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Abstract

The computations involved in statistical learning have long been debated. Here, we build on work

suggesting that a basic memory process, chunking, may account for the processing of statistical regu-

larities into larger units. Drawing on methods from the memory literature, we developed a novel

paradigm to test statistical learning by leveraging a robust phenomenon observed in serial recall tasks:

that short-term memory is fundamentally shaped by long-term distributional learning. In the statisti-

cally induced chunking recall (SICR) task, participants are exposed to an artificial language, using a

standard statistical learning exposure phase. Afterward, they recall strings of syllables that either fol-

low the statistics of the artificial language or comprise the same syllables presented in a random

order. We hypothesized that if individuals had chunked the artificial language into word-like units,

then the statistically structured items would be more accurately recalled relative to the random con-

trols. Our results demonstrate that SICR effectively captures learning in both the auditory and visual

modalities, with participants displaying significantly improved recall of the statistically structured

items, and even recall specific trigram chunks from the input. SICR also exhibits greater test–retest
reliability in the auditory modality and sensitivity to individual differences in both modalities than

the standard two-alternative forced-choice task. These results thereby provide key empirical support

to the chunking account of statistical learning and contribute a valuable new tool to the literature.
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1. Introduction

Statistical learning is recognized as a fundamental process by which humans and other

animals learn the structure of their environment. Virtually, all learning incorporates sensi-

tivity to statistical regularities—from visual sequential and spatial learning (Fiser & Aslin,

2001; Turk-Browne, Jung�e, & Scholl, 2005) to word and grammatical acquisition in

infants and adults (Saffran, 2003; Saffran, Aslin, & Newport, 1996). Over the last two

decades, a wealth of research has highlighted the ubiquity of statistical learning across

domains, modalities, age groups, and species, suggesting that statistical learning is a foun-

dational cognitive process. However, despite its prevalence, a number of key outstanding

questions about the nature of this phenomenon remain.

To date, studies of statistical learning have largely centered on demonstrating its versa-

tility across a diverse array of contexts, often in isolation from other cognitive abilities

(see Armstrong, Frost, & Christiansen, 2017; Frost, Armstrong, & Christiansen, 2019, for

further discussion). As a result, the precise manner in which statistical learning interfaces

with broader aspects of cognition remains a topic of debate. For instance, while some

studies show that statistical learning occurs without the learner’s overt attention (Evans,

Saffran, & Robe-Torres, 2009), others report that learning is severely impaired when

attentional resources are diverted to another task (Toro, Sinnett, & Soto-Faraco, 2005).

Relatedly, the relative involvement of different memory systems in statistical learning has

garnered increased speculation. While there appears to be distinct developmental differ-

ences in the amount of implicit and explicit knowledge gained during statistical learning

tasks (Batterink, Reber, Neville, & Paller, 2015; Bertels, Boursain, Destrebecqz, & Gail-

lard, 2015), others have questioned whether the behavior observed is in fact the result of

long-term memory consolidation or merely the product of short-term recognition (Kim,

Seitz, Feenstra, & Shams, 2009).

The historical separation of statistical learning from other aspects of cognition under-

scores a gap in the field’s current knowledge. Although we now know that humans attend

to statistical regularities in order to learn the structure of their environment, compara-

tively little is understood about the precise computations and representations involved in

the complex behaviors that it is argued to account for (Romberg & Saffran, 2010). For

instance, statistical learning has frequently been discussed in the literature as a unitary

mechanism, with the assumption that the various tests employed to probe this faculty do

so with equal efficacy. However, recent theoretical proposals suggest that statistical learn-

ing may instead encompass a complex suite of computations and that different tests of

statistical learning may tap into different subcomponents of this process (Arciuli, 2017;

Frost et al., 2019; Frost, Armstrong, Siegelman, & Christiansen, 2015; Misyak & Chris-

tiansen, 2012; Siegelman & Frost, 2015). What, then, do tests of statistical learning

specifically measure? In the following section, we suggest that a key impediment to

understanding the computations involved in statistical learning may arise from method-

ological limitations in how statistical learning is typically tested. In particular, we high-

light the shortcomings of one of the field’s most widely used tasks to test statistical

learning in children and adults, the two-alternative forced-choice task (2AFC).
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1.1. Methodological issues with testing statistical learning using 2AFC

Statistical learning typically occurs automatically, below the threshold of an individ-

ual’s awareness. Yet often, the tests used to measure this ability require participants to

translate this passively acquired knowledge into an overt, reflection-based response

(Christiansen, 2019). For example, in the often-used 2AFC task, participants are asked to

make an explicit choice between a target that follows the relevant statistical regularities

and a foil that does not. While reflection-based measures have frequently been the stan-

dard for statistical learning research, they only provide an indirect measure of the effect

of learning on underlying processing. Indeed, a growing body of literature questions

whether reflection-based methods serve as an effective proxy for learning, given their dis-

connect from the type of behavior that they intend to measure (e.g., Franco, Eberlen,

Destrebecqz, Cleermans, & Bertels, 2015; Siegelman, Bogaerts, Christiansen, & Frost,

2017; Siegelman, Bogaerts, & Frost, 2017). As forced-choice tasks require explicit deci-

sion-making, the data they provide may therefore in part reflect participants’ relative abil-

ity to speculate about learned material, rather than directly measuring the learning-based

changes in processing (Christiansen, 2019).

In addition, the all-or-nothing scoring in 2AFC tasks may obscure subtle variations in

individual performance (Siegelman, Bogaerts, Christiansen, et al., 2017). Participants

either select the correct answer or not; these binary data provide limited insight into the

specific information that the participant has learned (e.g., bigrams, whole words, or the

relative positions of syllables within words). Furthermore, although 2AFC performance

typically averages around 60% across an entire sample, up to one-third of these partici-

pants often perform below chance level. The task thus fails to capture reliable data about

the statistical learning skills of a sizable proportion of the sample (Frost et al., 2015;

Frost, Siegelman, Narkiss, & Affek, 2013; Misyak, Christiansen, & Tomblin, 2010;

Siegelman & Frost, 2015).

It is worth noting that variations exist in the way 2AFC is implemented. For instance,

there is considerable diversity in the kind of structures that participants are presented with

for comparison at test. In many cases, participants see or hear trigrams from the input,

which are then compared against performance on random foil items (e.g., Saffran, New-

port, & Aslin, 1996; Turk-Browne et al., 2005), as is the focus of the current paper.

Additionally, 2AFC stimuli also commonly comprise words from the input versus part-

words that span word boundaries (Aslin, Saffran, & Newport, 1998; Saffran, Newport,

et al., 1996). This has been argued to be a more robust measure of learning as it makes

the task more difficult: Participants must distinguish a word from a part-word which dif-

fers only by a single syllable. Others have manipulated positional information while pre-

serving legal transitional probabilities (Endress & Mehler, 2009), and 2AFC has even

been used to test the generalization of structure by presenting novel items that either fol-

low the statistics of the artificial language or do not (Frost & Monaghan, 2016; Pe~na,
Bonatti, Nespor, & Mehler, 2002). Furthermore, some studies have taken a four-alterna-

tive forced-choice approach (Bertels et al., 2015; Siegelman, Bogaerts, Christiansen,

et al., 2017; Yu & Smith, 2007), which makes it more difficult for participants to arrive
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at the correct answer by chance. Although these variants of the 2AFC task may make it

harder to choose the right response, they still require meta-cognitive processing (e.g.,

reflection over previously learned material), and thus may still be subject to the limita-

tions outlined above to varying degrees.1

Taken together, tests of statistical learning in adults arguably rely on processes that are

not actively employed during learning, and that may not reveal the full impact or extent

of variation in learning. Here, we propose that an initial step toward better understanding

the computations involved in statistical learning may lie in developing processing-based
tasks to measure this ability (Christiansen, 2019; for examples, see G�omez, Bion, & Meh-

ler, 2011; Karuza, Farmer, Fine, Smith, & Jaeger, 2014; Misyak et al., 2010; Siegelman,

Bogaerts, Kronenfeld, & Frost, 2018). Processing-based tasks aim to tap into the same

computations that occur online during learning, and thereby circumvent many of the

issues associated with reflection-based responses outlined above. Here, we propose that a

basic memory process, chunking (e.g., Miller, 1956), or Chunk-and-Pass processing

(Christiansen & Chater, 2016), may provide an online, computational account for how

statistical regularities are used to form higher-level representations of an input. Chunking-

based tasks may thereby serve as a viable processing-based method of testing statistical

learning.

1.2. Statistical learning as chunking

Chunking has long been understood as a fundamental attribute of learning and memory

(Miller, 1956; Simon, 1974). Some of the earliest investigations into chunking focused on

its contribution to expertise within a specific domain (Chase & Simon, 1973). Language

acquisition has also been likened to a form of skill learning involving similar processes

(Chater & Christiansen, 2018; Christiansen & Chater, 2016; Gobet et al., 2001; Lieven,

Pine, & Baldwin, 1997; Tomasello, 1992, 2003). By the time children reach adult-like

proficiency, they become experts at processing their native language, a skill that is argued

to be driven by their repeated experience with the regularities available in the input.

Reframing statistical learning within this usage-based framework, we suggest that the

behavior observed in such experiments may be understood as the statistically facilitated

chunking of coherent structures over time and repeated exposure.

Chunk-and-Pass processing incrementally builds representations (or “chunks”) at vary-

ing levels of linguistic abstraction as soon as the input is encountered (Christiansen &

Chater, 2016). It utilizes all available information—including top-down expectations from

previous context and real-world knowledge—to process the current input as rapidly as

possible. For example, phonemes may be recoded into words, and words into multiword

sequences, and so on until discourse representations are derived. Crucially, the process of

repeated chunking across different levels of linguistic representation is thought to rely

substantially on sensitivity to distributional regularities. Here, we propose that the same

process may also be at play during statistical learning, where chunk formation is contin-

gent upon the statistical structure of the encountered input. Through exposure to a contin-

uous stream of information, learners use distributional information (e.g., the frequent co-
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occurrence of the syllables “A” and “B”) to implicitly chunk the input into coherent units

(the formation of the word “AB”). Our chunking framework thus provides concrete pre-

dictions about the mechanism that allows larger units to emerge from distributional regu-

larities over smaller units (chunking as a process) and the outcome of these combined

computations (chunked representations). Statistical sensitivity may thus be thought of as

the cognitive system’s primary method of learning distributional regularities, with chunk-

ing leading to the formation of concrete, itemized representations based on this statistical

information, following the proposals of usage-based theories of language acquisition

(Bannard, Lieven, & Tomasello, 2009; Bybee, 2003; Goldberg, 2006; Lieven, 2016;

MacWhinney, 1998; Tomasello, 2000).

Computationally, the idea of statistical learning as chunking is supported by a growing

body of research. Although the two literatures have historically remained separate (see

Christiansen, 2019, for a review), chunk-based computational models can successfully

capture word and phrase segmentation based on sensitivity to statistical information

(Freudenthal, Pine, & Gobet, 2006; McCauley & Christiansen, 2011, 2014, 2019; Per-

ruchet & Vinter, 1998). Furthermore, while the nature of what is being learned during

statistical learning has long been debated, data from both infants and adults suggest that

learners appear to represent concrete chunks of information (Slone & Johnson, 2015,

2018; see also the related chunk-based approaches to artificial grammar learning, e.g.,

Knowlton & Squire, 1994, and Perruchet, 2019, for a review), rather than the statistical

relations between elements alone (Elman, 1990; Endress & Mehler, 2009).

Notably, in their comprehensive review on the relationship between distributional sen-

sitivity and chunking, Perruchet and Pacton (2006) outlined three possible scenarios for

how the two may be related: (a) that the processes of statistical computation and chunk

formation are independent of one another, (b) that they are successive steps in the learn-

ing process, with chunks being inferred from prior statistical computations, or (c) that

sensitivity to statistical structure is a byproduct of the chunking process. Although Per-

ruchet and Pacton (2006) themselves support the third notion, and comparable claims

have been made by other memory-based computational models (iMinerva; Thiessen &

Pavlik, 2013), there is an additional possibility that the computation of statistics and

chunking are parallel processes, working together online during learning. For instance,

the chunk-based learner (CBL) model (McCauley & Christiansen, 2019) operates in this

manner. Language acquisition, comprehension, and production are achieved by gradually

building an inventory of words and multiword units, which are chunked based on the sta-

tistical properties of the input. The CBL model uses this inventory to help chunk future

input online as it is encountered and can successfully approximate children’s comprehen-

sion and production performance across 29 languages from 9 language families across 15

genera. While the model has a number of limitations, such as working with pre-seg-

mented input corpora, it nonetheless demonstrates how statistical computation and chunk-

ing may operate in parallel, and how such learning can closely approximate real-world

linguistic performance.

Behaviorally, insights from the classic memory tasks of nonword repetition (NWR)

and serial recall support the idea that chunking-based recall tasks may tap into long-term
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linguistic representations. While recall tasks have traditionally been viewed as a measure

of working memory capacity (i.e., how well individuals can chunk items together and

hold them in short-term memory; Baddeley, Gathercole, & Papagano, 1998; Gathercole

& Baddeley, 1989), it has become increasingly evident that immediate chunking abilities

interface with long-term distributional learning, suggesting that long- and short-term

memory are highly interconnected (e.g., Christiansen, 2019; Jones & Macken, 2018).

Through continued exposure to language, individuals learn to chunk recurring lexical and

sublexical patterns into larger units, which facilitates short-term recall of items that con-

tain such distributional patterns within them (Baddeley, 1964; Botvinick, 2005; Jones,

Gobet, Freudenthal, Watson, & Pine, 2014; Jones, Gobet, & Pine, 2007; Jones & Macken,

2015). Prior studies have shown that more word-like nonwords are recalled more accu-

rately (e.g., Archibald & Gathercole, 2006; Gathercole, 1995), which by our account sug-

gests that such nonwords better reflect natural language statistics. Indeed, McCauley,

Isbilen, and Christiansen (2017) employed large-scale corpus analyses to show that non-

words comprising syllable combinations reflecting the co-occurrence statistics of natural

language were better recalled than nonwords consisting of the very same syllables but in

low-probability combinations. Of particular importance for the current study, Majerus,

van der Linden, Mulder, and Peters (2004) demonstrated that both children and adults

exposed to an artificial grammar containing high- and low-frequency phonological pat-

terns showed better performance on a subsequent NWR task for nonwords that followed

the high-frequency phonological patterns. These ideas are in line with findings suggesting

that NWR performance draws on pre-existing sublexical representations accrued over

time (Jones, 2016; Szewczyk, Marecka, Chiat, & Wodniecka, 2018), in the form of high-

frequency chunks. Building on this observation, we propose that chunking-based recall

tasks may also serve as a valuable tool to gauge statistical learning in the lab.

In the current paper, we leverage the connection between recall and distributional sen-

sitivity by adapting a classic chunking-based memory task to test statistical learning. To

this end, we developed the SICR task. In SICR, participants are exposed to an artificial

language consisting of tri-syllabic nonsense words using the same training procedure as

the seminal study of Saffran, Newport, et al. (1996). Following exposure, they are then

presented with strings of six-syllables—a number just beyond the threshold of typical

working memory abilities (4 � 1 items; Cowan, 2001)—which participants are asked to

immediately recall. Critically, the strings in the SICR task follow one of two formats:

They are either composed of two-word combinations from the artificial language or con-

sist of the same set of syllables presented in a random order. We hypothesized that if par-

ticipants had chunked the input language into words based on its distributional statistics,

this would lead to significantly higher recall of the experimental items relative to the con-

trols, similar to the results of the NWR and serial recall studies where long-term statisti-

cally based chunking leads to improved memory. Notably, the scoring of SICR is

performed syllable by syllable, which provides a window into the specific output repre-

sentations derived from statistical learning tasks. This enables us to gauge the acquisition

of specific chunk information by examining trigram scores (i.e., the number of words
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from the input language that participants correctly recall; Siegelman, Bogaerts, Arm-

strong, & Frost, 2019).

In two separate experiments, we tested the hypothesis of statistical learning as chunk-

ing by gauging the efficacy of SICR in capturing auditory and visual statistical learning

in adults. As chunking is a domain-general process, SICR should be equally capable of

accounting for both types of statistical learning, but with potential differences in perfor-

mance due to modality-specific constraints (Frost et al., 2015). We further compared

SICR performance with performance on 2AFC, and measured the test–retest reliability of

both tasks. We predicted that in addition to providing a more fine-grained assessment of

individual variation in statistical learning that SICR—and thus statistical chunking ability

—might also afford a more reliable measure of learning over time than the standard

2AFC task.

2. Experiment 1: Auditory statistical learning

Experiment 1 sought to determine whether chunking could account for the kind of sta-

tistical learning observed in the classic study of Saffran, Newport, et al. (1996). This

study demonstrated that 8-month-old infants are sensitive to the statistical patterning pre-

sent in speech, and could successfully distinguish between items that followed these

statistics from items that did not after a brief period of exposure. In addition to this theo-

retical proposal, we also test the methodological strengths and limitations of SICR rela-

tive to 2AFC, and assess the test–retest reliability of each task in measuring statistical

learning in adults.

2.1. Methods

2.1.1. Participants
The sample consisted of 43 Cornell University undergraduate students (32 females, 11

males), with a mean age of 19.75 years (SD = 1.43). All participants were native English

speakers with no known auditory or language disorders and were compensated with

course credit. One participant was excluded due to a failure to provide responses for the

SICR task in Session 1. The analyses reported below were performed on the remaining

42 participants.

2.1.2. Materials
The artificial language used in this experiment was adapted from Saffran, Newport,

et al. (1996) and consisted of 18 consonant–vowel syllables: bi, bu, di, du, ga, ka, ki, la,
lo, lu, ma, mo, pa, po, ri, ta, ti, to. These were used to construct six tri-syllabic words

that served as the input language: kibudu, latibi, lomari, modipa, tagalu, topoka. When

constructing the words, the positions of the syllables were controlled such that no conso-

nant or vowel always occurred in the same serial position within the words, and the
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positions of the vowels were further counterbalanced such that vowel repetitions occurred

in the first two syllables of the word, the last two syllables of the word, or in none of the

syllables of each word. Controlling for these factors ensured that no additional cues other

than the transitional probabilities of the within-word syllables occurred with 100% regu-

larity.

For 2AFC, six additional nonword foils were created, using the same syllables as the

input language. These foils were created by pseudo-randomizing the syllables from the

input language in a manner that avoided reusing between-syllable transitional probabili-

ties from the target words. The six foil words were dikabi, kigala, lopadu, mamoti, pol-
ubu, and tatori. For SICR, 24 recall items were created: 12 experimental items

constructed from two-word combinations from the input (e.g., latibitagalu) and 12 ran-

dom items (e.g., tabigatilula). Within the experimental items, each of the words from the

input language appeared four times: twice as the first word in the test item and twice as

the second word. From these items, a set of 12 complementary foil items were con-

structed by pseudo-randomizing the syllables in the target items in a manner that avoided

the reuse of transitional probabilities from all other test sequences (including the 2AFC

foils). The foil strings were intended to serve as a baseline working memory measure,

against which performance on the experimental items could later be compared to measure

the degree of learning. Using the same method, 12 five-syllable practice items were con-

structed (six target items and six foils), following the methodology laid out in standard

NWR tasks (Gathercole & Baddeley, 1996). This was to ensure that the amount of post-

input exposure would be roughly equal across the counterbalanced conditions (whether

participants completed 2AFC or SICR first). All of the SICR test and practice items are

listed in Appendix A.

All of the training and test stimuli were created using the MBROLA speech synthe-

sizer (Dutoit, Pagel, Pierret, Bataille, & Van der Vrecken, 1996), with each syllable last-

ing approximately 200 ms, separated by 75 ms of silence. Each participant received one

of four randomized lists for training and SICR. Presentation of the 2AFC items was fully

randomized across participants. Both item presentation and data collection used the E-

prime 2.0 experiment software (Schneider, Eschman, & Zuccolotto, 2002).

2.1.3. Procedure
To establish the reliability of SICR and its comparability to 2AFC, the test–retest relia-

bility of each task was assessed within subjects. Following the procedure used by Siegel-

man and Frost (2015), participants performed the same experiment twice, with a 3-week

interval between the two sessions. The same input language and test items were used in

both sessions (as in Siegelman & Frost, 2015), but the items in each task were presented

in a different randomized order between sessions. The test order condition for each partic-

ipant was maintained across Sessions 1 and 2: Participants who performed 2AFC first fol-

lowed by SICR in Session 1 were given the same order of tests in Session 2, and vice

versa. All other details of the sessions were identical and proceeded as described below.

Participants were first exposed to the artificial language, during which each word was

presented 96 times. Additionally, a cover task adapted from Arciuli and Simpson (2012)
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was administered, in order to ensure active engagement during training. The cover task

comprised a target detection task, where participants were asked to respond to syllable

repetitions that occurred in immediate succession (e.g., lolo) by pressing the spacebar on

the keyboard. To this end, three variants of each word were included during exposure,

such that the first, second, or third syllable of each word repeated (e.g., lomari ? lolo-
mari, lomamari, lomariri). Each repetition variant occurred four times during training,

resulting in 72 repetitions in total (6 words 9 3 variants 9 4 exposures). Importantly, at

no point was there any reference to language or structure in the instructions of the experi-

ment, nor were participants informed that their knowledge of the training input would be

tested. Participants were simply asked to respond to the syllable repetitions in the stream

by hitting the space bar each time they heard a syllable repeat. In total, training lasted

approximately 11.5 min.

Following exposure, both 2AFC and SICR were administered to test statistical learning

and were counterbalanced across participants to control for potential order effects. In

2AFC, each of the six target words were presented with each of the six foil words, yield-

ing 36 trials in total. Each word and foil were presented over headphones one at a time,

with a 1,000-ms silence between the two. Participants were informed that certain triplets

of syllables tended to co-occur during the exposure phase, and that they would be

assessed on how well they had picked up on this structure. They were then prompted to

identify which of the two items had appeared during training. The order of the targets

and foils was counterbalanced such that each foil and word appeared once as the first

item of the pair, and once as the second item of the pair.

In SICR, 12 practice trials preceded the 24 experimental trials, resulting in 36 trials in

total. This served to keep exposure to the input words approximately equal, regardless of

the order in which participants received the two tests (i.e., 2AFC first or SICR first). In

this task, participants were told that their ability to repeat the syllables presented in the

experiment would be evaluated and were then instructed to repeat the syllables they heard

in the correct order to the best of their ability. They were not informed of the strings’

underlying structure. For both the practice and experimental trials, the test items were

presented over headphones, after which participants were prompted to repeat the syllables

into a microphone. The oral responses were later transcribed by coders who were blind to

the purpose of the study.

Prior to subsequent analyses of SICR, the inter-rater reliability of the coders who tran-

scribed the task was assessed. To this end, the full data set (both Sessions 1 and 2) was

independently coded using three different pairs of coders. Although the experience levels

differed between each pair—one pair had a great amount of experience coding the SICR

task, one pair had an intermediate amount of experience, and one pair had no experience

coding—on average, significant inter-rater reliability was observed. Specifically, while

coders with more experience tended to display higher inter-rater agreement (expert

coders: r(624) = .83, p < .0001; intermediate-experience coders: r(720) = .84,

p < .0001), even novice coders demonstrated a significant degree of inter-rater reliability,

r(672) = .69, p < .0001. After the inter-rater reliability was assessed, each pair of coders

was asked to re-visit the transcriptions that they and their coding partner differed on, and
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determine the appropriate transcription for each divergent item. All further SICR analyses

reported below were performed on the corrected transcriptions on which the coders con-

verged. The full details of the coding criteria are reported in Appendix S1. All data and

R code are available through the Open Science Framework (https://osf.io/mky4h/).

2.2. Results

2.2.1. 2AFC performance by session
We first assessed 2AFC performance (the proportion of correct target-word identifica-

tions), which was significantly above chance (50%) in both sessions (Session 1: t
(41) = 8.94, p < .0001, d = 1.38; Session 2: t(41) = 10.94, p < .0001, d = 1.70). Addi-

tionally, 2AFC performance significantly improved from Session 1 to Session 2, t
(41) = 2.72, p = .01, d = 0.54. The mean values of 2AFC performance in both sessions

are reported in Table 1.

2.2.2. SICR performance by session
The SICR data were scored for accuracy in two different ways: overall accuracy across

the entire string (the total number of syllables recalled in the correct serial order; Cowan,

Chen, & Rouder, 2004; Fallon, Groves, & Tehan, 1999) and accuracy at the trigram level

(the number of syllable triplets or words recalled in the correct order) for both the experi-

mental and random items. Difference scores between each measure (calculated as experi-

mental item score minus random item score) were also assessed for test–retest reliability.
Participants’ overall accuracy was significantly higher on the experimental items than

on the random items, with participants recalling significantly more syllables in the correct

serial order when the test items utilized the statistics of the input language in both Ses-

sion 1, t(41) = 6.57, p < .0001, d = 1.01, and in Session 2, t(41) = 9.32, p < .0001,

d = 1.44. Similarly, trigram recall was significantly higher for the experimental items

than the random items in both sessions (Session 1: t(41) = 7.99, p < .0001, d = 1.23;

Session 2: t(41) = 8.12, p < .0001, d = 1.26). While performance on the random items

did not improve over time (both p = .55 or above), performance on the experimental

items did significantly improve in Session 2 relative to Session 1 (overall accuracy: t
(41) = 2.27, p = .03, d = 0.31; trigram recall: t(41) = 2.54, p = .02, d = 0.35). The

means of each SICR measure across both sessions are shown in Table 2. Additionally,

the serial position curves of the SICR items in both sessions are depicted in Fig. 1.

Table 1

Summary statistics for auditory 2AFC by session

Session Mean SD Range

1 0.68 0.13 0.42–0.97
2 0.76 0.15 0.33–1
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2.2.3. SICR error regularization
Taking advantage of the rich data provided by SICR, performance was further assessed

for error regularization, which examines the degree to which production errors on the ran-

dom items reflect a bias toward higher-probability sequences (Botvinick & Bylsma,

2005). If participants have internalized the statistics of the artificial language, then pre-

sumably their mispronunciations of the random items, which contain the same syllables

as the target words, may show a tendency toward statistically legal patterns. To gauge

whether this occurred, SICR random item recall was analyzed for whether participants’

incorrect productions tended to incorporate the regularities present in the artificial lan-

guage, including both legal bigram and trigram information. For example, for the random

item tabigatilula (the foil for the target item: latibitagalu), if a participant’s mispronunci-

ation contained any legal bigrams from the target words that did not comprise a full tri-

gram (e.g., lati, tibi, taga, galu) or any legal trigrams (e.g., latibi, tagalu), participants
would be awarded one point for each statistically legal error. These errors were calculated

separately: If a participant produced a full legal trigram from the artificial language, then

this was counted only as a trigram, and not as two separate bigrams (e.g., a point was

awarded for the trigram tagalu, but no points were awarded for the bigrams therein: taga
and galu). The total proportions of these errors were then calculated for the entire sample

of participants. Each session was considered separately.

In Session 1, out of 516 total random trials across all participants, only 28 (5%)

included a perfect recall response (e.g., every syllable in the random string was recalled

exactly correctly). These trials were then discarded from the analyses, and the remaining

488 trials were analyzed for error regularization. Overall, error regularization comprised a

small amount of production errors. Only four featured erroneous recall of a legal trigram

(or a full word) from the artificial language (.8% of trials). An additional 61 trials (13%)

featured a bigram combination corresponding to a legal sequence from the language (e.g.,

Table 2

Summary statistics for auditory SICR by session

Experimental items

Session

Full Sequence Trigram

Mean SD Range Mean SD Range

1 37.61 12.91 13–66 7.31 5.02 0–20
2 41.91 14.90 11–71 9.19 5.81 1–23

Random items

Session

Full Sequence Trigram

Mean SD Range Mean SD Range

1 28.38 9.96 12–58 2.95 3.07 0–14
2 27.50 10.73 6–57 2.83 3.03 0–15
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tabigatigalu, where galu is a legal bigram). A further two trials (.4%) included two (as

opposed to just one) legal syllable bigrams from the language which did not make up part

of a larger legal trigram sequence (e.g., lati gatigalu, where lati and galu are legal

bigrams that do not comprise a larger trigram).

In Session 2, out of 516 total trials in the random condition, only 15 (3%) included a

perfect recall response. Out of the remaining 501 trials, the degree of error regularization

was small, but slightly higher than in Session 1. In total, seven trials featured erroneous

recall of a full word from the artificial language (1.4% of trials), while an additional 74

trials (15%) featured bigram combinations corresponding to a legal sequence from the

language. A further four trials (.8%) included two (as opposed to just one) legal syllable

bigrams from the language which did not make up part of a larger legal trigram.

2.2.4. Comparisons between 2AFC and SICR
Prior to measuring reliability, the data were first analyzed for test order effects

(whether participants performed 2AFC followed by SICR in a given session, or per-

formed SICR followed by 2AFC). For 2AFC, there was no significant effect of order in

either Session 1 (F(1, 40) = 0.70, p = .41) or Session 2 (F(1, 40) = 0.87, p = .36). For

SICR, there was a significant effect of order on difference score measures in Session 1,2

with participants who performed 2AFC prior to SICR demonstrating larger difference

scores than those who performed SICR first (overall accuracy: F(1, 40) = 7.65, p = .01,

R2 = .16; trigram recall: F(1, 40) = 4.08, p = .05, R2 = .09). In Session 2, a one-way

ANOVA replicated this effect with the overall accuracy difference score (F(1,
40) = 8.18, p = .01, R2 = .17); however, the trigram difference scores in the second ses-

sion were not significantly impacted by order, F(1, 40) = 2.89, p = .10, R2 = .07.

Fig. 1. Serial position curves for the SICR experimental and random items in auditory statistical learning.

On average, participants recalled more syllables for the experimental items than the random items at every

serial position in both sessions. This difference is especially pronounced in Session 2. Error bars depict stan-

dard error.
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Next, the degree to which performance on 2AFC and SICR was reliably correlated

within sessions was assessed. The results revealed that in Session 1, 2AFC performance

was significantly correlated with the SICR overall accuracy difference score, r(40) = .31,

p = .04, but only marginally correlated with the trigram recall difference score, r
(40) = .30, p = .053. These effects were slightly stronger in Session 2, with 2AFC corre-

lating with both the overall accuracy difference score, r(40) = .43, p = .004, and the tri-

gram recall difference score, r(40) = .48, p = .001.

Finally, the test–retest reliability of 2AFC and all SICR measures were assessed

(Fig. 2). 2AFC performance was not reliable between Sessions 1 and 2, r(41) = .19,

p = .24. However, all SICR measures demonstrated significant test–retest reliability.

Overall accuracy was highly reliable for the experimental items (r(41) = .63, p < .0001),

the random items (r(41) = .58, p < .0001), and the difference score between the two (r
(41) = .40, p = .008). The same results held for trigram recall on the experimental items

(r(41) = .62, p < .0001), the random items (r(41) = .54, p = .0003), and the difference

score between the two (r(41) = .50, p = .001). Additionally, a partial correlation run

between the Session 1 and Session 2 experimental SICR scores reveals that the test–retest
reliability of the measure remains strong, even when controlling for baseline working

memory (Session 1 random item recall), r(41) = .64, p < .0001. Fig. 2 depicts the corre-

lations between these different measures.

2.2.5. The impact of natural language statistics on 2AFC and SICR
We sought to gain a measure of whether, and to what extent, natural language statistics

shaped performance on test items in the experiment. Our assumption was that if the tasks

used to test in-lab statistical learning are indeed tapping into the same learning mecha-

nisms involved in real-world language acquisition, then they should in theory also capture

some degree of facilitation from natural language statistics. Additionally, if SICR is

indeed sensitive to real-world distributional information, then this task may provide a use-

ful tool for future statistical learning research that seek to further investigate this phe-

nomenon.

For this purpose, we extracted data from two large corpora of spoken English: the

Fisher (Cieri, Miller, & Walker, 2004) and Switchboard (Godfrey, Holliman, & McDa-

niel, 1992) corpora. The corpora were combined and each utterance was converted to a

string of phonemes using a speech synthesis engine (http://espeak.sourceforge.net). Statis-

tics for phoneme pairs and triplets (bigrams and trigrams) were then extracted and used

to evaluate the test items from Experiment 1. There were several reasons for conducting

our analyses at the level of phoneme bigrams and trigrams. First, there is no standardized

corpus of English with coded syllable boundaries, which prompted us to focus on the

more fine-grained level of phonemes. Second, as our stimuli were designed specifically to

yield negligible overlap with natural language in terms of (a) syllable-to-syllable transi-

tional probabilities and (b) multi-syllable chunk strength, we focus here on phonemes in

order to account for more fine-grained information which was not possible to control,

such as that involving within-syllable transitions as well as within-syllable coherence.
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The analyses focused, separately for bigrams and trigrams, on two measures: mean

chunk strength (how frequently the phoneme sequences making up the test string occur in

natural language) and mean transitional probability (how frequent the transitions between

phonemes occur in natural language when measured using bigrams or trigrams of pho-

nemes).

We constructed four linear mixed-effects models, two for each type of statistic (bigram

vs. trigram; separate models were used due to collinearity between the two) and each

measure of distributional strength (chunk strength vs. transitional probability; separate

models used once more due to collinearity between measures). Each model sought to pre-

dict the total SICR score in each trial, featured subjects and items as random effects, with

condition (2: Experimental vs. Random), the natural language statistic, and the interaction

term as fixed effects.3

Average trigram chunk strength did not emerge as a significant predictor of SICR per-

formance, whereas average bigram chunk strength was a significant predictor of SICR

score (B = 0.16, t = 2.33, p < .05), with a significant bigram chunk strength by condition

Fig. 2. The test–retest reliability of SICR and 2AFC in auditory statistical learning. SICR performance on

the experimental items yielded the highest reliability, while 2AFC performance demonstrated the lowest test–
retest reliability.
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interaction (B = �0.319, t = �2.30, p < .05), indicating a decreased effect of chunk

strength for random as opposed to experimental items.

Mean transitional probability for trigrams did not significantly predict SICR score

(B = 0.17, t = 1.91, p = .07), but there was a significant transitional probability by condi-

tion interaction (B = �0.30, t = �2.43, p < .05), indicating a decreased effect of transi-

tional probability for random as opposed to experimental items. Transitional probability

for bigrams, however, did not reach significance as a predictor of SICR score.

We conducted a parallel set of analyses of the 2AFC scores on a trial-by-trial basis.

We utilized mixed-effects logistic regression models, with 2AFC accuracy coded as a

binary variable. All natural language predictors were the same as the analyses for the

SICR scores, with one important modification: Because 2AFC tasks involve simultaneous

exposure to two different strings, we calculated the difference in the relevant statistic

across the experimental and random items. For example, the bigram chunk strength model

would include the difference in mean chunk strength for the experimental and random

sequences in each given trial as a single predictor. Natural language predictors did not

rise to any level of significance in any of the models. The same outcome resulted from a

set of models in which only the natural language statistics of the experimental items was

considered.

2.3. Discussion

In Experiment 1, we tested whether chunking as measured via serial recall might

explain the learning effects found in classic embedded triplet statistical learning tasks

(e.g., Saffran, Newport, et al., 1996). We observed that participants’ recall of the experi-

mental items was significantly higher than that of the random items, both for overall

accuracy across the entire string, and for the number of trigrams recalled, with the latter

suggesting chunked representations of the input (Siegelman et al., 2019). Over a brief

period of exposure, participants’ experience with the statistics of the artificial language

led to observable changes in short-term memory processing such that items from the

speech stream were better recalled than random combinations of the same syllables. Fur-

thermore, learning also resulted in a small but observable degree of error regularization

in the random items (Botvinick & Bylsma, 2005), with participants regularizing their pro-

ductions of the control items to reflect the bigrams and trigrams present in the artificial

language (with the effect being particularly prominent for bigrams). These findings mirror

those that demonstrate how long-term distributional learning mediates short-term memory,

extended here to the context of in-lab statistical learning.

It is noteworthy that the natural language statistics only affected SICR performance,

and did so in both sessions. We take the sensitivity of the experimental SICR items to

natural language distributional patterns as further evidence that the task may be capturing

or reliant on the same processes involved in real-world statistical learning. That this

effect is especially pronounced in recall of the experimental items suggests that the distri-

butional patterns of phonological sequences in natural language influence how new statis-

tics are acquired in the lab (and is something that could be manipulated explicitly in
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future studies). Recall arguably employs many of the same mechanisms—such as the

rapid chunking of input—that are leveraged for natural language processing, which may

explain why the task was more readily affected by English phonological regularities.

However, it is also possible that SICR may be a better measure of distributional sensitiv-

ity in general. NWR and serial recall tasks can reliably capture individuals’ sensitivity to

the statistics of their natural language and learning-based changes in memory (Jones,

2012; Jones et al., 2007; Szewczyk et al., 2018). In fact, decades of research show that

recall is heavily influenced by the distributional patterns present in natural language (Bad-

deley, 1964; Botvinick, 2005); here, we extend these findings by showing that SICR cap-

tures both artificial and natural linguistic statistical patterns. SICR thus offers insights

into different levels of linguistic entrenchment, the products of both long- and short-term

learning.

Our results confirm that while both 2AFC and SICR provide estimates of learning,

SICR demonstrates a high degree of test–retest reliability on all sub-components of the

measure. By contrast, 2AFC fails to demonstrate significant reliability. These findings

diverge from those of Siegelman and Frost (2015), who report significant test–retest relia-
bility of 2AFC in measuring auditory-linguistic statistical learning. However, their

method for the construction of the 2AFC foil items differed slightly from those utilized

here: While the structure of the foil items in the current experiment was fully pseudo-ran-

domized (Saffran, Newport, et al., 1996), the foils in Siegelman and Frost (2015) were

part-words that spanned word boundaries. They also tested learning of only a subset of

the input words (6 out of the 12 words presented during training), whereas here, no input

words were excluded from test. Additionally, the 2AFC task implemented here may have

been easier than that employed by Siegelman and Frost (2015), as distinguishing words

from random combinations may be easier than distinguishing words from part-words. It is

possible that these methodological differences may have contributed to our conflicting

findings.

For SICR, the test–retest reliability was highest for recall of the experimental items,

which suggests that statistical chunking abilities may be consistent over time. Notably,

recall of the random items was also highly consistent between sessions, indicating that

the random items are a reliable measure of baseline working memory abilities. The

slightly lower reliability of the SICR difference scores may be explained by the additional

noise that arises from the construction of the measure: While raw scores have only one

source of noise present in the data, the difference scores combine the noise from both

measurements (Caruso, 2004; Willet, 1988; Zimmerman & Williams, 1998; Zumbo,

1999). Difference scores also reduce the range of variability across participants, as the

difference between experimental and random recall tends to be more similar between par-

ticipants than the amount of variability within item type (experimental or random; Hedge,

Powell, & Sumner, 2018). This in turn may contribute to the difference scores’ somewhat

diminished reliability relative to the raw SICR measures.

16 of 32 E. S. Isbilen et al. / Cognitive Science 44 (2020)



3. Experiment 2: Visual statistical learning

The processes of statistical learning and chunking are not specific to spoken language

—rather, they extend to learning in a diverse variety of domains and modalities. The

objective of Experiment 2 was thus to evaluate whether the chunking behavior observed

in Experiment 1 might extend to statistical learning in other modalities. As an initial

foray into this question, the same test–retest procedure as Experiment 1 was applied to

the statistical learning of visually presented syllables. We expected to replicate the results

of Experiment 1, with potential differences arising from modality-specific constraints.

3.1. Methods

3.1.1. Participants
A separate sample of 40 Cornell University undergraduates was recruited, composed of

25 females and 15 males, with a mean age of 19.75 (SD = 1.26). All participated in

exchange for course credit and were native English speakers, with no known language or

visual impairments.

3.1.2. Materials
Experiment 2 presented the same input language as Experiment 1, using written tran-

scriptions of the syllables rather than auditory playback. Transcriptions of the same

2AFC foils and SICR practice and test items were also presented to assess word learning,

in order to ensure that the two experiments were as similar as possible despite the differ-

ences in modality. All syllables in this experiment were presented one at a time in the

center of the screen, in lowercase 72-point Arial font. The experiment was programmed

in E-prime 2.0 (Schneider et al., 2002).

3.1.3. Procedure
In line with the procedure of the first experiment, Experiment 2 consisted of three sep-

arate tasks: exposure to the artificial language, 2AFC, and SICR. Exposure to the artificial

language was self-paced, in order to maintain participant engagement during training.

Syllables were presented sequentially, one after another. Participants were instructed to

press the space bar as soon as they had finished reading each syllable, after which the

next syllable would immediately appear on the screen. There were no pauses or blank

screens in between syllable presentations. A fixed minimum of 250 ms was implemented,

in order to provide the same baseline exposure time as the syllables in the auditory exper-

iment. Similar to the auditory version of the task, training lasted approximately 11.5 min

on average, with some individual variation depending on reading rate.

Following exposure, participants completed both 2AFC and SICR, using the same test

items as Experiment 1. The order of each test was counterbalanced to control for task

order effects. Unlike the exposure phase, the tests relied on a fixed presentation rate

rather than a self-paced rate, to ensure that exposure to the test syllables was uniform
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across participants. For both the 2AFC and SICR tasks, each syllable was presented one

at a time, with each appearing on the screen for 650 ms with no pauses in between. In

the 2AFC task, the foil and target words were presented sequentially, separated by a fixa-

tion cross that appeared on the screen for 1,000 ms. In the SICR task, participants typed

their responses instead of saying them out loud. Both tasks utilized the same instructions

from Experiment 1.

After the completion of Session 1, participants were asked to return to the lab and per-

form the experiment again, after a 3-week delay. The same language and test items were

used in each session, presented in different randomized orders. The test-order (2AFC

first/SICR second or SICR first/2AFC second) was preserved within subjects across each

session.

3.2. Results

3.2.1. 2AFC performance by session
2AFC performance (the proportion of correctly identified target words) was signifi-

cantly above chance (50%) in both Session 1 (t(39) = 7.76, p < .0001, d = 0.70) and Ses-

sion 2 (t(39) = 8.99, p < .0001, d = 1.42). Additionally, performance on 2AFC

significantly improved between sessions (t(39) = 3.05, p = .004, d = 0.46). The mean

values of 2AFC performance in each session are reported in Table 3.

3.2.2. SICR performance by session
The SICR analyses were performed on the participants’ typed responses. Responses

that had fewer than six syllables were amended using the same anchoring procedure that

was implemented for the auditory experiment (Dollaghan & Campbell, 1998; Weismer

et al., 2000) reported in Appendix B. The results revealed that recall of the experimental

SICR items was significantly higher than that of the random items. This pattern held for

the total number of syllables recalled in Session 1 (t(39) = 4.60, p < .0001, d = 0.73)

and in Session 2 (t(39) = 5.44, p < .0001, d = 0.86). Similarly, significantly more tri-

grams were recalled in the experimental than the random items in Session 1 (t
(39) = 4.84, p < .0001, d = 0.77) and in Session 2 (t(39) = 5.73, p < .0001. d = 0.91).

SICR performance on the experimental items improved between sessions (t(39) = 3.99,

p = .0003, d = 0.53), although overall accuracy of the random items did not (t
(39) = 1.60, p = .12, d = 0.17). Trigram recall on both the experimental items (t

Table 3

Summary statistics for visual 2AFC by session

Session Mean SD Range

1 0.70 0.16 0.33–1
2 0.78 0.20 0.42–1
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(39) = 4.84, p < .0001, d = 0.65) and the random items (t(39) = 2.32, p = .026,

d = 0.25) improved across sessions. The mean performance on all SICR measures is

reported in Table 4, and their corresponding serial position curves are depicted in Fig. 3.

3.2.3. SICR error regularization
Following the same procedure as Study 1, the degree of participant error regularization

on the random SICR items was analyzed to assess whether participants’ production errors

reflected a bias toward the statistics of the artificial language. As before, each random

item that contained any errors was analyzed for whether these mispronunciations con-

tained legal bigram or trigram information. Like in Experiment 1, these errors were calcu-

lated separately: If a participant produced a full legal trigram, this was scored only as a

trigram, and not as two separate bigrams. The total proportions of these errors were then

calculated for the entire sample, and each test session was considered separately.

In Session 1, out of 480 total trials in the random condition, 77 (16%) included a per-

fect recall response. These trials were then excluded from the analyses, and the remaining

403 trials were considered. As in Experiment 1, only a small number of trials featured

error regularization. In total, four featured erroneous recall of a legal syllable trigram (or

a full word) from the artificial language (1% of trials). An additional 62 trials (15%) fea-

tured single bigram combinations corresponding to a legal sequence from the language

(e.g., tabigatigalu, where galu is a legal bigram). One further trial (0.2%) included two

(as opposed to just one) legal syllable bigrams from the language which did not make up

part of a larger legal trigram sequence (e.g., lati gatigalu where lati and galu are legal

bigrams that together do not comprise a larger legal trigram).

In Session 2, out of 480 total trials in the random condition, 92 (19%) included a per-

fect recall response. These trials were then excluded from the analyses. As with Experi-

ment 1, the total proportion of error regularization was small, but slightly higher in

Table 4

Summary statistics for visual SICR by session

Experimental items

Session

Full Sequence Trigram

Mean SD Range Mean SD Range

1 45.50 13.44 24–71 10.13 5.86 2–23
2 53.35 16.19 20–72 14.58 7.70 1–24

Random items

Session

Full Sequence Trigram

Mean SD Range Mean SD Range

1 39.85 11.67 18–63 7.73 4.67 1–17
2 42.03 14.52 13–70 9.03 5.69 0–22
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Session 2 relative to Session 1. Out of the remaining 388 trials, 10 featured erroneous

recall of a legal syllable trigram from the artificial language (3% of trials). An additional

63 trials (16%) featured a single bigram combination corresponding to a legal sequence

from the language. A further four trials (1%) included two (as opposed to just one) legal

syllable bigrams from the language which did not make up part of a larger legal trigram

word.

3.2.4. Comparisons between 2AFC and SICR
As the first measure of comparison, both tasks were analyzed for task order effects.

Although in both sessions, 2AFC performance was slightly higher when it was performed

after SICR, a one-way ANOVA revealed no significant order effects in either Session 1

(F(1, 38) = 1.35, p = .25, R2 = .03) or Session 2 (F(1, 38) = 0.57, p = .45, R2 = .02).

There were no order effects on any of the SICR measures (all p = .34 or above).

Next, correlations between the tasks were analyzed. 2AFC was not significantly corre-

lated with the SICR difference scores in Session 1. These results held for both the overall

accuracy difference scores (r(38) = .18, p = .30) and the trigram recall difference scores

(r(38) = .16, p = .33). However, by Session 2, 2AFC was significantly correlated with

both overall accuracy (r(38) = .44, p = .004) and trigram recall (r(38) = .55, p = .0002).

To determine the test–retest reliability of each task, correlations were run between par-

ticipants’ scores on each measure at Session 1 and Session 2 (Fig. 4). 2AFC performance

demonstrated significant test–retest reliability between sessions (r(38) = .55, p = .0002).

For the SICR task, recall was highly reliable between sessions, both on the experimental

items (r(38) = .66, p < .0001) and on the random items (r(38) = .81, p < .0001). This

correlation remains significant, even when controlling for baseline working memory (ran-

dom item recall in Session 1), r(38) = .33, p = .04. In addition, the same statistics were

performed on the SICR overall difference scores (calculated as experimental minus

Fig. 3. SICR serial position curves by item type in visual statistical learning. In Session 1, participants on

average recall a greater number of syllables in the experimental items than in the random items. However,

this effect is less pronounced in Session 2. Error bars depict standard error.
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random). The overall SICR difference score was only marginally reliable between ses-

sions (r(38) = .30, p = .059). The trigram recall results were highly reliable for the exper-

imental items (r(38) = .66, p < .0001), the random items (r(38) = .78, p < .0001), and

the difference score between the two (r(38) = .37, p = .02).

3.2.5. The impact of natural language statistics on 2AFC and SICR
As in Experiment 1, we once more sought to measure whether, and to what extent,

natural language statistics shaped test performance. For this purpose, we extracted data

from the written portion of the American National Corpus (Ide & Macleod, 2001). Statis-

tics for letter pairs and triplets (bigrams and trigrams) were then extracted and used to

evaluate the test items from Experiment 2.

The analyses focused, separately for bigrams and trigrams, on two measures: mean

chunk strength (how frequent the letter sequences making up the test string are in natural

language) and mean transitional probability (how frequent the transitions between letters

are in natural language when measured using bigrams or trigrams of letters).

Fig. 4. The test–retest reliability of SICR and 2AFC in visual statistical learning. The reliability of SICR per-

formance on the experimental items is higher than that of 2AFC.
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We constructed four linear mixed-effects models, two for each type of statistic (bigram

vs. trigram) and each measure of statistical strength (chunk strength vs. transitional proba-

bility). Each model sought to predict the total SICR score in each trial, featured subjects

and items as random effects, with Condition (2: experimental vs. random), the natural

language statistic, and the interaction term as fixed effects. Neither bigram nor trigram

chunk strength emerged as a significant predictor of SICR score, nor did transitional

probability.

We conducted a parallel set of analyses of the 2AFC scores on a trial-by-trial basis.

Following the same procedure outlined in Experiment 1, we utilized mixed-effects logis-

tic regression models, with 2AFC accuracy coded as a binary variable. Once more, natu-

ral language predictors did not rise to any level of significance in any of the models for

the 2AFC task.

3.3. Discussion

The results of Experiment 2 replicate the key findings of Experiment 1 by demonstrat-

ing that SICR can, in fact, provide an effective measurement of statistical learning ability

across modalities. The experimental SICR items were consistently recalled more accu-

rately than the random items, and evidence of the acquisition of trigram chunks was once

again observed. Similar levels of error regularization—where participants normalize their

productions of the random sequences in a manner that resembles the statistics of the arti-

ficial language—are also observed across the two experiments. However, the results of

Experiment 2 diverge from Experiment 1 in a number of ways.

First, the order effect that was found for the overall SICR difference scores in Experi-

ment 1 was not present in Experiment 2, suggesting that the order effect observed in the

previous experiment may have been limited to that sample alone. Similarly, there was no

correlation between 2AFC and SICR performance in Session 1 of this experiment,

although a correlation was observed by Session 2. This may be due to participants’ rely-

ing on long-term knowledge of the strings acquired in Session 1 to guide performance in

Session 2. It is also likely that there is more reflection involved in the visual SICR task

than in the auditory version. In the typed SICR task, participants are afforded the ability

to revisit and revise their responses. While some degree of self-correction was observed

in the auditory version of the task, participants’ verbal responses were not available for

playback during the experiment, and they could only self-correct from memory alone.

Thus, while some studies show that different measures of statistical learning are not

always correlated with one another, even when they intend to measure learning of the

same material (Arnon, 2019; Erickson, Kaschak, Thiessen, & Berry, 2016; Misyak &

Christiansen, 2012; Siegelman & Frost, 2015), the correlation observed between 2AFC

and SICR may in part stem from this shared reflection-based component, as reflection-

based tasks tend to correlate more highly with other reflection-based tasks than with pro-

cessing-based tasks (Isbilen, Frost, Monaghan, & Christiansen, 2018).

With the exception of the overall difference score, which was only marginally reliable,

the results from the visual statistical learning experiment revealed significant test–retest
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reliability for all SICR measures in a manner that is fairly comparable to those observed

in Experiment 1. As in the previous experiment, however, the difference scores were gen-

erally less reliable than the raw scores, suggesting that difference scores, on the whole,

may be a less reliable measure of learning (Hedge et al., 2018). This is further high-

lighted by the fact that the test–retest reliability of the experimental items remains signifi-

cant when controlling for baseline working memory, suggesting that the task does in fact

reliably capture individual differences in learning abilities. Thus, SICR is arguably a reli-

able task—all subcomponents of the measure, including both the raw scores and trigram

difference score—demonstrate significant test–retest reliability, with the exception of the

marginal finding for the overall difference score.

Unlike Experiment 1, 2AFC performance in the visual experiment demonstrated signif-

icant test–retest reliability. It is possible that the cognitive technology of reading enables

participants to develop a more explicit awareness of the statistical structure than is possi-

ble in the auditory version of the task. This may have translated into the increased relia-

bility of the measure in this experiment, as this version of 2AFC may have been more

closely aligned with the kind of explicit knowledge participants had accrued during train-

ing. As far as we are aware, this is the first study to report the test–retest reliability of

the statistical learning of visual-linguistic material, although Siegelman and Frost (2015)

report significant test–retest reliability for visual-nonlinguistic statistical learning using

2AFC that is fairly comparable to ours (r = .58, as compared to our obtained findings of

r = .55). Thus, 2AFC appears to be a reasonably reliable method of testing visual statisti-

cal learning in adults (for evidence from children, see Torkildsen, Arciuli, & Wie, 2019).

Unlike in the auditory experiment, natural language statistics had no effect on visual

SICR performance. It may be the case that on the auditory SICR task, performance was

more heavily affected because individuals in general have considerably more experience

with auditory-sequential than visual-sequential linguistic stimuli. That is, the auditory SICR

task is arguably more similar to the constraints of natural spoken language processing,

where one must rapidly process the auditory stimulus and produce a response—a latency

that lasts only 200 ms on average across languages (Levinson, 2016). By contrast, the pre-

sentation of stimuli in the visual SICR task resembles everyday reading less closely.

4. General discussion

Understanding the computations involved in statistical learning—long assumed to play a

pivotal role in language acquisition—has been a hotly debated topic in the language and

cognitive sciences. In the current paper, we investigated the idea of statistical learning as

chunking by employing a novel chunking-based recall task to measure learning in adults.

Our results demonstrate that SICR can successfully capture the statistical learning of

both auditory-linguistic and visual-linguistic input using the standard Saffran, Newport,

et al. (1996) embedded triplet paradigm. Just as enhanced memory for real-world statisti-

cal regularities is reliably observed in NWR and serial recall tasks (Archibald & Gather-

cole, 2006; Gathercole, 1995; Jones & Macken, 2015), after a brief period of exposure to
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an artificial language, we were able to simulate these same results in the lab. Through

exposure to the language, participants’ chunking of recurrent sub-patterns facilitates their

retention in long-term memory. This is evident in their improved recall of the experimen-

tal items. Furthermore, we observe evidence of word-level chunking, with participants

chunking recurrent syllable combinations into individual words on the basis of transitional

probability information, as evidenced by the trigram recall scores. This suggests that

rather than representing transitional probability information alone, that individuals acquire

specific, concrete items, similar to item-based theories of children’s natural language

acquisition (Bannard et al., 2009; Bybee, 2003; Goldberg, 2006; Lieven, 2016; MacWhin-

ney, 1998; Tomasello, 2000).

Our framework differs from previous accounts in that we view transitional probability

sensitivity and chunk formation as interconnected processes, rather than as two points on

a continuum, with chunking proceeding on the basis of statistical computations. It also

diverges somewhat from other memory-based approaches to statistical learning, where

statistical sensitivity is seen as a consequence of basic memory processing (Perruchet &

Vinter, 1998; Thiessen & Pavlik, 2013), rather than existing as a computational process

in its own right. In statistical learning experiments, participants appear to represent both

transitional probability (bigram) and chunk information (c.f., Siegelman et al., 2019),

although transitional probability information may also be conceptualized as sublexical

chunks (Jones, 2016; Jones et al., 2014). The statistical-chunking hypothesis thus provides

a middle ground between recognition-based and statistically based models of language

acquisition. Compared to statistically based models that rely solely on the calculation and

identification of transitional probabilities, recognition-based models provide a closer fit to

human statistical learning data (French, Addyman, & Mareschal, 2011; Perruchet, Poulin-

Charronnat, Tillman, & Peereman, 2014), through the recognition of familiar, learned

chunks of information. However, one limitation of recognition-based models is that they

historically have not included the kind of sensitivity to transitional probabilities that

learners nonetheless exhibit.

To date, at least one model, CBL (McCauley & Christiansen, 2019), which employs

statistical learning and chunking as parallel processes, can successfully approximate chil-

dren’s language acquisition, comprehension, and production across multiple languages,

via sensitivity to backward transitional probabilities. This model also allows for the active

prediction of upcoming elements using previously learned information, similar to natural

language acquisition. Behaviorally, our results from using SICR to measure the statistical

learning of non-adjacent dependencies demonstrate that chunking can also capture the

learning and generalization of non-adjacent structures, and it is thus not limited to the

acquisition of adjacent distributional patterns alone (Isbilen et al., 2018; E. S. Isbilen, R.

L. A. Frost, P. Monaghan, & M. H. Christiansen, unpublished data). We thus suggest that

rather than being limited to in-lab statistical learning studies, statistically based chunking

may also extend to natural language acquisition as well, with distributional sensitivity

and chunking working as interactive processes.

Methodologically, SICR offers more specific insights into the output representations

that arise from learning. It also lends itself to examining the impact of statistics in ways
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that are not possible with traditional 2AFC tasks, such as examining the degree of error

regularization present in recall of the random items, as an additional measure of learning.

In the auditory domain, SICR was more reliable at the individual level than the classical

2AFC task. This may be because 2AFC violates one of the central assumptions of statisti-

cal learning: that it is largely implicit. Asking participants to explicitly reflect on knowl-

edge that may not be available to consciousness raises several problems. For instance,

participants may exhibit certain preferences toward choosing one type of item over

another (e.g., always choosing the second item; Siegelman, Bogaerts, Christiansen, et al.,

2017), or they may simply differ in their reflective abilities (Christiansen, 2019). Indeed,

as discussed by Kidd, Donnelly, and Christiansen (2018), performance on many psy-

cholinguistic tasks is influenced by multiple cognitive processes beyond the component of

interest (e.g., as investigated via the Drift-Diffusion model; Ratcliff, 1978). It may thus

be the case that the means of forced-choice tasks reflect a composite of different abilities,

rather than the targeted cognitive process alone (see also Frost et al., 2015, for a similar

discussion in the context of individual differences in statistical learning).

Recent years have seen an increasing use of more dynamic measures of statistical

learning, such as the evaluation of reaction times during exposure (Franco et al., 2015;

Karuza et al., 2014; Misyak et al., 2010; Qi, Sanchez, Georgan, Gabrieli, & Arciuli,

2019; Siegelman et al., 2018). Other studies have successfully gauged statistical sensitiv-

ity to novel phonotactic constraints utilizing sequence production tasks that analyze par-

ticipants’ production errors, and they find that after extended training, error patterns

reliably reflect the newly acquired phonotactic structures as they become better learned

(Dell, Reed, Adams, & Meyer, 2000; Warker & Dell, 2006; Warker, Dell, Whalen, &

Gereg, 2008)—effects which have been replicated in the nonlinguistic domain (Anderson

& Dell, 2018). Here, we contribute another tool to this endeavor.

Although serial recall using pseudo-words does exist, to our knowledge, few studies of

this nature have preceded recall with a statistical learning-style familiarization phase

(with the notable exceptions of Botvinick & Bylsma, 2005; Conway, Bauernschmidt,

Huang, & Pisoni, 2010; Majerus et al., 2004). In other words, while previous studies

using recall have largely focused on the entrenchment of known statistics, fewer have

made the connection to the acquisition of novel statistics. We thereby highlight how

recall tasks can be seen as a proxy for statistical learning: Just as NWR and serial recall

tap into individuals’ sensitivity to natural language distributional regularities, SICR can

be seen as a processing-based task that taps into the same chunking processes using artifi-

cial language statistics (see also Christiansen, 2019). Recall tasks like SICR may thus

also potentially better correlate with individual differences in language learning, much

like how NWR reliably predicts language skills and outcomes in children and adults

(Dollaghan & Campbell, 1998; Gathercole, 2006; Gathercole, Willis, Baddeley, &

Emslie, 1994; Gupta, 2003), including in second-language learning (Service, 1992; Ser-

vice & Kohonen, 1995).

In the current paper, we sought to better specify the processes involved in statistical

learning by more closely aligning the computations relied upon during learning and test.

Specifically, we proposed chunking as the process by which the cognitive system uses
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statistical regularities to form higher-level representations, with chunked representations

of the input as the outcome of learning. We thus suggest that a shift toward processing-

based measures of learning, in comparison to reflection-based measures, may offer clearer

insights into the extent and mechanisms of statistical learning, and lead to a more com-

prehensive understanding of the phenomenon as a whole.
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Notes

1. We note here that the use of grammaticality or familiarity ratings for individual

items also is subject to similar issues—although these ratings do allow for more

detailed analyses of responses (e.g., it is possible to look for different response pat-

terns for the target and foil stimuli).

2. In a pilot study comparing SICR and 2AFC (Isbilen, McCauley, Kidd, & Chris-

tiansen, 2017), the opposite order effect was found, with order significantly impact-

ing 2AFC performance (t(68) = 12.06, p < .0001), but not SICR performance. This

suggests that these results may be somewhat unreliable.

3. Due to singular fit, the random effects terms were simplified to remove random slopes.
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Supporting Information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article:

Appendix S1: Scoring and transcription instructions

for the auditory SICR task.

Appendix A:

Table of SICR test items

Target items Corresponding foil items

kibudulatibi bikatolapoti

kibudutopoka bukapodukito

latibilomari dibumokidupa

latibitagalu gaditamolupa

lomarikibudu kalutotapoga

lomarimodipa lobukimaduri

modipakibudu moripadimalo

modipatopoka popamokadito

tagalulomari rilobimatila

tagalumodipa tabigatilula

topokalatibi tarimalugalo

topokatagalu tidubibulaki

Appendix B:

Table of SICR practice items

Target items Corresponding foil items

kibuduloma dumabuloki

latibitaga kipobutoka

lomaritopo matopalori

modipalati patilamoda

tagalumodi taludigamo

topokakibu tatigabila
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