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Abstract: Super-resolution optical fluctuation imaging (SOFI) provides super-resolution (SR)
fluorescence imaging by analyzing fluctuations in the fluorophore emission. The technique has
been used both to acquire quantitative SR images and to provide SR biosensing by monitoring
changes in fluorophore blinking dynamics. Proper analysis of such data relies on a fully
quantitative model of the imaging. However, previous SOFI imaging models made several
assumptions that can not be realized in practice. In this work we address these limitations by
developing and verifying a fully quantitative model that better approximates real-world imaging
conditions. Our model shows that (i) SOFI images are free of bias, or can be made so, if the signal
is stationary and fluorophores blink independently, (ii) allows a fully quantitative description of
the link between SOFI imaging and probe dynamics, and (iii) paves the way for more advanced
SOFI image reconstruction by offering a computationally fast way to calculate SOFI images for
arbitrary probe, sample and instrumental properties.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Super-resolution optical fluctuation imaging (SOFI) provides a sub-diffraction spatial resolution
in far-field fluorescence microscopy by making use of spontaneous fluctuations in the fluorophore
emission [1]. SOFI distinguishes itself from other diffraction-unlimited techniques in its ability
to operate across a wide range of experimental conditions such as low probe brightness or high
background emission [2–5] and its use of conventional equipment. In addition, the necessary
software to perform the imaging is readily available [6]. The technique also lends itself well
to validation by a framework for quantifying the signal to noise level [7] and the availability of
dual-mode probes [8]. This has led to the application of the technique in ‘difficult’ conditions
either imposed by the sample [9–11] or deriving from the combination with advanced acquisition
schemes [12–14].

The resulting SOFI images have been used to perform quantitative imaging, such as determining
the distribution of membrane microdomains [15], or the distributions of biological interactions at
the SR level [9]. Recently, the technique was also used in a novel way to obtain contrast at the
SR level by visualizing changes in the fluorophore dynamics in space and time [10]. In this work,
SOFI was combined with a genetically-encoded biosensor for kinase activity, in which activation
of the kinase caused a conformational change of the biosensor and concomitant change in its
fluorescence blinking. Using changes in blinking as a contrast mechanism has been previously
applied, e.g. in TRAST microscopy [16], though SOFI is one of the only techniques that can
provide this information at the SR level.

#359686 https://doi.org/10.1364/OE.27.025749
Journal © 2019 Received 6 Feb 2019; revised 12 Apr 2019; accepted 20 May 2019; published 27 Aug 2019

https://orcid.org/0000-0002-5888-9100
https://orcid.org/0000-0003-3768-1877
https://orcid.org/0000-0002-1882-2075
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.025749&amp;domain=pdf&amp;date_stamp=2019-08-27


Research Article Vol. 27, No. 18 / 2 September 2019 / Optics Express 25750

Crucial for this analysis is the availability of a model that quantitatively describes the link
between the fluorophore distribution and properties, and the resulting SOFI image. A candidate
model was developed already in the original SOFI publication [1], and was subsequently refined
[17,18]. Most notably, this model shows that SOFI imaging is bias-free, in the sense that the
image will be a correct representation of the fluorophore distribution in the sample, provided
that the underlying assumptions of SOFI are satisfied: the sample is labelled with fluorophores
that display mutually independent fluorescence dynamics, and the fluorescence emission is
stationary. Strict stationarity is difficult to realize, but we have found that in biological imaging
the fluorescence emission is usually sufficiently stationary despite some probe movement or
photo-bleaching of fluorophores [19,20]. This simple model was further extended to capture
changes in blinking dynamics in a way that is independent of the probe concentration [10].

While this analytical model has proven highly useful, it does require assumptions that cannot
be met in practice. In particular, it assumes an infinite measurement duration, and a detector
capable of instantaneously measuring the fluorescence intensity at any position and any time in
the sample. Unfortunately, none of us are able to do infinite measurements, while actual detectors
use discrete sampling in which the fluorescence is integrated over each pixel in space and in
time. Despite its importance, this model can therefore only be considered as an approximation
to actual measurement conditions, where the quality of this approximation is difficult to assess.
This complicates the quantitative analysis of SOFI images, especially when the model would be
applied to extraction of molecular parameters [18,21].

In this work we advance a full theoretical model of SOFI imaging, which takes into account the
finite measurement duration and the characteristics of real-world detectors, and that is sufficiently
general to accommodate future developments in hardware and probes. Our work (i) shows
that SOFI images are indeed free of bias, or can be made so, if the signal is stationary and
fluorophores blink independently, (ii) allows a fully quantitative description of the link between
SOFI imaging and probe dynamics under real-world imaging conditions, and (iii) paves the way
for more advanced SOFI image reconstruction by offering a computationally fast way to calculate
SOFI images for arbitrary probe, sample and instrumental properties.

2. Brief review of SOFI theory

We start by summarizing the theory of SOFI imaging for a perfect and infinitely-sampled detector
[1,17,18,22]. A more detailed overview can be found in [7].

In SOFI, a camera consisting of an two-dimensional array of pixels recordsmultiple fluorescence
images from the same sample, labeled with fluorophores that display spontaneous dynamics
in their fluorescence emission. The resulting fluorescence images make up a dataset F(r, t),
denoting the fluorescence at time t observed by the detector pixel looking at the sample position
r. In the absence of noise (excluding shot noise as well), the emission from M fluorophores
located at positions {rj} is given by

F(r, t) =
M∑
j=1

PSF(r − rj)εjsj(t) (1)

where PSF(r) is the point spread function (PSF) of the instrument, εj is the brightness of the jth
molecule (expressed in units of detector output per unit of time), and sj(t) is an indicator function
that describes whether the molecule is in an emissive state at time t (0 ≤ sj(t) ≤ 1).
F(r, t) is not constant in time due to the fluctuations of the fluorophores, which means that

the fluorescence seen at any position r consists of samples from a distribution specific to that
position. SOFI analyzes these distributions by calculating their cumulants, where the values of
these cumulants become the pixel values in the SOFI image.
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An infinite number of cumulants can be defined and classified according to their order k ∈ N.
In practice, second- to fifth-order cumulants are the most relevant for SOFI. A SOFI calculation
of order k corresponds to the convolution of a distribution proportional to the local fluorophore
concentration with the PSF raised to the power k. This leads to a

√
k-fold improvement in spatial

resolution, or up to k-fold if deconvolution is performed [17]. To provide adequate sampling
of the enhanced resolution, cumulant images can be resampled on a k-fold finer virtual pixel
grid by calculating cross-cumulants among different detector pixels [17]. Alternatively, Fourier
interpolation can be used [22]. Cross-cumulants among mutually delayed fluorescence traces
can be calculated as well, where the extent of this delay is known as the ‘time lag’, and can
be used to analyze the blinking characteristics of the fluorophores [23]. As an example, for a
second-order SOFI image κ2(r) using a cross-cumulant between pixels separated by ξ and time
lag δ, we calculate

κ2

(
r + ξ

2

)
= C2 (F(r, t),F(r + ξ , t + δ))

= PSF
(
ξ
√
2

) M∑
j

PSF2
(
r + ξ

2
− rj

)
ε2j C2(δ),

(2)

where we assumed a Gaussian PSF. C2(δ) is a function determined by the characteristics of
the fluorophores and the instrument. In general the nature of this function is not investigated
further, but it is rather assumed that it is identical for all fluorophores in the sample. Only if
this assumption holds is the cumulant κk(r) proportional to the local fluorophore concentration.
Clearly, this assumption is required for linearity in classical fluorescence imaging as well because
the average intensity is κ1(r) = C1 (F(r, t)). However, the dependence of the SOFI imaging on
C2(δ) is also the reason that this technique can be used for the SR visualization of blinking
heterogeneity.

While this analysis provides detailed and quantitative insight into the SOFI imaging process, it
does not fully account for the conditions encountered in experiments, where the measurement
duration is finite, F(r, t) is integrated by the detector pixels both in space and time, and the PSF
is non-Gaussian. In the following, we expand the SOFI model to include these effects, aiming to
substantially improve the quantitative interpretation of SOFI images.

3. The general theoretical foundation of SOFI

3.1. An applied review of distribution theory

SOFI imaging consists of calculating cumulants of the fluorescence distributions observed at
every position of the sample. Here, we aim to develop a model for these cumulants given the
properties of the fluorophores and the instrument. Fortunately, we need only consider the signal
of a single fluorophore, since cumulants are additive as long as the fluorescence dynamics of the
molecules are independent [24]:

Ck

(∑
j
Fj

)
=

∑
j
Ck

(
Fj

)
(3)

To derive the cumulant Ck, we start from the cumulant generating function (CGF) as defined in
[24]:

CGF(t1, t2, . . .) = log (CF(t1, t2, . . .)), (4)
where

CF(t1, t2, . . .) = E {exp (it1X1 + it2X2 + · · · )} (5)
stands for the characteristic function and Xj represents the signal measured by camera pixel j.
E {. . .} denotes the expectation value over all Xj and i is the imaginary unit. In second order
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SOFI, for example, X1 and X2 represent the signals detected by the two pixels that are being
considered, related to variables t1 and t2 in the associated CGF. It is straightforward to calculate
the (k = m + n + · · · )th-order cumulant given knowledge of the CGF [24]:

Ck(Xm
1 ,X

n
2 , . . .) = i−k

[
∂m

∂tm1

∂n

∂tn2
· · ·CGF(t1, t2, . . .)

]
t1,t2,...=0

(6)

These equations, combined with the additivity of cumulants, reduce the problem of knowing the
cumulants for an arbitrary sample to knowing the CGF of a single molecule. In what follows, we
will tackle this question in two steps: first we will derive the CGF for a non-blinking fluorophore
imaged using two types of detectors, which we will then expand to take blinking into account.
Finally, we will develop easier-to-use specializations of our model for specific types of imaging
and fluorescence dynamics.

3.2. Cumulant generating functions of detectors

3.2.1. Low read-out noise sensors

With an ideal camera, the only source of measurement noise is the shot noise intrinsic to
the emission/detection process. In that case the CGF for a single pixel is that of the Poisson
distribution [24]:

CGFpoisson(t) = λ
(
eit − 1

)
, (7)

where λ is the expected number of photons detected by the pixel, given by the product of the
detection probability and the expected amount of photons the dye emits during the exposure
time. Since the shot noise is independent among different pixels, Eqs. (4) and (5) show that the
compound detection CGF is given by

CGFnn(t1, t2, . . .) =
∑
j
λj

(
eitj − 1

)
(8)

where λj is the expected number of detected photons associated with each pixel j. This CGF
serves as an idealized model for sCMOS or CCD cameras that feature low read-out noise (nn:
negligible noise).

3.2.2. Electron-multiplying sensors

An electron-multiplying CCD camera (EM-CCD) contributes excess noise due to the amplification
process. This electron multiplication process can be modelled as a gamma distribution [25],
whose CF is

CFgamma = (1 − γit)−η , (9)

where η is the number of generated photo-electrons before the amplification register and γ is
the amplification gain. We can now compound this distribution with the Poisson noise intrinsic
to the stochastic nature of photon detection using Eq. (5). The Taylor series expansion of the
exponential function allows us to simplify the CF:

CFem =

∞∑
η=0
(1 − γit)−η

ληe−λ

η!

= e−λ
∞∑
η=0

(λ/(1 − γit))η

η!

= exp
(
λγit

1 − γit

) (10)
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As before, this result easily extends to multiple pixels by using the independence of the noise
among the pixels,

CGFem(t1, t2, . . .) =
∑
j

λjγitj
1 − γitj

, (11)

with variables λj and tj for the contributing pixels of the detector.

3.2.3. Consistency check

We can check the detection CGFs (8) and (11) by calculating the expected signal-to-noise ratio
(SNR), that is the ratio of mean signal over the standard deviation:

SNR =

∂

gt
CGF√
∂2

∂t2
CGF

���������
t=0

(12)

For the ideal camera CGFnn we obtain SNR =
√
λ as expected for pure shot noise, whereas

our CGFem for electron-multiplying cameras yields SNR =
√
λ/2 in line with the characteristic,

well-known excess noise factor.
It should be noted that both the low noise and the electron multiplying detector have a CGF of

the form:
CGFlinear detector =

∑
j
λjf (tj) (13)

In practical terms, this expresses that the signal in each pixel is read out independently, and that
the camera does not display non-linearities in its response to light of varying intensities. The
following discussions and conclusions apply to any detector that meets these conditions.

3.3. Effect of blinking on the cumulant generating function

We now add blinking of the fluorophores to our model. We start with a general description that is
valid for any type of fluorescence dynamics, before introducing descriptions of specific blinking
models in section 5.
Within the context of a temporally-integrating detector, blinking of the fluorophores can be

incorporated by scaling the brightness of the fluorophore by the fraction ρ, which is the fraction
of time the fluorophore spent in emissive states during the exposure time T . This on-time ratio ρ
is obtained as

ρ(t) =
1
T

∫ t+T

t
s (t) dt, (14)

where we use the indicator function of Eq. (1). Because the blinking is stochastic, the on-time ratio
observed for a molecule in a particular acquired fluorescence image can strongly differ between
fluorescence images. We model this as variations in ρ subject to its probability distribution, φ(ρ),
determined by the dynamics of the blinking.
We take blinking into account by compounding the detector model CGFdet with φ(ρ), using

the fact that CGFdet follows the conditions of Eq. (13):

CGF∗det(t1, t2, . . .) = log
(∫ 1

0
exp (ρCGFdet(t1, t2, . . .)) φ(ρ) dρ

)
, (15)

where the observed brightness of a blinking fluorophore is ρλ, with λ the brightness that would
be observed if the fluorophore were continuously emitting. If we denote the cumulant generating
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function of φ(ρ) as CGFρ, then we obtain the CGF∗ of blinking fluorophores:

CGF∗det(t1, t2, . . .) = CGFρ
(
i−1 CGFdet(t1, t2, . . .)

)
(16)

That is we obtain the CGF∗ by evaluating the on-time ratio CGFρ for an argument value given by
the detection CGFdet.
Inserting now the detection CGFnn for low-noise sensors yields

CGF∗nn(t1, t2, . . .) = CGFρ

(
1
i

∑
j
λj

(
eitj − 1

))
. (17)

Similarly for an electron-multiplying camera we get

CGF∗em(t1, t2, . . .) = CGFρ

(∑
j

λjγtj
1 − γitj

)
. (18)

Using Eq. (6) and the chain rule of differentiation, we can now calculate all possible cumulants
for a blinking fluorophore. Assuming that all pixels are distinct, for an ideal camera we obtain:

C2(X1,X2) = λ1λ2 C2(ρ) (19)

C3(X1,X2,X3) = λ1λ2λ3 C3(ρ) (20)

C4(X1,X2,X3,X4) = λ1λ2λ3λ4 C4(ρ)

. . .
(21)

where Xj is the j-th pixel on the detector, and Ck(ρ) is the kth-order cumulant of the on-time ratio
distribution.

To take into account time lags, we need to consider the joint probability distribution of ρ at the
distinct time lags. In the following, Xj,δi denotes the intensity trace measured by pixel j with a
time lag of δi. Accordingly, we expand φ(ρ) into the matching probability distribution function
of a multivariate distribution φ(ρ, ρδ1 , ρδ2 , . . .). This results in the following cumulants for a
detector with negligible noise:

C2(X1,X1,δ1 ) = λ
2
1 C2(ρ, ρδ1 ) (22)

C2(X1,X2,δ1 ) = λ1λ2 C2(ρ, ρδ1 ) (23)
C3(X1,X1,δ1 ,X1,δ2 ) = λ

3
1 C3(ρ, ρδ1 , ρδ2 ) (24)

C3(X1,X2,X3,δ1 ) = λ1λ2λ3 C3(ρ, ρ, ρδ1 ) (25)
C3(X1,X1,δ1 ,X2) = λ

2
1λ2 C3(ρ, ρ, ρδ1 ) (26)

and analogous expressions for higher orders. These equations are the fundamental equations
that describe SOFI imaging. In the following sections we will provide expressions for λ and the
cumulants of ρ.
For an electron-multiplying camera, Eqs. (19)–(26) are multiplied by the gain γ raised to the

power k of the cumulant order:
Ck,em = γ

kCk,nn (27)
It turns out (Appendix A) that these calculations become much more complex if intensity traces
in the cross-cumulants are used repeatedly from the same pixel and equal lag time. However,
image reconstructions in SOFI should rely on cross-cumulants of intensity traces from strictly
different pixels and/or lag times anyway: auto-cumulants are biased by noise, thus to be avoided;
and cross-cumulants with repeated use of intensity traces yield reduced SNR because the noise
in reused intensity traces is raised to a higher power.
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3.4. Effect of finite measurement durations

Any experimentally estimated cumulant value will only asymptotically approach the true value for
an infinite number of fluorescence images. In practice, one is of course limited by photodestruction
and phototoxicity. A common correction for photobleaching involves performing the SOFI
calculation on a low number of fluorescence images, and then adding or averaging the resulting
set of SOFI images [20]. It is therefore natural to ask to what extent these short durations affect
the SOFI reconstruction.
The effect of a limited measurement duration can be estimated by replacing the expectation

value in the cumulant calculations by experimental averages over a limited number of frames or
samples N. In the following, we denote frame-limited cumulants by lower-case c. Application of
the formulas in [24] for second-order SOFI leads to:

C2(X1,X2) = E {X1X2} − E {X1} E {X2} (28)

c2(X1,X2) =
1
N

N∑
n=1
(X1,nX2,n) −

1
N2

N∑
n=1

X1,n

N∑
n=1

X2,n (29)

E {c2(X1,X2)} =
N − 1
N
E

{
X1,tX2,t

}
−

N−1∑
n=1

N − n
N2

(
E

{
X1,t+nX2,t

}
+ E

{
X1,tX2,t+n

}) (30)

We can now simplify Eq. (30) by making use of the symmetry of the derived formulas for
time-lags (E

{
X1,tX2,t+n

}
≡ E

{
X1,t+nX2,t

}
because the correlated signal flucations stem from one

fluorophore) and substituting with Eq. (28) and variants with time-lag. This leads to Eqs. (31)
and (32).

E {c2(X1,X2)} =
N − 1
N

C2(X1,X2)

−

N−1∑
n=1

2
N − n
N2 C2(X1,X2,δn )

(31)

E
{
c2(X1,X2,δs )

}
= C2(X1,X2,δs ) −

N − |s|
N2 C2(X1,X2)

−

|s |∑
n=1

2
N − |s|
N2 C2(X1,X2,δn )

−

N−|s |∑
n= |s |+1

2
N − n
N2 C2(X1,X2,δn )

−

N−1∑
n=N−|s |+1

N − n
N2 C2(X1,X2,δn )

(32)

In these equations δs is the time-lag applied to the cumulant, that is s exposure times, respectively.
We note that the SOFI image calculated for a limited number of fluorescence images N is a linear
combination of the SOFI images calculated for all possible time lags. This can complicate the
extraction of kinetic information, but does not introduce bias in the imaging since each of these is
a valid SOFI image. Further investigation reveals (Appendix B) that the same conclusion holds
for third order SOFI imaging, but not for higher orders.
For these higher orders, direct calculation of the cumulant from the experimental data is

complicated by the fact that it is no longer an unbiased estimator of the true cumulant. In practical
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terms, this means that the calculated cumulant is distorted by the mixing in of different statistical
moments, and sample-dependent deviations can be expected as N gets small. This also implies
that the concentration proportionality of the SOFI image is not necessarily maintained across
experiments or across different parts of the sample. As for now, this can only be addressed by
adapting the estimator of the cumulant so that it is unbiased, conceptually described in Ref. [24].
However, this is outside the scope of this contribution. In practical terms, however, fourth- or
higher-order images typically require a high number of fluorescence images, such that this effect
is likely to be small in practice, provided that the batch size of the calculation is increased to
match.

With these considerations, we have developed a general and extensible model of SOFI imaging.
In what follows, we will discuss how this model can be specialized to specific instruments and
blinking models.

4. Models for the point spread function

The specifics of the optical instrument determine how the fluorescence photons from a particular
molecule are distributed onto the detector, and are therefore highly relevant for our model. As
e.g. Eq. (19) shows, the crucial parameter is the number of photo-electrons λj that are produced
in pixel j in response to a fluorophore located at position rf . This depends on the brightness of
the fluorophore and on how its emitted photons are distributed on the detector by the PSF of the
imaging system:

λj = εf

∬
r∈Aj

PSF(rf − r) dr, (33)

where Aj represents the active detection area of pixel j, and εf represents the brightness of the
fluorophore in its emissive reference state in photons per frame. Care must be taken to correctly
take the optical magnification of the system into account.
The previous model of SOFI imaging assumed an ideal point-sampling detector, which is

equivalent to taking the limit for A→ 0. Equation (33) then reduces to

λj = εf PSF(rf − rj). (34)

In practical terms, the strategy is to evaluate Eq. (33) directly for every fluorophore, and to
substitute its value into equations such as Eq. (19). For Gaussian PSFs, which cannot be realized
in practice yet are widely used as models, the integration in Eq. (33) can be rewritten as

λj =εf

[
Φ

(
xj − xf + d/2

σ

)
− Φ

(
xj − xf − d/2

σ

)]
×

[
Φ

(
yj − yf + d/2

σ

)
− Φ

(
yj − yf − d/2

σ

)] (35)

With Φ the cumulative density function of the standard normal distribution, σ the standard
deviation of the PSF and d the width of the detector pixel centered at position (xj, yj), and for a
molecule located at (xf , yf ).
More realistic PSF models typically do not have clear analytical expressions, but instead

emerge from wave-optical calculations or from experimentally measured data. In this case,
there usually is no alternative but to evaluate Eq. (33) numerically for each fluorophore and
detector pixel, and to substitute these values into the expressions generated by our model, such as
Eqs. (19)–(26).

5. Models for the fluorescence dynamics

We now consider the nature of φ(ρ) for common models of fluorophore blinking. In this paper
we will deal exclusively with molecules alternating between two spectroscopic states. This is a
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widespread assumption, and approximates the behavior of organic dyes and fluorescent proteins
used as a label for SOFI [26–28]. If different types of blinking are observed [1,29], the results
may not be directly applicable and an alternative model for the on-time ratio should be sought.
Ultimately, our goal is to derive expressions for Ck(ρ) that can be substituted directly into the
equations of our model, such as Eqs. (19)–(26).

5.1. Bernoulli model

The Bernoulli model assumes that molecules do not switch states during the exposure time,
but only in between frame exposures. This model is very coarse and serves as a reasonable
approximation only for fluorophores whose switching rates kon→off and koff→on are much smaller
than the camera frame rate. We consider the Bernoulli model for the simple reason that its CGF
is known and trivially extensible to time-lagged cumulants. Details on the derivation are given in
[18].
We find that the cumulants depend on ρ̂, the average on-time ratio of the fluorophores.

Time-lagged cumulants additionally depend on T/τ, where T represents the exposure time and τ
represents the auto-correlation time associated with the blinking. More precisely,

1/τ = kon→off + koff→on (36)

ρ̂ =
koff→on

kon→off + koff→on
(37)

A number of resulting cumulants are listed in Fig. 1, others can be obtained using the methodology
in (Appendix C). As before, the notation C2(ρ) means a second order cumulant without time lag,
while C2(ρ, ρδ1 ) means a second order cumulant with a time lag of δ1 images.

Cumulant Bernoulli cumulant Correction factor for temporal integration

C2(ρ) −ρ̂ 2 + ρ̂ 2(T/τ)−2[T/τ + e−T/τ − 1]

C2(ρ, ρδ1 ) (−ρ̂ 2 + ρ̂) exp (−δ1/τ) (T/τ)−2[e−T/τ(eT/τ − 1)2]

C3(ρ) 2ρ̂ 3 − 3ρ̂ 2 + ρ̂ 6(T/τ)−3[(T/τ)(1 + e−T/τ) + 2(e−T/τ − 1)]

Fig. 1. Cumulants of the Bernoulli distribution and correction factors for fast switching
fluorophores. Even though the correction factor for time-lagged second-order SOFI is
positive, the absolute signal for a time-lagged cumulant will always be smaller than that of
the non-lagged version.
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5.2. Temporally integrated two-state model

In virtually all practicalmeasurements the fluorophores continuously switch between spectroscopic
states, independent of the camera acquisition sequence. This means the Bernoulli model cannot
explain the experimental behavior of these systems well.

Fortunately, it is possible to derive cumulants for a more complete blinking model (two-state
intra-frame switching) by extending the approach of [30] (Appendix C). Up to and including the
third-order cumulant this leads to a set of correction factors, function of T/τ, shown in Fig. (1),
that need to be multiplied with the corresponding cumulants of the Bernoulli distribution. These
correction factors represent the effect of the switching kinetics, whereas the Bernoulli distribution
only takes the equilibrium properties into account. These effects can be very pronounced, as
shown in Fig. 1.
For higher orders, the cumulant calculations become more complex and can no longer be

factored into functions of T/τ and ρ̂. However, the resulting cumulants can still be calculated
using the approach described in Appendix C, which will work for all SOFI orders including at
most a single non-zero time lag.

Cumulants with more than one time lag can still be calculated using numerical simulations. In
practical terms, this means that the blinking of a single fluorophore is simulated for particular
values of kon→off and koff→on and T . Doing this over a sufficiently long duration allows the
distribution φ(ρ) to be estimated, and the desired cumulants can be obtained directly.

The absolute kinetics of the blinking are relevant not only in the context of temporal integration
of the signal, but are also important in relation to the finite measurement durations. Evaluation
of the expression obtained in section 4 reveals an additional dependence on the correction factors
that are needed to adjust the Bernouilli model for temporal integration (Fig. 2).

Fig. 2. The effect of limited measurement duration on the correction factor on the Bernoulli
model, taking both fast switching and a limited measurement duration into account.

6. Validation of the proposed model

The strength of our model is that it can quantitatively predict the SOFI images that result under
conditions that closely approximate the real world. However, its absolute accuracy is difficult to
verify on actual experimental data since the underlying ground truth fluorophore distribution
and properties are unknown in actual samples. We therefore turned to numerical simulations of
the imaging process, since the photophysics of blinking and the fluorescence imaging process
are known well enough to enable highly accurate simulation. Our simulation methodology was
previously explained in e.g. Ref. [20].

Figure 3 shows the results of a numerical simulation, in which single emitters were randomly
distributed over a surface. The sample was further divided into three distinct regions, showing
different emitter blinking kinetics. Panels (A) and (D) show the results of explicitly simulating
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the imaging process over 10,000 fluorescence images, and then calculating SOFI images from
these images using the standard calculation methodology and for two different lag times. These
images are taken to be the ground truth SOFI images.

Fig. 3. The effect of limited measurement duration on the correction factor on the Bernoulli
model, taking both fast switching and a limited measurement duration into account.

Panels (B) and (E) show the expected SOFI images calculated using the previous SOFI model,
while panels (C) and (F) show the expected SOFI images predicted by the new model introduced
here. These results clearly show that the images predicted by the previous model strongly diverge
from the ground truth due to the unrealistic nature of its assumptions. Our improved model, in
contrast, essentially perfectly reproduces the ground truth. Furthermore, the improved model
executes about two orders of magnitude faster than the simulations, despite our simulation code
having been heavily optimized over the years. This very fast performance opens the door to more
advanced analysis strategies, as could be based on e.g. iterative optimization of calculated SOFI
images to match experimental results.

We next sought to compare our model with actual measurement data, though this is complicated
by the fact that the associated ground truth emitter distribution is unknown in actual samples.
We reasoned instead that we could evaluate the temporal dependence of the SOFI signal, since
this is mainly determined by the nature of the labels and not their spatial distribution, yet does
depend on the full intricacies of the SOFI calculation. We previously showed how the kinetics of
the fluorophore dynamics can be used to resolve different types of emitters in SOFI, using an
approach that we termed multiple-tau SOFI (mtSOFI) [23]. The key insight from this work was
that the SOFI signal generally decreases for increasing lag times, but that the rate of this decrease
depends on the switching kinetics of the fluorophores. Since the contribution of each emitter can
be distinguished based on the decay for the increasing lag times, emitters with different kinetics
can be separated even if their emission spectra overlap [23].
The previous model for SOFI images predicts that this decay can be described using an

exponential function, but our measurements showed strong deviations from this simple model
(Fig. 4). This was problematic because the correct emitter separation depends crucially on the
definition of appropriate filter functions [23]. In this publication, we resolved this by conducting
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extensive and time-consuming numerical simulations to determine the probe parameters and
optimize the imaging process. However, our improved model readily allows the reproduction of
the measured data, and associated determination of the fluorophore blinking parameters. Overall
this allows us to obtain more reliable results in a much shorter time.

Fig. 4. Measured SOFI signal on a live HeLa cell expressing rsGreen1, and as a function
of time lag (full details can be found in Appendix D). The signal from a single detector
pixel is shown. Also shown are the best fits of this data using the previous SOFI, the model
presented here, and numerical simulations.

7. Conclusions

In this contribution we have sought to develop a quantitative model for SOFI imaging that
is compatible with the limitations inherent in actual experiments. Our model can efficiently
predict the SOFI image resulting from arbitrary instrumental parameters, sample structuring, and
probe dynamics. Our model supersedes prior methods by allowing us to include the spatially-
and temporarily-integrating nature of real-world detectors, the finite duration of actual imaging
experiments, and arbitrary models for the fluorescence dynamics. It also delivers vast performance
improvements compared to numerical simulations of the imaging process.

Our model delivers a number of key insights. For second and third order SOFI imaging, we find
that SOFI images are reliable in the sense that they are absolutely proportional to concentration
if all emitters display the same dynamics (this assumption is also required for proportionality
in classical imaging). Brightness differences between different parts of the image or between
different images can be directly interpreted as changes in concentration. However, including
a finite number of fluorescence images does introduce a systematic bias into the cumulant
calculation, which means that the proportionality constant also depends on the number of raw
fluorescence images included in the SOFI calculation. Strictly speaking, this means that only
SOFI images calculated from the same number of fluorescence images can be quantitatively
compared, though in practical terms this is most likely the case by default because all practical
implementations of the SOFI algorithm rely on ‘batching’ of the calculation to reduce the
influence of photodestruction. This means that SOFI images are calculated over small groups of
fluorescence images, and then averaged together.
For fourth- and higher-order calculations, this proportionality is no longer strictly assured

as the cumulant calculation is then no longer an unbiased estimator of the true cumulant. Any
discrepancy will get smaller as the number of fluorescence images in the calculation increases,
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which requires that the batch sizes are not made smaller than strictly necessary. In principle, the
cumulant calculation could be reworked to obtain an unbiased estimator, though this is outside
the scope of this contribution.

Our model can be readily applied in practice. Due to the additivity of cumulants, this amounts
to calculating the contribution of a single fluorophore to the SOFI image, and then summing the
contributions of all fluorophores in a per-pixel manner. Applying our model in practice reduces
to knowing the point-spread function of the microscope on the one hand, and the cumulants of
the on-time ratio distribution of the fluorophores (shared between all fluorophores with the same
dynamics) on the other. Efficient analytical expressions exist for Gaussian PSFs and exponential
switching between fluorescent and non-fluorescent states. Non-Gaussian PSFs can be readily
added using numerical integration, as is customarily required, while other probe dynamics can be
added by either calculating the cumulants directly, or obtaining these using numerical simulations.
By correctly and efficiently taking the probe and measurement properties into account, our

model opens the door to more advanced SOFI analysis methodologies, in which probe parameters
and distributions are iteratively reconstructed from SOFI images of different orders. Similarly,
our model provides the quantitative formalism for the use of SOFI as a tool to unravel nanoscale
biological contexts based on changes in probe dynamics.

Appendix A: Cumulants with repeat pixels

These equations are a continuation of Eqs. 19–26 in the main text, relating to the effect of repeat
pixels on the cumulants.

Low read-out noise sensors

C3(X1,X1,X1,δ1 ) = λ
3
1C3(ρ, ρ, ρδ1 ) + C2(X1,X1,δ1 ) (38)

C3(X1,X1,X2) = λ
2
1λ2C3(ρ) + C2(X1,X2) (39)

C4(X1,X1,X1,X1,δ1 ) = λ
4
1C4(ρ, ρ, ρ, ρδ1 )

+ 3C3(X1,X1,Xδ1 ) − 2C2(X1,X1,δ1 )
(40)

C4(X1,X1,X1,X2) = λ
3
1λ2C4(ρ) + 3C3(X1,X1,X2) − 2C2(X1,X2) (41)

C4(X1,X1,X2,X2) = λ
2
1λ

2
2C4(ρ)

+ C3(X1,X1,X2) + C3(X1,X2,X2) − C2(X1,X2)
(42)

C4(X1,X1,X2,X3) = λ
2
1λ2λ3C4(ρ) + C3(X1,X2,X3) (43)

C4(X1,X1,X1,δ1 ,X1,δ2 ) = λ
4
1C4(ρ, ρ, ρδ1 , ρδ2 ) + C3(X1,X1,δ1 ,X1,δ2 ) (44)

Electron-multiplying sensors

C3(X1,X1,X1,δ1 ) = γ
3λ31C3(ρ, ρ, ρδ1 ) + 2γC2(X1,X1,δ1 ) (45)

C3(X1,X1,X2) = γ
3λ21λ2C3(ρ) + 2γC2(X1,X2) (46)

C4(X1,X1,X1,X1,δ1 ) = γ
4λ41C4(ρ, ρ, ρ, ρδ1 )

+ 6γC3(X1,X1,Xδ1 ) − 6γ
2C3(X1,X1,δ1 )

(47)

C4(X1,X1,X1,X2) = γ
4λ31λ2C4(ρ)

+ 6γC3(X1,X1,X2) − 6γ2C3(X1,X2)
(48)

C4(X1,X1,X2,X2) = γ
4λ21λ

2
2C4(ρ) + 2γC3(X1,X1,X2)

+ 2γC3(X1,X2,X2) − 4γ2C2(X1,X2)
(49)

C4(X1,X1,X2,X3) = γ
4λ21λ2λ3C4(ρ) + 2γC3(X1,X2,X3) (50)

C4(X1,X1,X1,δ1 ,X1,δ2 ) = γ
4λ41C4(ρ, ρ, ρδ1 , ρδ2 ) + 2γC3(X1,X1,δ1 ,X1,δ2 ) (51)



Research Article Vol. 27, No. 18 / 2 September 2019 / Optics Express 25762

Appendix B: Effect of measurement duration in third-order SOFI

The calculation that follows mirrors that for second order in section 3.4.

C3(X1,X2,X3) = E {X1X2X3} + 2E {X1} E {X2} E {X3}

− E {X1X2} E {X3} − E {X1X3} E {X2} − E {X2X3} E {X1}
(52)

c3(X1,X2,X3) =
1
N

N∑
n=1
(X1,nX2,nX3,n) +

2
N3

N∑
n=1

X1,n

N∑
n=1

X2,n

N∑
n=1

X3,n

−
1
N2

N∑
n=1
(X1,nX2,n)

N∑
n=1

X3,n −
1
N2

N∑
n=1
(X1,nX3,n)

N∑
n=1

X2,n

−
1
N2

N∑
n=1
(X2,nX3,n)

N∑
n=1

X1,n

(53)

E {c3(X1,X2,X3)} =
1
N
E

{
X1,tX2,tX3,t

}
+

2
N3

N∑
i=1

N∑
j=1

N∑
k=1
E

{
X1X2,(j−i)X3,(k−i)

}
−

1
N2

N∑
i=1

N∑
j=1

(
E

{
X1X2X3,(j−i)

}
+ E

{
X1X2,(j−i)X3

}
+ E

{
X1,(j−i)X2X3

} )
(54)

This equation is expanded and the following substitutions are made

E
{
X1,iX2,jX3,k

}
= C3(X1,i,X2,j,X3,k) − 2E {X1} E {X2} E {X3}

− E
{
X1,iX2,j

}
E {X3} − E

{
X1,iX3,k

}
E {X2} − E

{
X2,jX3,k

}
E {X1}

(55)

Noting that the lower order terms cancel out we then obtain.

E {c3(X1,X2,X3)} =

(
n
n
+
2n
n3
−
3n
n2

)
C3(X1,X2,X3)

+

j=n−1∑
j=1

(
2 (n − j)

n3
−
n − j
n2

) (
C3(X1,X2,δj ,X3) + C3(X1,X2,δ−j ,X3)

)
+

j=n−1∑
j=1

(
2 (n − j)

n3
−
n − j
n2

) (
C3(X1,X2,X3,δj ) + C3(X1,X2,X3,δ−j )

)
+

j=n−1∑
j=1

(
2 (n − j)

n3
−
n − j
n2

) (
C3(X1,X2,δj ,X3,δj ) + C3(X1,X2,δ−j ,X3,δ−j )

)
+

i=n−1∑
i=1

j=n−1∑
j=i+1

2 (n − j)
n3

(
C3(X1,X2,δi ,X3,δj ) + C3(X1,X2,δj ,X3,δi )

)
+

i=n−1∑
i=1

j=n−1∑
j=i+1

2 (n − j)
n3

(
C3(X1,X2,δ−i ,X3,δj−i ) + C3(X1,X2,δ−j ,X3,δi−j )

)
+

i=n−1∑
i=1

j=n−1∑
j=i+1

2 (n − j)
n3

(
C3(X1,X2,δj−i ,X3,δ−i ) + C3(X1,X2,δi−j ,X3,δ−j )

)

(56)

Showing that, as for second order, we obtain a valid SOFI image, though one that is a linear
combination of the SOFI images for all time lags.
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Appendix C: Derivation of Cumulants for the Temporally integrated two-state
model

We are interested in the cumulants of the on-time ratio distribution for a molecule alternating
between two states (on and off) with transition rates kon→off and koff→on being constant over the
entire experiment, where the transitions are in no way synchronized to the camera exposures.
This situation matches with models existing for the fraction of time a computer system is up in
any given period, i.e. the duration of the maintenance contract as shown in Kirmani et al. [30],
where the interval availability i corresponds to the on-time ratio during a single exposure interval.

In [30] equations for E {i} ≡ E {ρ} and E
{
i2
}
≡ E

{
ρ2

}
are given in a way that is trivial to

extend to any E {ρn} for a system which is in the on state at the start of a frame exposure. We will
refer to these expectation values as E on {ρ

n}. Since at this point there is no special difference
between the on and off state the following symmetry argument can be made:

E off {(1 − ρ)n} ≡ E on {ρ
n} with swapped kon→off and koff→on.

E off {ρ
n} can then be obtained from E off {(1 − ρ)n} by the linearity of the expectation operator.

E off {1 − ρ} = 1 − E off {ρ} ⇒ E off {ρ} = 1 − E off {1 − ρ} (57)

E off
{
(1 − ρ)2

}
= 1 − 2E off {ρ} + E off

{
ρ2

}
⇒ E off

{
ρ2

}
= 1 − 2E off {1 − ρ}
+ E off

{
(1 − ρ)2

} (58)

The unconditional moments E {ρn} are now obtained by applying the linearity of the expectation
operator again.

E {ρn} = ρ̂E on {ρ
n} + (1 − ρ̂)E off {ρ

n} (59)

These moments can be converted to cumulants using the methodology and formulas given in
[24].
To obtain time-lagged moments that can be converted to time-lagged cumulants, we make

use of the observation that there is no difference between a moment conditional on the state at
the beginning of a frame and a moment conditional on the state at the end of the frame. That
is E on {ρ

n} is valid for both a molecule starting or ending in the on state. Therefore, we can
immediately define the moments for a single-frame time lag by conditioning the state of the
molecule at the end of the first frame:

E
{
ρmρnδ

}
= E on {ρ

m} ρ̂E on {ρ
n} + E off {ρ

m} (1 − ρ̂)E off {ρ
n} (60)

E
{
ρmρnδ

}
= ρ̂E on {ρ

m} Pon→on(δ)E on {ρ
n}

+ ρ̂E on {ρ
m} Pon→off(δ)E off {ρ

n}

+ (1 − ρ̂)E off {ρ
m} Poff→on(δ)E on {ρ

n}

+ (1 − ρ̂)E off {ρ
m} Poff→off(δ)E off {ρ

n}

(61)

Unfortunately the mechanism by which we derive these cumulants does not allow for us to obtain
formulas with more than one time lag. This not only limits the direct results, but also means that
for the most complete form of the SOFI formulas incorporating the limited measurement time we
can only give a complete formula for the second-order cumulant.

Appendix D: testing the validity of the model

For testing the validity of the model (shown in Fig. 4) a comparison was made between the
fit of experimental data using the model derived in this paper, or an exponential model which
was previously seen as the state of the art. The overall trend is well replicated using the novel
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model, however at longer lag time some variation is observed. To prove that our model is
consistent with two state switching, simulations were added which match the analytical data
perfectly. The experimental data was obtained as described in [23]. Briefly, HeLa cells were
cultured at 37°C in the presence of 5%CO2 in DMEM supplemented with 10% (v/v) FBS, 2mM
glutaMAXTM and 0.1% (v/v) gentamicin (all Gibco). Before transfection, approximately 250000
cells were seeded in a 35mm glass bottom dish (MatTek) and grown to 80% confluency. Cells
were transfected using FuGene6 (Promega) according to manufacturers instructions with 1µg
of prsGreen1-MAP4 plasmid DNA. The plasmid was constructed by replacing the mCherry
gene with the gene encoding rsGreen1 in the mCherry-MAP4-N-10 plasmid, which was a
gift from Michael Davidson (Addgene plasmid # 55076). Cells were imaged approximately
24 hours post transfection in Hanks’ balanced salt solution after washing three times with
phosphate buffered saline. Imaging was performed on an Olympus IX83 inverted microscope
equipped with a 150× UAPON OTIRF objective, an ImagEM X2 EMCCD camera (Hamamatsu),
a Di01-R405/488/561/635 polychroic mirror, a FF01-446/523/600/677 emission filter (both
Semrock) and a cellTIRF TIRF module coupling in a 150mW 488nm cell* laser. Datasets of 1000
frames were acquired in epi configuration with 488nm excitation (approximately 3mW measured
at the back aperture of the objective), using an exposure time of 8 ms and an EM gain of 500.
The simulation was preformed as described in [7,15,19,20]. Briefly, 10000 molecules where

randomly positioned in a grid of 64 by 64 pixels, and random 2 state switching was simulated for
10000 frames at an exposure time of 10 ms and a molecular brightness of 20000 photons per
second. The average on- and off-times where set to obtain τ = 0.73 frames and an on-time-ratio
ρ = 10%. At this point the correlation curves for the simulation as well as the experimental data
where constructed by performing second order SOFI calculations at different lag times with a
batch (or substack) size of 50 frames. The average signal over the image stack was plotted in
respect to the lag time, with the simulation curve scaled to match the experimental decay at lag 0.
For the data shown in Fig. 3 10000 molecules where spread over a 64 × 64 pixel grid, with

each emitting 100000 detected photons per second in the on-state. The leftmost molecules where
set to have an average lifetimes of 100 ms and 1000 ms in the on- and off-state respectively with
both lifetimes being reduced by a factor of 10 for each subsequent band, they where assumed to
emit at 520nm to be collected by an objective with an NA of 1.4 and imaged with a projected
pixel size of 100nm. At this point 10000 images where simulated at an exposure time of 10 ms
which where calculated to yield a lag = 0 frames and lag = 1 frame SOFI image. For both models
these same parameters where used to calculate the SOFI images. For the old model this means
an exponential dependence on time-lag with τ as a characteristic decay time where combined
with the uncorrected Bernoulli model and a Gaussian (unintegrated) PSF. For the new model the
corrections of Eqs. (31)–(32) and the correction of Fig. 1 where included, and the Gaussian was
set to integrate over the pixel area as in Eq. (33).
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