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Traditional active laser power stabilization schemes are fun-
damentally limited by quantum shot noise on the in-loop
photodetector. One way to overcome this limitation is to
implement a nondemolition sensing scheme where laser
power fluctuations are transferred to motion of a micro-
oscillator, which can be sensed with a high signal-to-noise
ratio. In this Letter, we analyze the power stability achiev-
able in a nondemolition scheme limited by quantum and
thermal noise. Under the assumption of realistic experimen-
tal parameters, we show that generation of a strong bright
squeezed quantum state of light should be possible. © 2020
Optical Society of America

https://doi.org/10.1364/OL.394547

Many modern high-precision metrology experiments require
high laser power stability. Interferometric gravitational wave
detectors [1], for example, have one of the most demanding
requirements at low frequencies where a relative power noise of
2× 10−9 Hz−1/2 is needed at 10 Hz. Such requirements are ful-
filled with active stabilization schemes where a negative feedback
control loop is implemented. The most common scheme is the
traditional scheme, where a fraction of the laser light is sensed
by a photodetector and compared to a stable reference. This
scheme is fundamentally limited by shot noise of the detected
light, which couples as sensor noise in the control loop and
therefore is imprinted in the out-of-loop beam. The straight-
forward way to increase the signal-to-noise ratio in the in-loop
detector is to increase the detected power P . However, since the
signal-to-noise ratio scales with P−1/2, a photocurrent of at least
200 mA needs to be detected to meet the stated requirements.
This high photocurrent imposes significant technical challenges
due to high thermal loads on the photodetector.

Alternative routes were adopted to circumvent these lim-
itations such as substituting the single diode for an array of
photodiodes [2], injecting squeezed light in the detected beam
[3], and sensing power fluctuations in reflection of an optical
cavity (OAC-coupling) [4]. Another approach is to imple-
ment a nondemolition scheme in which power fluctuations
are transferred to another observable of the light field, which is
then measured with low sensing noise. The first proposal and

experimental realization of such a scheme was done in 1986 [5]
with a nonlinear crystal as the transfer medium. In this Letter,
we analyze a nondemolition scheme where power fluctuations
of a strong transfer beam are transferred to motion of a micro-
oscillator mirror. A similar scheme was analyzed in [6], but
for a freely suspended mirror inside an optical cavity. Here the
micro-oscillator is used as an end mirror of a Michelson interfer-
ometer whose output signal is fed-back to the laser power. The
interferometer represents the in-loop sensor of this scheme, and
therefore interferometer noise sources will be imprinted in the
out-of-loop beam, setting a lower limit to the final power stabil-
ity. We determine this limit for an interferometer fundamentally
limited by quantum and thermal noise.

The details of the stabilization scheme are shown in Fig. 1.
The free running field f̂ to be stabilized from the transfer beam
(red trace) is sent to an amplitude modulator, and the transmit-
ted field t̂ impinges on a micro-oscillator and is fully reflected
to the out-of-loop field ô . The micro-oscillator’s position x̂ is
sensed via a Michelson interferometer with a balanced homo-
dyne readout [7] ideally sensitive only to the phase quadrature
of the output field ĥ , which represents the differential length of
the interferometer arms. This is a realistic approximation for
a homodyne detector with high common mode rejection and
good phase stability. The output signal is then amplified by a
complex gain ε, and the resulting feedback signal is sent to the
amplitude modulator. The interferometer implements a weak
sensing beam (orange trace) with a field ŝ , which is provided by
an independent laser source. The figure also shows the vacuum
field v̂ that couples at the dark port of the interferometer.

The quantum limit of the proposed setup was calculated with
a standard two-photon description [7–9] of the electric strain
operator of a light wave using amplitude (c-subscript) and phase
(s-subscript) quadrature amplitudes. In the frequency domain,
the two-photon quadrature operators are written in terms of the
creation â and annihilation â † operators for the upper and lower
modulation sidebands as

âc(�)=
âω0+� + â †

ω0−�
√

2
and âs(�)=

âω0+� − â †
ω0−�

i
√

2
,

(1)
whereω0 is the optical carrier frequency.
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Fig. 1. Schematic of the stabilization scheme via radiation pressure.
Power fluctuations of a strong transfer beam are transferred to motion
of a micro-oscillator mirror. The micro-oscillator’s position is sensed
via a Michelson interferometer with a balanced homodyne readout and
a weak sensing beam. The feedback signal is amplified by a gain ε. The
convention adopted as the positive displacement direction x̂ is shown
by the arrow on top of the oscillator.

To calculate the amplitude and phase quadratures of the
out-of-loop beam, we should determine the relation between
the input and output light quadratures and the oscillator
displacement x̂ . The oscillator responds to the radiation
pressure force like a harmonic oscillator with a mechanical
susceptibility of

χm(�)=
1

−m�2 +m�2
0(1+ iφ)

, (2)

where m is the mass, �0 is the fundamental resonance fre-
quency, andφ is the loss angle. The position is influenced by the
two independent fields ŝ and v̂ in the interferometer, and by the
stabilized field t̂ ,

x̂ = χm(−α · (ŝ c − v̂c)+ β · t̂c), (3)

where α and β are constants that depend on the mean power of
the sensing ( P̄s) and transfer ( P̄t) beams,

α =

√
2 P̄s~ω0/c and β =

√
8 P̄t~ω0/c , (4)

for a 100% reflective mirror. For the chosen readout scheme, the
feedback signal is proportional to the phase quadrature of the
output field ĥ of the interferometer,

ĥ s =−v̂s − α · x̂/~=−v̂s + Kα · (ŝ c − v̂c)−
√

KαKβ · t̂c,
(5)

where Kα = α
2χm/~ and Kβ = β

2χm/~ are the optomechani-
cal coupling strengths [10], which express the transfer function
from amplitude to phase quadrature driven by radiation pres-
sure. The amplitude quadrature transmitted by the modulator is
given by t̂c = f̂c + ε · ĥ s, which, in the steady state regime, can
be combined with Eq. (5) to obtain

t̂c =
f̂c + ε(−v̂s + Kα · (ŝ c − v̂c))

1+ ε
√

KαKβ

and t̂s = f̂s. (6)

Here an ideal modulator acting only in the amplitude quadra-
ture of the light was considered. The factor ε

√
KαKβ

corresponds to the open loop gain of the feedback control
loop.

Under the assumption that the mirror displacement is small
such that x � λ, the out-of-loop quadratures can be written as

ô c = t̂c and ô s = t̂s − β · x̂/~, (7)

which, according to Eq. (6), are given as functions of the uncor-
related input fields as

ô c =
f̂c − ε · v̂s + εKα · (ŝ c − v̂c)

1+ ε
√

KαKβ

, (8)

ô s = f̂s −
Kβ · f̂c − εKβ · v̂s −

√
KαKβ · (ŝ c − v̂c)

1+ ε
√

KαKβ

. (9)

As expected, the free running noise f̂c is reduced arbitrarily
by increasing the feedback gain |ε| and the transfer magnitude
|KαKβ |. Additionally, the readout and radiation pressure noise
introduced by the interferometer [second and third terms
in Eq. (8)] are imprinted in the out-of-loop field and cannot
be decreased below a certain value. The single-sided power
spectral densities (PSDs) [7] of the amplitude (Scc) and phase
quadratures (Sss) of the out-of-loop beam are, respectively,

S ô
cc =

S f̂
cc + |ε|

2
+ |εKα|

2(S ŝ
cc + 1)

|1+ ε
√

KαKβ |
2 , (10)

S ô
ss = S f̂

ss +
|Kβ |

2(S f̂
cc + |ε|

2)+ |KαKβ |(S ŝ
cc + 1)

|1+ ε
√

KαKβ |
2 . (11)

To understand the scheme dynamics, let us assume that
the sensing and transfer beams are initially in a coherent state,
i.e., S f̂ (ŝ )

cc = 1 and S f̂ (ŝ )
ss = 1. Figure 2 shows the amplitude

spectral density (ASD) of the amplitude (upper plot) and phase
(lower plot) quadratures, calculated for coherent states, for
different amplification factors ε (treated as frequency inde-
pendent). The micro-oscillator chosen for all analysis in this
Letter has a mass of m = 40 ng, fundamental resonance fre-
quency �0 = 2π × 100 Hz, and a structural quality factor
Q = 2× 105. More details about this choice are given in later.
Pitch and yaw modes of the oscillator should not couple in the
measurement if the beams are centered to the oscillator’s mirror
pad. The wavelengths of the transfer and sensing beams were set
to 1064 nm.

First let us analyze the amplitude quadrature. When the loop
is open (ε = 0), the out-of-loop ASD is the same as the ASD of
f̂c, which is frequency independent and equal to 1 for a coherent
state. When the loop is closed, an interesting result is obtained:
for low frequencies, the amplitude quadrature is squeezed,
as it has an ASD smaller than the vacuum state, whereas for
high frequencies, extra noise above the vacuum level is always
imprinted. This behavior can be better understood by setting
the limit of |ε|→∞ in Eq. (8). The free running amplitude
quadrature f̂c is completely suppressed by the high loop gain
and has no contribution to ô c. The radiation pressure noise con-
tribution, caused by v̂c and ŝ c, is constant and depends only on
the ratio between the sensing and transfer beam mean powers,
which can be set to much smaller than 1. The interferometer
readout noise contribution, caused by v̂s, is divided by the oscil-
lator’s susceptibility since

√
KαKβ = αβχm/~. This means

that below�0, the readout noise is suppressed by a constant and
large factor, while above�0, the suppression gets smaller and is
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Fig. 2. ASD of S ô
cc (upper plot) and S ô

ss (lower plot) calculated for
different amplification factors ε and for P̄t = 1 W and P̄s = 0.4 mW.
The ASD of a coherent state is displayed by the dashed yellow line as a
reference.

subsequently amplified in a �2 fashion, following the decrease
in the susceptibility proportional to 1/�2. This amplification
happens because, since the micro-oscillator response at high
frequencies gets smaller, the loop needs to apply a higher power
modulation on the transfer beam to compensate the sensor noise
and keep the error signal zero.

It is important to note that the generation of amplitude
squeezing via the feedback loop in this scheme does not violate
the Weisman and Milburn [11] condition, which states that
“feedback mediated by homodyne detection can only produce
nonclassical light, if the system dynamics can do so without
feedback,” since optomechanical systems are known to produce
ponderomotive squeezing [12] on their own.

The Heisenberg uncertainty principle stipulates that at
frequencies where the amplitude quadrature is squeezed, the
phase quadrature must be antisqueezed. This is exactly what is
shown in the lower plot of Fig. 2. When the loop is open, the
phase quadrature has contributions from f̂s, plus a frequency-
dependent term caused by the radiation pressure displacement
due to f̂c, ŝ c, and v̂c, which is shaped by the oscillator’s sus-
ceptibility. When the loop is closed, the amplitude quadrature
t̂c is suppressed at low frequencies, which consequently leads
to the reduction in the phase quadrature ô s as well. However,
unlike the amplitude, the phase quadrature will never undergo

squeezing since there is no mechanism in the setup to suppress
f̂s. In the regime where |ε|→∞, an additional constant noise
is imprinted on the phase quadrature at high frequencies. This is
because the amplitude quadrature t̂c increases with�2 while the
susceptibility decreases with 1/�2, making the result frequency
independent.

The uncertainty principle is always satisfied, which can be
easier seen in the regime where |ε|→∞,

S ô
ccS ô

ss − |S
ô
cs|

2
= |KαKβ |

−1
+ 2|KαK −1

β | + 2> 1. (12)

The assumption made previously that the transfer and sens-
ing beams are in a coherent state was useful to understand the
scheme, but it is unrealistic since lasers always exhibit technical
noise. Therefore, the power stability in the out-of-loop beam is
analyzed taking into account the initial technical power noise in
both beams. The PSD of the out-of-loop beam relative power
noise (RPNool,q) as a function of the relative power noise in the
sensing and transfer beams (RPNs and RPNf) can be calculated
by combining Eq. (10) with

RPN j =
δP j

P̄ j
=

√√√√2~ω0S ĵ
cc

P̄ j
. (13)

The result is plotted in Fig. 3 for two initial power noise values
for the transfer and sensing beams. The plot shows that tech-
nical power noise and also shot noise of the transfer beam are
suppressed even when considering a high RPNs= 10−6 Hz−1/2,
easily obtained with a traditional prestabilization, and a realistic
amplifier gain of |ε|= 103. At low frequencies, the red curve is
limited by technical radiation pressure noise from the sensing
beam, while the blue curve is limited by the quantum radiation
pressure noise. At high frequencies, both curves are limited by
the interferometer readout noise. In the high loop gain regime,
light will be squeezed when the absolute power noise of the
sensing beam is smaller than 2 times the absolute shot noise of

the transfer beam, i.e., RPNs · P̄s < 2
√

2~ω0 P̄t.
Thermal noise is a particularly important noise source in this

setup, especially for high susceptibility oscillators. The PSD of
the micro-oscillator displacement caused by structural thermal
noise is given by [13]

Fig. 3. ASD of RPNool,q for different relative power noise in the
transfer and sensing beams (RPNf,s) and different sensing beam pow-
ers. For all curves, P̄t = 1 W and |ε|= 103. The transfer beam relative
shot noise (RSN) is depicted by the dashed yellow curve as reference.
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Fig. 4. ASD of the total RPNool (red curve) for P̄t = 4 W,
P̄s = 37 mW, RPNf,s= 10−8 Hz−1/2, T = 4 K, and |ε|= 103.
The transfer beam relative shot noise is shown by the dashed yellow
curve, and the relative shot noise of 50 mW (stability achieved with the
traditional scheme) is shown by the dashed blue curve.

x 2
tn(�)=

4kB T�2
0

m�Q[(�2
0 −�

2)
2
+�4

0/Q2]
, (14)

where Q is the quality factor, T is the temperature, and kB is
the Boltzmann constant. The minimum relative power noise
achievable in the out-of-loop beam when only limited by ther-
mal noise (RPNool,tn) is equal to the power modulation that
needs to be imprinted on the transfer beam to compensate the
thermally driven motion of the micro-oscillator. This leads to

RPNool,tn =
c�0

P̄t

√
kB Tm

Q�
. (15)

This equation shows that the thermal noise contribution to
RPNool scales with frequency in an opposite way than quantum
noise, as it is larger for low frequencies and smaller for high
frequencies. The parameter with most impact on improving
the out-of-loop power stability in this case is the transfer beam
power P̄t. Decreasing the resonance frequency of the oscilla-
tor also improves the stability, but it restricts the stabilization
frequency range to lower frequencies as well.

Figure 4 shows the total RPNool (red curve) obtained as an
uncorrelated sum of the transfer scheme’s quantum noise and
thermal noise contributions. At frequencies below 1 kHz, the
curve is limited by structural thermal noise, while for higher
frequencies, it is limited by the interferometer readout shot
noise. The value of P̄s was chosen as an optimum compromise
between readout shot noise and technical radiation pressure
noise contributions. It is important to notice that for an alterna-
tive interferometer configuration in which the micro-oscillator
is the end mirror for both interferometer arms [14], technical
radiation pressure noise would not contribute to RPNool. In
this case, P̄s can be further increased, which reduces RPNool
at high frequencies. Finally, the phase noise imprinted on the
out-of-loop beam by the residual micro-oscillator motion is
negligible in comparison with the free running phase noise of an
nonplanar ring oscillator (NPRO) laser.

The micro-oscillator parameters chosen for this Letter were
adjusted for an optimum stabilization aimed at frequencies
higher than 10 Hz. Similar oscillators have been reported in [15]
(mass around 40 ng) and [16] (resonance frequencies around
150 Hz and quality factors of Q = 2× 105 at 10 K), mean-
ing that an optimized oscillator might be available in the near
future. An important and open question for these oscillators is
the power damage threshold, which is a crucial parameter to the
performance of the proposed scheme.

In summary, we calculated the fundamental limit for a non-
demolition power stabilization scheme via radiation pressure.
The results show a remarkable difference in comparison to
the traditional and OAC-coupling schemes since a subshot
noise power stabilization can be achieved. This is a conse-
quence from the natural ponderomotive squeezing generated
by the oscillator. We analyzed the scheme and its fundamen-
tal noises for realistic parameters and found that a bright
squeezed beam with a power of 4 W and up to 12 dB of squeez-
ing might be achievable in the near future. The corresponding
RPNool < 6× 10−10 Hz−1/2 for frequencies between 10 Hz
and 6 kHz might be of interest for future gravitational wave
detectors and other high-precision metrology experiments.
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