As a first step, we calculated the time-locked averages of the event-
related fields pooled over conditions. Auditory frequency tagging at 61 Hz
produced an auditory steady-state response over left and right-temporal
regions (see Figure 3a), and visual frequency tagging at 68 Hz produced a
clear visual steady-state response at occipital regions (see Figure 3b).

To explicitly compare the tagged signals between stimulus
(0.5-1.5 s) and poststimulus baseline (2.0-3.0 s) periods, we plotted
the difference in spectral power calculated from the ERF (i.e., power
of the time-locked average) in Figure 4. We observe that both visual

and auditory responses at the tagged frequency were reliable larger in
the stimulus period than in the baseline (see below for statistical
assessment at the source level). Note that the visual tagged signal at
68 Hz seems to be more focal and strong than the auditory tagged
signal at 61 Hz (see Figure 4). These analyses confirm that we were
able to induce high-frequency steady-state responses simultaneously
for both auditory and visual stimulation.

3.2.2 | Coherence is strongest at occipital regions
for the visually tagged signal (68 Hz) and strongest
when speech is clear

We proceeded to identify the neural generators of the tagged signals
using beamformer source analysis. We computed source-level coher-
ence coefficients for all conditions pooled together. This was done by
computing coherence between a visual dummy 68 Hz modulation sig-
nal and the observed MEG data. The relative coherence increase
between stimulus and baseline was largest in occipital regions (see
Figure 5a), in an area consistent with early visual cortex.

To compare conditions, we then formed a visual ROl by selecting
those grid points exceeding an exploratory threshold of 80% of the peak
coherence increase. For each participant, the percentage of change in
coherence between stimulus and baseline was computed in that ROl per
condition and compared in a 2 x 2 (Speech: clear/degraded, Gesture:
matching/mismatching) RM-ANOVA (see Figure 5b). Coherence change
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FIGURE 4

(a) Power over auditory sensors peaks at the tagged frequency of the auditory stimulus (61 Hz). Note the visual 68 Hz tagged

signal is still observable at left- and right-temporal sensors of interest; 61 Hz power is stronger in the stimulus interval than in the baseline
interval, and is widely spread over posterior regions, with maxima at right-temporal regions. (b) A power increase is observed at the tagged
frequency (68 Hz) for the visual stimuli; 68 Hz power is larger in the stimulus than in the baseline window and is strongest over occipital regions
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FIGURE 5 Sources of the visually tagged signal at 68 Hz (A/B) and sources of the auditory tagged signal at 61 Hz (C/D), and individual scores

in the respective ROI per condition (clear match/clear mismatch/degraded match/degraded mismatch. Z-coordinates of slices are in mm and in
MNI space. (a) Coherence change in percentage when comparing coherence values in the stimulus window to a poststimulus baseline for 68 Hz
(the frequency of the visual tagging), pooled over conditions. Only positive coherence change values are plotted (>80% of peak maximum).
Coherence change is the largest over occipital regions for the visually tagged signal. (b) Coherence change values in percentage extracted from
the 68 Hz ROI. Raincloud plots reveal raw data, density, and boxplots for coherence change. (c) Coherence change in percentage when comparing
coherence values in the stimulus window to a poststimulus baseline for 61 Hz (the frequency of the auditory tagging), pooled over conditions.
Only positive coherence values are plotted (>80% of peak maximum). Coherence change is largest over right-temporal regions. D: Coherence
change values in percentage extracted from the 61 Hz ROI. Raincloud plots reveal raw data, density, and boxplots for coherence change

was larger for videos containing clear speech than videos containing
degraded speech (F[1, 25] = 17.14, p < .001, partial n2 = .41), but did not
differ between matching or mismatching trials (F[1, 25] = 0.025, p = .87,
partial n2 = .001). We observed a significant interaction between Speech
and Gesture (F[1, 25] = 26.87, p < .001, partial n2 = .52). Post hoc pairwise
comparisons revealed a stronger coherence change in videos containing
clear speech and a matching gesture (CM) than clear speech and a
mismatching gesture (CMM) (t[25] = 3.26, p = .015), and a stronger coher-
ence change in videos containing degraded speech and a mismatching ges-
ture (DMM) than in videos containing degraded speech and a matching
gesture (DM) (t[25] = —4.03, p < .001). Coherence change was larger in
CM than in DM (t[25] = 6.59, p < .001), in CMM than DM (t[25] = 2.93,
p =.04), but not larger in CM than in DMM (t[25] = 2.02, p = .27), and not
larger in CMM compared to DMM (t[26] = —1.74, p = .48).

These results thus indicate that visual regions responded stronger
to the frequency-tagged gestural signal when speech was clear than

when speech was degraded. This suggests that when speech is clear,

participants allocate more visual attention to gestures than when
speech is degraded, especially when a gesture matched the speech
signal. When speech is degraded, participants allocate more attention
to mismatching than to matching gestures.

3.23 | Coherence is strongest at right-temporal
regions for the auditory tagged signal (61 Hz) and
strongest when speech is degraded

Similar to the visually tagged signal, we first computed coherence
coefficients for all conditions pooled together. This was done by com-
puting source-level coherence between a dummy 61 Hz modulation
signal (reflecting the auditory tagging drive) and the observed MEG
data. The coherence difference between stimulus and baseline peaked
at right temporal regions (Figure 5c), in an area consistent with (right)
early auditory cortex.
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To compare conditions, we then formed the auditory ROl by
selecting those grid points exceeding an exploratory threshold of 80%
of peak coherence change. Again, coherence change values per condi-
tion and per participant were compared in a 2 x 2 RM-ANOVA (see
Figure 5d). Coherence change was larger in degraded speech condi-
tions than in clear speech conditions (F[1, 25] = 12.87, p = .001, partial
n2 = .34), but did not differ between mismatching and matching condi-
tions (F[1, 25] = 0.09, p = .77, partial n2 = .04). No interaction effect
was observed (F[1, 25] = 3.13, p =.089, partial n2 =.11). Post hoc
pairwise comparisons revealed that there was no difference in coher-
ence change when comparing CM and CMM (t[25] = —1.44, p = .81),
or between DM and DMM (t[25] = 1.38, p = .90). Coherence change
was larger in DM than in CM (t[25] = —4.24, p < .001), and in DMM
than in CM (t[25] = —3.90, p < .01) but not when comparing CMM to
DMM (t[25] = —1.40, p = .87). These results thus indicate that right-
lateralized auditory regions processed the frequency-tagged auditory
signal more strongly when speech was degraded than when speech
was clear. This suggests that when speech is degraded, participants
allocate more auditory attention to speech than when speech is clear.

3.24 | Anintermodulation frequency was
observed at 7 Hz (|fyisyal — fauditory|), but not at 129 Hz

(fvisual + fauditory)

To test whether intermodulation frequencies (|fyisual — fauditoryls
fuisual * fauditory) could be observed, we then calculated power spectra

of the ERFs in the stimulus time window and the post-stimulus time
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window at 7 and 129 Hz. Only for 7 Hz a difference between stimulus
and baseline was observed at left frontal and left temporal sensors
(Figure 6a,c). No reliable differences were observed for 129 Hz
(Figure 6d). Interestingly, the spectral peak at 7 Hz during stimulus
was most pronounced for the clear/match condition (Figure 6e).

As a next step, we then took a similar approach as for the visual
and auditory tagged stimuli and calculated the coherence difference
between stimulus and baseline at 7 Hz, pooled over conditions. This
was done by computing source-level coherence between a dummy
7 Hz modulation signal (the intermodulation frequency of our 61 and
68 Hz tagging signals, specified as the multiplication of the 61 and
68 Hz dummy signal) and the observed MEG data. The coherence
analysis did not reveal any differences between stimulus and baseline
(see Figure 7a). It should be noted here that our frequency-tagged sig-
nals at fouditory and fyisual Were exactly phase-consistent across trials,
since the phase was uniquely determined by the stimuli themselves.
However, it is possible that the phase of the intermodulation signal
has a much weaker phase consistency across trials, since it depends
not only on the stimuli but also on the nature of the nonlinear neural
interaction. If this is the case, we might still observe an effect on the
power at the intermodulation frequency, rather than the coherence.
We therefore performed source analysis on the power of the com-
bined conditions versus baseline. Here, we observed a power change
at 7 Hz in left frontal and temporal regions that mirrored the effect
we observed at sensor level (Figure 7b).

The condition-averaged effect at the intermodulation frequency
of 7 Hz is less striking than at the primary tagged frequencies of
61 and 68 Hz, potentially due to it being driven mainly by one of the
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FIGURE 6 An intermodulation frequency could be observed at 7 Hz (|

fvisual-fauditory|) (a/c/e) but not 129 Hz (fvisual+fauditory). (d). (a) 7 Hz

power in the stimulus window is larger than baseline over left-temporal and left-frontal sensors. Only positive values are plotted. (b) Selected sensors
(based on visual inspection). The black highlighted sensors represent the sensors at which the power spectra of the ERFs was calculated. (c) Power

spectra of 7 Hz (stimulus>baseline). (d) No difference could be observed at

129 Hz between stimulus and baseline. (e) Power spectra per condition;

7 Hz power peaks strongest in the clear+match condition. (f) Power spectra of 61 and 68 Hz over selected channels of 7 Hz power peak (see B)
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FIGURE 7 Sources of the intermodulation frequency (fyisua-fauditory) at 7 Hz and individual scores in the leftfrontotemporal ROI per condition
(clear match/clear mismatch/degraded match/degraded mismatch). Z-coordinates of slices are in mm and in MNI space. (a) Coherence change in
percentage when comparing coherence values in the stimulus window to a poststimulus baseline for 7 Hz (intermodulation frequency, fvisual-
fauditory), pooled over conditions. Only positive coherence values are plotted (>80% of maximum). No differences could be observed. (b) Power
change in percentage when comparing power values in the stimulus window to a poststimulus baseline for 7 Hz, pooled over conditions. Power
changes were largest in left-frontal and left-temporal regions. Highest peak value was at MNI coordinates —44, 24, 22, and extended from LIFG
to pSTS/MTG. Only positive coherence values are plotted (> 80% of maximum). (c) Power change values in percentage extracted from the 7 Hz
ROl in source space. Raincloud plots reveal raw data, density, and boxplots for power change per condition. (d) Power change in percentage when
comparing power values in the stimulus window to a poststimulus baseline for 7 Hz, per condition

four conditions only (see Figure 6e). Note that the 61 and 68 Hz signal gesture integration, where no differences in theta power were
were still present over the left-frontotemporal sensors where we observed (Drijvers, Ozyurek, & Jensen, 2018; Drijvers, Ozylrek, &
observed the 7 Hz effect (see Figure 6f). As a next step, and sticking Jensen, 2018; Drijvers, van der Plas, et al., 2019).

to our a priori defined hypotheses and analysis plan, we again In addition to our ROI-based analysis, we present the full
proceeded by comparing conditions within an ROI defined by the beamformer source maps of 7 Hz power (stimulus vs. baseline) for the
condition-averaged contrast in source space. As before, the ROl was four conditions in Figure 7d. These reveal results fully compatible with
defined as those grid points exceeding an exploratory threshold of the aforementioned RM-ANOVA. Furthermore, they show that our
80% of the peak power change from baseline to stimulus epochs. We ROI selection on the condition-averaged response versus baseline
compared the strength of the 7 Hz signal at source level between con- was likely suboptimal, since the source map for CM shows a more
ditions by using a 2 x 2 RM-ANOVA (Figure 7c). Power change was clearly elevated intermodulation cluster than the average (in line with
larger in clear speech conditions than in degraded speech conditions the sensor-level results shown in Figure 6a).

(F[1, 25]=10.26, p =.004, partial n2=.29), but did not differ These results thus demonstrate that we could reliably observe an
between matching and mismatching trials (F[1, 25] = 0.01, p = .91, intermodulation signal when speech was clear and a gesture matched
partial n2 = .001), suggesting an effect of speech degradation, but not the speech signal. Left-frontotemporal regions showed a stronger
of semantic congruency. No interaction effect was observed (F[1, 25] intermodulation peak (reflecting the lower-order interaction between
=1.27, p = .27, partial n2 = .05). Post hoc pairwise comparisons rev- the auditory and visually tagged signal) when speech was clear than

ealed that 7 Hz power was not different for CM compared to CMM (t when speech was degraded. This suggests that the interaction
[25] = 1.14, p = 1), and not different for DM compared to DMM (t between the auditory and visual tagged signal is strongest when signal
[25] = —.67, p = 1). However, 7 Hz power was larger in CM than in quality was optimal and speech was clear.

DM (t[25] = 3.01, p =.025), and larger in CM than in DMM (t[25]

=2.82, p =.045). No difference was observed between CMM and

DMM (t[25] = 1.61, p = .6). To rule out that these differences in 7 Hz 4 | DISCUSSION

power were due to general power differences in the theta band, we

compared the strength of 6 and 8 Hz between conditions, using two In the current MEG study we provide a proof-of-principle that RIFT
2x2 RM-ANOVA's. Here, no differences between conditions were can be used to estimate task-dependent neuronal excitability in visual
observed (all p > .05), suggesting this was specific to the 7 Hz signal. and auditory areas, as well as the auditory-visual interaction. Coher-

These results are also in line with previous MEG studies on speech- ence was strongest over occipital regions for the visual-tagged input,
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and strongest when speech was clear. Coherence was strongest over
right-temporal regions for the auditory-tagged input and strongest
when speech was degraded. Importantly, we identified an intermodu-
lation frequency at 7 Hz (fyisual — fauditory) as a result of the interaction
between a visual frequency-tagged signal (gesture; 68 Hz) and an
auditory frequency-tagged signal (speech; 61 Hz). In line with our
hypotheses, power at this intermodulation frequency was strongest in
LIFG and left-temporal regions (pSTS/MTG), and was strongest when
the lower-order integration of auditory and visual information was
optimal (i.e., when speech was clear). Below we provide interpreta-

tions of these results.

4.1 | Clear speech enhances visual attention to
gestural information

In occipital regions, we observed a stronger drive by the 68 Hz visual
modulation signal when speech was clear than when speech was
degraded. We speculate that this effect reflects that listeners allocate
more visual attention to gestures when speech is clear. This specula-
tive interpretation is in line with previous eye-tracking work that dem-
onstrated that when speech is degraded, listeners gaze more often to
the face and mouth than to gestures to extract phonological informa-
tion to aid comprehension (Drijvers, Vaitonyté, & Ozyiirek, 2019), as
well as previous work that revealed that the amplitude of SSVEPs was
enhanced by visual attention, irrespective of whether the stimuli were
task-relevant (Morgan, Hansen, Hillyard, & Posner, 1996; Miiller
et al., 2006). Note that gestural information is often processed in the
periphery of a listener's visual field (Gullberg & Holmqvist, 1999,
2002, 2006; Gullberg & Kita, 2009). As listeners do not necessarily
need to extract the phonological information conveyed by the lips
when speech is clear, overt visual attention might be directed to a
“resting” position in the middle of the screen during clear speech
processing, resulting in stronger coherence with the visual drive when
speech is clear than when speech is degraded. Pairwise comparisons
of the conditio