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Language processing involves the ability to store and integrate
pieces of information in working memory over short periods
of time. According to the dominant view, information is main-
tained through sustained, elevated neural activity. Other work
has argued that short-term synaptic facilitation can serve as a sub-
strate of memory. Here we propose an account where memory
is supported by intrinsic plasticity that downregulates neuronal
firing rates. Single neuron responses are dependent on expe-
rience, and we show through simulations that these adaptive
changes in excitability provide memory on timescales ranging
from milliseconds to seconds. On this account, spiking activity
writes information into coupled dynamic variables that control
adaptation and move at slower timescales than the membrane
potential. From these variables, information is continuously read
back into the active membrane state for processing. This neu-
ronal memory mechanism does not rely on persistent activity,
excitatory feedback, or synaptic plasticity for storage. Instead,
information is maintained in adaptive conductances that reduce
firing rates and can be accessed directly without cued retrieval.
Memory span is systematically related to both the time con-
stant of adaptation and baseline levels of neuronal excitability.
Interference effects within memory arise when adaptation is
long lasting. We demonstrate that this mechanism is sensitive
to context and serial order which makes it suitable for tem-
poral integration in sequence processing within the language
domain. We also show that it enables the binding of linguis-
tic features over time within dynamic memory registers. This
work provides a step toward a computational neurobiology of
language.

working memory | neuronal plasticity | sequence processing

Working memory (WM) is the capacity to maintain and
manipulate information over short time periods, and it

plays a crucial role in many cognitive domains. Memory on short
timescales has been characterized as elevated neural activity that
persists beyond stimulus offset (1, 2). On this account, informa-
tion is encoded in spike trains and maintained within memory
through sustained firing that is supported by appropriately tuned
synaptic feedback (3, 4) or cellular multistability (5–7). More
recent evidence, however, suggests that neural activity can be
highly variable during maintenance (8–10) and is significantly
reduced by dual-task demands (11). In some cases, the iden-
tity of items held in WM has been decoded reliably from the
blood-oxygen-level–dependent (BOLD) response without sus-
tained activity (12). Other studies have found discrete bursts in
γ-band frequency during encoding and retrieval (13) which is
difficult to reconcile with the persistent activity view. For these
reasons, the contribution of neural activity to WM remains a
matter of ongoing debate (14). Another approach has argued
that WM is supported by transient changes in synaptic efficacy
(15, 16). In a network model, short-term synaptic facilitation
(17) induced stimulus-specific patterns of functional connectivity

during encoding. Following a period of low spiking activity, infor-
mation could be reactivated by an unspecific retrieval cue and
decoded successfully. Thus, sustained firing was not necessary for
memory maintenance in these simulations.

Both persistent activity and synaptic theories of WM have
been developed in simple delayed response tasks where a small
number of items have to be remembered and recalled explicitly
after delay. In other cognitive domains, the processing demands
on WM differ substantially from this paradigm. For instance, in
language processing the system is exposed to rapid serial input
without pauses or delays. There are no recall cues in the input,
and the explicit recollection of words is not an objective. Instead,
the language system actively transforms auditory or visual input
in order to construct an interpretation within WM in an online,
incremental fashion. Cues to meaning can occur anywhere in a
sentence and nonadjacent to the location of context-dependent
use. Furthermore, processing memory needs to be sensitive to
precedence relations in order to process languages where word
order matters (e.g., “dog bites man” and “man bites dog” contain
the same bag of words but differ in meaning). Whether persistent
activity or synaptic models of WM could achieve fast, online tem-
poral integration that is order-sensitive and context-dependent is
an open question. We propose a neurocentric account of WM
that meets these requirements. This account is based on the
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principle of intrinsic plasticity which describes changes in neu-
ronal excitability as a function of input history. Intrinsic plasticity
can be expressed, among others, as a decrease of the spike–
release threshold, a reduction in spike after-hyperpolarization,
or changes in resting membrane potential (18, 19). These effects
lead to higher neuronal sensitivity and an increase in firing rate.
Conversely, excitability can decrease in response to overstimula-
tion, causing a down-regulation of output rates as in spike-rate
adaptation (20, 21). Thus, various forms of intrinsic plasticity
can temporarily modulate excitability and alter the functional
state of neurons (22). Intrinsic plasticity has been implicated
in the homeostatic regulation of network activity, counteract-
ing dynamic instability due to Hebbian plasticity (23). Additional
evidence indicates that there is a causal link between intrinsic
plasticity and memory. Changes in neuronal excitability sup-
port engram formation and maintenance by modulating the
threshold for the induction of long-term potentiation (24–26).
Importantly, it has also been suggested that intrinsic plasticity
can serve as a transient storage device on shorter timescales (19,
27, 28). Recent findings on the learning of interval durations,
for instance, have shown that cells responded with temporally
specific modulations of their firing rate (over several hundred
milliseconds) while internal synaptic drive was pharmacologically
blocked (29). This suggests that memory traces for tempo-
ral relations were maintained through intracellular changes in
excitability. These changes are governed by the fast activation
or deactivation of membrane conductances, and this makes neu-
ronal responses dependent on input history and levels of activity.
Thus, short-term memory could be based solely on intrinsic
plasticity mechanisms, without synaptic changes or persistent
activity (27, 30). To test this hypothesis, we implemented WM
as short-lived neuronal adaptation in simulated circuits of spik-
ing neurons which gradually reduces neuronal excitability as a
function of experience. We first describe this basic mechanism
and show that it provides short-term memory that is context-
dependent and sensitive to serial order. Then we investigate the
functional role of neuronal memory in the processing of linguis-
tic sequences where semantic relations have to be established
between words. Finally, we outline a neurobiological read–write
memory that is based on coupled dynamic variables at different
timescales.

Results
Within the range of observed intrinsic plasticity (18, 19), we
focus on the decrease in excitability due to spike-rate adaptation
(SRA) which has been found in many types of excitatory cortical
neurons (20, 31). Leaky integrate-and-fire neurons with a fixed
voltage threshold were used, and SRA was modeled as a spike-
triggered, Ca2+-mediated K+-conductance gsra (32). Following
a spike, gsra was increased by a small amount gsra← gsra + ∆gsra,
and it decayed back to zero with time constant τsra otherwise.
The conductance increase generated an ionic current that hyper-
polarized the cell membrane which effectively reduced neuronal
excitability. This adaptation effect is shown in Fig. 1A where
the action of gsra on the membrane potential gradually increases
interspike intervals in a neuron driven by a constant current.
The magnitude of ∆gsra controls how fast the neuron adapts
while τsra determines the lifetime of adaptation. Generally, an
increase of either parameter leads to a decrease in firing rates
(Fig. 1B). When the adaptive neuron is driven by low random
background activity, it responds with an occasional spike (green
dots, Fig. 1C, Top) whereas the evoked response to a sensory
stimulus (orange) is much stronger. If, on the other hand, the
same input (orange) is preceded by another sensory stimulus
(blue), the neuron adapts rapidly and shows a different spike
response pattern on the second stimulus (Fig. 1C, Bottom). SRA
is clearly visible in the downshift of mean firing rates collected
from 100 simulations in each condition (Fig. 1D). Thus, for iden-

tical stimuli, the neuron responds in a history-dependent manner
which is a form of memory on timescales that are related to
the τsra. This memory mechanism can distinguish two differ-
ent contexts—the presence or absence of the blue stimulus—in
which the target item (orange) occurred. Furthermore, neuronal
memory is sensitive to the serial order of inputs. To show this,
a network of adaptive neurons was exposed to sequences of
three stimuli. Each stimulus projected to a random subpopu-
lation of neurons (sorted by stimulus for visual ease; Fig. 1E).
Evoked spiking activity drove neuronal adaptation conductances
up (red traces, population average) which then decayed back
to baseline after the stimulus was removed. These averaged
conductances can be viewed as a population memory trace.
The stimuli were then reordered (as 123, 231, and 312, respec-
tively), and memory traces were recorded for each sequence
from 10 randomized network simulations. Fig. 1F shows a lin-
ear combination of these traces for the different sequences
(bold lines, mean). Each sequence generated a characteristic
profile of adaptive conductances over time. After stimulus off-
set (dashed line), the three sequences of items could still be
distinguished from the corresponding mixture of traces (separa-
bility). Thus, neuronal adaptation maintains serial order in mem-
ory, and this information is accessible to simple linear readout
processes (33).

Unlike the persistent activity account of WM, neuronal mem-
ory does not rely on elevated activity or sustained firing. Rather,
information is encoded in the hyperpolarized membrane state
and maintained in the adaptation conductance gsra. Memory
traces do not need to be refreshed perpetually for retention,
and memory span is linked to the time constant that controls
gsra decay. Similar to synaptic WM (15), this account avoids
the high metabolic cost of spike generation and feedback sig-
naling incurred by persistent activity maintenance (34). Instead,
the functional role of spiking activity in neuronal WM is to
recode information into (hidden/silent) dynamic variables that
move at slower timescales than action potentials or subthresh-
old membrane leakage. Thus, spiking activity can be viewed as a
write-to-memory operation that stores information in neuronal
memory registers. Since these dynamic variables are coupled
to the cell membrane, previous information is continuously
read back from memory into the active network state. In this
way, memory traces constantly influence and shape future pro-
cessing behavior (35). These cycles of encoding and retrieval
could form the basis of a local, neurobiological read–write
memory.

Context-Dependent Sequence Processing. This proof of concept
establishes that neuronal memory is sensitive to context of
occurrence and can maintain serial order information. Next, we
investigated whether transient adaptation due to intrinsic plas-
ticity could also serve as WM in a more demanding task. This
was a sequence processing task similar to language comprehen-
sion which required integration over longer temporal windows.
Sentence comprehension was modeled as the online, incremen-
tal assignment of thematic roles to phrases (“who does what to
whom?”). These roles specify semantic relations between event
participants (e.g., agent, theme, and goal) and are part of most
linguistic theories of adult meaning (36). Cues to sentence mean-
ing include lexical semantics, morphology, and syntax, and these
cues can occur anywhere in the input sequence and at variable
distance from the location where they are being interpreted. For
instance, in the sentence “The cheese is eaten by the mouse,”
noun animacy (cheese, mouse), verb identity (eat), inflectional
morphemes (-en), and function words (by) jointly support an
interpretation of mouse as the agent of the action. However,
depending on context, the word mouse can assume different
semantic roles in the same sentence position (e.g., “the cat is
chasing the mouse”). Early in sentences, there typically was
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Fig. 1. Neuronal adaptation as a neurobiological correlate of WM. (A) Adaptive neuron is driven by a step current with amplitude 400 pA for a duration
of 300 ms. Tonic spiking with uniformly spaced interspike intervals (Left) due to a refractory conductance gref (blue). Spike rate conductance gsra (red)
adaptively decreases excitability and stretches out spike times (Right). Both conductances are spike-triggered but differ in magnitude and their decay
time constants. (B) f–I curves show neuronal spike rates as a function of input current strength. As the time constant τsra of gsra increases (from 10 ms
to 1.5 s; Left), spike rates decrease (black to gray gradient) because neuronal adaptation lasts longer. Likewise, as the magnitude of the spike-triggered
change ∆gsra increases (from 1 to 200 nS; Right), spike rates decrease (black to gray gradient) because adaptation becomes stronger. (C) Single neuron
spike response (green dots) to a Poissonian input stimulus (orange; 0.5 kHz) from 50 presynaptic neurons, when preceded only by background noise
(black; 0.25 kHz) or another sensory stimulus (blue; 0.5 kHz). (D) Histograms display SRA (dashed line indicates mean) which encodes context-dependent
neuronal behavior in response to the orange stimulus. Memory of the blue stimulus is maintained in the hyperpolarized membrane state of the postsynaptic
neuron (green). (E) Population-averaged memory traces gsra (red) over time, induced by a sequence of three items (y position of traces aligned with
corresponding population). (F) Linear combination of these traces can distinguish the sequential order of inputs (123, 231, or 312) after stimulus offset
(dashed line).

temporary ambiguity, but semantic relations became more deter-
ministic toward the sentence-final noun phrase (NP). Thus, in
order to accomplish this task, contextual information needs to
be maintained in WM and cues to meaning integrated within the
processing memory.

To test neuronal memory for this ability, a network with 1,000
adaptive spiking neurons was used where τsra was set to 200 ms.
The network was sparsely connected (1% synaptic density) and
had a feed-forward graph to eliminate possible contributions to
WM from recurrent connectivity. It was driven by a stream of
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sentence input, generated from construction grammar templates
and their syntactic alternations (e.g., active/passive “cat chases
toy” versus “toy is chased by cat”). The complete input lan-
guage is described in SI Appendix, Table S1. Synaptic projections
from input words into the network were excitatory and random,
following an exponential distribution to create heterogenous
evoked dynamics. Statistically, each word targeted 5% of all neu-
rons in the circuit and word exposure times were proportional to
orthographic length. During input processing at a target rate of
5 Hz, spatiotemporal patterns of spiking activity were recorded
from the network, and a classifier was calibrated to decode
these states onto desired categorical output (semantic relations).
We emphasize that the decoder is not considered part of the
network model. It is merely an external measurement device
that is used to assess its memory characteristics under different
neurobiological assumptions about the processing infrastructure.

To put the task into perspective, we compared this network
to a memoryless regression model and another back-off N-gram
model with perfect memory of sentence context (see SI Appendix
for details). The memoryless model achieved ∼50% accuracy on
all words but failed on the sentence-final NP (Fig. 2A) where
memory demands were the highest. The perfect memory model

reached ∼75% accuracy on both measures, whereas the spik-
ing network outperformed both, with a sentence-final accuracy
of 94% and ∼80% on all words. This indicates that the spiking
network had adequate processing memory for this task, and its
internal dynamics made semantic generalizations available to the
downstream readout. Decoder weights were normally distributed
around mean 0 with a few large negative values (Fig. 2E). The
firing rate distribution showed a heavy tail which is typical of
cortical neurons, with some regular firing (coefficient of varia-
tion of interspike intervals [CV ISI close to 0]), and input-driven,
irregular bursting (CV ISI above 1). Spike synchrony (mea-
sured as the pairwise correlation coefficient) across the neural
population was low (Fig. 2E). These observations are consis-
tent with previous findings that SRA supports the asynchronous
irregular regime (37) which has been argued to play a critical
role in cortical information processing (38). To test the effect
of different adaptation time constants, we systematically var-
ied τsra that controls SRA decay (Fig. 2B). There was a sharp
increase in accuracy from τsra= 50 ms to peak performance at
τsra = 400 ms [mean, 96.6%, sentence-final NP; χ2 (1) = 48.5,
p < 0.001]. Hence, τsra was directly related to memory span.
For τsra > 400 ms, however, accuracy decreased again toward a
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Fig. 2. Network sequence processing. (A) Model comparison on semantic role assignment task in sentence comprehension. Accuracy is measured on all
words in a sequence and on the sentence–final noun phrase. Spiking network outperforms memoryless logistic regression and perfect memory model which
has access to the entire sentence context in WM. (B) Network accuracy improves with increasing time constant for neuronal adaptation. Peak performance
occurs around τsra = 400 ms. Subsequent decline is due to interference in WM and can be prevented by flushing memory at the end of each sentence. Shaded
regions indicate the size of interference effects on both measures. (C) Slow versus fast adapting neurons, controlled by the magnitude of the spike-triggered
increase in adaptation conductance ∆gsra. (D) Semantic role assignment accuracy parametrically varies with the degree of neuronal excitability for ∆gsra

ranging from 4 nS (slow adapting) to 500 nS (fast adapting). (E) Spiking network statistics (see SI Appendix for details): distribution of readout weights
(log-scale), histograms of neuronal spike rates, coefficient of variation of interspike intervals (CV ISI), and pairwise spike synchrony (from top to bottom).
Error bars in A, B, and D show 95% confidence intervals for 10 model subjects.
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mean of 85.9% (sentence-final NP) for a conductance decay of
1.5 s [χ2 (1) = 48.9, p < 0.001]. Slower relaxation entails longer
retention of past information, and as memory span increased,
word information was eventually carried across sentence bound-
aries and contaminated the processing of the next sequence. To
isolate this interference effect, dynamic variables in the network
were reset at the end of each sentence. Such rapid clearance of
the hidden state has also been observed experimentally during
memory-guided behavior (39). In this condition with memory
reset, accuracy continued to increase to near ceiling with longer
τsra [mean, 99.8%; χ2 (1) = 15.5, p < 0.001]. Thus, flushing
WM between items prevented traces of previous input sen-
tences from interfering with the interpretation of the upcoming
sentence.

Another feature of the adaptive neuron was the magnitude of
spike-triggered K+-conductance change ∆gsra. It controls how
fast adaptation occurs in response to an input current. Note that
∆gsra does not affect the rheobase of neurons (Fig. 1B). Fig. 2C
shows the evolution of the membrane potential of slow and fast
adapting neurons. Both were driven by the same current and
had identical adaptation time constants τsra, but the conductance
change ∆gsra was an order of magnitude larger in the fast adapt-
ing neuron. This leads to larger spike after-hyperpolarization and
a rapid decrease in excitability. Evidence suggests that excitabil-
ity is modulated by the transcription factor CREB (cAMP
response element-binding) which changes the K+-conductance
of neurons. CREB overexpression results in smaller spike after-
hyperpolarization and enhanced excitability, and this has been
linked to memory formation (see ref. 40 for a review). Here we
tested whether levels of excitability also had an influence on WM
function by systematically varying the magnitude of ∆gsra in the
adaptive neuron. Since memory was dependent on network spike
rates (SI Appendix, Fig. S1), activity was kept constant at a rate of
5 Hz for different ∆gsra by globally tuning synaptic connectivity
strength up or down. The results show that sequence memory
was strongly modulated by the degree of neuronal excitabil-
ity when the adaptation time constant τsra was fixed at 400 ms
for all simulations (Fig. 2D). A decrease in excitability led to a
decrease in semantic role assignment accuracy across measures
[χ2 (1) = 39.8, p < 0.001], and accuracy on the sentence-final
NP dropped by more than 15% when moving from slow to
fast adaptation. This suggests that enhanced neuronal excitabil-
ity was beneficial to WM in sequence processing. Although
memory traces reside in the hyperpolarized membrane state,
fast adaptation was not conducive since some spiking activity is
needed to write information into memory registers in the first
place.

Feature Binding. The temporary binding of features is crucial for
the unity of perception and also plays an important role in lan-
guage comprehension. In the previous online processing task, the
readout was binding semantic roles to words in time. In order
to construct a sentence-level interpretation, these binding rela-
tions have to be maintained in memory until the utterance is
completed. An interpretation that was adopted early in a sen-
tence may have to be revised later on. Similar to the design of
a delayed response task, we tested whether neuronal memory
was able to maintain information that allowed feature binding
across words in a sequence. At the end of each test item, the net-
work was queried with a randomly selected semantic role label
that was appropriate for this sentence. For instance, after the
item “the cat chases a toy” had been processed, the role query
“agent” was injected into the network (SI Appendix), and the
activity evoked by the query was being nonlinearly mixed with the
network’s memory of the preceding sentence. Then, a readout
was estimated to map the resulting state onto the target con-
tent word for this query (Fig. 3A). In the example sentence, the
correct readout response to “agent” would be “cat.” The role

query acts as a semantic variable which is temporarily bound
to a feature value by the readout, i.e., the word that fills this
role slot in the test sentence. Target words could occur any-
where in the sentence and at variable distance to the position
of the query.

To obtain a robust estimate of binding, networks were tested
on 5,000 queries. Since the test sentences were unique and
novel, binding required substantial generalization beyond pre-
vious experience. Across queries, the network achieved ∼90%
role-to-word binding accuracy which is within adult human range
(41). Binding relations are particularly challenging when items
contain multiple occurrences of the same noun in different
semantic roles (Problem of Two; ref. 36). We tested this in
datives where animate nouns could occupy both agent and recip-
ient roles (e.g., “a nice man gave the man a book”). Two parallel
readouts were calibrated, one that mapped role queries onto
lexical fillers (as before) and another one that mapped onto
the ordinal number of the word’s occurrence. Combining both
readouts uniquely identifies a noun response (e.g., in the above
dative, the correct response to the query “recipient” would be
“man”/2nd position). In this condition, target words and their
relative position could be decoded with more than 95% accuracy
after just 1 h of language input (2,200 sentences), and even-
tually, perfect identification was reached with longer exposure
(Fig. 3B). Thus, neuronal WM can distinguish multiple occur-
rences of the same item, and this allows the resolution of feature
binding ambiguity.

Dimensionality reduction of neural trajectories (SI Appendix)
showed that repeated words were separated in state space due
to the history dependence of neuronal responses (Fig. 3C).
These results indicate that binding relations were implicit in the
dynamic registers of neuronal memory as the network was forced
by external input into a state from which these relations could
be recovered by a readout. This account of feature binding dif-
fers from other neural approaches to binding in that it does not
require specialized operators to form complex representations
such as tensors or convolutions (42, 43) or the construction of
explicit structural representations in neural tissue (44). It also
does not require neural markers to signal binding, such as syn-
chrony (45) or polychronous spiking (46). The high-dimensional
end state of neural trajectories already represents the correct
binding relations between words and semantic roles, and this sug-
gests that neuronal WM can support fast, automatic sequence
processing in language. In order to reason about feature bindings
explicitly, downstream inference machinery can query represen-
tations held in neuronal WM registers and extract these relations
when needed.

Discussion
In the present work, we propose that intrinsic plasticity,
expressed as neuronal SRA, can provide a cellular mechanism
for WM on short timescales where information is stored and
maintained in physiological processes that regulate neuronal
excitability as a function of experience. On this account, action
potentials in the fast membrane dynamics (dV /dt with time
constant τm) trigger neuronal adaptation which is governed
by dynamic variables with longer time constants (e.g., dα/dt
with τm� τα). Spiking activity in V recodes information into
these slower dynamic variables α, and this can be interpreted
as writing to memory. Hence, dynamic variables act as mem-
ory registers that store real numbers, and these variables are
the physical address of the memorandum. In the case of neu-
ronal memory, stored numbers correspond to the instantaneous
value of a membrane conductance that is localized to a point
in space. Memory traces in α can persist in the absence of sus-
tained firing, excitatory feedback, or synaptic plasticity and are
unaffected by membrane reset or the integration of new infor-
mation into the membrane state. Conversely, since adaptation
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Fig. 3. Binding of words to semantic roles. (A) After each input sentence, the network is queried with a semantic role label. The readout maps the network
state onto a probability distribution of word responses for the queried role. A correct response occurs if the noun is identified that fills the query slot. (B)
Feature binding accuracy for sentences with two occurrences of the target word as a function of the amount of language input. One readout identifies
the lexical target, and the other readout returns the ordinal position of the target word. Error bars show 95% confidence intervals. (C) Example sentence
and its trajectory through state space. Multiple occurrences of the same lexical noun (boy) in different semantic roles (agent, recipient) are separated by
history-dependent neuronal processing.

variables are coupled to the membrane potential, memory traces
continuously exert an influence on the active membrane state
which corresponds to reading from memory. These cycles of
encoding and retrieval between coupled dynamic variables with
different timescales could form the basis of a neurobiological
read-write memory (Fig. 4). On this view, the fast-changing
membrane dynamics transforms analog input to binary output,
and slower adaptive processes provide for information storage.
Hence, memory and computation are implemented within single
neurons, and their functional distinction is based on timescales
only. The distinction between information encoding, mainte-
nance, and retrieval is similarly blurred. Encoding corresponds
to a change in the neuron’s excitability in response to a stim-
ulus, maintenance is the persistence of this adaptive change in
the neuronal state, and retrieval amounts to the changed neu-
ronal response itself (see also ref. 47). To control reading and
writing, a functional dependence can be introduced to steer
the information exchange between V and α, as in dV /dt =
fV (V , τm ,α, . . . ,R) and dα/dt = gα(V ,α, τα, . . . , E), where fV
describes the membrane evolution, gα the dynamics of α, and
E and R are additional dynamic variables that control encoding
and retrieval, respectively. For instance, if E acts multiplicatively
on V in gα, V cannot write information into α when E is near
zero (e.g., via shunting inhibition), andR could assume a similar
role in retrieval.

In single-neuron simulations, we have shown that neuronal
WM is sensitive to context of occurrence. The same stimulus
can evoke different responses depending on input history. Since
adaptation decays over time, different inputs carry a temporal
signature in memory, and this can be used by a downstream
readout to establish serial order relations. When placed into a
network architecture, neuronal WM proved suitable to process

structured sequences and bind linguistic features over time. The
time constant of adaptation was directly linked to WM span,
and interference effects occurred when past information per-
sisted in WM for too long. While in delayed response tasks
the main focus is on retention and explicit recall, in other
domains such as language, WM function also includes the active
processing of memory content. Language input is not stored
passively in a short-term memory buffer and loaded back into
the comprehension system when needed. Instead, the integra-
tion of cues takes place in an online, incremental fashion, as
soon as they become available to the processing machinery
(48). The meaning of an utterance is constructed within WM
as it unfolds in time, suggesting that memory for language is
actively computing (49). Neuronal WM naturally implements
such an active processing memory since memory registers them-
selves are dynamic and transform maintained information over
continuous time.

We emphasize that this account of WM is compatible with
other accounts that have implicated elevated firing (1, 2, 14) or
synaptic changes (15–17), and it is likely that multiple interacting
mechanisms contribute to memory function. For instance, per-
sistent activity might serve to refresh traces in neuronal WM.
On our account, these traces are physically located in adap-
tive cellular conductances rather than neural spiking activity
per se. Thus, we interpret a sequence of action potentials not
as the substrate of information encoding and maintenance but
as an index of where and when information is being written
into memory registers. Neuronal WM is also compatible with
a role of transient changes in synaptic efficacy through short-
term facilitation and depression which might supply timescales
beyond intrinsic plasticity (Fig. 4). In contrast to synaptic
memory, however, neuronal WM does not require explicit cues
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Fig. 4. Neurobiological read–write memory on multiple timescales. Sustained neural spiking activity has been viewed as a correlate of memory on short
timescales. However, physiological processes other than the evolving membrane state provide dynamic variables for information storage on successively
longer timescales. These include intrinsic plasticity, temporally extended synaptic currents, and short-term synaptic plasticity. Coupling of these processes
to the membrane state creates read–write cycles where past information, held in slower dynamic variables (storage), is continuously folded back into the
fast-changing, active network state (computation). The functional distinction between memory and computation is based on the timescales of dynamic
variables.

for recall and can function with sparse, random connectivity
which obviates the need for fine-tuned excitatory feedback or
strongly connected cell assemblies. Consequently, it can cope
with novel inputs and with novel combinations of familiar
inputs. In fact, all tested sequences in Figs. 2D and 3B were
of this kind.

A neuronal account of WM is consistent with observed
stimulus-induced bursts of activity during encoding (13) and
a rapid firing rate transition into lower activity regimes even
before stimulus offset (50). These findings might be explained
by neuronal adaptation taking effect during the stimulation
period. On this account, adaptation speed determined levels
of neuronal excitability which in turn influenced WM charac-
teristics (Fig. 2D). Thus, memory-guided performance should
be inversely related to the slope of firing rate decrease dur-
ing encoding which could be tested experimentally. Another
prediction of our account is that WM span should systemat-
ically covary with the time constant of neuronal adaptation.
Although some evidence suggests that encoding and mainte-
nance are related to distinct intrinsic neuronal time constants
(51), the link between the temporal properties of adaptation
and mnemonic behavior is currently unknown. Since informa-
tion was maintained in the hyperpolarized neuronal state, our
model predicts that it should be possible to decode memories
from population responses in the absence of sustained firing.
Preliminary evidence from noninvasive recordings in humans
supports this prediction (12, 39, 52) in that item-specific infor-
mation was decodable even though there was no elevated delay
activity. These findings suggest that memories were not stored
in the active membrane state. Related to this issue, the pro-
cess of encoding information into neuronal WM causes SRA
that persists for some time. Therefore neural activity should
be inversely related to memory load, and this prediction is
supported by recent evidence that firing rates during mainte-
nance were inversely proportional to the number of items held
in WM (50).

Here we have investigated decreases in excitability as a neu-
ronal correlate of WM, but transiently enhanced excitability
might also play a role (7, 19, 27, 28). Indeed, while a large
fraction of neurons showed memory-related spike frequency
decreases, which is consistent with adaptation memory, other
neurons showed a firing rate increase during maintenance (10).

Spike-triggered increases in excitability could be modeled as
a depolarizing conductance or an adaptive lowering of the
spike release threshold. Future work needs to examine how
the inclusion of diverse intrinsic plasticity principles, which
enable both the up- and down-regulation of neural excitabil-
ity, plays out in shaping network dynamics. A neuronal account
of WM broadly supports a dynamic coding framework accord-
ing to which information is maintained not as a stationary state
but as a transient process which is characterized as a vari-
able path of neural activity through a high-dimensional state
space (10, 13, 51, 53).

Materials and Methods
Neuron Model. Leaky integrate-and-fire neurons used in our simulations
had a fixed voltage threshold with conductance-based mechanisms for
refractoriness and SRA (32). The subthreshold membrane dynamics is
described by the equation

Cm
dV(t)

dt
=

1

Rm
(Vrest−V(t)) + I(t)− (gsra(t) + gref(t))(V(t)− EK), [1]

where Vrest is the resting potential, Rm denotes the leakage resistance, Cm is
the membrane capacitance, and I(t) is the total current flowing into the neu-
ron at time t. When the membrane potential reached threshold Vth, a spike
occurred, and V was reset to Vrest. SRA was modeled as a K+-conductance
gsra with reversal potential EK . Following a spike, this conductance was
increased by gsra← gsra + ∆gsra, and it decayed back to 0 exponentially with
time constant τsra otherwise.

τsra
dgsra(t)

dt
=−gsra(t). [2]

Another conductance gref generated a relative refractory period during
which neurons were prevented from spiking. Its dynamics was also mod-
eled as an exponential decay with time constant τref. Both conductances
modeled spike aftereffects and acted homeostatically to prevent runaway
activity in the network. While gref had a strong, short-term impact on
the neuron, gsra was smaller but decayed more slowly (e.g., τsra= 200 ms,
τref= 2 ms).

Synaptic Coupling. Neurons were interconnected through synapses to trans-
mit signals. For simplicity, current-based synapses were used. The shape
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of synaptic currents Iij(t) was modeled as an instantaneous rise, trig-
gered by a presynaptic spike, followed by an exponential decay with time
constant τsyn,

dIij(t)

dt
=−

Iij(t)

τsyn
+ wij

∑
tj

δ(t− tj), [3]

where wij is the synaptic weight from the presynaptic neuron j to the post-
synaptic neuron i, δ(.) is the Dirac delta, and tj are the spike times of the
presynaptic neuron j. The total current into each neuron was the sum of the
individual contributions of excitatory and inhibitory synaptic currents from
within the network, currents generated by the adaptive conductances, and
the external drive due to language input.

Network Graphs. Spiking networks were composed of 1,000 neurons
with 80% excitation (E) and 20% inhibition (I) and had directed feed-
forward graphs. These were obtained by inserting a synapse wij between
randomly chosen pairs of neurons j and i. If the synapse created a
cycle, it was discarded, else it was retained. This procedure was iter-
ated until the target connection density was reached. Synaptic weights
were drawn uniformly from the interval [0,1] ⊂R. To globally balance
E and I, inhibitory synapses were scaled to be five times stronger on
average than excitatory ones. Weights were kept constant throughout
the simulations. Networks were simulated with a temporal resolution
of 0.2 ms, and Euler’s method was used for numerical integration. All
neuron, synapse, network, and simulation parameter values are listed in
Table S3.

Language Input. Language sequences were generated from English con-
struction grammar templates that were instantiated over a lexicon of
75 words from 9 word categories (SI Appendix, Table S1). As network
input, ∼1,500 unique sentences were randomly generated from this

grammar and concatenated into a sequence of 12,500 words. Sentences
were between 2 and 17 words long with a mean utterance length of
8.6 words. Exposure time for each word was proportional to its ortho-
graphic length (e.g., “apple”, 5×50 ms = 250 ms). The language generated
approximately 1.67× 109 distinct utterances, and network input consisted
of less than 0.0001% of the total number of sentences licensed by the
grammar.

State Decoding. Network states were defined as vectors of membrane
potentials V with each component corresponding to the current voltage
of one neuron (SI Appendix). States were sampled at a constant rate of
200 Hz and averaged within words for each neuron. The collection of states
was split into input and test sets (fivefold cross-validation) and standardized
before entering into a logistic regression classifier. The classifier mapped
network states onto target semantic role labels and was estimated using
conjugate gradient descent with regularization.

Model Evaluation. Accuracies reported in Figs. 2 and 3 are based on a
κ statistic for multinomial classification with κ= (acc− rand)/(1− rand),
where acc is the raw labeling accuracy and rand is the expected accuracy
of a random classifier obtained through permutation of the semantic roles
(or words in case of binding queries) assigned by the decoder. The conserva-
tive κ measure factors out what could be achieved by chance on the same
distribution of labels.

Data Availability. Simulation data and model code data have been
deposited in the Max Planck Institute for Psycholinguistics Archive (https://
hdl.handle.net/1839/8a42116e-77a7-46e1-b838-beee60e4e11a).
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