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Supplemental Data Items 

 

Figure S1. Phase opposition analysis, related to Figure 3. The theta (A) and alpha (Aii) clusters are 

displayed. The left panels display the correlation difference relative to the permuted correlation for the 

channels included in the cluster. Shaded grey areas indicate the standard error of the mean. Pink 

areas include the frequencies belonging to the cluster. The right panels display the topographies for 

the respective significant frequency bins. Asterisks indicate the channels included in the cluster. 

  



 

Figure S2. Phase specific effects, related to Figure 3. A) For the maximum t-value in the cluster the 

phase histograms of sound A and sound B are presented (over subjects) for the theta (Ai) and alpha 

(Aii) cluster. B) Phase difference between sound A and B split up for different sound types (sound 5-9) 

for the theta (Bi) and alpha (Bii) cluster. 

 

 

Figure S3. ERPs of the two extremes sounds, related to Figure 4. Shaded area indicates the 

standard error of the mean. 

  



Transparent Methods 

Experimental model and subject details 

Participants 

Twenty-one participants completed the experiment (participants’ demographics were not recorded). All 

were informed about the experiment after given informed consent. The study was approved by the local 

ethical committee at the Faculty of Psychology and Neuroscience at Maastricht University (ethical 

approval number: ECP-127 14_04_2013). Participants received course credits or monetary 

compensation for their time. 

 

Method details 

Stimuli and procedure 

Ripple sounds were presented to the participants consisting of 50 logarithmically spaced sinusoids 

spanning 5 octaves. Sounds had varying velocities (six velocities linearly spaced between 1 and 1.63 

cycles/second) and densities (0.25 and 0.125 cycles/octave). The fundamental frequency determined 

the category boundary, which was arbitrarily set at 200 Hz. Six sounds were created in each category 

and were logarithmically spaced 7.2 until 26.1 Hz away from the category boundary. Modulation was 

set to 100 percent and sounds lasted for 500 ms.  

 First, participants were provided with some examples of extremes of both categories to 

familiarize them with the sounds. Subsequently, they performed one block of baseline categorization to 

which they did not get any feedback (not reported here). During the main experiment sounds were 

randomly presented and participants had to identify the sounds as either belonging to category A or B. 

Which sound was categorized as A or B was counterbalanced over participants. Participants were 

required to close their eyes during the whole sessions and received auditory feedback to their 

performance. The interval after the participant’s response and the next sounds was jittered between 1.5 

and 2.5 sec. In total there were four blocks in which 576 sounds were presented in total, lasting 

approximately 35 minutes. EventIDE was used for stimulus presentation (OkazoLab Ltd, The 

Netherlands) and sound were presented via ER-30 insert earphones (Etymotic Research) at a 

comfortable sound level.  

 

EEG recordings and pre-processing 

32 channels EEG data was recorded with Brain-Vision Recorder (Brain Products; BrainCap MR). 

Channels included: Fp1, Fp2, F2, F3, C4, C4, P3, P4, O1, O2, F7, F8, PO3, PO4, P7, P8, Fz, Cz, Pz, 

FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, Oz, and A1. A2 was used as online reference, and Afz as 

ground. Three additional channels were included to measure eye movements (left and right from outer 

cantus and below the left eye). Data was recorded at a 5000 Hz sampling rate using hardware filters 



with a bandpass of 0.01-1000 Hz and an additional 100 Hz low-pass software filter. A BrainAmp MR 

Plus EEG amplifier was used. Impedance was kept below 10 kiloOhm.  

 For the pre-processing we cut the data from -3 to 2 around sound onset. Data was re-referenced 

to the average of all channels, demeaned, and resampled to 1000 Hz. Bad trials were removed via 

visual inspection and bad channels were interpolated. ICA was performed to remove remaining eye 

movements and muscle artefacts.  

 

Quantification and statistical analysis 

Behavioural analysis: We fitted a psychometric curve to the data assessing the proportion that the 

participant identified the sounds as sound A (for the participants with reversed categorization, we 

recoded the sound identities). A psychometric function was fitted to this data using a probit function 

(guessing and lapsing rate at 0, using the frequency as independent variable, and proportion sound A 

as dependent variable; Modelfree fitting toolbox version 1.1. (Zchaluk and Foster, 2009)). For later 

analysis we extracted the 20 and 80 percentile for each participant.  

EEG phase-categorization correlation: for frequencies ranging from 2 to 15 Hz (in steps of 0.1 

Hz) we extracted the phase at stimulus onset. We did this by cutting the data 3 cycles prior to sound 

onset until sound onset and performing a fast Fourier analysis with Hanning tapers. Thus, for each 

frequency another window was chosen. All analyses were restricted to sounds that were identified 

below 80% correct to avoid ceiling effects. Still, to ensure that the effects were not due to physical 

differences in the stimuli, we performed a GLM with a binomial distribution on the response choice data 

(sound A or sound B) per participant with stimulus type as factor to remove any effects of stimulus type. 

The residuals of this analysis were used in a circular-linear correlation with pre-stimulus phase. The 

same correlation was repeated for 1000 times using permuted labels of the categorization, thereby 

creating a null distribution for the correlation. Dependent samples t-tests were performed between the 

actual correlation and the median of each individual’s null distribution. Cluster statistics was used to 

correct for multiple comparisons (‘nonparametric_individual’ cluster threshold, with ‘maxsum’ 

clusterstatistics. We tested one-sided as circular-linear correlations are only positive;(Maris and 

Oostenveld, 2007)). The same analysis was repeated but using the phase opposition index as proposed 

in (VanRullen, 2016). 

Positive clusters were further investigated by extracting for the maximum t-value within the 

cluster the phase angles per participant. We performed a Rayleigh test of the mean phases for sound 

A and sound B categorization over participants to test for phase consistency over participants. To test 

for any systematic phase clustering the phase opposition index (VanRullen, 2016) was calculated per 

participant. Group statistics was performed by inversing the p-values of the permutations of individual 

participants to z-values and performing a z-test. 

EEG phase-accuracy correlation: Instead of modulating the response of the participants, phase 

could modulate the behavioural performance of the participant, as previously found for detection 



studies(Mathewson, Gratton, Fabiani, Beck and Ro, 2009; Ten Oever, Van Atteveldt and Sack, 2015; 

Busch, Dubois and VanRullen, 2009; Hanslmayr, Volberg, Wimber, Dalal and Greenlee, 2013). To test 

this hypothesis, we repeated the same analysis was performed as described above in “EEG phase-

categorization correlation”, but instead the correlation was based on phase with residuals of the 

accuracy instead of categorization. 

Phase dependent TRF: For the significant EEG phase-categorization correlation frequency bins 

we investigated whether the evoked responses’ similarity to either one of the two sound categories was 

also modulated by phase. To do so, we estimated the temporal response function (TRF) for each trial 

with the sound envelope of pitch 1 sounds and the envelope of pitch 12 sounds. The TRF is an encoding 

model and is calculated via the linear convolution of a specific input (here, the sound envelope) with a 

measured output (here, EEG), thereby providing an estimation over time how well the systems output 

can be estimated with a particular input property (Crosse, Di Liberto, Bednar and Lalor, 2016; Lalor, 

Power, Reilly and Foxe, 2009). The envelope was estimated by zero padding the sounds with 100 ms 

on either side, extracting the absolute of the Hilbert transform and resampling the sounds to 1000 Hz 

(matching the sampling rate of the EEG). EEG was epoched for -0.1 – 0.6 seconds around sound onset. 

Trials with sound pitches that were identified under 80% accuracy were extracted and for each trial we 

estimated the TRF with sound envelope of pitch 1 and pitch 12 sounds (using envelopes of sounds 

matching the velocity and density of the original sounds) using the mTRF toolbox (Crosse, Di Liberto, 

Bednar and Lalor, 2016). The lambda of the estimation was set to a 1000, based on fitting the TRF of 

the trials containing the extreme sounds (independent trials). 

To estimate phase dependency of the estimated TRF we subtracted for each trial the TRF 

estimated with pitch 12 sound envelopes from the TRF estimated with pitch 1 sound envelopes (TRF1-

TRF12). This TRF difference was used in a circular correlation with pre-stimulus phase (at frequencies 

determined by the EEG phase-categorization correlation analysis, using the same pre-stimulus 

estimates).  

Estimating the circular correlation on the TRF difference allowed us to control for baseline TRF 

amplitude shifts caused by a different phase at stimulus onset: the baseline shift would be subtracted 

out from the TRF12-TRF1 calculation. Thereby, we could investigate whether the amplitude of the TRF1 

vs TRF12 was modulated by the phase at stimulus onset, that is, whether the EEG response resembled 

sound 1 or sound 12 more dependent on the phase of the sound presentation. The TRF difference 

estimates were statistically compared to an estimated chance correlation calculated with permuted TRF 

difference – pre-stimulus phase comparisons (n = 500; using the median of the null distribution for each 

participant per time-frequency point). Dependent samples t-tests were performed between the actual 

correlation and the median of each individual’s null distribution. Cluster statistics were used to correct 

for multiple comparisons (‘nonparametric_individual’ cluster threshold, with ‘maxsum’ clusterstatistics. 

One-sided alpha). 

The same analysis was repeated but subtracting the TRF of the correct sound category of the 

TRF from the incorrect sound category at frequency ranges identified in the “EEG phase-accuracy 



correlation”. If phase modulates the accuracy of the participants, it is expected that the difference 

between TRF for correct and incorrect sound categories is bigger for specific phase ranges.  

Behavioral and TRF phase comparison: The phase of the behavioral and TRF results were 

compared by calculating the phase difference per participants. The phase of the behavior was estimated 

from the frequency and channel of the maximum t-value within the cluster. The phase of the TRF was 

estimated at the time point of the maximum t-value within any cluster at the channel of the behavioral 

effect. The non-uniformity of the phase difference around zero was tested using the v-statistics.  

Performance- phase-modulation correlation: In the final analysis we investigated whether the 

strength of this phase modulation had an influence on their overall discrimination performance. As such 

we extracted for each participant the phase modulation index: the difference between the observed 

correlation from the median of the null distribution divided by the median of the null distribution. This 

was extracted for all frequency ranges previously identified to influence behavioural responses, for the 

phase modulation of discrimination and accuracy. This phase modulation index was correlated with the 

slope of the psychometric curve, an index of how well participants could discriminate the sounds. A 

positive correlation would indicate that participants with stronger phase modulation had a higher 

discriminative performance.     
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