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1 Introduction

Everyone knows someone who speaks particularly fast, or especially slowly. Dif-
ferent language varieties have different typical speaking rates, as do different
individuals who speak the same language variety (e.g. Verhoeven et al., 2004).
Speaking rates are also highly variable within individuals (Quené, 2008; Jacewicz
et al., 2010; Miller et al., 1984). Speaking rate, as a component of speaking style,
is strongly correlated with the communicative situation: when the situation de-
mands clearer speech, speakers tend to slow down accordingly (e.g. Bosker &
Cooke, 2018; Cooke et al., 2014; Hazan & Baker, 2011). This happens both auto-
matically as a response to environmental noise (Lombard, 1911; van Summers
et al.,, 1988), and voluntarily, for instance on request when speaking to a lan-
guage learner. Voluntary modulation of our speaking rate away from our most
comfortable speed is experienced as effortful, implying that top-down executive
control is required to adjust how fast we speak.

This thesis addresses the question of how speakers tweak the cognitive pro-
cesses that prepare speech to adjust their speaking rate voluntarily. Aside from
examining a previously under-explored aspect of speech production, accounting
for how speakers modulate their speaking rate contributes to our understand-
ing of speech production more generally. Firstly, an account of how speakers
‘deliberately’ vary speaking rate has the potential to usefully constrain theories
of speech production, which would need to be compatible with this ability. Sec-
ondly, understanding which variation is deliberate and which arises as a result
of stochastic error in the process of planning speech can offer insights into the
nature of the process itself (Biirki, 2018). Thirdly, accounting for modulation of
the speech production system may clarify the interface between executive con-
trol and speech production (Miyake et al., 2000; Rietbergen et al., 2018; Jongman
etal., 2015).

11 Speaking rate control is essential for communication

Rather than being mere stylistic variation, variation in speaking rate is impor-
tant for speech comprehension, which in turn means that accurate control of

how fast we speak is essential for successful communication. This is because
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variation in the speech signal prevents listeners from relying on simple map-
pings between signal and meaning. Instead, listeners combine local and contex-
tual cues to arrive probabilistically at the correct meaning (e.g. Martin, 2016).
In other words listeners ‘normalise out’ the variation (Johnson, 2008), using the
context as an additional cue to the intended meaning. Speakers must therefore
ensure that combination of the variants that they produce and the contextual
speaking rate will lead to the intended message being understood by the listener.

In the temporal domain, the use of this context is well established, using am-
biguous recordings of words, for instance, a recording that is manipulated to be
half way between Dutch long taak “task” and short tak “branch” in vowel quality
and duration of the vowel. Listeners who hear the exact same production of an
ambiguous word embedded into a slow sentence perceive the short alternative of
the pair, tak; when the same ambiguous word is embedded into an otherwise fast
sentence, they perceive the long alternative, taak (e.g. Maslowski et al., 2019b).
This effect can even cause entire words to disappear: in a slow context, speakers
hear ‘a dollar twenty’ when presented with exactly the same ambiguous record-
ing that leads them to perceive ‘a dollar or twenty’ if surrounded by faster speech
(Dilley & Pitt, 2010).

Speaking rate and other speech variation is conditioned by the communica-
tive situation (Hazan & Baker, 2011), suggesting that speakers ‘design’ the speech
that they produce to help the listener retrieve maximal meaning from the signal
(Lindblom, 1990). Thus, variation in speaking rate is an informative property of
the system, from which listeners can extract cues about the intended meaning
and about paralinguistic information, such as prosodic phrasing, information

structure, and relative importance of constituents (Pouplier, 2012).

1.2 A working model of speech production

To explore how speaking rate is controlled, it is necessary to establish a theoreti-
cal framework to build upon. The research in this thesis is predicated on a work-
ing model, which is sketched in Figure 1.1. This working model divides the work
of speech production into three phases, consistent with the classical conceptual-
isation of speech production as a modular, feed-forward processing system (e.g.
Dell & O’Seaghdha, 1992; Levelt et al., 1999; Levelt, 1989; Stemberger, 1985). Af-

ter a meaning representation has been selected (‘conceptualisation’), the lexical
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Figure 1.1: A working model of speech production, proposing three distinct phases: a
conceptual preparation phase; formulation, a lexical selection and word form
encoding phase, involving selection by competition; and a motor execution
phase involving mapping, monitoring and correcting.

selection stage begins, where abstract representations of words that best corre-
spond to the conceptual message are selected. Processes of word form encoding
then construct detailed word form representations. Lexical selection and word
form encoding together can be considered as a formulation phase. The opera-
tions of the formulation phase involve competitive selection. Once a word form
representation is selected, a motor execution phase is entered, where movement
commands for the articulatory apparatus (e.g., the tongue, lips, vocal chords) are
calculated, carried out, and monitored (Guenther, 2016a; Tourville & Guenther,
2011). Because speakers typically plan as late as possible, rather than storing a
pre-planned utterance in working memory (e.g., Damian & Dumay, 2007; Kello
et al., 2000; Levelt, 1989; Levelt et al., 1999), the formulation system must keep
up with the desired rate of articulation, requiring modulation of its operation to
maintain synchronisation. In contrast to formulation, there is no competition

in the execution phase, which instead involves mapping and monitoring.

1.3 The research in this thesis

Current theories of speech production do not account for the ability to modu-
late the process of producing speech, nor explain how variation might emerge
and how it might be conditioned. This thesis has the broad aim of explaining
how speaking rate may be controlled. Previous research on control of speaking
rate has primarily examined how the operation of the execution phase of speech
production varies with altered speaking rate, that is, how the mechanics of ar-
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ticulation are modulated in order to fit the same planning units into less time, or
stretch them to occupy more time. Important topics have been articulator move-
ment (Adams et al., 1993; Gay, 1981; Kuehn & Moll, 1976; Ostry & Munhall, 1985;
van Brenk et al., 2013), gestural timing (Byrd & Tan, 1996; Tjaden & Weismer,
1998), and how articulatory gestures within the syllable are coordinated relative
to each other (Tilsen, 2014; Tilsen, 2016). In contrast, how the formulation phase
might be controlled to achieve different speaking rates is less well studied, with
focus instead on strategies to comply with imposed response deadlines (Lupker
et al., 1997; Kello & Plaut, 2000; Kello & Plaut, 2003; Kello, 2004). In this thesis, a
theoretical model is constructed that is compatible with the consensus view of
speech production (Levelt, 1989; Dell et al., 1997; Dell & 0’Seaghdha, 1992; Levelt
et al., 1999; Stemberger, 1985; Roelofs, 2008; Hickok, 2014). Controlled experi-
mentation to elicit speech at various known, stable speaking rates is combined
with computational modelling to test for hypothetical control strategies given

the theoretical model.

The gaits hypothesis

The control mechanisms engaged to regulate speaking rate at the level of utter-
ance planning and preparation are largely unknown. This invites us to look to
how control is exerted on other cognitive-biological systems and hypothesise by
analogy to these systems. Inspiration is taken from the human and animal loco-
motion system, which, like speech, can operate at any of a continuous range of
speeds, but since it is easily observed is well explored and understood. In animals
with legs, qualitatively different gaits are adopted to achieve different speeds of
movement: humans walk, skip or run, while animals with four legs have more
possibilities: galloping, trotting, cantering, etc. Different gaits differ in the cy-
cle of the limbs: in walking, at least one foot is on the ground at all times, whilst
in running, both feet are raised from the ground simultaneously for part of the
cycle (Minetti, 1998; Alexander, 1989). Legged animals can achieve a continuous
range of movement speeds, but not all gaits are appropriate, or even feasible, at
all speeds. This means that animals must switch between gaits to achieve differ-
ent speeds.

Alongside hard limits on feasibility of certain gaits at certain speeds, the selec-
tion of locomotive gaits is tightly linked to their relative efficiency. Each gait has

a ‘sweet spot’ speed, at the approximate centre of the range of speeds achievable
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with that gait, where exertion (ml 0, consumed to move 1 metre) is minimised
(Hoyt & Taylor, 1981, their Figure 2). These sweet spot speeds are preferred (Pen-
nycuick, 1975) over less efficient speeds.

The link between gaits and efficiency has previously inspired locomotive gaits
to be used as a metaphor for different, equally optimal coordination modes of the
execution phase of speech production. For instance, Pouplier (2012) proposed
that the local context would influence which of various possible articulatory co-
ordination modes would be selected, when the perceptual outcome was equiva-
lent for the listener. In this thesis, I make a related, but different proposal: that
there are qualitatively different configurations of the formulation component
that resemble the gaits of locomotion. Each formulation gait yields word forms
that are subtly distinct in their internal timing properties, capturing durational
differences between speech at broad ranges of speaking rate.

If there were no gaits, the speech planning apparatus might have a single con-
figuration which is gradiently up- or down-regulated in response to changes in
required speaking rate, resembling a simple gain knob. This is the case for non-
speech motor tasks where temporal precision is required, in both gross motor
movements (Wright & Meyer, 1983), and fine movement requiring extensive co-
ordination, such as piano playing (Bella & Palmer, 2011).

14 Outline and research questions

The research in this book concerns how speakers adjust their speaking rate at the
level of formulation, or more briefly: ‘how do speakers control their speaking
rate?’. My aim is to test the gaits hypothesis against the alternative hypothesis
of absence of gaits.

Chapters 2 and 3 are methodological chapters, and describe and validate
analysis tools that were developed to prepare the data for the other chapters.

Chapter 2 addresses the research question ‘how can planning unit onset
and offset times be identified from the acoustic speech signal?’. To be able
to model speech timing, it is essential to know when each syllable-level ‘plan-
ning unit’ begins and ends. As a purely psychological construct, it is of course
impossible to observe the beginning and ends of planning units. It is argued that,
with thoughtful selection of words included in the experimental materials, it is

possible to get close to identifying the onsets and offsets of planning units di-
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rectly from the acoustic signal, which brings practical benefits in comparison to
approaches that track articulator motion directly. This approach is validated by

comparison to articulographic data.

Chapter 3 addresses the research question ‘how can speech most efficiently
be segmented to the word level?’. The chapter describes a speech segmenta-
tion system, POnSS, that was developed to allow efficient word-level segmenta-
tion of the speech materials elicited in the various experiments. POnSS combines
automatic processes and human input. POnSS is compared to conventional hand

segmentation with Praat, to validate its relative reliability and efficiency.

The primary aim of Chapter 4 is to introduce an experiment and a corpus of
speech data that were used in Chapter 5. The chapter has the secondary aim of
addressing the research question ‘do explict instructions to avoid pausing in-
fluence the syllable durations of elicited speech?’. In the experiment, speak-
ers had to name pictures, in Dutch, at three pre-determined speaking rates. The
pictures were arranged around a ‘clock-face’, and a dot jumped clockwise from
picture to picture to indicate which picture was to be named when, and thus
specify the required speaking rate. The data were segmented with POnSS, and
the analysis technique introduced in Chapter 2 was used to identify the onsets

and offsets of syllable-level planning units.

Chapter 5 addresses the research question ‘do speakers switch between
qualitatively distinct configurations (“gaits”) of the speech production sys-
tem to control their speaking rate, or is rate control achieved purely by up
or down regulation of the speech planning system?’. Our model of speech
production, EPONA, is introduced. There are two strands running through the
chapter: the first strand describes the construction and implementation of the
model. While doing so, this strand evaluates and compares variations on possi-
ble representations of the temporal structure of words in the frame node at the
heart of the metrical stream. The second strand addresses the empirical ques-
tion of how speaking rate is regulated, given the model. The model was used
to simulate the speech data gathered in Chapter 4. An evolution-inspired op-
timisation algorithm was used to find values for the parameters of the model
that resulted in simulated speech durations that most resembled those observed
in Chapter 4. The multi-dimensional space formed by considering each of the
parameters of the model as a dimension is an approximation of the cognitive

space of the human speaker. That means that patterns found in the optimal pa-
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rameter values for the three speaking rates in the model can be used to draw
tentative conclusions about the modulation of the configuration of the human
speech production system. Several different analyses were used to check for
patterns consistent with the gait hypothesis.

Chapter 6 builds on Chapter 5 by addressing the research question ‘which
gaits are engaged to achieve fast, medium and slow speaking rates?’. An
experiment is described that aimed to test the key conclusion of Chapter 5 more
directly. In the experiment, speakers named pictures from a clock-face display,
similar to Chapter 4. This time, speakers were trained to speak at the three pre-
determined speaking rates before the experiment. They then had to maintain
the speaking rates themselves. The required speaking rate was indicated by
the colour of a frame placed around the picture display. At an unpredictable
moment during the trial, the colour of the frame changed, indicating that the
speaker should adjust their speaking rate. We expected that differences would
emerge in how quickly it would be possible to switch between different pairs
of speaking rates: faster adjustment would indicate that less cognitive reconfig-
uration was required to make the switch between the relevant rates. A differ-
ence in the rate of switching between slow and medium rates on the one hand
and fast and medium rates on the other would be compatible with the gaits-
of-speech account from Chapter 5, implying, depending on the direction of the
effect, that medium and either fast or slow are achieved by one gait, and the
remaining rate by another. To test this, the speech materials were segmented
using POnSS (Chapter 3), then statistical modelling was used to look for differ-
ences in adaptation speed.

Finally, Chapter 7 summarises and discusses the results of the methodological
and experimental chapters, discusses how the results support the gait hypothe-
sis, and elaborates on the utility and implications of the EPONA model of speech
production. The consequences of the presence of gaits in the speech production
system are discussed, as are future research directions that I think would prove
fruitful.






2 Deriving the onset and offset times of
planning units from acoustic and
articulatory measurements

Many psycholinguistic models of speech sequence planning make claims about
the onset and offset times of planning units, such as words, syllables, and phonemes.
These predictions typically go untested, however, since psycholinguists have as-
sumed that the temporal dynamics of the speech signal is a poor index of the
temporal dynamics of the underlying speech planning process. This chapter ar-
gues that this problem is tractable, and presents and validates two simple met-
rics that derive planning unit onset and offset times from the acoustic signal and

articulatographic data.

This chapter was adapted from Rodd, J., Bosker, H. R., ten Bosch, L., & Ernestus, M. (2019b). Deriv-
ing the onset and offset times of planning units from acoustic and articulatory measurements. The
Journal of the Acoustical Society of America, 145(2), EL161-EL167. https://doi.org/10.1121/1.5089456.
Code is available at https://git.io/th8EM.


https://doi.org/10.1121/1.5089456
https://git.io/fh8EM

16 2 Planning unit timings from acoustics and articulation

2.1 Background

Typically, the inverse mapping between the acoustic signal and the articula-
tor configuration is characterised as highly non-linear and one-to-many, in that
many speech sounds can be produced by multiple configurations of the vocal
tract (e.g. Lindblom, 1983). This assumed intractability complicated the evalua-
tion of psycholinguistic models of speech planning, specifically claims about the
implementation of abstract linguistic planning units by speech motor programs.

While it is the case that speakers can make use of alternative vocal tract con-
tigurations to achieve speech sounds when articulatory freedom is constrained
(Lindblom et al., 1977), or to reduce the required movement from the previous
configuration (e.g. Boyce & Espy-Wilson, 1997), the opacity of the correspon-
dences between acoustics, articulation, and the dynamics of higher planning
processes may be overestimated (Hogden et al., 1996). This paper posits that
the problem is tractable, and proposes methods to characterise the dynamics of
higher planning processes from the acoustic signal or from tracked articulator
movements. Thus, the testing of previously untestable predictions of psycholin-
guistic models is facilitated.

2.11 Acoustic change largely reflects articulatory change

Despite assumptions to the contrary, in practice, the inverse mapping from the
acoustic signal to articulatory configurations can be defined in a appropriate way
to predict articulatory configurations from the acoustic signal, within a certain
tolerance for deviations in the articulatory domain. For speech sounds that in-
trinsically consist of multiple acoustic events (such as diphthongs, plosives), the
mapping results in an estimated trajectory in articulatory space. For a subset of
stable speech sounds, ‘codebooks’ of articulatory configurations associated with
acoustic outcomes can be compiled (e.g. Hogden et al., 1996). Moreover, ma-
chine learning approaches that can make use of contextual information and suf-
ficiently large corpora of training data have proven successful in predicting ar-
ticulatory configuration from the acoustic signal with no constraints on speech
materials (e.g. Richmond, 2006; Illa & Ghosh, 2018; Uria et al., 2011).

Relatedly, it holds that when the vocal tract is in a stable configuration, the
acoustic output is also stable, and that when the acoustic output is changing,

the vocal tract configuration must also be changing. This observation has been
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exploited in blind speech segmentation, where frame-by-frame changes in the
acoustic spectrum are tracked, and peaks in spectral change are detected. These
peaks correspond to perceptually relevant phone boundaries (e.g. Dusan & Ra-
biner, 2006; Hoang & Wang, 2015; ten Bosch & Cranen, 2007). These approaches
are intended to automate the preparation of corpora to test speech recognition
systems, and assume that segments are concatenated without overlap, making
these algorithms unsuited for the retrieval of onset and offset times of overlap-
ping planning units predicted by psycholinguistic models. They can, however,
serve as inspiration for the development of new techniques to retrieve planning
unit dynamics.

Note that although changes in the acoustic signal must reflect changes in the
articulatory configuration, it does not follow that when the vocal tract config-
uration is changing, the acoustic signal always changes with it, since for many
speech sounds, the precise positioning of non-critical articulators is unimpor-

tant (such as tongue position during the realization of /m/).

2.1.2 The mapping between planning units and acoustics and articulation

A class of psycholinguistic speech production models (which we will term phoneme-
based models) characterise the units that mediate between formulation (lexical
access and phonological encoding) and execution (speech motor programming
and articulation itself) as phonemes, or sequences of phonemes, such as sylla-
bles, demi-syllables, or whole words (e.g. Levelt, 1989; Levelt et al., 1999; Dell
& 0’Seaghdha, 1992; Tourville & Guenther, 2011). Phoneme-based models also
conceptualise the execution process as an obedient servant of formulation (e.g.
Levelt, 1989; Levelt et al., 1999; Dell & 0’Seaghdha, 1992; Tourville & Guenther,
2011), which entails that the observable movements of the articulators and the
resulting speech acoustics are inherently a consequence of planning units in
formulation becoming active and subsequently being deactivated. That the dy-
namics of the activation of planning units directly influences the articulatory
configuration and thereby the acoustic output seems plausible in the light of
findings that competing representations in the formulation phase exert some
influence on fine detail in articulation (e.g. Goldrick & Blumstein, 2006).

The DIVA model (Tourville & Guenther, 2011) operationalises the planning
units by defining them in terms of upper and lower bounds for articulator posi-

tions, and upper and lower bounds of the expected auditory outcome in terms of
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fundamental frequency and formants. Planning units typically overlap in time,
and all simultaneously active planning units exert influence on both the artic-
ulatory configuration and speech acoustics directly via the feedforward route.
They also influence articulation and acoustics indirectly by shaping the expected

acoustic and somatosensory outcomes, which in turn lead to corrective feed-

back.

The temporal overlap of adjacent planning units (at the output stage of phoneme-
based psycholinguistic speech planning models) results in local coarticulation in
the overt speech. Equivalently, low level pre-activation (priming) of upcoming
planning units and incomplete deactivation of preceding planning units result

in longer-range coarticulation in the overt speech.

The retrieval of planning units from articulatory measurements has previ-
ously been attempted by Steiner and Richmond (2009), who developed an analysis-
by-resynthesis approach that reconstructs a gestural score from electromag-
netic articulography (EMA) data in terms of vocalic and consonantal gestures
for the VocalTractLab (VTL) synthesizer (Birkholz et al., 2007). This represen-
tation differs somewhat from that inherent to phoneme-based models, in that
vowel and consonants are treated as fundamentally distinct units of representa-
tion on distinct tiers of the gestural score, while phoneme-based models instead
predict a chain of potentially overlapping planning units of the same class, on

the same tier.

Vaz et al. (2016) described an algorithm to retrieve underlying structure from
multivariate time series data, and tested it on vocal tract constriction distances
measured from real-time MRI vocal tract data. The algorithm was able to con-
struct an inventory of gestures from the data, and an activation time series for
each of these gestures, which are collectively analogous to a gestural score in
the articulatory phonology (AP) framework. AP diverges from phoneme-based
production models in that the planning units it supposes are not phonemes or
sequences of phonemes, but rather articulatory gestures defining articulatory
events, such as opening of the glottal aperture, or the creation of a labial closure

(Browman & Goldstein, 1992), which cannot easily be translated into phonemes.

The direct retrieval of the timings of planning units from the acoustic signal
has been attempted by Nam et al. (2012), again with an analysis-by-synthesis
approach, and similarly rooted in the articulatory phonology (AP) framework.

Their procedure involves constructing a task dynamic gestural score (encoding
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the speech to be produced in terms of degrees of constriction at different posi-
tions in the vocal tract) from an orthographic transcription of the speech. Then,
the TADA model (Nam et al., 2004; Saltzman & Munhall, 1989) is used to predict
time-varying vocal tract dimensions from the gestural score, which is then syn-
thesized to produce a speech signal. Next, dynamic time warping (DTW) is ap-
plied between the synthesized and natural speech signals. This involves stretch-
ing and compressing the synthesized speech signal in the temporal dimension,
to improve the temporal alignment with the natural speech signal. The result
of the DTW is a warping scale, which can then be applied to the gestural score,
yielding a warped gestural score from which activation and deactivation times
of individual gestures can be established.

Aside from requiring potentially difficult to acquire articulatory measure-
ments (EMA in the case of Nam et al. (2012), real time MRI in the case of Vaz
et al. (2016)), these procedures that construct multivariate gestural scores can-
not readily be applied to phoneme-based models of speech production, since the
gestures are not consistent with or easily mapped to the planning units hypoth-
esised by phoneme-based models of lexical access and multi-word processes of
speech production (e.g. Levelt, 1989; Levelt et al., 1999; Dell & O’Seaghdha, 1992;
Bohland et al., 2010). An additional concern is that the process leaves the re-
searcher relatively unconstrained in the construction of the gestural score for
a given utterance, either directly or through their parameterization of the lin-

guistic model.

2.2 Study aims

This study aims to provide a means to estimate the onset and offset times of
phoneme-based planning units (such as words, syllables or phonemes) from
recorded speech materials. The tight temporal locking between formulation and
execution processes in speech production (e.g. Goldrick & Blumstein, 2006) sug-
gests that reconstructing the activation dynamics of planning units from mea-
surements of articulator movement is feasible. That the inverse mapping be-
tween acoustics and articulation is transparent enough to construct codebooks
describing the mapping implies that reconstructing the activation dynamics of
planning units from the acoustic signal should also be feasible for a constrained

repertoire of speech sounds.
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We propose two approaches to retrieve planning unit onset and offset times
from speech materials; from the acoustic signal, and from EMA data. We com-
pare the outcomes of the two techniques, to establish that recovering planning
unit onset and offset times from the acoustic signal is broadly equivalent to re-

covering planning unit timing from articulatographic data.

The first metric uses fleshpoint position data gathered by electromagnetic ar-
ticulography, and begins by deriving upper and lower bounds for each fleshpoint
position for each segment from corpus data. Subsequently, a multi-dimensional,
time-varying target for a multi-segmental speech sequence is constructed, the
temporal parameters of which are adjusted to achieve a good fit to the observed
data.

The second is a metric that exploits the acoustic signal directly with no need
to record articulator motion, but constrains the speech sounds that can be eval-
uated. This metric depends on the claim that acoustic instability mirrors ar-
ticulatory instability, which in turn reflects simultaneous activation of multiple

planning units.

Neither metric is predicated on any specific theoretical treatment of speech
production, aside from the assumption that planning units are phonemes or se-
quences of phonemes, and the parameterization of both metrics is wholly data-
driven. For the experimental psycholinguist, a metric that can be collected from
the acoustic signal alone is clearly preferable, since that reduces the burden of
data collection on both researcher and participant, and makes recording of elec-
trophysiological or other measures during speech production possible because

no articulatographic data needs to be collected.

The two metrics were tested on acoustic and articulatory data for the same
vowel-consonant sequences, taken from the electromagnetic articulography sub-
set of the mnguo corpus (Richmond et al., 2011), where monophthongs transi-
tioned into continuant consonants. The choice of this limited subset was driven
by the need to use segments that were acoustically stable during realization, for
the acoustic metric. Comparing the performance of the metrics against a ‘gold
standard’ baseline annotation of the onsets and offsets of speech planning units
is clearly impossible, given that any hand annotation of speech planning unit

onsets and offsets would inherently be largely arbitrary and noisy.
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2.3 Speech materials

The EMA subset of the mngu0 corpus (Richmond et al., 2011) was used, which
consists of TIMIT sentences read by a single male speaker of British English. EMA
sensors were placed on the lower and upper lips, at the tongue tip, blade and
dorsum and on the lower incisors (to track jaw motion). A further sensor was
placed on the upper incisors to serve as a reference for the others. For technical

details relating to the data collection and preparation see Richmond et al. (2011).

2.3.1 Post processing and annotation

From the 1263 sentences of the mngu0 corpus, vowel - consonant (VC) sequences
of interest were identified, where a monophthong transitioned into a continu-
ant consonant. The sequences of interest were all one of the following: /am/,
/af/, [av/, I/, /w/, [im/, [iv/, [am/, [is/, [as/, [on/. Note that in the con-
text of phoneme-based speech planning models, where no distinction is made
between planning units for different classes of phonemes, there is no reason to
suppose that sequences of a different composition (CVs, or CCs, for instance)
would behave any differently from the VCs tested here. This means that the
predictions of phoneme-based speech planning models can effectively be tested
by this reduced set of sequences. This yielded 775 sequences of interest, which
were identified based on the forced aligned transcriptions available in the cor-
pus. Analysis intervals from the temporal center of the forced aligned vowel to
the temporal center of the forced-aligned consonant were defined (see Figure
2.1(a)). The analysis interval served as a landmark to identify the planning unit
transitions found; so the precision of the start and end points of the interval was
not critical, as long as the transition between the planning units was included.
In the EMA data, lateral movement was discarded, yielding articulator posi-
tions on the mid-sagittal plane only. To facilitate annotation, the remaining two
dimensional data was rotated independently for each sensor by means of prin-
cipal component analysis, so that PC1 captured the most informative direction
of movement for that sensor, which in all cases was the open-close dimension.
Since PC2 is orthogonal to PC1, it captured forward-backward movement of each
sensor. Then, manual annotation was undertaken (by the first author) to iden-
tify articulatory stable periods of each segment for use in the preparation of the

targets used in the articulatory metric. In the manual annotation procedure,
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Figure 2.1: An example analysis. (a) An analysis interval is defined that stretches from
the temporal center of the forced aligned vowel to the center of the forced
aligned consonant. (b) The acoustic metric. Lines show Lo, () and I yqs:(t),
the Gaussian smoothed, interpolated spectral distance functions used to iden-
tify the acoustically evident planning unit overlap during the analysis interval.
Is10w(t) hasa 90 mskernel, I ¢, (t) has a 30 ms kernel. Shading identifies peri-
ods of atypically fast acoustic change (where If45:(t) > Isi0w(t)), from which
the onset of the consonant planning unit and the offset of the vowel planning
unit are derived. (c) The articulatory metric. The heavy lines indicate the
recorded movement of the tongue body sensor, in the open-close dimension
(PC1) and the forward-backward dimension (PC2). The outlined boxes indicate
the segmental targets, the shading indicates the interpolated sequence level
target.

movement tracks in PC1-PC2 dimensions were displayed on a graphical inter-
face, in which the periods of stability associated with the vowel and continuant
consonant could be highlighted. The articulatory configuration was considered
stable if there was little to no change (assessed visually) in several sensors. Since
the targets were defined in terms of 95% highest density intervals (see section

2.4.1), some noise in this annotation procedure was acceptable.

2.4 Planning unit timing from articulatory measurements

The articulatory metric approaches the identification of planning unit onset and
offset times from EMA data by essentially inverting the motor control process:
reconstructing a multidimensional articulatory target that could have lead to the

recorded movements during a vowel-consonant sequence. This was done sepa-
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rately for each vowel-consonant transition token, using a parameter optimiza-
tion routine which adjusted the onset and offset times of the segment targets to

construct a target that fitted the recorded movements well.

2.4.1 Establishing segment targets

First, separate segmental targets are established for the vowels and for the con-
sonants, defined in terms of upper and lower bounds for the positions for each
fleshpoint (lower jaw, upper and lower lips, tongue tip, blade and dorsum) on the
two dimensions (principal components) of the mid-sagittal plane. These max-
ima and minima are derived from the distribution of sensor positions during the
hand-annotated stable periods of those segments in the corpus, irrespective of
context, by extracting the 95% highest density interval(s). When the position-
ing of a fleshpoint is of crucial importance to the identity of the segment, the
positioning of that fleshpoint varies little between realizations, and the target is
therefore narrow (e.g. the positioning of the tongue tip in /s/). When the posi-
tioning of a fleshpoint is only marginally relevant for the identity of the segment,
the target is broad (e.g. the positioning of the tongue back in /v/), since there is
lots of variability in the source data.

2.4.2 Combining segmental targets to form a sequence target

The sequence targets were constructed by temporally-overlapping the vowel
and consonant targets. Figure 2.1(c) depicts an example of the construction of
the targets, for the sequence /i:v/, showing the target bounds for each segment
as boxes (purple for PC1, blue for PC2), for the tongue body sensor. The segmen-
tal targets are fixed at the outer edges, such that the vowel target begins at the
hand-annotated onset of vowel stability, and the consonant target ends at the
hand-annotated offset of consonant stability. The other two temporal parame-
ters, the offset of the vowel target and the onset of the consonant target are free
parameters that can be optimised.

The upper bound of the sequence target is calculated as an exponential mov-
ing average (with a window of 20 ms) of the upper bounds of the segmental
targets over time. This means that for time points when only the vowel tar-
get is engaged, the upper bound is equal to the upper bound of the vowel target.

When both segmental targets are engaged, however, the upper bound switches
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smoothly from following the upper bound of the vowel target to reflecting the
average upper bound of both targets. Once the vowel target is disengaged, the
upper bound again smoothly shifts to reflect the upper bound of the consonant
target. The lower bound of the target is derived in the same way.

2.4.3 Parameter optimization

For each analysis interval, an independent parameter optimization routine is
conducted. Two parameters, the onset time of the consonant target and the off-
set time of the vowel target, are optimised with the BOBYQA algorithm (Powell,
2009; Ypma et al., 2018).

To evaluate how well a sequence target defined by a pair of consonant target
onset and vowel target offset times fitted the observed movements, the propor-
tion of time points where the recorded sensor positions are outside the bounds
of the multidimensional target is counted. This proportion is used as a score to

be minimised during the parameter optimization process.

For each realization, 200 starting points for these parameters are tried, sam-
pled from normal distributions (SD = 25 ms) centered around the annotated end
of vowel stability (this is the center-point of the starting distributions for the
consonant onset parameter) and the annotated beginning of consonant stabil-
ity (this is the center-point of the starting distributions for the vowel offset pa-
rameter). A search space constraint ensures that the algorithm only considers
solutions where the overlap between the segment targets is greater than 0. Hav-
ing multiple starting points allows us to assess how consistently the algorithm
selects the best performing parameter sets, and offers more protection from pre-
mature convergence to local minima. To select a single vowel offset time and a
single consonant onset time from the distributions that resulted from the 200
initializations, a two-dimensional distribution is estimated from the resulting
parameters, where the dimensions are the vowel offset time parameter and con-
sonant onset time parameter. The distribution is weighted by one minus the
score achieved in each attempt, so as to weight the best performing solutions
most heavily, and the peak is identified. The coordinates of this peak define the

planning unit onset and offset times.
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2.5 Planning unit timing from the acoustic signal

The acoustic metric quantifies the rate of change in the acoustic signal (the spec-
tral change). Local peaks in this signal identify periods where the speech acous-
tics, and therefore the underlying vocal tract configuration, are changing. At
the transition between two planning units, this change is due to the interac-
tion of the two overlapping planning units, and the duration of the instability
is equated with the duration of the overlap. We term this overlap ‘acoustically
evident planning unit overlap’. To be able to establish the onset and offset of
instability, a method is required to transform a continuous signal into a cate-
gorical one: to distinguish acoustic stability from instability. This is done by
overlaying two different smoothings of this signal; a ‘fast’ smooth that captures
local changes in the signal, and a ‘slow’ smooth that captures longer trends. We
identify periods when the ‘fast’ smooth exceeds the ‘slow’ smooth as unstable,
and other periods as stable. The onset of the second planning unit is equated
with the start of such a period of instability. The offset of the first planning unit
is equated with the end of that same period of instability. This is illustrated in
Figure 2.1(b).

2.5.1 Step 1: quantifying acoustic change

To identify the period of overlap, the MFCC vectors (mel frequency cepstral coef-
ficient; 25 ms analysis frame length, samples every 10 ms) for the analysis inter-
vals (with a margin of 40 ms before and after) are extracted using the HTK front
end (Young et al., 2006). MFCC vectors may be seen as a numeric representation
of the spectral content of the speech signal during a short (25 ms) window, and
are one of the best spectro-temporal representations of speech acoustics. From
each frame to the next, the Euclidean distance in MFCC space was calculated as
follows, where j is the index of the MFCC coefficient and t is the index of the

frame:

12

Dapec = | Y _(MFCCj, — MFCC;, )2 (2.1)
j=0

This gives Dgpec(t), a spectral distance function quantifying the degree of

spectral change evident in the acoustic signal, sampled every 10 ms.
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2.5.2 Step 2: identifying periods of fast acoustic change

This spectral distance function is smoothed twice, once with a 30 ms wide Gaus-
sian kernel, yielding D ¢, (t), which captures relatively fast changes in the spec-
tral distance function; and once with a 90 ms wide Gaussian kernel, yielding
D0 (t), which captures longer term trends in the function.

Spline interpolation (every 0.1 ms) is then applied to these functions in order
to improve temporal resolution, yielding I 74s:(t) and 5o, (t) . The two inter-
polated functions are overlaid, and parts of the signal in each analysis interval
where If45:(t) is larger than I, (t) are identified as candidate overlaps (in Fig-
ure 2.1(b) shown as green shading). Where I, (t) exceeds I0,(t), atypically
fast acoustic change is occurring: acoustically evident planning unit overlap. It
is possible that there are multiple periods where I, (t) exceeds Io(t), how-
ever, typically one period is longer and the associated peak is larger. Therefore,
a heuristic is engaged to select precisely one period per analysis window: the du-
ration of each of these periods is calculated. Periods that cross the boundaries
of the analysis interval (into the margins) are discarded. When an analysis in-
terval still contains multiple periods, all but the longest candidate are discarded.
This yields precisely one period of acoustically evident planning unit overlap per
analysis interval. The onset of the remaining period of overlap (where Ifq:(t)
becomes larger than I, (t)) yields the onset of the consonant planning unit.
The offset of the overlap (where If45:(t) becomes smaller than I, (t)) yields
the offset of the vowel planning unit.

This procedure was refined by testing various kernel widths and interpola-
tions via a grid search, in which the parameters that resulted in the highest spec-
tral change peak were selected.

R scripts implementing the two metrics and the data preprocessing method
are available from https://git.io/th8EM.

2.6 Results and discussion

2.6.1 Validity of the metrics

Figure 2.2 shows the onsets and offsets of planning units (event times) as pre-
dicted by the articulatory (x-axis) and acoustic metrics (y-axis). All event times

are relative to the forced-aligned offset of the consonant segment, meaning that
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Figure 2.2: The correlation between planning unit onset and offset times, derived from
the articulatory (x-axis) and acoustic metrics (y-axis). All event times are rela-
tive to the forced-aligned offset of the consonant segment, meaning that times
less than 0 are to be expected.

times less than 0 are to be expected. An r? of 0.447 was calculated between the
event times derived by the two metrics. This moderately high correlation be-
tween the predictions of the two metrics indicates that they both capture the
same underlying dynamic process of planning unit activation.

The intercept of -10.64 indicates that the acoustic metric systematically pre-
dicts earlier event times than the articulatory metric does. This is approximately
half the width of the 25 ms analysis window employed in the acoustic metric,
which suggests that this anticipation may be an artifact of the spectral analysis
inherent to the acoustic metric.

2.6.2 Reliability

The metrics were evaluated by comparing the planning unit onset and offset
times predicted by each metric. Because the two metrics are so divergent in
the modality of the data used and the approach used to derive event times from
the data, we interpreted the finding that the two metrics predicted comparable
event times as evidence that they are both indexing the onset and offset times of
planning units. This is of course weaker evidence in support of the validity of a
metric than comparison against data capturing the ground truth, but the ground
truth is clearly unobtainable for psychological processes such as the activation
dynamics of planning units. Comparison against the results obtained by Nam et
al. (2012) is also problematic given the AP theoretical framing inherent to their

procedure.
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2.6.3 Applicability and ecological validity

The articulatory metric is in principle equally suited to examining transitions
between any pair of segments where there is at least a short period of articu-
latory stability in each segment, including stops. Of course, given the metric-
comparison approach we took to evaluate the performance of the two metrics,
the articulatory metric was only tested on materials also suitable for the acoustic
metric.

The acoustic metric is inherently limited to identifying planning unit onset
and offset times at transitions between a subset of segment types involving
at least a short period of articulatory stability and incomplete obstruction of
the airflow: monophthong vowels, nasals and continuant fricatives. Neverthe-
less, for the experimental psycholinguist, the convenience of the acoustic-only
recording may well outweigh the disadvantage of constrained material selection.

Both metrics share the inherent assumption that the onsets of all the move-
ments or gestures involved in the production of a phoneme are synchronised.
This assumption is inherent to the class of phoneme-based models, which form
the mainstream in psycholinguistic models of higher speech planning. Adher-
ing to it was necessary to achieve this paper’s goal of making it possible to test
and refine phoneme-based models by relating activation dynamics to the speech
signal. Models based on a multivariate gestural score may achieve better fits to
the data given that they are not constrained by this synchronicity assumption.

The metrics were developed and tested using the mngu0 corpus (Richmond et
al., 2011), which contains a large quantity of English data from a single speaker,
rather than smaller quantities of data from multiple speakers available in other
corpora (e.g. the Wisconsin x-ray microbeam database, Westbury et al., 1990).
The mngu0 corpus was selected because we sought to have a large number of re-
alizations of each segment to reliably compute the static segment targets for the
articulatory metric. It remains to be seen how the articulatory metric would per-
form given a smaller dataset from which to derive target boundaries. A require-
ment for a large speaker-specific dataset would be disadvantageous in the con-
text of experimental psycholinguistics, where it is typically desirable to test mul-
tiple speakers on a small set of materials, though recent success in using a gen-
eralised background model and a speaker-specific adaptive model in acoustic-
to-articulatory inversion (Illa & Ghosh, 2018) offers hope that a comparable ap-

proach could work for this metric too.
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2.7 Conclusion

This paper presented two techniques to identify planning unit onsets and offsets
from articulographic and acoustic data in the context of phoneme-based mod-
els of speech production. The first metric requires articulographic recording,
but imposes less constraint on speech material selection. The second metric ex-
ploits the acoustic signal directly, with no need to record articulator motion, but
constrains the speech sounds that can be evaluated. This metric depends on the
claim that acoustic instability mirrors articulatory instability, which in turn re-
flects simultaneous activation of multiple planning units. The two metrics are
agnostic to the duration of planning units (syllables, demi-syllables, phonemes,
entire words), and make minimal assumptions about precisely what is encoded
by the planning unit, other than that upper and lower bounds for articulatory
positions are encoded. A moderately high correlation between the event times
predicted by the two metrics indicates that they capture the same underlying
dynamic process of planning unit activation. This correlation means in turn
that temporal predictions arising from phoneme-based psycholinguistic mod-
els of speech planning can be tested using the acoustic signal without the need

to collect articulographic data.






3 A tool for efficient and accurate
segmentation of speech data:
announcing POnSS

Despite advances in automatic speech recognition (ASR), human input is still es-
sential to produce research-grade segmentations of speech data. Conventional
approaches to manual segmentation are very labour-intensive. We introduce
POnSS, a browser-based system that is specialized for the task of segmenting the
onsets and offsets of words, that combines aspects of ASR with limited human
input. In developing POnSS, we identified several sub-tasks of segmentation, and
implemented each of these as separate interfaces for the annotators to interact
with, to streamline their task as much as possible. We evaluated segmentations
made with POnSS against a baseline of segmentations of the same data made con-
ventionally in Praat. We observed that POnSS achieved comparable reliability to
segmentation using Praat, but required 23% less annotator time investment. Be-
cause of its greater efficiency without sacrificing reliability, POnSS represents a

distinct methodological advance for the segmentation of speech data.

This chapter was adapted from Rodd, J., Decuyper, C., Bosker, H. R., & ten Bosch, L. (in press). A
tool for efficient and accurate segmentation of speech data: Announcing POnSS. Behavior Research
Methods. https://doi.org/10.3758/s13428-020-01449-6

Code and supplementary materials are available at https://git.io/Jexj3.
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3.1 Introduction

In many speech-based disciplines, the availability of adequately segmented and
transcribed speech corpora is essential for designing and benchmarking compu-
tational models of speech processing and for sharpening theories of speech pro-
duction and perception. Many of the speech databases available to date (e.g., via
The Language Archive, 2019; European Language Resources Association, 2019;
Linguistic Data Consortium, 2019) have been (at least partly) enriched with a

verbatim word-level and/or a phonetic transcription.

Speech transcription concerns the generation of a verbatim textual record of
speech. The related process of segmentation concerns additionally determin-
ing when the transcribed words and segments occur in a speech recording. This
article primarily addresses segmentation. Constructing transcriptions and seg-
mentations typically involves three challenges. The first challenge is to take into
account the purpose of the segmentation for determining the desired granular-
ity level for the segmentation units. Due to fine phonetic details (Hawkins, 2003)
and reduction phenomena (Ernestus & Warner, 2011), word-based transcriptions
are much easier and faster to construct than high quality finer-grained faithful
phonetic segmentations. Rough, errorful transcription may be sufficient for text
query-based services, and may be quickly constructed. Segmentation of varying
degrees of accuracy may be required for rich diarisation of meetings, or for the
adaptation of acoustic models in automatic speech recognition (ASR). Language
research represents a highly niche segmentation usage case, with its own spe-

cific requirements and constraints.

The second challenge is the construction of the segmentation itself. This is
not a trivial task. One may perform segmentation by hand or apply an automatic
speech segmentation system, or a combination of these. Over the last decades,
several tools have been developed to ease this task (see, e.g., van Bael et al., 2007;
Lecouteux et al., 2012). In general, there is a clear trade-off between the invested
time on the one hand and the quality of the resulting segmentation on the other
(Rietveld, Ernestus, et al., 2004).

The third challenge is the validation of the segmentation. Manual or auto-
matic segmentations may be validated in terms of their resemblance to each
other, or to another “expert-based” hand-crafted reference segmentation. Al-
ternatively, they may be assessed by using e.g. the inter-rater or inter-system
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agreement as objective function. However, since symbolic segmentation cannot
fully represent the subtle phonetic details in speech, the status of a “reference”
segmentation as a single reference for the quality of other segmentations might
be questionable a priori. In addition, the validation procedure will largely de-
pend on the purpose. For example, verbatim ‘summary’ transcriptions of meet-
ings may be of sufficient quality to serve a service based on text queries, but still
far from sufficient for the development or adaptation of acoustic models in ASR
systems.

In this paper we focus on the construction of segmentations at the word level,
given alarge collection of speech recordings. Several linguistic research tools are
available for semi-manually segmenting, annotating or labelling speech corpora.
Tools may combine multiple functionalities such as speech recognition, speaker
identification, and diarisation to provide real-time and/or offline transcription
of audio recorded in various conditions. Based on ASR approaches (e.g. Young
et al., 2006; Povey et al., 2011), segmentation and transcription can be done au-
tomatically or semi-automatically. We will use the term ‘forced alignment’ to
refer to automatic segmentation of speech data using ASR where a transcription
already exists, and the term ‘recognition’ to refer to generation of a segmenta-
tion without a pre-existing transcription. The quality of automatically gener-
ated segmentations depends on the acoustic quality of the recordings (presence
of background noise, interference from speakers, echo etc.) and the degree of
match between input speech signal and the speech material used for training
the ASR (dialects, accents, age, speaking style, mood etc.). Several tools (e.g., the
DART tool, Weisser, 2016) are able to identify speech acts automatically, provide
multiple interactive annotation functions, and allow special tools for those fea-
tures that require post-processing. Praat (Boersma & Weenink, 2019) allows the
user to manually segment and transcribe speech corpora using different tiers.
EMU (Winkelmann et al., 2017) offers similar segmentation and transcribing pos-
sibilities as Praat, but in a web interface and in combination with a sophisticated
database to store and manage speech data, segmentations and annotations. De-
spite the availability of these tools, the creation and checking of a segmented

and transcribed speech corpus is still a considerable effort.

The recent advent of deep learning techniques, together with improved com-
putational power and availability of data, has lead to significant improvements

in the performance of ASR systems. Despite these substantial improvements in
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their quality and practicality, fully automatic approaches to the segmentation of
speech data for research purposes is still faced with challenging issues (Hannun
et al., 2014), especially for under-represented languages (e.g. Bhati et al., 2019)
and in case of more complex types of speech (pathological speech, multi-speaker
recordings, recordings in adverse listening conditions, disfluent, highly reduced
spontaneous speech). The aim of segmentation is often different in different
research domains: the goals of the researcher in segmenting a speech dataset
(precise information about the timing of features of speech) is somewhat (but in-
creasingly) at odds with the big-data oriented requirements of modern commer-
cial ASR research (Jurafsky & Martin, 2008; for zero-resourced languages there
are alternatives, see e.g. Prasad et al., 2019). Furthermore, as long as completely
automatic approaches are unable to deliver the reliability that researchers seek,
human intervention will remain essential. A serious drawback of human inter-
vention is its repetitive and time consuming character, putting it at risk of poor
task execution, and therefore unreliable data.

In this article, we discuss POnSS (Pipeline for Online Speech Segmentation),
a system we have created and used for segmentation work for a number of re-
cent studies involving large-scale segmentation (Rodd, Bosker, ten Bosch, et al.,
2019a, see Chapter 4; Rodd et al., 2020, see Chapter 5; Rodd et al., under review,
see Chapter 6). With POnSS, we sought to improve the efficiency of the word
segmentation task for human annotators. The aim of POnSS differs from, for in-
stance, EMU (Winkelmann et al., 2017) in that we focus on optimising a single
task that takes a large amount of annotator time, rather than developing a fully

featured speech data management system.

POnSS achieves its efficiency through combining forced alignment with man-
ual checks and correction, an easy to use browser interface and, most innova-
tively, through subdividing the manual component of the overall task into sub-
tasks and distributing them at the level of individual word recordings over an-
notators. To our knowledge, this task subdivision approach has not been tried
before. In constructing POnSS, aside from segmenting our own datasets, our
aim was to provide a practical implementation of a distributed, subdivided seg-
mentation system, as well as to evaluate the reliability and efficiency of such an
approach. We perform this evaluation in comparison to a conventional segmen-
tation of the same data, performed using TextGrids in the phonetics software
Praat (Boersma & Weenink, 2019), after forced-alignment bootstrapping.
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Figure 3.1: A diagrammatic representation of the annotation process. See the text for full
details.

The data that we use in the evaluation of POnSS come from Experiment 2 of
the PiNCeR corpus (Rodd, Bosker, ten Bosch, et al., 2019a, see Chapter 4). In that
experiment, 13 speakers had to name pre-familiarised Dutch '(C)CV.CVC words
(e.g., snavel ['sna:.val] “beak”) from line drawings displayed in groups of 8 ar-
ranged on a ‘clock face’. A cursor moved clockwise from picture to picture to
indicate at which of three trained rates (fast, medium and slow) participants
were required to name the pictures. Each trial of the experiment was recorded
separately. The task was relatively difficult, meaning that speakers omitted or
mispronounced words in many trials. On average, trials contained 6.39 correctly
pronounced words that were ultimately analysed, the modal number of included
words was 7. Applying POnSS to the PINCeR data provides a test-case where the
words to be produced were known in advance, but not reliably present, a partic-
ularly difficult case for forced alignment. This is in contrast to data where it is
not reliably known what will be said. POnSS can be useful for this latter type as
well, but with a few adjustments, as explained below.

3.2 POnSS

POnSS is a multi-step acoustic analysis and forced alignment pipeline to segment
speech materials, intended to be used by a panel of phonetically trained annota-
tors, with each annotator seeing a partially-overlapping part of the dataset. This
pipeline is illustrated diagrammatically in Figure 3.1. POnSS divides the work of



36 3 POnSS: efficient and accurate segmentation

speech segmentation into three broad phases; orthographic transcript prepara-
tion, triage, and retrimming, each stage combining both manual and automatic
processes. The manual processes are standalone, and each unit of work is small,
meaning that annotators can themselves choose which of the tasks they do, and

for how long, as long as there are materials available to be worked on.

3.2.1 Phase I: orthographic transcript preparation

The first phase of POnSS is the preparation of an orthographic transcription.
POnSS includes both a manual procedure for when the exact word sequence is
not known, and a fully automatic procedure for when an expected trial tran-
scription is known beforehand.

Manual transcription

For datasets and experiments where speakers may be particularly errorful in
their speech, or where no specific expected transcription exists, POnSS includes
a module that facilitates the full manual transcription of the speech data. This
approach was used to transcribe the data from Chapter 6, where the vocabulary
of possible words was known, but we expected the speakers to make many errors
given the longer trials. We expected these frequent errors to make a transcrip-
tion based on the picture sequence insufficiently reliable for forced alignment.
First, silence/pause detection divides the trial recordings into audio chunks with
a duration of minimally 5 seconds and maximally 30 seconds. These chunks are
inserted into the database.

Annotators use a browser interface (Figure 3.2, left panel) to transcribe each
chunk individually, orthographically. Annotators are asked to use real word
forms, also in the cases where speakers use reduced pronunciation variants.
When the experiment involves a constrained vocabulary of words that can ap-
pear, the interface is able to suggest word completions as annotators type, which

reduces the number of required keystrokes.

Harmonicity-aided automatic procedure

For datasets where the expected ordering of words is known, POnSS offers a
fully automatic transcription generation procedure. This begins with the anal-

ysis of the harmonicity (autocorrelation method, default settings) of the trial
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Figure 3.2: Screenshots of the browser interfaces for the orthographic transcription (left),
triage (middle) and retrimming tasks (right) in POnSS.

recordings, using Praat (Boersma & Weenink, 2019). In the analysis of the PiN-
CeR dataset, each harmonicity peak is assumed to correspond to one vowel in
the recording, allowing the number of disyllabic words actually produced to be
estimated. This may serve as a check for the degree of match between audio
and prompted text. In the PiNCeR dataset, in which speakers were asked to pro-
nounce eight disyllabic words in a sequence at varying speaking rates, we ob-
served that when speakers produced fewer than the full eight words, words oc-
curring later in the sequence were much more frequently omitted than earlier
ones. Based on this observation, the peak counts were used to produce candidate
orthographic transcriptions for use in the forced alignment procedure. In the
case of the PiNCeR data, if fifteen or sixteen harmonicity peaks were detected
(indicating equally many syllables), all eight words were included in the tran-
scription. If thirteen or fourteen peaks were detected, the first seven words were
included, and so on. This is done with the aim of achieving better forced align-
ment results than simply forced aligning against the orthographic transcription

including all eight words would do.

Forced alignment

Once an orthographic transcription is available of a trial or chunk, forced align-
ment is performed using the application programming interface (API) to web-
MAUS (Schiel, 2015), which offers good quality forced alignment for Dutch and
other languages using HTK (Young et al., 2006). The resulting word onsets and
offsets are used to cut out the audio chunks related to individual words from
the longer trial audio recording. We term the resulting labelled chunks of audio
‘word candidates’, since we cannot yet be sure of the accuracy of the segmenta-
tion.
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3.2.2 Phase 2: triage

In the triage phase, annotators use a browser interface in which each word candi-
date is presented individually, displaying the transcription, waveform, and spec-
trogram. The spectrogram and waveform include a ‘shoulder’ of adjacent mate-
rial either side of the word candidate, made translucent in the waveform (See
Figure 3.2, middle panel). The audio plays immediately on loading, and can be
replayed as often as required by pressing the tab key or clicking on the wave-
form. Words are selected randomly from the stack of word candidates that still
need to be triaged. The annotator’s task is to choose from one of four options:

(1) Mark the word candidate as correctly annotated; our annotators were in-
structed to decide whether the “complete word is isolated, with no extra-
neous material included”. (thumbs up in middle panel of Figure 3.2)

(2) Mark the word candidate as requiring further attention in the retrimming
phase. (thumbs down)

(3) Discard the word candidate because it contains non-speech, for instance
environmental noise or a cough. (double thumbs down)

(4) Mark the word candidate as requiring manual intervention, for instance
because a speech error (such as a mispronunciation or naming a different
word) was made. In our case, these words were also excluded, but POnSS

can collect them for later intervention by the researcher. (flag)

Each of these options is associated with a button in the browser interface and
associated with a specific key. As soon as a decision is made, the interface auto-
matically proceeds to the next word candidate.

Depending on decisions made by the researchers, word candidates that are
marked as good are either returned to the ‘stack’ to be checked again until the
word candidate has been approved by a defined quorum of annotators, or re-
moved from the stack and enter the dataset. In our case, we set a target that 20%
of the word candidates should be triaged more than once. Which word candi-

dates that passed the triage were revisited was decided randomly.

3.2.3 Phase 3: retrimming

In the retrimming phase, the onset and offset boundaries of the fraction of word

candidates that were marked by annotators as requiring retrimming are ad-
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justed. Again, a browser interface was used (Figure 3.2, right panel). The la-
bel, spectrogram and waveform of each word candidate are again presented on
screen. This time, the annotator drags the onset and offset boundaries with the
mouse to correct the segmentation. They have three options:

(1) Report that they successfully corrected the segmentation (screwdriver
with check mark in right panel of Figure 3.2)

(2) Request that the word candidate should return, with more margin (snapped
screwdriver)

(3) Mark the word candidate as requiring manual intervention, for instance
because a speech error was made. In our case, these words were also ex-

cluded, but POnSS can collect them for later intervention by the researcher

(flag)

Depending on researcher-controlled settings, word candidates that annota-
tors report as successfully corrected can be returned to the triage ‘stack’ to be

double checked, or they can be removed from the stack and enter the dataset.

3.2.4 Computational implementation

Most components of POnSS are implemented in Python as a web application us-
ing the Django framework (Holovaty & Kaplan-Moss, 2009). The interfaces them-
selves are implemented using HTML, CSS and JavaScript. In-progress segmenta-
tion data, along with all meta-data about the annotators’ interaction with the
system are stored in a PostgreSQL database.

Although POnSS at present has its own PostgreSQL back-end, elements of the
pipeline and the orthographic transcription, triaging and retrimming task in-
terfaces could be relatively easily coupled to another speech data management
system, such as EMU-SDMS (Winkelmann et al., 2017).

All code implementing POnSS is available at https://git.io/Jexj3, along with

the supplementary materials.

3.3 Baseline manual segmentation method

We designed a baseline task that is typical for the type of segmentation projects

that are conducted for production data in psycholinguistics (for instance, Zormpa
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et al., 2019; Sjerps et al., 2019), combining forced-alignment and Praat TextGrid
annotation.

We selected a sample of 468 trial recordings from Experiment 2 of the PINCeR
corpus (Rodd, Bosker, ten Bosch, et al., 2019a, see Chapter 4) that were balanced
for speaking rate and speaker. These trial recordings were forced-aligned us-
ing webMAUS (Schiel, 2015), based on the expected word productions, and Praat
TextGrids were prepared with the forced-alignment result. A panel of seven
trained annotators, all of whom were native speakers of Dutch, were asked to
correct the MAUS transcriptions of all of the trials in the sample in Praat. They
were employed as research assistants and worked on this project as part of their
paid work. In contrast to typical practice, where only one annotator looks at
each recording, in this case, all seven annotators looked at all 468 trials. A script
in Praat selected an audio file and the corresponding preprocessed TextGrid and
opened both. Annotators were asked to check the boundaries for word onset and
offset and move them if necessary, and check the labelling of the words. Anno-
tators clicked on a “continue” button to save the adjusted TextGrid and load data

for the next trial.

3.4 Assessing the reliability of transcription data

Like all human-derived data generation processes, speech segmentation / an-
notation procedures are liable to various kinds of unreliability. Although one
intuitively understands what it means for data to be reliable, formalising this
into a working definition is less straightforward. A frequent definition is that
reliability is ‘the consistency with which a measure assesses a given trait’ (e.g.
Bartko & Carpenter, 1976), framing reliability as synonymous with reproducibil-
ity. In the domain of speech segmentation, this definition implies we should be
assessing how consistent annotators are in the boundary time stamps that they
assign. This could be operationalised within annotators working on the same
dataset multiple times (as a kind of test-retest reliability) or between annotators
(as a kind of inter-rater reliability).

Relatively little attention has been given to the concept of reliability in the
temporal dimension of speech data annotation, with discussion of (un)reliability
primarily focused on the label dimension (e.g. Gut & Bayerl, 2004; Widldcher &
Mathet, 2012; Mathet & Widldcher, 2011; Yoon et al., 2004; Mathet et al., 2015).
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Outside the speech domain, a number of inter-rater reliability coefficients are
prevalent (Popping, 1988). Many such coefficients are constructed with the as-
sumption of categorically distinct data, assume precisely two raters, or assume
thatall raters will look at each case. A few coefficients are proposed as being suit-
able for continuous data, notably intraclass correlation (ICC; Bartko, 1966) and
Krippendorff’s alpha (Krippendorff, 1970; Hayes & Krippendorff, 2007). Krip-
pendorff’s alpha is broadly applicable to data of different forms, suitable for an
arbitrary number of annotators, and tolerant of missing data. An alpha value of
1 indicates perfect reliability, an alpha value of 0 indicates the absence of relia-
bility. Negative alpha values indicate above-chance systematic disagreement. In
practice, standardised reliability coefficients have not gained traction in speech
research, and it is typical to calculate the percentage of segmentations that fall
within some tolerance relative to another annotator’s segmentation, or relative
to a gold standard segmentation, which may be hard to motivate (Ernestus et al.,
2015; Raymond et al., 2002; Kipp et al., 1997).

Because of its broad applicability and comparability, we initially selected Krip-
pendorff’s alpha as the metric to be used to evaluate POnSS. We intended to use
bootstrap re-sampling to create variance in the coefficient, to allow statistical
comparison across samples annotated by the baseline method and by POnSS.
However, we found disturbingly little variation in the alpha coefficients that we
calculated. To explore this systematically, we set about exploring the proper-
ties of Krippendorff’s alpha, ICC and ‘percentage within tolerance’ measures in
the context of the baseline annotation data. We did this by adding or removing
noise to the individual segmented onset and offset times in the dataset of word
segmentations performed with the baseline method, and calculating the coef-
ficients for each ‘tweaked’ dataset. None of the tested coefficients were able to
distinguish between datasets that we had artificially made more or less reliable,
with Krippendorff’s alpha and ICC essentially exhibiting no variation. These sim-

ulations are reported in the supplementary materials.

3.4.1 Distribution fitting approach

Given our conclusion that none of the established reliability metrics offered a
sufficiently sensitive way to assess the reliability of our speech segmentation
data, we developed an alternative approach based on distribution-fitting. This
approach aims to quantify variability by finding the parameters of a model of
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the data-generating process that explains the variability in the word boundaries
resulting from the segmentation process, rather than deriving a result directly
from the outcomes. We consider the distribution of the differences between in-
dividual segmented onset and offset times and the median of all onset or offset
times recorded for that same word across annotators. This distribution, illus-
trated in Figure 3.3A, has both a high, narrow peak, and broad tails, and is centred
around 0 ms, where there is no difference between an individual segmentation
and the median of segmentations of the same material, which led us to fit it as a
mixture of overlapping Gaussian distributions.

The model that we fit consists of a mixture of three Gaussian distributions. A
Gaussian distribution is defined by two parameters, a central tendency (1) and a
standard deviation (o). The narrowest Gaussian captures the very best segmen-
tations, where all annotators were in full agreement. This is constrained to o
values between 0.0001 and 2 ms. The second Gaussian captures segmentations
that deviated somewhat from the median, constrained to o values between 1.5
and 8 ms. The third Gaussian captures very poor segmentations, where bound-
aries were placed a long way from the median, constrained to o values between
2.5 and 40 ms. The search regions overlap to keep the fitting as data-driven as
possible. All three Gaussians have their u parameter clamped at 0. The relative
contribution of each Gaussian to the overall mixture is also parametrised, 6; is
the proportion of the mixture that is contributed by Gaussian . The §s must sum
to 1.0.

Once the mixture model has been fitted to the data, the resulting os, weighted
by the s, quantify the reliability of the sampled segmentations. These could ei-
ther be summarised as a weighted sum, or used for inference in a weighted re-
gression, as we do in the next section. Various approaches could be used to fit the
mixture model to the data; we used particle swarm optimization to minimize the
Kullback-Leibler divergence between the modelled distribution and the sampled
distribution.

3.5 Analysis 1: Reliability of modalities

3.5.1 Materials

To construct a dataset to evaluate the performance of POnSS, we combined the

data from the baseline manual segmentations described in Section 3.3 and a sub-
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set of the word segmentations produced using POnSS for Experiment 2 of the
PiNCeR corpus (Rodd, Bosker, ten Bosch, et al., 2019a, see Chapter 4), namely
word candidates that had been retrimmed minimally twice (as part of random
double work to facilitate this investigation). As far as possible, the same words
were used as in the baseline manual task. The panel of 8 paid research assistant
annotators who contributed to the POnSS data sample were similar in training
and background to those who annotated for the baseline task, and included some
of the same research assistants.

For each individual word token, the median word onset time across all anno-
tators and both modalities (POnSS or baseline) was calculated. The same was
done for the offset times. For each segmentation, the difference between the
segmented onset and offset times and the medians was calculated. A balanced
sample was taken for statistical modelling, including 300 onset segmentations
and 300 offset segmentations for each modality for each of the speaking rates in
the experimental data (fast, medium, slow). This sample is shown in Figure 3.3A.
In the distribution for POnSS, there were small peaks at -20 ms and +20 ms. These
likely emerged because it was possible to adjust the position of the boundaries
during retrimming with the keyboard; pressing shift+left or shift+right moved
the boundary 20 ms.

3.5.2 Quantifying differences in reliability

To be able to identify the effects of modality and speaking rate on the fitted sig-
mas, we prepared a dataset that would allow us to predict the sigmas fitted in the
Gaussian mixture model by modality and speaking rate. We constructed subsets
of the test dataset that varied in the proportion to which each speaking rate or
modality was represented. The proportions were predefined, at approximately
10% to approximately 80%, in steps of 10% for the rate conditions. For the modal-
ity conditions, we set the proportions of manual annotation to between 20% and
80%, again in steps of 10%. The different levels were exhaustively combined,
meaning that 252 samples were constructed, for instance a sample might con-
tain segmentations that were 30% POnSS segmentations and 70% baseline, 40%
from the slow condition, 40% medium and 20% fast; a second sample might be
60% POnSS, 40% baseline, 50% slow, 10% medium and 40% fast.

Next, we performed optimisation to find, for each sample, plausible values for

the parameters of the mixture model described in Section 3.4.1. The o of each
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Figure 3.3: Panel A: the observed distributions of the difference between segmented times
and the median segmentation for each word, for POnSS and manual annota-
tion modalities (colours). Panel B: an example of the optimized mixture-model
fit (orange) to the observed distribution of one of the samples (black line).
Panel C: Solid violins show the posteriors of Model 1 for the effect of modality
on the sigma, with median (points), 95% HDIs (highest density intervals, thin
black lines) and 66% HDIs (thick black lines).

Gaussian was a free parameter, as were the mixing proportions of the Gaussians
(0). The central tendency (1) was always 0. The quality of the fit was quanti-
fied as the mean Kullback-Leibler divergence (KL) between the observed and the
fitted distribution, and between the fitted distribution and the observed distri-
bution. Optimisation was performed using the hydroPS0 implementation of the
particle swarm algorithm in R (Zambrano-Bigiarini & Rojas, 2018). 60 particles
were simulated for maximally 2000 iterations. The parameter values (6 and os)
of all 60 particles in the final iteration of the optimisation were recorded, along
with the achieved KL for that set of parameter values. In general, good fits are
achieved of the fitted distribution to the observed distribution. A sample fit is

shown in Figure 3.3B.

3.5.3 Inferential model

We then fitted a Bayesian regression model to quantify the influence of using
POnSS rather than the baseline task. This model, and all further statistical mod-
els reported, were fitted with the R package brms (Biirkner, 2018), allowing us
to fit Bayesian mixed-effects models in which the width of the fitted distribu-
tions is parametrised. Rather than dealing with binary decisions between sig-
nificant and not significant, Bayesian regression focuses on quantifying uncer-
tainty about the magnitude of an effect (e.g. Vasishth et al., 2018), so no p-values
are reported. Instead, we report the size of the effects we identify, in their rel-
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evant units, and where appropriate, standardised for comparability (Cohen’s d).
All intervals reported are 95% highest density intervals (HDIs).

The model predicted the sigmas fitted in the optimisation phase by the pro-
portions of each modality and each speaking rate represented in the subsets. The
interaction between modality and speaking rate was also included. We will refer
to this model as Model 1. The model was sampled with the NUTS sampler with 6
chains of 4,000 warm-up and 4,000 test iterations. The model converged for all
parameters, as assessed by the Gelman-Rubin diagnostic R being within 0.001 of
1.0.

Predictors are included for the proportion of POnSS segmentations, the pro-
portion of segmentations of words from the fast condition and the proportion
of segmentations of words from the slow condition. It was not necessary to in-
clude the proportion of manual annotations or the proportion of segmentations
of words from the medium condition, since these are entirely correlated with the
proportion of POnSS segmentations and the sum of the proportion of fast and
slow, respectively. This is intuitively comparable to treatment coding of a cate-
gorical variable. For each of these linear predictors, a weakly informative prior
was specified (u =0, 0=5). A deviation-coded categorical predictor was included
for component (narrow, medium or wide), as were interactions between the cat-
egorical and linear predictors. The model fitted a student-t distribution, the o
and v parameters which were predicted by the component. Regression weights
were applied, consisting of the fitted # values associated with the relevant com-
ponent, multiplied by 1— the KL score achieved by the fitting. This means that
the sigmas of the three mixture components contributed to the main effects in
proportion to their weighting, and that the best fits contributed more than worse
performing fits. Full details about the model are available in the supplementary

materials.

No reliable difference emerged between POnSS and manual segmentations on
medium-rate speech: -0.31 ms [-0.71, 0.084], though the central tendency sug-
gests that, had only POnSS segmentations been present in a sample, we would
expect to see marginally narrower distributions than in a sample annotated only
by the manual method. This effect is depicted in Figure 3.3C. This effect was in-
volved in interactions, such that, with POnSS, reliability was marginally worse
in the narrow component: 0.43 ms [0.14, 0.73], in the medium and wide compo-

nents, the interaction effect was not distinct (medium: -0.0052 ms [-0.34, 0.34];
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wide: -0.43 ms [-1.1, 0.2]). A figure depicting these interactions is available in the
supplementary materials (Figure S9). Had a sample only contained fast speech,
we would expect wider distributions: 2.5 ms [2.1, 2.9]. No reliable difference
emerged between medium and slow speaking rates: 0.051 ms [-0.36, 0.46]. There
were no reliable interactions between modality and rate (POnSS and fast rate:
0.12 ms [-0.38, 0.63]; POnSS and slow rate: -0.33 ms [-0.79, 0.14]), suggesting that
POnSS is equally reliable across speech that may be assumed to differ in style.

Together, these results indicate that segmentations performed with POnSS are
at worst equally as reliable as segmentations performed conventionally using
Praat, and potentially slightly better.

3.6 Analysis 2: Efficiency of modalities

To assess the efficiency of POnSS, we calculated how many annotator-hours
would be required to yield 5000 segmented words in the baseline modality and
using POnSS. In the case of the baseline modality, we assumed that only one an-
notator would segment each recording. During the manual segmentation, the
Praat script recorded the time when each trial recording was opened and saved,
meaning that we could calculate the time spent on that trial, and then divide
that by the number of segmented words, to result in a duration of annotator
time investment per segmented word.

In the POnSS case, we have, for each task, timestamps for the moment the
word-candidate was presented to the annotator, and for the moment at which
they finished interacting with it. For each original word candidate in the trials
from Experiment 2 of the PiNCeR dataset (Rodd, Bosker, ten Bosch, et al., 2019a,
see Chapter 4), we identified every interaction with that word recording across
both the triage and retrimming tasks. We summed together the time spent triag-
ing and retrimming each word, and then checked to see if that word was accepted
into the finished dataset or not.

In an approach akin to bootstrap re-sampling, we subsequently took 1000 sam-
ples of 5000 words, and took the sum of the time investment for the words in
each sample as the time investment to segment that sample of 5000 words. In
the POnSS modality, the sample size was increased iteratively until the sample
contained 5000 non-rejected words, to account for the time spent working on
words that ultimately were not accepted into the dataset. Around 5% of word
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Figure 3.4: Distributions of resampled estimates of time investment required to yield 5000
good words by the two modalities (translucent violins). Overlaid are solid vio-
lins showing the posteriors of Model 2 for the effect of modality, with median
(points), 95% and 66% HDIs are too narrow to see in the figure.

candidates did not make it into the finished dataset. In the baseline modality,
this correction for missing words is already implicitly made, since the time spent
working on a trial is divided by the number of resulting good words. The distri-
bution of the time it took to yield 5000 good words is shown in the translucent
distributions in Figure 3.4. Note that in this dataset, no manual transcription was
required, since we used the harmonicity-aided automatic transcription genera-
tion procedure; in the baseline case, MAUS was used, meaning that the analogous
part of the task was not used there either.

We fitted these distributions with a Bayesian regression model (Model 2). Like
Model 1, Model 2 was sampled with the NUTS sampler with 6 chains of 4,000
warm-up and 4,000 test iterations. The model converged for all parameters, as
assessed by the Gelman-Rubin diagnostic R being within 0.001 of 1.0. The model
predicted the hours invested to yield 5000 correctly segmented words, with a
deviation-coded categorical predictor for the modality (1 indicated the baseline
method, -1 the POnSS method). A weakly informative prior was set for this pre-
dictor, a normal distribution centred at 0 with a o of 5.44 hours, meaning our ex-
pected effect size was 0, with a standard deviation of 1 Cohen’s d. For the model
intercept, the prior was a Student-¢ distribution centred at 45.98, the average of
all the data with a o of 54.42 hours and a v (degrees of freedom) of 16.33, which
are derived by scaling the recommended properties of this prior in brms to this
dataset.

The distributions of the model coefficients of interest are shown in Figure 3.4,
as solid violins. The difference between the two approaches in the time taken to

yield 5000 correctly segmented words was very clear (difference between means:
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11 hours [11, 11], Cohen’s d = 2), such that segmentation using POnSS required
much less investment of annotator time than the baseline method.

3.7 Discussion

In this article we introduced POnSS, an online pipeline for the segmentation of
speech data. POnSS is optimised for this single task, sacrificing functional flexi-
bility in favour of time/effort efficiency.

We argued that, while fully automatic speech transcription and segmentation
is gaining traction, for many purposes human intervention remains essential
to ensure data quality in conditions adverse to speech segmentation. A key di-
agnostic for the quality of a speech segmentation is its reliability, convention-
ally defined in terms of reproducibility. We explored how two widely employed
approaches to measuring reproducibility were sensitive to the kind of variance
expected in speech segmentation data. From this analysis, we concluded that
neither Krippendorff’s alpha nor simple percentage agreement within a toler-
ance were ideal ways to assess reliability in speech segmentation data, since they
were not sensitive to artificial noise. In their stead, we proposed a reliability-
quantification approach based on modelling the underlying error process as a
mixture of Gaussian distributions, where the sigmas of the distributions quan-
tify the reliability of the segmentation process.

We then turned to quantifying the consequences of segmenting to the word
level with POnSS rather than with a conventional procedure using TextGrids in
Praat preceded by naive forced-alignment. We analysed the relative reliability
and efficiency of POnSS. These analyses revealed that segmentation with POnSS
was approximately equally reliable compared to conventional manual segmen-
tation, and considerably faster. In the reliability analysis, we found that the sig-
mas fitted to the data segmented by POnSS were comparable to the sigmas fit-
ted to the data segmented conventionally. The efficiency analysis showed that
23% less investment of annotator time was required to yield the same number of
acceptable word transcriptions. In the efficiency analysis, the way that we com-
pared the modalities slightly biases against POnSS, since we calculate the time
investment based on our practice whereby some word-candidates got triaged
and retrimmed multiple times by different annotators, while we assume that

under the baseline modality, each word-candidate will only be worked on once.
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These findings license the further use of POnSS for segmentation of speech cor-
pora. For the evaluation conducted here, we used data from the PiNCeR corpus
(Rodd, Bosker, ten Bosch, et al., 2019a, see Chapter 4). The PiNCeR corpus was a
good test case, since it contains experimentally elicited, errorful speech, which
is particularly challenging for forced alignment. POnSS also includes a manual
transcription component that makes the segmentation of spontaneous speech
viable. Read speech resembling, for instance, TIMIT (Garofolo et al., 1993), which
forms the basis of the training data for many ASR systems, may be forced aligned
well enough to require only minimal checking of a sample to assess the suitabil-
ity of the segmentation. POnSS could also be trivially adapted to manage this
forced alignment and perform this checking.

Aside from reliability and efficiency, a subordinate aim in developing POnSS
was to improve the experience of the annotators, who consider segmentation to
be the least preferred of the tasks that they perform as research assistants. Anec-
dotally, the annotators report POnSS to be preferable to work with, compared to
conventional segmentation using TextGrids in Praat. This may be due to the
colourful visual appearance. Furthermore, with POnSS, the annotator is freed
from a number of meta-tasks inherent to conventional segmentation projects,
including the necessity to keep track of how far through a project they are and
recording this to prevent double work; planning how many trials they can do in
the time remaining until the next task begins; and ensuring that their work is
saved and archived. Additionally, they have some operational freedom in that
they can choose which of the subtasks to perform. Future analysis might exam-
ine whether they work longer effective stints with POnSS than with the baseline
task. In POnSS it is possible to employ aspects of ‘gamification’, for instance
tracking and displaying each individual annotator’s longest streak of triage de-
cisions or retrimmings performed within some time limit to boost motivation,
though whether this would come at the cost of reliability would need to be es-
tablished.

In POnSS, different component tasks of the overall segmentation project are
separated out into small, easily explained and understood sub-tasks. This im-
plies that the less taxing triaging task could potentially be adequately performed
by entirely untrained annotators, through online crowd-sourcing systems such
as Amazon’s Mechanical Turk (Buhrmester et al., 2018), or allowing paid mem-

bers of an institute’s participant pool to segment data at home at their conve-



50 3 POnSS: efficient and accurate segmentation

nience. This would drastically reduce the wait for the researcher for completed
segmentations, and free up trained research assistants for more productive and
motivating tasks. Further careful pretesting is required to establish whether
crowd-sourced, non-expert triage decisions are of equal quality to expert triage
decisions, and to introduce data-quality controls like catch trials with known
good answers.

Our aim with POnSS was to provide a practical implementation of a distributed,
subdivided segmentation system, to be able to evaluate the efficiency and reli-
ability of such an approach. As such, there are various researcher degrees of
freedom, such as the length of chunks in the transcription task and the propor-
tion of word candidates that are triaged and retrimmed multiple times that could
influence the reliability and accuracy of the resulting segmentations. Optimal
settings for these researcher degrees of freedom need to be explored more fully
with various annotator populations and speech data types, which may allow fur-
ther improvement on the efficiency benefit relative to Praat TextGrids reported
here.

The test dataset that we used to evaluate POnSS was evaluated to the word
level, and we used other techniques to perform sub-word level analyses (Rodd,
Bosker, ten Bosch, et al., 2019b, see Chapter 2). However, there is no a priori
reason to think that POnSS would not also perform comparably to conventional
segmentation on phoneme- or syllable-level segmentations.

In conclusion, POnSS offers reliable segmentation of speech materials to the
word level, in an appealing form that makes efficient use of human input by com-

bining human decisions with forced alignment.



4 PiNCeR: a corpus of cued-rate
multiple picture naming in Dutch

PiNCeR is a corpus of speech recordings from Dutch speakers who named pic-
tures at different speaking rates. Participants named pre-familiarised '(C)CV.CVC
words (e.g., snavel ['sna:.val] “beak”) from line drawings displayed in groups of
8 arranged on a ‘clock face’. A cursor moved clockwise from picture to picture
to indicate at which of three trained rates (fast, medium and slow) participants
were required to name the pictures. Annotation was performed using the POnSS
tool (Rodd et al., in press, see Chapter 3), where manual and automatic segmen-
tation is combined to yield accurate word onsets and offsets. To detect the onset
and offset times of syllables within words, we identified excursions of above-
average acoustic instability between the vowel of the initial syllable and the first
consonant of the second syllable (Rodd, Bosker, ten Bosch, et al., 2019b, see Chap-
ter 2). This approach was licensed by careful control of segmental content in
the target words to maximise correspondence between acoustics and articula-
tion. The PiNCeR corpus was intended for use in modelling control of speaking
rate (Rodd et al., 2020, see Chapter 5), but may be of interest for other purposes.
Trial-level recordings from two related experiments are made available for 25
participants (12 for Experiment 1, 13 for Experiment 2), along with the onset
and offset times of the words and the syllables.

This chapter was adapted from Rodd, J., Bosker, H. R., ten Bosch, L., Ernestus, M., & Meyer, A. S.
(2019a). PiNCeR: A corpus of cued-rate multiple picture naming in Dutch. PsyArXiv. https://doi.org/10.
31234/osf.io/wyc6h

The speech materials for 25 participants, consisting of trial-level recordings, along with the onset
and offset times of the words and the syllables in csv format and as R data format are archived
at the Language Archive, and available on request from https://hdl.handle.net/1839/7c210d30-
bb55-4cbe-9eeb-baf18570460c


https://doi.org/10.31234/osf.io/wyc6h
https://doi.org/10.31234/osf.io/wyc6h
https://hdl.handle.net/1839/7c210d30-bb55-4cbe-9eeb-baf18570460c
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4.1 Background

This paper presents the PINCeR (Picture Naming at Cued Rates) corpus, which
was collected to serve as a dataset for the modelling of cognitive control of
speech rate (Rodd et al., 2020, Chapter 5), and may also be of interest for in-
vestigation of phonetic variation as a consequence of speech rate change. The
corpus contains productions of experimentally elicited disyllabic Dutch words
at three predetermined speaking rates, and temporal annotations of word and
syllable onsets and offsets. This paper also documents the procedures used in
the preparation of the corpus, notably a distributed annotation system (POnSS)
that allowed us to efficiently annotate the corpus (Rodd et al., in press, Chap-
ter 3) and a metric that allowed us to detect syllable onset and offset times from
the acoustic signal (Rodd, Bosker, ten Bosch, et al., 2019b, Chapter 2).

Two multiple picture naming experiments were conducted, in which the re-
quired speaking rate (fast, medium or slow) was indicated with a cueing dot that
jumped from picture to picture on a display with 8 pictures. Since the corpus was
intended to be used to model cognitive aspects of the preparation of speech, a
task that engaged all phases of speech planning before articulation was desirable.
Picture naming is the gold standard task for eliciting single word productions,

ensuring that all planning phases need to be completed.

In Experiment 1, speakers were explicitly instructed to avoid pausing between
words, and instead to adjust their speaking rate by adjusting the duration of the
words. In this fashion, we attempted to ensure that we would elicit variation in
the way individual words were articulated, rather than variation in the usage of
pauses. In Experiment 2, this instruction was not given, to ensure that differ-
ences in strategy adopted in the slow speaking rate were the result of speaker-
intrinsic processes rather than purely an effect of task.

A Bayesian mixed effects regression analysis was run to characterise the du-
rations of words in the different speaking rates, to assess their compliance with
the required rate, and to verify whether the different instructions given to par-
ticipants in each experiment resulted in different word durations, which would

indicate different task strategies.
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4.2 Methods

4.2.1 Experiment 1

The speech was elicited with a multiple picture naming task, forcing speakers
to complete all planning phases before articulation of each picture name could
begin. Different sets of eight pre-familiarised line drawings were displayed in
each trial, in an arrangement reminiscent of a clock face (c.f. Meyer et al., 2012).
A cursor indicated which picture was to be named, moving in a clockwise direc-
tion from picture to picture at three predetermined, participant-independent

rates: fast, medium, and slow.

Participants

Native Dutch speaking participants (N = 12, two males, ten females, Mgy, = 22
years) with normal hearing and normal or corrected-to-normal vision were re-
cruited from the participant pool of the Max Planck Institute for Psycholinguis-
tics, with informed consent as approved by the Ethics Committee of the Social
Sciences Faculty of Radboud University (Project Code: ECSW2014-1003-196).

Materials

Twelve disyllabic Dutch concrete nouns with stress on the first syllable were
selected as target words for the production experiment. The first syllable was
always open, and the second syllable was always closed (C(C)V.CVC, where C =
consonant, V =vowel). Vowels were always monophthongs and consonants were
never stops. This means that we selected only segments where the articulators
do not move during the production of the segment, in contrast to diphthongs
or stop consonants, where changing articulatory configuration during the seg-
ment is inherent to the segment identity. This is required for the derivation of
the onset and offset times of syllables within words. Additionally, words with
an ambisyllabic consonant were excluded. This yields words such as snavel ['s-
na:.val] “beak”, vriezer ['vri:.zor] “freezer” and wafel ['wa:.fal] “waffle”. In ad-
dition, twelve similar filler words were selected. A full list is provided in the
Appendix on page 167.

Lists of 70 sets of eight words were pseudo-randomly created from the vo-

cabulary of filler and target words, one set for each of the 70 trials in each rate
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condition. A different list was used for each participant in each rate condition.
Within each set, no word appeared more than once. Within each list, the num-
ber of times each word was used was matched as closely as possible (average s.d.
in used lists: 0.4769, minimum frequency 26 words per 560, maximum frequency
28 words per 560), as was the frequency with which each word appeared in each
of the five ‘target’ positions on the clock face (average s.d. in used lists: 2.107),
and the frequency of each pair of words co-occurring in a set (an analogue of
transition probability, average s.d. in used lists: 2.294).

For each word, a line drawing was either taken from the Snodgrass and Van-

derwart (1980) picture library, or prepared in the same style.

Experimental procedure

Participants were tested individually in a sound attenuated booth. Stimulus
presentation, eye-tracker synchronisation and audio recording were controlled
by Presentation software (Version 16.5; Neurobehavioral Systems, Berkeley, CA,
USA). A Sennheiser ME64 directional microphone was used to record the partic-
ipants’ speech at a sampling rate of 48 kHz.

The session began with familiarisation of the pictures and their names, by
means of (1) a printed card and (2) naming of the pictures as they were displayed
individually on screen, in a pseudo-randomised order with two repetitions of
each picture. The experimenter immediately gave the correct name when the
participant named a picture incorrectly. After the structure of the experiment
was described (three blocks, each at a different rate condition, in a random or-
der), the participant was instructed to “name the exact picture that the marker indi-
cates”. They were instructed to achieve slow speech rates by slowing down their
speech, not by producing longer pauses in between words. In this fashion, we
attempted to ensure that we would elicit variation in the way individual words
were articulated, rather than variation in the usage of pauses. Instructions were
presented on screen. Six practice trials at the medium rate then followed, af-
ter which the remote eye-tracker (Eyelink 1000 in remote mode; SR Research,
Ottawa, ON, Canada) was prepared and calibrated with a standard 9-point cali-
bration procedure. The gaze position measurements, originally collected with
future computational simulation work in mind, are not discussed in this article.
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24 inch monitor

drift correction 8
(self paced) = 456 ms (word cueing)
- 646 ms
316 ms (preview time) 915 ms

Figure 4.1: The trial sequence. The trial began with a drift-correction fixation cross (self-
paced). A fixation cross was then presented at the location of the first picture
for 700 ms, followed by 316 ms preview time. Cueing then began: each word
was cued for 456, 646 or 915 ms by overlaying a translucent red dot on the
relevant picture. The trial concluded with a blank display for 100 ms.

A block of seventy trials was presented for each rate condition, followed by a
short break. The order of the three rate blocks presented in the experimental

session was counterbalanced across participants.

The trial structure is illustrated in Figure 4.1. Before each trial, the participant
performed a self-paced drift-correction procedure for the eye tracking measure-
ments. After successful drift-correction, a fixation cross was presented at the
location of the first picture (“12 o’clock”) for a duration of 700 ms. Then, the pic-
tures appeared without the cursor, and were presented for 316 ms of ‘preview
time’, to allow the participant to prepare for naming.

The pictures were displayed in sets of eight, in a clock-face arrangement with
9 positions. Positions 2 to 6 were occupied by target pictures. The first, seventh
and eighth positions were occupied by filler pictures, since these positions were
expected to be particularly susceptible to listing intonation. The ninth position
(at “10 o’clock”) was always left empty to visually reinforce the beginning and
end of the sequence of pictures. This arrangement is illustrated in 4.1. The whole
display fitted into an area of 780 x 780 pixels. Each picture was scaled such that
it would occupy an area of 90 x 90 pixels.

Once the preview time had elapsed, a cursor was overlaid on each picture in
turn for the duration appropriate to the rate condition; fast, medium or slow.
The cursor was a translucent red circle with a diameter of 20 pixels, which ap-
peared in the centre of each picture whilst that picture was to be named. The

cursor jumped from picture to picture, starting with the topmost and proceed-
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ing in a clockwise direction. After all the pictures had been cued, the pictures
and the cursor disappeared and a blank screen was presented for 100 ms, after
which the drift correction procedure for the next trial started immediately.
The three cueing rates tested were 456 ms/word (2.19 Hz, fast condition), 646
ms/word (1.54 Hz, medium condition) and 915 ms/word (1.09 Hz, slow condi-
tion). These rates were derived from the non-cued speaking rates realised by
three further participants in a small pre-test (research assistants with a simi-
lar background to the participants tested in the main study). This pre-test data
was also used to establish an appropriate length of ‘preview time’ to allow the

participants to prepare for the naming task.

4.2.2 Experiment 2

The second elicitation experiment was identical to the first experiment, except
participants were given no explicit instruction to avoid pausing. For Experiment
2,13 further participants were tested (two males, eleven females, Mg = 22 years),
recruited from the same pool of native Dutch speakers as the participants tested

in Experiment 1, under the same ethics approval.

4.2.3 Word boundary finding

The extent of the speech data collected (5,250 trials, yielding up to 26,250 target
words and 15,750 filler words if no errors were made) precluded fully manual
annotation. A fully automatic annotation was also not possible since the na-
ture of the task resulted in many hesitations, omissions and deviations from the
canonical productions. Instead, a multi-step acoustic analysis and forced align-
ment pipeline, POnSS (Pipeline for Online Speech Segmentation), was used to
create automatic transcriptions of the speech materials, which were then ad-
justed as necessary by a panel of ten phonetically trained annotators, including
research assistants and the first author. POnSS was developed and validated by
Rodd et al. (in press, Chapter 3). For completeness, we also describe it here. Use
of the pipeline results in equivalently reliable transcriptions compared to con-
ventional annotation with Praat software, with greater annotator comfort and
greater time efficiency.

The POnSS pipeline is illustrated for an example word in Figure 4.2. First, the

harmonicity (autocorrelation method, default settings) of the trial recordings
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Figure 4.2: An example of the pipeline for annotating the word nagel ['na:.xal] “finger-
nail”, First, an the initial forced alignment run identifies candidate word
boundaries. These are inspected by a human annotator. In this case, they
are wrong, so the word is marked as needing revision. Later, the same or an-
other annotator adjusts the boundaries. The revised word is checked again,
and approved. Then, forced alignment is applied to the single word record-
ing, to identify segment boundaries. An interval is defined, spanning from the
centre of the vowel of the first syllable to the centre of the first consonant of
the second syllable, as identified by the segment level forced alignment. This
interval is used to direct the search for the syllable transition, using the metric
developed by Rodd, Bosker, ten Bosch, et al. (2019b, Chapter 2).



58 4 PiNCeR corpus

was analysed using Praat software (Version 6.0.18, Boersma & Weenink, 2015).
Each harmonicity peak can be assumed to correspond to one vowel in the record-
ing, allowing the number of disyllabic words produced (i.e. not omitted) to be
estimated. We observed that when speakers produced fewer than the full eight
words, the words occurring later in the sequence were much more frequently
omitted than earlier ones. Based on this observation, the peak counts were used
to produce candidate orthographic transcriptions for the forced alignment. If
fifteen or sixteen harmonicity peaks were detected (indicating sixteen syllables),
all eight words were included in the transcription. If there were fourteen or fif-
teen, the first seven words were included, and so on. This was done with the aim
of achieving better forced alignment results than simply forced aligning against
the ‘script’ including all eight words would have done. From these candidate
orthographic transcriptions, forced alignment to the word-level was performed
using the MAUS software (Schiel, 2015), which offers good quality forced align-
ment for Dutch using HTK (Young et al., 2006).

A specially constructed web application using the Django framework (Holo-
vaty & Kaplan-Moss, 2009) was used by the annotators to screen out words that
had been poorly aligned or labelled by MAUS and therefore needed revision.
Each annotation was presented individually with the waveform and spectrogram
of the relevant audio. Annotators could listen to the audio as many times as they
wished. For each of the 23,218 annotations produced by MAUS, they decided
whether the complete word was isolated, with no material from surrounding
words included. If that was not the case (because, for example, some part of the
word was missing, or part of the following word was included), they flagged the
annotation as requiring further attention. They also had the option to discard
annotations containing non-speech or speech errors, 1,095 annotations were dis-

carded for this reason.

The annotations that were flagged by any one of the annotators, but were
not outright discarded (81.5% of 5,400 words from the fast rate; 64.5% of 7,864
words from the medium rate; 45.6% of 7,812 words from the slow rate) were sub-
sequently re-trimmed by other annotators from the panel. This was done by

dragging word boundaries on a visual display of the waveform and spectrogram.
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4.2.4 Automatic syllable boundary finding

After annotation, syllable onset and offset times were derived using the auto-
matic metric developed and validated by Rodd, Bosker, ten Bosch, et al. (2019b),
using an analysis interval spanning from the centre of the vowel of the first syl-
lable to the centre of the first consonant of the second syllable, as identified by
the phone-level forced alignment. Syllable planning units tend to overlap, so a
method was required to identify the onsets and offsets of syllables where they
overlap with neighbouring syllables. The dynamics of the acoustics of speech
broadly reflect the dynamics of the articulation that produces it: when the con-
figuration of the articulators is stable, the acoustic signal is also stable. It was
therefore possible to identify periods of articulatory stability from the acoustic
signal, and periods of transition. We interpreted the period of acoustic transi-
tion (the acoustically evident planning unit overlap) as coterminous with the period
of planning unit overlap, allowing us to identify the onsets and offsets of plan-
ning units from the acoustic signal. A similar approach was adopted by Hoang
and Wang (2015) to identify phone transitions.

4.3 Confirmatory analysis: word duration

To confirm that participants were indeed performing the task as we expected,
that is, primarily modulating speaking rate rather than merely adjusting pause
durations, we first examined overall word durations.

A Bayesian mixed effects model was constructed using the brms R package
(Biirkner, 2018; R Development Core Team, 2008; Stan Development Team, 2018)
to model the log-transformed word duration. We used the log-transformed word
duration in order to reduce skewness in the distribution.

Dummy coded fixed effects of cueing rate (categorical predictor, dummy coded
with medium rate on the intercept) and experiment (categorical predictor, dummy
coded with Experiment 1 on the intercept) were included in the model, along
with the interaction of cueing rate by experiment. Random intercepts were in-
cluded for speaker. Random slopes were included for the log-transformed trial-
level residual rate for each speaker-cueing rate combination, grouped by exper-
iment. The trial-level residual rate was calculated as the difference between the
realised speaking rate in a trial (the total contiguous speaking time divided by
the number of words produced) and the target rate (the duration for which each
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Figure 4.3: Left panel: word duration (log ms) as a function of cued speaking rate, plotted
as violins (the width of the violin shows the distribution of values). The colour
indicates which experiment the data come from. Black horizontal lines indi-
cate the target speaking rates. Right panel: the model posterior distributions
for the mean, shown as violins.
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word was cued with the cursor). For the cueing rate predictor, low-informative
priors were set centred at each target speaking rate, with a ¢ of 3.4 log ms (equiv-
alent to 30 linear ms). For the effect of experiment, a normally distributed low-
informative prior was set, centred at 0 with a o of 3.4 log ms (equivalent to 30
linear ms, roughly five times the noise prevalent in the annotation task; Rodd
et al., in press). The model was well converged (assessed by the Gelman-Rubin
diagnostic R, effective number of samples and visual inspection of traceplots)
after running eight chains of 3,000 warm-up and 3,000 critical iterations.

The observed durations of the words produced in each condition are presented
in the left panel in Figure 4.3, measured from the onsets and offsets established
by the annotation procedure described in section 2.4. The posterior distributions
for the means of each speaking rate in each experiment are shown in the right
panel, along with HDI (highest density interval) covering 95% of the posterior.

The results of the Bayesian mixed effects model are summarised in Tables 4.1
and 4.2. The model confirmed that, in both experiments, speakers produced
shorter words in the fast condition than in the medium condition, and longer
words in the slow condition than in the medium with large effects (Cohen’s d
minimally 0.687, maximally 1.366). Since there were large differences in word
duration between each rate condition, we concluded that the participants pro-
duced different speaking rates for each cueing condition. However, in all cases,
the speakers produced words somewhat shorter than the target rate. This effect
is smallest for the fast cueing condition and largest for the slow cueing condi-
tion. This arises because the target rates assume continuous production without
pauses between words. This suggests that speakers were, even when explicitly
asked to try to modulate their word duration, also modulating pause duration to
comply with the cued speaking rate.

The model also confirmed that there was no effect of experiment, since all
95% credible intervals included 0, and all effect sizes were small (Cohen’s d min-
imally 0.061, maximally 0.168), and all 95% credible intervals overlapped with a
ROPE (region of practical equivalence; Kruschke, 2018) defined to include all ef-
fects smaller than 15ms, a reasonable estimate of the degree of noise prevalent
in annotation data (Rodd et al., in press). This means that the word durations
measured from speakers instructed to try to avoid pausing between words did
not differ from those who did not receive this instruction.



62

4 PiNCeR corpus

Table 4.1: Results of the Bayesian mixed effects model for comparisons of re-
alised word duration by cued rate, within experiments.

experiment comparison estimate  CI Cohen’s d
experiment 1 medium — fast -0.210  [-0.172,-0.247] -1.213
experiment 1  medium — slow 0.119 [0.156,0.081] 0.687
experiment 2 medium — fast -0.236  [-0.199, -0.275] -1.366
experiment 2 medium — slow 0.132  [0.169, 0.093] 0.761

Table 4.2: Results of the Bayesian mixed effects model for comparisons of re-
alised word duration by experiments, within cued rates.

cuedrate  comparison estimate  CI Cohen’sd  ROPE %
medium  exp. 1 — exp. 2 0.016  [0.055,-0.022] 0.093  99.49%
fast exp. 1 — exp. 2 -0.010  [0.032,-0.054] -0.061  99.36%
slow exp. 1 — exp. 2 0.029  [0.069,-0.01] 0.168  97.6%




5 Control of speaking rate is achieved by
switching between qualitatively
distinct cognitive ‘gaits’: Evidence
from simulation

That speakers can vary their speaking rate is evident, but how they accomplish
this has hardly been studied. Consider this analogy: when walking, speed can be
continuously increased, within limits, but to speed up further, humans must run.
Are there multiple qualitatively distinct speech ‘gaits’ that resemble walking and
running? Or is control achieved by continuous modulation of a single gait? This
study investigates these possibilities through simulations of a new connectionist
computational model of the cognitive process of speech production, EPONA, that
borrows from Dell, Burger, and Svec’s model (1997, Psychol. Rev. 104(1), 123).
The model has parameters that can be adjusted to fit the temporal characteris-
tics of speech at different speaking rates. We trained the model on a corpus of
disyllabic Dutch words produced at different speaking rates. During training, dif-
ferent clusters of parameter values (regimes) were identified for different speak-
ing rates. In a one gait system, the regimes used to achieve fast and slow speech
are qualitatively similar, but quantitatively different. In a multiple gait system,
there is no linear relationship between the parameter settings associated with
each gait, resulting in an abrupt shift in parameter values to move from speaking
slowly to speaking fast. After training, the model achieved good fits in all three
speaking rates. The parameter settings associated with each speaking rate were
not linearly related, suggesting the presence of cognitive gaits. Thus, we provide
the first computationally explicit account of the ability to modulate the speech

production system to achieve different speaking styles.

This chapter was adapted from Rodd, J., Bosker, H. R., Ernestus, M., Alday, P. M., Meyer, A. S., & ten
Bosch, L. (2020). Control of speaking rate is achieved by switching between qualitatively distinct
cognitive ‘gaits” Evidence from simulation. Psychological Review, 127(2), 281-304. https://doi.org/
10.1037/rev0000172.

Code and supplementary materials are available at https://osf.io/3mqgu/
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5.1 Introduction

Speaking is a uniquely human behaviour. It is by nature temporal: concepts
and ideas are encoded as a stream of rapidly fluctuating sound, and the correct
ordering and duration of the components is of crucial importance for intelli-
gibility and conveying meaning. At the same time, there is great variability in
the timing of speech sounds: different speakers have different habitual speech
rates, and individual speakers can vary their speech rate from situation to situa-
tion, and even within utterances in the same conversation (e.g. Miller et al., 1984;
Quené, 2008). A portion of this variation presumably arises to accommodate dif-
ferent communicative situations: speakers may slow down to provide listeners
with sufficient time to extract the necessary details from the acoustic signal (e.g.
Lindblom, 1990; Bosker & Cooke, 2018; Cooke et al., 2014). Alternatively, they
may speed up, for instance to convey more content in the same period of time.
Listeners use speech rate information in shaping their perception (Maslowski et
al., 2019a; Kaufeld et al., 2020; Dilley & Pitt, 2010), making control of speech rate
an essential communicative skill.

The fact that humans have control over the rate at which they speak means
that they are capable of adjusting the cognitive apparatus that plans speech,
from the selection of words to the tightly coordinated movements of the articu-
lators of the vocal tract. Understanding how speech planning is controlled can
give us insights into how the apparatus itself works. Given the large degree of
speaker-controlled variability in speech, identifying the mechanisms of control
over speech planning is also important in its own right. In the present study, we
examine the control processes speakers may engage to achieve different speech

rates.

Speech production is classically characterised as a modular, feed-forward pro-
cessing system (e.g. Dell & O’Seaghdha, 1992; Levelt et al., 1999; Levelt, 1989;
Stemberger, 1985). After a meaning representation has been selected (‘concep-
tualisation’), the lexical selection stage begins, where abstract representations of
words that best correspond to the conceptual message are selected. Processes of
word form encoding then construct detailed word form representations. These
stages together can be considered as a formulation phase. Once a word form
representation is selected, a motor execution phase is entered, where movement

commands for the articulatory apparatus (e.g., the tongue, lips, vocal chords) are
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calculated, carried out, and monitored (Guenther, 2016a; Tourville & Guenther,
2011). Because speakers typically plan as late as possible, rather than storing a
pre-planned utterance in working memory (e.g., Damian & Dumay, 2007; Kello
et al., 2000; Levelt, 1989; Levelt et al., 1999), the formulation system must keep
up with the desired rate of articulation, requiring modulation of its operation to

maintain synchronisation.

5.11 ‘Gaits’ in speech production

In a working model of the production system with formulation and execution
phases, adjustment in speaking rate results from adjusting the state of the for-
mulation system; to speak slowly we shift to a regime that results in slow speech
and to speak fast we shift to a regime that causes speech to emerge more quickly.
How are these regimes related to each other? How does the regime invoked to
produce slow speech differ from the regime invoked to produce medium rate
speech?

The control mechanisms engaged to regulate speaking rate at the level of ut-
terance planning and preparation are largely unknown. A more concrete and
readily observable system that operates at a continuously varying range of speeds
is that of human and animal locomotion. In humans, walking and running gaits
are adopted to achieve movement at different speeds. The movement patterns
of walking and running are qualitatively different; in walking, at least one foot
is on the ground at all times, whilst in running, both feet are raised from the
ground simultaneously for part of the cycle (Minetti, 1998; Alexander, 1989).
A continuous range of movement speeds can be achieved by firstly increasing
the speed of walking, and then switching to a running gait to speed up further.
Alongside hard limits on feasibility of certain gaits at certain speeds, the selec-
tion of locomotive gaits is tightly linked to their relative efficiency. In horses,
which typically have walking, trotting, and galloping gaits, each gait has a clear
‘sweet spot’ speed, at the approximate centre of the range of speeds achievable
with that gait, where exertion (ml 0, consumed to move 1 metre) is minimised
(Hoyt & Taylor, 1981, their Figure 2). Horses and migratory animals select these
speeds preferentially (Pennycuick, 1975), and avoid the inefficient speeds in the
shoulder of each gait. This feature of gaited systems previously inspired speech
researchers working at the level of articulatory movements, who link qualita-

tively different mechanical realisations of speech movements to their relative
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efficiency to achieve a required standard of intelligibility (e.g Pouplier, 2012), as
predicted by the hyper- and hypo- articulation theory (Lindblom, 1990).

Pouplier (2012) related the metabolic equivalence of the optima of the locomo-
tive gaits to speaking, conceptualising the gaits of speech as equally optimal co-
ordination modes, suitable for different contexts. This holds well for the execu-
tion phase of speech production, which incorporates motor planning and artic-
ulation, where there are ‘many roads to Rome”: different gestural coordination
configurations, which are chosen between according to local context, can lead
to acoustic outcomes that are equivalent for the listener. For instance, speakers
can make use of alternative vocal tract configurations to achieve speech sounds
when articulatory freedom is constrained (Lindblom et al., 1977). Immediately
adjacent speech sounds also condition the selection of alternative articulatory
configurations, so as to minimize the articulator movement required (e.g. Boyce
& Espy-Wilson, 1997). This reconfiguration can be thought of as analogous to
switching between gaits in locomotion.

More global contextual factors such as prosody and speech rate can also lead to
gestural reconfiguration in the execution component, for instance in coda con-
sonant resyllabification, whereby a consonant may be realised in a way more
similar to an onset consonant (Scobbie & Pouplier, 2010) in rate-scaling exper-
iments. Similarly, anti-phase synchronisation of gestures tends to reconfigure
to in-phase synchronisation as rate increases (Kelso et al., 1986); for instance
in West Andalusian Spanish, Parrell (2012) finds that speakers shift from anti-
phase oral-glottal coordination in sequences like ['ka."ta] from /casta/, “caste”
(with preaspiration before the [t]) to in-phase coordination ['ka.t"a], by making
the tongue articulation of the /t/ earlier so it occurs at the same time as the
glottal opening.

Alternatively, the speech planning apparatus might be purely linearly up- or
down-regulated in response to changes in required speaking rate. This is the
case for motor tasks where temporal precision is required, in both gross motor
movements (Wright & Meyer, 1983), and fine movement requiring extensive co-
ordination, such as piano playing (Bella & Palmer, 2011).

5.1.2 Approach adopted in this study

We extend the metaphor of gaitedness to the psychological system of speaking

rate control. We ask whether there are multiple cognitive gaits in speech plan-
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ning that resemble locomotive gates. Without a choice of gaits, the cognitive
regimes adopted to achieve different speaking rates would be similar in nature,
but only quantitatively different. In other words, the difference between the
regimes required to produce slow and medium speech would be similar to the
difference between the regimes required to produce medium and fast speech.
This is akin to only having one gait, which can be sped up or slowed down lin-
early. Alternatively, with multiple gaits of speech planning, the regimes would
differ from each other in a non-linear way, with a qualitative difference between,
for instance, the regimes adopted for slow rates (walk-speaking) and the regimes
adopted for fast rates (run-speaking).

We address the question of how speakers control speech rate. More con-
cretely, we aimed to ascertain how the cognitive regimes that are associated
with each speaking rate relate to each other, to assess if multiple gaits might be
present. To do this, we constructed a family of computationally implemented
connectionist models of the formulation phase of speech planning (strand 1),
and explored how each model variant could be optimised to mimic the temporal
properties of natural word productions taken from a speech corpus elicited at
different cued speaking rates. We then evaluated the performance of the opti-
mised model variants. This process allowed us to identify optimal model param-
eter settings associated with producing speech at a given rate, which provide a
window onto the arrangement of the regimes of the underlying cognitive sys-

tems (strand 2).

Computational model (strand 1)

A computational model of the speech planning system provides a psycholinguis-
tic sandbox to explore how the regimes adopted to achieve speech at different
speaking rates relate to each other. We propose such a computational model,
EPONA. EPONA has parameters that determine its behaviour (controlling fea-
tures such as rate of activation spreading, rate of activation decay, and connec-
tion weightings). These parameters can be optimised to cause the model to op-
timally fit speech data produced at different speaking rates. The sets of param-
eter values chosen by the model for each rate condition mirror the regimes of
the cognitive system that the model emulates. More concretely, we adopted an
optimisation procedure which identified the parameter values required to fit the

distributions of three durational features measured from elicited productions of



68 5 Simulating speaking rate control

disyllabic words: first syllable durations, second syllable durations and overlap
durations. The distributions of these durational features together form a ‘fin-
gerprint’ of the regime of the speech production system engaged to achieve that
speaking rate. This process was repeated for three different speaking rates: fast,
medium and slow.

The theoretical model that we selected as inspiration for EPONA is that of Dell
et al. (1997). The model is a good starting point since it captures the ability to
produce sequences of elements from a hierarchical structure. The model sepa-
rates the encoding of the segmental content of the word from the encoding of
the metrical structure (the ordering and timing of the segmental content, and
supra-segmental content such as word stress). EPONA inherits this property.

How do regimes relate to each other? (strand 2)

The parameters of the EPONA model can be thought to represent the regimes of
the cognitive system that underlie natural speech production at different rates.
The different regimes of the system exist as locations in a multi-dimensional
‘parameter space’, where the parameters form the dimensions.

With a sample of three speaking rates, and assuming that each rate is associ-
ated with a single regime, there are five logical possibilities for how the regimes
might be arranged with respect to each other. (1) The cognitive system has a
single gait, and different speaking rates are achieved by continuous adjustment
of this single gait. This is akin to only walking, but walking at three different
speeds. (2) The cognitive system has three gaits, one for each speaking rate.
These three gaits are qualitatively different, like walking, trotting, and galloping
in horse locomotion. The cognitive system has two gaits, grouping the medium
speaking rate with either the slow rate (3) or the fast rate (4). Finally, (5) The
cognitive system has two gaits, a habitual gait adopted for the medium speaking
rate, and an exceptional gait adopted for slow and fast speaking rates. This fifth
option supposes that there is a default gait for the most frequently used speed,
and that a fall-back ‘all purpose’ gait is adopted for other rates.

In the single-gait scenario, the three regimes would be arranged along a single
axis in parameter space. In a multiple gait scenario, the three regimes would be
arranged in a triangle in parameter space. Each side of the triangle is potentially
the axis of a gait to which two regimes belong. For each axis, if both speaking

rate regimes belong to the same gait, we would expect a continuous, linear vari-
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ation in the predictions of models fitted at points along the axis. If, however, the
two regimes belong to different gaits, we would expect to see a non-linearity at
some point along the axis, indicating a shift from the area of parameter space as-
sociated with one gait to the area of parameter space associated with the other.
To distinguish between the single and multiple gait scenarios, we examined the
results of the optimisation procedure undertaken in strand 1 to identify the ar-
rangement of the regimes in parameter space. To distinguish between various
two- and three-gait scenarios, we fitted additional models at points along the
axes between the three regimes, and assessed the predicted ‘fingerprints’ for
(non)-linearity by means of Bayesian statistical modelling.

In Section 5.2, we will discuss previous approaches to modelling serial order-
ing in speech production. The mechanics of the proposed model are discussed
in Section 5.3. We then present the corpus of speech data that we test against,
in Section 5.4. We then turn to the methods and results applied to answer the
research questions of each of the strands in turn in Section 5.5 (strand 1) and
Section 5.6 (strand 2).

5.2 Serial order in speech production and the Dell et al.
(1997) model

The core task of the formulation process is to ensure that after a lexical con-
cept becomes active at the conceptual-formulation frontier, the gestural scores
required to produce it become active at the frontier between formulation and
motor execution. In this article, we will follow Levelt et al. (1999) and Tourville
and Guenther (2011) in assuming that the gestural score representation encodes
the relative onset and offset times of abstract gestures (comparable with the ges-
tures described by e.g. Browman & Goldstein, 1992) of a single syllable, and that
this representation is shared by formulation and motor execution to allow acti-
vation to spread. In the execution component, a more concrete motor plan and
auditory and somatosensory expectations are retrieved for this gestural score
(Tourville & Guenther, 2011; Guenther, 2016b).

A naive connectionist model of this process might assume direct connections
from each word node to the relevant syllable nodes. Asking such a model to pre-
dict the temporal organisation of a multisyllabic word such as the Dutch word

snavel /'sna:.val/ ‘beak’, however, will fail: /'sna:/ and /val/ will become active



70 5 Simulating speaking rate control

simultaneously. A successful model therefore needs to account for serial order;
the fact that sequences of speech sounds are overwhelmingly often produced in
the correct order (one or two errors per 1,000 words; Garnham et al., 1981), de-
spite the subunits of each word presumably being activated from a single word-
level parent node.

It is not trivial to construct a model that, in response to activation in a single
parent node, can activate and then deactivate child elements in a sequence in
turn. In the speech production domain, the most prominent model to deal with
serial ordering is that of Dell, Burger and Svec (1997, hereafter the DBS model).
Dell et al. enumerate the requirements of serial ordering: preparation of the fu-
ture, activation of the present and suppression of the past. That is, an ideal model
should (1) prime upcoming syllables, (2) activate them at the correct time and

(3) deactivate them once they have been produced.

plan nodes

frame nodes

structure
nodes

content
nodes

Figure 5.1: An instance of the EPONA model containing the nodes necessary to produce
the Dutch disyllabic words wafel ['wa:.fal] ‘waffle’, navel ['na:.val] ‘navel’ and
snavel ['sna:.val] ‘beak’. The segmental route is shown with red dashed con-
nections. At the top level, there is a unique plan node for each word. Frame
nodes are shared between words with the same metrical structure (wafel and
navel both have a 'CV.CVC structure, so are connected to the same frame node).
Each frame node has multiple output ports (here numbered 1 and 2), one as-
sociated with each child element of the sequence. Each port is connected to a
structure node. In turn, each structure node is connected to all content nodes
representing syllables with the relevant metrical structure. Structure nodes
and content nodes are also shared between words. Multiplication in the con-
tent nodes (represented by asterisks) ensures that only syllables receiving in-
put from both routes become active.

An example instantiation of the EPONA model capable of producing three
Dutch disyllabic words is illustrated in Figure 5.1. The word-level input ‘plan
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nodes’ are shown at the top of the model. At the bottom of the model are the
syllable-level gestural score ‘content nodes’. In between, there are two top-down
routes along which activation can flow. The first route connects the plan nodes
directly to the content nodes (shown with dashed red lines in Figure 5.1). The
connections of this route are responsible for encoding the segmental content of
the word, so we term it the ‘segmental route’. The second route is responsible for
maintaining correct serial order of syllables and encoding the metrical structure
of the words by means of a frame node, which represents the word-level metri-
cal structure, so we term it the ‘metrical route’. The concept of separating the
planning of segmental content and metrical structure into separate streams and
employing a frame to enforce serial order is well established in framed-based
psycholinguistic models of the production system (Bock, 1982; Dell, 1986; Gar-
rett, 1976; Levelt, 1989; MacKay, 1972; Shattuck-Hufnagel, 1979; Stemberger,
1991). Note that throughout this article, C indicates a consonant, V indicates
avowel, ' indicates the syllable with primary stress, while . indicates the syllable

boundary.

Frame-based models have two key advantages compared to models without
them. Firstly, because they separate information about sequential ordering from
segmental information, they can explain the ordering of novel sequences with-
out additional learning;: if the correct frame and the correct content are known,
previous separate experience with the frame and the content can be combined to
produce the sequence correctly. Secondly, they account for the observation that
errors where sub-elements are misordered within a sequence are overwhelm-
ingly outnumbered by errors where elements from the same position in the se-
quence exchange (‘caterpillar’ —‘patterkiller’) or are copied between adjacent
sequences. A model without frames would predict much more frequent misor-
derings of the elements within a sequence than is observed (Boomer & Laver,
1968; MacKay, 1970; Vousden et al., 2000; Vousden & Maylor, 2006).

The metrical route is shown in Figure 5.1 with solid black arrows. Aside from
the frame node, there are structure nodes, which are connected to all content
nodes sharing a metrical structure at the syllable level. The first connection in
the metrical route passes activation from the plan node to the relevant frame
node. The frame node has an output port for each syllable in the word, so in our
case, two ports. The first port is connected to a structure node for the metrical

shape of the first syllable of the word. The second port is connected to a struc-
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Figure 5.2: The activation patterns produced by the frame node for port 1 (purple, solid)
and port 2 (green, dashed).

ture node for the metrical shape of the second syllable of the word. A mechanism
within the frame node ensures the activation initially flows primarily from the
first port, and subsequently from the second port; we will address the nature
of this mechanism and the activation flows it generates shortly. The structure
nodes therefore receive activation asynchronously: first the structure node rep-
resenting the shape of the first syllable becomes active, and then the structure
node representing the shape of the second syllable. The structure nodes spread
their activation to all the content nodes that share that structure. In the content
nodes, the incoming activation from the metrical route is multiplied by the in-
coming activation from the segmental route, meaning that non-zero activation
must be received from both streams for the content node to become activated.
The activation in the content nodes can be considered to be the output of the
DBS model.

We will now turn to the frame node, which generates activation streams for
each syllable in response to receiving activation from the word node above it.
The DBS model is agnostic regarding the precise nature of the serial order mech-
anism employed in the frame node. Rather than including a pure-connectionist
mechanism such as a competitive queue in the frame node (e.g. Hurlstone et al.,
2014), Dell et al. (1997) construct a transparent model that exhibits serial-order
behaviour. This has the advantage of simplicity and interpretability.

In the EPONA, the frame nodes directly produce parametrically defined acti-
vation patterns for each of the ports after they receive activation from the plan
node. The ports can produce activation at three (parametrically defined) activa-
tion levels: baseline activation, partial activation, and full activation.

Activation is produced at these levels in a specific order (depicted in Fig-
ure 5.2). Before word onset, both ports produce baseline activation. The acti-

vation pattern for the first port (solid lines) begins with a period of partial acti-
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vation, then a period of full activation, then baseline activation. The activation
pattern for the second port (dashed) begins with baseline activation, then par-
tial activation, then full activation, then baseline activation. The second port is
therefore producing the same pattern as the first port, but delayed by the dura-
tion of one period. The partial activation level is proposed by Dell et al. (1997)
as a means to prime the ‘future’ (the next content to be produced). The full ac-
tivation level is associated with activating the ‘present’ (the content currently
being produced). The baseline activation state serves as the baseline for ports
connected to items that have not yet been produced, and is also associated with

deactivating the ‘past’ (content that has already been produced).

5.3 Mechanics of the model

Dell et al. (1997) describe a mechanism that accounts for serial order behaviour
in speech production. They used the model to predict probabilities of speech er-
rors. Error probabilities were calculated directly from predicted activation lev-
els. To do so, it was not necessary to extract precise onset and offset times from
the model. Rather than examining errors, we seek to understand how speakers
adjust their speaking rate in correct utterances. To do so, we propose EPONA,
a model that borrows its conception and underlying connectionist architecture
from DBS. EPONA is able to to predict the onset and offset times of syllable level
planning units, and to model differences between speaking rates. EPONA differs
from DBS in the specification of the timing behaviour of the frame node, and
extends it to add a rudimentary operationalisation of the execution component.
EPONA is implemented computationally, and is tested with speech timing data,
rather than speech error proportions.

5.3.1 Timing in the frame node

The DBS model assumes that all the periods of the activation patterns associ-
ated with the ports of the frame node have equal duration. A model with this
assumption is sufficient for the prediction of the rate of serial order errors, but
it is improbable that such a model will be successful in fitting the relative onset
and offset times of syllables in real speech, where the durations of syllables in
a word are rarely equal (varying as a product of, among other things, the num-

ber of segments, the specific segments involved, the stress status of the sylla-
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Figure 5.3: The activation patterns produced by the frame node for port 1 (purple, solid)
and port 2 (green, dashed) in the asynchronous and synchronous model vari-
ants. The duration of each step in the activation patterns is controlled by vari-
ous parameters, depending on the model variant (such as dury, see text for full
details).

ble, and phonological processes such as final lengthening: Booij, 1995; Slootweg,
1988; Cambier-Langeveld et al., 1997). There are (at least) two ways that this con-
straint could be relaxed to allow the duration of full activation on each port to
differ (and thus the overt production of each syllable), which should make the
frame node more effective in encoding the metrical properties of the word shape
it represents. These possibilities are described in the remainder of this section.
We construct variants of EPONA consistent with each possibility.

The present implementation of EPONA produces only disyllabic words, but
the mechanisms described here could be adapted to produce more syllables. In
the following descriptions, we again assume a model producing disyllabic words,
and refer to two frame node output ports, though, of course, frame nodes encod-
ing the metrical structure of words with more syllables are also possible, where
further ports would be required.

Asynchronous model

The first option to relax the equal duration constraint is to allow the durations of
the periods of the activation pattern associated with each output port to differ.
Thus, under this variant, the two ports are potentially out of sync relative to
each other after word onset, because one parameter controls the durations of
the activation periods output by the first port, and the other parameter controls
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the durations of the output of the second port. An example of a possible set of
frame output patterns produced by this variant is depicted in the upper cell in
Figure 5.3. This variant requires two parameters: durg and dur,. These control
the duration in ticks of all phases of the output of port 1 and port 2 respectively.

Synchronous model

Alternatively, synchronisation between the activation patterns could be main-
tained, such that when port one is outputting full activation, port two is out-
putting partial activation, but allowing the durations of each pair of steps to
differ. This means that both ports always switch activation level at the same
moment, but the amount of time that elapses between these switching events
may vary. An example of a possible set of frame output patterns produced by this
variant is shown in the lower cell in Figure 5.3. This variant has four duration pa-
rameters: durg, dury, durq, and durs, defining the duration of four phases that
occur simultaneously in both output patterns - that is, the parameters all have
influence on the activation patterns emitted from both ports. The parameter
durg defines the duration of the first phase, where port 1 outputs partial activa-
tion and port 2 outputs baseline activation. The duration of the second phase,
where port 1 outputs full activation and port 2 outputs partial activation is spec-
ified by dury. The duration of the third phase, where port 1 outputs baseline
activation and port 2 outputs full activation is defined by dur,. The duration of

the final phase, where both ports output baseline activation, is defined by durs.

Control model

We also constructed a control model variant that retains the timing structure de-
scribed by Dell et al. (1997). The model variant performed poorly relative to the
asynchronous and synchronous model variants, as expected. Full details about
the control model variant are available in the online supplementary materials.

5.3.2 Execution component

To calculate the onsets and offsets of each syllable, we need to connect a model
of the execution phase of speech production to the formulation phase. Our con-

ception of the execution phase is straightforward; we assume that the duration
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of strong activation of a syllable output node is linearly related to the dura-
tion of articulation of that syllable (c.f. Tourville & Guenther, 2011). To iden-
tify strong activation, we compare the activation of each syllable node over time
to a syllable-specific threshold. Syllable-specific thresholds are used to account
for variability in the magnitude of activation change in each syllable position.
When the activation first exceeds this threshold, we consider syllable produc-
tion to start, and when it decreases below the threshold again, we consider syl-
lable production to stop. This procedure is fully specified in Section 5.5.1, and
is functionally equivalent to assuming that execution faithfully reproduces the
temporal dynamics of formulation, and that continuing activation from formu-

lation is necessary during articulation.

5.3.3 Computational implementation

The EPONA model is programmed in Python 3, using the NetworkX library (Hag-
berg et al., 2008, version 1.11), in which nodes and connections between them
are defined and the spread of activation from node to node can be computed
as a function of time. The optimisation and learning of the model is also pro-
grammed in Python, using the Platypus library (Hadka, 2017, version as of April
2017).

5.4 Speech corpus

The model requires speech data to compare against. In this case, speech data
were taken from the PiNCeR corpus gathered by Rodd, Bosker, ten Bosch, et
al. (2019a, Chapter 4), which contains speech recordings and is annotated for
word and syllable onset and offset times in (‘'CV.CVC and 'CCV.CVC) disyllabic
Dutch words. The speech was elicited by means of cued picture naming, whereby
twelve speakers named pre-familiarised line drawings presented in sets of eight
on a ‘clock face’ display. The words that were elicited are provided in the online
supplementary materials. The picture to be named was indicated by a cueing
dot, which moved clockwise from picture to picture, at slow (915 ms/word, 1.09
Hz), medium (646 ms/word, 1.56 Hz) and fast (456 ms/word, 2.19 Hz) rates. These
speaking rates were selected on the basis of a pilot experiment where speakers
were not cued, but instead encouraged to speed up or slow down as much as they

could. These rates fall within the range of rates measured in the Switchboard
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corpus of spontaneous speech (Greenberg et al., 2003), but are all slower than
the median rate in that corpus, and are slower than an estimate of mean rate
for Dutch speakers of similar demographics (Quené, 2008). This is likely because
the picture naming task, which included only middle-to-low frequent concrete
nouns, was relatively hard compared to conversational speech, which includes
many closed class words that are fast to plan.

The word onset and offset times were obtained by a multi-step process. First,
forced alignment using MAUS (Schiel, 2015) was applied to each trial (set of eight
pictures). The resulting word boundaries were subsequently checked by a panel
of experienced annotators, who evaluated whether the segmentation was accu-
rate or not. Finally, the panel of annotators adjusted the boundaries of words
that were marked as inaccurate in the previous step. Since the words were disyl-
labic, the onset of the first syllable and the onset of the word were simultaneous,
and the offset of the second syllable and the offset of the word were simultane-
ous. To detect the onset of the second syllable, and the offset of the first syllable,
a metric was employed to quantify the stability of the acoustic signal. Height-
ened acoustic instability was equated with temporal overlap between the gestu-
ral score encoding the first syllable and the gestural score encoding the second
syllable. For further details about this metric, see Rodd, Bosker, ten Bosch, et al.
(2019b, Chapter 2).

The corpus contains 4,023, 3,575, and 2,627 word tokens for the slow, medium,
and fast rate conditions, respectively. The size of the corpus sections differ pri-
marily due to more frequent speaker error and less successful forced alignment
in the faster conditions. However, within each speaking rate section, the re-
maining tokens were evenly distributed across the target words, and the pro-
portion of 'CV.CVC versus 'CCV.CVC words was comparable between the corpus
sections (29.7%, 29.9%, 30.6% 'CV.CVC words for fast, medium and slow rates,
respectively). !

The distributions of the first and second syllables and the overlap between
them are shown for each cueing rate condition in Figure 5.4. The rate condi-
tions differed significantly on all of these metrics (Rodd, Bosker, ten Bosch, et al.,
2019a). Also, the durations of the second syllable are consistently longer than the
durations of the first syllable, which is to be expected given the metrical struc-

!Note that statistical testing to confirm whether or not the corpus sections differed is not
appropriate, since the sets of words here are closed populations, rather than samples from some
larger population (Sassenhagen & Alday, 2016).
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Figure 5.4: The distributions (violins) of the durations measured in the PiNCeR corpus,
separated by rate condition. These form the three ‘fingerprint’ distributions
that the model seeks to mimic.

ture was consistently either 'CV.CVC or 'CCV.CVC, and that an utterance-final
lengthening process in Dutch tends to counteract reduction of unstressed final
syllables in utterance final position (Booij, 1995; Slootweg, 1988).

5.5 Training and testing the computational model (strand 1)

Strand 1 concerns the construction of a family of computationally implemented
connectionist models of the formulation phase of speech planning, optimisation
of the model variants to mimic temporal properties of natural speech produc-

tion, and evaluation of the performance of the model variants.

5.5.1 Methods: evaluating the performance of model variants

Our aim in strand 2 was to apply simulation of the EPONA to reveal how the
cognitive system underpinning speech production can be modulated to achieve
speech at different speaking rates. To achieve this, we require the model to simu-
late the performance of human speakers using different rates in strand 1. How-
ever, it is not straightforward to evaluate how well a model simulates human
speech production.

We consider the set of distributions of first and second syllable duration and
overlap duration in each rate condition of the PiNCeR corpus as a ‘fingerprint’
of the speech production system operating at that speaking rate (see Figure 5.4).
Together, the fingerprint distributions capture more about the regimes of the
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speech production system than only the average durations of the syllables and
the overlap between them would do, because the variation present in the dura-
tions is a product of variability inherent to the production system operating in
a given regime. Since we are not concerned with individual differences between
participants, but, instead with characterising the regimes of the speech produc-
tion system more broadly, we collapse across the 12 speakers when constructing
the fingerprint distributions. The distributions of the data in the corpus shown
in the violins in Figure 5.4 are therefore identical to the fingerprint distributions
used to fit the models. Model optimisation is then conducted independently for

each speaking rate.

Optimisation procedure

The Platypus (Hadka, 2017) implementation of the NSGAIII (Deb & Jain, 2014)
algorithm was used to find the best parameter values in each speaking rate for
each model architecture. The fitting procedure is depicted in Figure 5.5. The
optimiser must find a set of parameter values that produce a prediction that is
a good fit for all three fingerprint distributions simultaneously. In line with the
optimisation literature, we will term such a set of parameter values a solution.
Since the model produces a distribution for each of the three fingerprint distri-
butions, we obtain three estimates of fit quality for each solution tested: one for
each distribution. In the optimisation literature, such a quality estimate that is
to be maximised or minimised is termed an objective. We obtain independent
estimates of fit quality, in the form of the Kullback-Leibler (K L) divergence for
each objective.

The K L divergence is a commonly used measure of the dissimilarity of two
distributions, where a lower K L divergence indicates more similar distribu-
tions. By definition, its magnitude is dependent on the variability of the ob-
served distribution. In our case, the variability of the observed duration distri-
butions differs substantially between the three objectives. This means that the
scales of the K L divergences calculated for each of the three objectives are not
directly arithmetically comparable. We have no theoretical reason to prefer that
the model concentrate on learning to fit one of the objectives ahead of the oth-
ers, but simply summing (or averaging) the K L divergences would place undue
weight on one of the objectives. We must therefore consider all three objectives

together. Such an optimisation problem with multiple independent estimates
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of fit quality (or objectives) that cannot be straightforwardly collapsed is known
as a multi-objective problem. Typically, there is no single solution that is opti-
mal for all objectives: solutions that work well for one objective may be poor for
another. Instead, the optimisation algorithm aims to identify the solutions that
are Pareto efficient, that is, the fit that they achieve for one objective cannot be
improved upon without worsening the fit for one of the other objectives. This
set of Pareto efficient solutions is termed the Pareto front.

Alongside the complication of multiple objectives, our models also have mul-
tiple free parameters to be optimised (between 11 and 14 depending on model
variant; a full listing of parameters is available in the online supplementary ma-
terials), and are computationally expensive (time consuming) to evaluate be-
cause we simulate activation spreading through the network for each and every
solution, and require multiple repetitions to simulate the fingerprint distribu-
tions. A complex error landscape with more than a handful of free parameters
can prove difficult to search effectively; a classical method such as grid search,
where evenly spaced points in the parameter space are sampled, requires pro-
hibitively many model evaluations to get good coverage, and still runs the risk
of missing good solutions between the sampled points. We suspected that our
parameter space might be quite complex, containing multiple clusters of good
solutions in each rate condition. For these reasons, we selected NSGAIIIL. NS-
GAIII belongs to a class of optimisation algorithms that accumulate knowledge
about the search space over time (in multiple ‘generations’ of learning ‘agents’).
This means that the search can become gradually more focused on promising
regions of the space. NSGAIII combines the ability to solve multi-objective prob-
lems with active preservation of diversity in the solutions it retains from genera-
tion to generation, making it suitable to search a space with many local minima.
Other search methods such as Particle Swarm Optimisation have a tendency to
converge early: that is, they are poor at exploring spaces where there are local
minima (plausible solutions that are good, but not as good as the best solution

in the space) at different positions (Kennedy, 2011; Peer et al., 2003).

In the remainder of this section, we will discuss the workings of the evolution-
ary algorithm in more detail, and then describe the procedure for evaluating the

fit of the models, and the procedure employed to train the models.
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Evolutionary algorithm

The NSGAIII (Deb & Jain, 2014) algorithm mimics evolution in biology. The evolu-
tionary process begins by spawning a population of agents. An agent is a carrier
of a ‘genome’ (set of parameter u and o values, which define the central ten-
dency and spread of distributions associated with each model parameter) that
interacts with other agents to explore the parameter space. In each generation,
the genome of the agent is varied somewhat by processes of mutation. Therefore
each agent tests a different solution in each generation.

At the start of the optimisation procedure, we spawn 464 agents, a population
size recommended by the Platypus package based on the number of free param-
eters of the model variant with the most free parameters (Hadka, 2017). For the
first generation, the parameter y values for each agent (that agent’s genome) are
sampled from relatively broad normal distributions centred around values that
we identified in pre-testing as producing plausible activation sequences (step 1
in Figure 5.5).

The model is then evaluated using the parameter u and ¢ values associated
with each agent for that generation, resulting in a fitness score for each finger-
print distribution for that solution. The simulation of the model and the pro-
cedure for evaluating a solution are described in Section 5.5.1; steps 2 to 6 in
Figure 5.5. The fitness scores are Kullback-Leibler divergences between the ob-
served and predicted fingerprint distributions.

Once all agents in the generation are evaluated the Pareto optimal solutions
are selected. Formally, a solution b can be said to dominate another solution a
(denoted a < b) if it has a lower score on at least one objective whilst not hav-
ing a higher score than a on any objective. The Pareto front is therefore the set
of solutions that are not dominated by any other solution. The solutions of this
first ‘Pareto front’ are assigned a rank of 0. From the remaining unranked pop-
ulation, a new set of solutions that are Pareto optimal in the smaller population
are identified, and assigned a rank of 1. This procedure is repeated to find sub-
sequent fronts, with the agents in the third front being assigned a rank of 2, and
so on, until all agents are ranked.

The agents are then entered into selection ‘tournaments’, in which two agents
are randomly drawn from the population, compared, and the agent with the
lower rank is retained. The losing agent is discarded from the population and no

longer contributes to future generations. Further tournaments are performed
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until all agents have competed once (step 7 in Figure 5.5). This has the advent-
ageous effect that all agents from the best rank will be retained, all agents from
the worst rank will be excluded, and that agents from the ranks in between have a
gradually decreasing chance of being retained. This, along with a further mecha-
nism to preserve agents in under-represented parts of the parameter space (Deb
& Jain, 2014, p. 582), means that the retained agents represent, broadly, the best
half of the initial population, but that, simultaneously, variability is maintained,
which ensures that the optimisation procedure searches the ‘bumpy’ parameter
space effectively.

Then, the evolution stage begins (step 8). The remaining agents are randomly
paired up and recombined to make offspring by the Simulated Binary Crossover
operator (Deb et al., 2007; Deb & Agrawal, 1995), which simulates the mixing of
two genomes in sexual reproduction. For each pair of parents, for each value in
the set of parameter p or ¢, a polynomial probability distribution is constructed
around each parent value. Two sets of child values are then sampled from the
mixture distribution (Deb & Agrawal, 1995). This results in child agents that com-
bine traits from each parent agent. The parents and the children together form
the population for the next generation of evaluation, competition and recombi-
nation, after having been subjected to further random mutation by the Polyno-
mial Mutation operator, where a perturbation is sampled for each parameter p
or ¢ value from a polynomial distribution centred at zero (Deb & Agrawal, 1995;
Deb & Goyal, 1996). Because of this mutation step, specific solutions are usually
not repeated in subsequent generations, and the overall fitness of a next gener-
ation may be worse than a previous generation, but in general the optimisation
procedure will result in improved scores over time. In our implementation, 5000

generations were run (see Section 5.5.1 for more details).

Evaluation of a solution

The process of evaluating the set of parameter p and ¢ values associated with an
agent is illustrated in Figure 5.5 (in the green box), and described in detail below.
The aim of this evaluation procedure is to assess how well each set of parameter
u and ¢ values mimics the observed fingerprint distributions. This requires us
to construct a distribution of each of these variables.

To construct the predicted distributions, we run the model 50 times with each

set of parameter y and ¢ values. In each of the 50 repetitions, a small amount
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of noise is added to each parameter y value, sampled from a normal distribution
centered at 0, the standard deviation of which is defined by the parameter ¢
value. These noisified model parameters are used to construct an instance of the
model variant to be tested, with node properties and connection weights defined

by the model parameters (step 2; see also the online supplementary materials).

The model keeps time internally using a unit that is 9 ms long, a ‘tick’; acti-
vations are recalculated once per tick. This value was arrived at by pretesting
with models where the number of ms that each tick represents was learnt along
with the other parameters. In the simulations reported here, the duration (in
ms) of a tick was held constant across word productions. A unit of this order of
magnitude is convenient because it allows sufficiently detailed sampling (e.g. the
shortest segments are still represented by several ticks) but allows faster com-
putation than a shorter tick length (c.f. typical window shift of 10 ms in MFCC
measurements, Young et al., 2006).

Each model is run for 600 ticks (that is, we calculated the activations in the
network 600 times) which amounts to 5400 ms, a duration long enough for the
word to be produced and the activation of all nodes in the network to return to

baseline, whatever the speech rate condition.

Activation of the plan node always occurs after 4 ticks, and persists for 28 ticks
at a constant activation level determined by a model parameter. After 28 ticks,
the activation in the plan node decays, at a decay rate determined by a model
parameter. These values were also arrived at during pretesting, where these pa-
rameters were allowed to vary. Holding these parameters constant across con-
ditions ensures that the differences between speech rates emerge in the nodes
contained in our model, rather than resulting from higher level processes that
we assume to be responsible for activating the plan nodes. The activation in the
plan node spreads through the nodes of the network, finally reaching the con-
tent nodes (step 3). The time courses of the activation in the content nodes of
the model are extracted, and the resulting time courses are linearly interpolated
every 0.1 ticks (step 4), yielding time courses k;_, over a range of times ¢, for each
syllable s.

Next, we need to establish the times where we suppose that the activation
in the content nodes is sufficient to result in production of the syllable. We do
this by comparing the interpolated activation time course k;, against a separate
threshold 6, for each syllable s. The threshold for each syllable is calculated
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as the sum of a constant which is the same for all syllables, and a weighted ex-
ponential moving average of previous activations in the relevant content node.
This means that the threshold gradually increases in response to activation in
the content node, mimicking short term adaptation to the activation.

To calculate the threshold, we need to calculate the moving average activa-
tion. We calculate the average over a Gaussian kernel. Firstly, a weighting factor
«a is calculated, to cause the moving average activation to operate over a span
of 9 ticks (90 observations with one observation every 0.1 ticks). The moving
average activation my_ at a given time ¢ for a given syllable s is then calculated

recursively from the activation time series k;,:

kta t= ]-a
mts =
Oékts + (1 — Oé)t_l, t>1. (5.1)
2
= = 0.022
“T90+1

Then, the threshold 6, is calculated as the sum of the offset u, which is a
model parameter, ‘threshold_constant’, and the moving average activation m;_,

multiplied by a weighting (¢ = 0.1, for all conditions):

0; = u+cmy (5.2)

The moment when the activation in the first syllable content node exceeds
its threshold is taken as the onset word production, and the time when the acti-
vation falls below the threshold again is taken as the offset of the first syllable.
The moment that the activation in the second syllable content node exceeds its
threshold is taken as the onset of the second syllable, and the time when the ac-
tivation falls below its threshold is taken as the offset of word production (step
5). In some instances, the model may predict multiple periods or activation for a
syllable, or no activation at all. In cases where there is not precisely one period
of activation above the threshold for each of the two syllables, no onset or offset
times are recorded for that repetition. This suggests that the set of parameters
is not very robust, and is excessively sensitive to the subtle changes introduced
by the noisification, and should be dispreferred by the optimisation algorithm.

From the syllable-level onset and offset times, the three objectives can be cal-
culated for each repetition: syllable 1 duration, between-syllable overlap, and

syllable 2 duration. The durations from each of the 50 repetitions (n,.ps) are
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collected and a predicted distribution is constructed (step 6). To score the qual-
ity of the fit achieved by the values of the parameters, the observed fingerprint
distributions p are compared to the predicted distributions ¢, for each finger-
print duration objective obj (step 7). The predicted and observed distributions
are first binned (bin width 8 ms, from -200 ms to 1000 ms relative to simulation
onset, 150 bins, 1p;,,s), and a constant floor value € of 1 x 10713 is added to the
count in each bin. The count in each bin is then divided by the sum of the counts
in all the bins:

count predicted,,;, +
DPobjp = Siine count predlctedobjb t+e (5.3)
count observed;, + € |
dobj, =

>opkine count observedy;, + €

Then, the Kullback Leibler divergence is calculated:

Nbins
Pobj;
KL(pobj>QOb] § Pobj, X logQ(qobJ ) (5-4)
i=1 007 ;

where pis the observed distribution and ¢ is the predicted distribution. K L(poy;, qob;)

is taken as the score for the objective obj.

In cases where not all of the 50 simulation repetitions resulted in a duration
(because the onsets and offsets of the syllables stray outside the period of the
binning, because the activation time series never crosses the threshold, or be-
cause the activation times series crosses the threshold multiple times), the score
was penalised by multiplying the K L by 50 (the number of repetitions, nyeps) di-
vided by the number of values present. This penalisation is intended to favour
solutions that are more stable; i.e. all 50 repetitions predicted exactly one period

of activation for each syllable:

Mbins

missing values(p, ¢) = nyeps — Z count(p, q (5.5)

Nreps .. .
scoreyy — K L(Pobj, Gobj) x e —missing values(pg) > MISSINg values < 7nyeps;
obj .
KL(pobj7QObj) X Nypeps X 1-2, otherwise.
(5.6)
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Learning procedure

To test the models, two phases of optimisation were conducted for each model
variant for each rate condition. During the first 100 generations of the optimi-
sation procedure, some of the parameters are clamped; that is, the algorithm
does not adjust them. This phase can be thought of as a rough initial search of
a dimensionally-reduced subset of the parameter space. After this phase, the
clamping of these parameters is released, and all the parameters are fine tuned
to optimise the model’s output. A full listing of the parameters, indicating which
are clamped during the first 100 generations, is available in the online supple-
mentary materials. The optimisation procedure is run for another 900 genera-
tions. During the first 1000 generations, the ¢ associated with each parameter is
linearly related to the parameter . value (o = 0.08 x p), following the observa-
tion of alinear relationship between the centre and the spread of the distribution
in, for instance, response times (Luce, 1986; Wagenmakers & Brown, 2007).

After the 1000th generation, clamping is applied to most of the parameter
p values, such that they no longer undergo changes during the evolution and
mutation phases of the NSGAIII algorithm (see the table in the online supple-
mentary materials for full details), whilst the parameter o values are released,
and therefore learnt independently. Starting with the 1500th generation, this
is reversed, and the o values are clamped and  values are learnt. Starting with
the 2000th generation, o values are again released from clamping, and p values
are clamped. From the 2500th generation, no clamping is applied. The learning
procedure is stopped after the 5000th generation (This arrangement is depicted
graphically in the shading in Figures 5.6 and 5.7).

This multi-phase approach is an attempt to speed up the overall search for a
well performing parameter set, by allowing quick rejection of unpromising ar-
eas of the parameter space during the first 100 generations, and successively
finer-grained searching in the subsequent phases. The long total run, of 5000
generations, ensured that the optimisation process was sufficiently converged

to make valid model comparisons.

5.5.2 Explicit test of the advantage of non-linearity

It is also possible to vary the fitting procedure to more directly assess the hy-

pothesis of the presence of gaits manifested as qualitatively different regimes in
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the parameter space. This ‘linear constraint’ model is functionally identical to
the asynchronous model variant, but is optimised in a different manner, to force
the parameter values found during the optimisation routine to be linearly re-
lated. Instead of conducting an independent optimisation run for each rate con-
dition, the parameters of the linear constraint model associated with all three
speaking rates are optimised together via a meta-model. This meta-model has
parameters for the slope of a line for each of the model parameters, as well as an
intercept parameter for each speaking rate. From these slopes and intercepts,
parameter values for each speaking rate are derived, and passed to instantia-
tions of the asynchronous model variant for each speaking rate. The K L scores
for each metric are gathered from the submodels, and together form the nine ob-
jectives (syllable 1 duration, syllable 2 duration and overlap duration for each of
the three speaking rates) of the multi-objective optimisation routine. For clarity
and conciseness, the results obtained from this additional model variant are re-
ported along with those of the other model variants in Section 5.5.3, where the
model variant is referred to as the ‘asynchronous model variant with linearity
constraint’.

5.5.3 Results: model performance

Conventionally, statistical comparison of models for the purpose of model se-
lection takes into account the number of parameters (degrees of freedom) that
each model has; assigning models a ‘handicap’ per extra degree of freedom to
identify the model that strikes the best balance between quality of fit and par-
simony (Akaike, 1974). In a framework where a model predicts variance, it is
fairly clear how one would go about doing this. In our case, however, the mod-
els predict the three fingerprint distributions, which we evaluate on the basis of
the Kullback Leibler divergence between the model and the observed fingerprint
distributions, rather than predicting values for each observation, from which
likelihood-based metrics might be calculated. This makes it difficult to select
a plausible handicap with which to penalise the model performance without
adding further simulations.

A typical approach to assess the performance of different variants of a model
is to directly compare their ability to fit the data after learning, by seeing how
well the target function is satisfied by each trained variant. In our case, this is

not possible because of the multi-objective nature of the problem. Recall that the
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model optimisation process results in a Kullback-Leibler score for each of the tar-
get distributions for each solution and that these scores are not mathematically
comparable across the three objectives without unduly favouring one objective
above another. We therefore needed to take a different approach to ascertain
how well the different model variants learned, and how well they ultimately
performed after training, that would not arithmetically collapse the Kullback-
Leibler scores. To assess learning over time, we adopt a metric in terms of Pareto

dominance. To assess final performance, we adopt a regression approach.

Learning trajectories

To characterise the learning trajectory of each run, we identified the Pareto
front in each generation cumulatively. This means that, for each generation,
we looked for solutions in that generation and all generations before it that
were Pareto optimal. We used loess-fitting (Cleveland & Devlin, 1988) to iden-
tify the trend in the score for each objective function in each rate condition.
These loess-fits are shown in Figure 5.6, where we can observe, very broadly
speaking, that for all three model variants, the most progress is made in find-
ing solutions that improve the fit in the overlap duration objective. Much more
restrained progress is made on improving the fit of the syllable duration objec-
tives. The asynchronous model appears to perform moderately better than the
synchronous variant on the syllable duration objectives, while the variant with
the linearity constraint never achieves scores as good as the other two variants,
with the notable exception of the syllable 1 duration objective, which performs

comparably to or slightly better than the other other model variants.

Convergence

If the model is learning, the quality of the Pareto front will improve with each
generation. Conventionally, convergence in the optimisation multiobjective
problems is assessed with the hypervolume indicator (Zitzler et al., 2007), which
calculates the volume of the dominated space between a reference point and the
Pareto front. The hypervolume indicator for our optimisation runs, normalised
to have a value between 0.0 and 1.0, is presented in the upper panels of Figure 5.7.
The value of the normalised indicator increases as the volume of the dominated
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Figure 5.6: Loess-fits of the Kullback Leibler scores (y-axis, log-transformed scale, lower
values indicate better performance) of the solutions in the Pareto front in each
generation (x-axis), for the three rate conditions (line colours), the three ob-
jective functions (rows) and three model variants (columns). The shading in-
dicates the optimisation phases of the model, orange is the phase where only
the u component of a subset of the parameters was adjusted by the optimiser,
white indicates that the 1 compoment of all parameters was adjusted by the
optimiser, purple indicates that the o component of all parameters was ad-
justed by the optimiser, and green indicates that both p and o components of
all parameters were adjusted.
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space increases. Convergence is evidenced by stabilisation of the indicator at a
value close to 1.0.

Although simple to interpret and widely applied, the hypervolume indicator
has the disadvantage of arithmetically combining the values of the objective
functions into a single fit quality metric. This is undesirable for our KL objec-
tive functions (see page 88). We therefore calculated a second indicator of model
convergence, which assesses the change in the composition of the Pareto front

after each generation.

When the model finds a new solution that is nondominated, this solution joins
the Pareto front. Sometimes, this solution falls between two others, improving
the coverage of the Pareto front, but not improving the fitness of the Pareto front
in general. Other times, the solution dominates a solution or several solutions
that were in the Pareto front in the previous generation. These dominated solu-
tions are ‘relegated’ from the Pareto front. Since we are primarily interested in
finding optimal parameters to fit the observed data, and only secondarily inter-
ested in increasing the size of the Pareto front, we want a metric that is sensitive
to the second type of new solution. Therefore, rather than counting new solu-
tions, we count the number of solutions that are relegated from the Pareto front
(c.f. Marti et al., 2009). When the optimiser has converged, no relegation events
will be observed. The lower panels of Figure 5.7 show loess fits of the proportion

of former Pareto front members that are relegated in each generation.

Both the hypervolume indicator and the relegation count metrics indicate sta-
bility after around 3000 generations, leading us to conclude that the optimisers
are sufficiently converged by the end of the 5000 generations tested.

Statistically testing model variant performance

In order to evaluate the performance of the different model variants, we need to
identify and statistically test differences in the K L scores achieved by the Pareto
front solutions of each of the model variants. Simultaneously, we need to disre-
gard variation in the K L scores as a function of objective, since K L scores for
the various objectives are not directly arithmetically comparable because of dif-
ferences in the observed distributions, as previously discussed. The same holds
for comparing models fitting different rate conditions, between which there are

also differences in the variability of the observed distributions.
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Figure 5.7: Upper panels: The normalised hypervolume indicator (y-axis) during the 5000
generations of the optimisation run (x-axis), for the three model variants
(columns). Stabilisation of the normalised hypervolume indicator at a value
close to 1.0 indicates successful convergence. For the synchronous and asyn-
chronous model variants, coloured lines indicate the speech rate condition
being optimised. Lower panels: the proportion of former front members rele-
gated from the front in each generation. See the caption of Figure 5.6 for the
meaning of the shading.
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Instead of averaging scores across objectives, linear regression with categor-
ical predictors for model variant, rate condition and objective can be used to
isolate the effect on the K L score attributable to model variant, independent of
rate condition and objective. This leads to a regression model with the following

structure (Wilkinson-Rogers notation, 1973):

KL ~ model variant x rate condition x objective (5.7)

This is a model predicting K L with categorical predictors for model variant,
rate condition and objective, and all interactions between the levels of those cate-
gorical predictors.

The K L scores were bootstrap re-sampled to introduce variation required to
perform regression modelling. The bootstrapped distributions of the K L scores
are shown in the first three panels of Figure 5.8. We took 2,000 samples with re-
placement of sets of syllable 1 duration, syllable 2 duration, and overlap duration
values from the observed dataset. For each of these samples, we calculated the
K Ls between the re-sampled observed distributions and the model’s predicted
distributions. The resulting bootstrapped K Ls were then log transformed and
z-normalised. The log transformation was necessary to de-skew the K Ls, which
obey a log distribution.

The regression model fitted the data quite well, achieving an adjusted R? value
of 0.76. The fits of the regression model for the main effect of model variant are
shown in the fourth panel of Figure 5.8, as black dots. The full table of model
coefficients is provided in the online supplementary materials.

Relative to the asynchronous model variant, the synchronous model variant
performed significantly worse (B = 0.55, SE = 0.0083, t = 66***, d = 0.52).

As discussed earlier in this section, it is not possible to draw meaningful con-
clusions from the significance of the main effects of rate condition or objective;
these were included to enable us to use the regression model to avoid arithmeti-
cally comparing K L scores calculated with different observed distributions and
therefore different scales.

Are predicted fingerprint durations plausible?

It is also informative to assess the performance of the model variants qualita-

tively, by directly examining their success in emulating the target distributions.
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Figure 5.8: First three panels: the bootstrapped distributions (violins) of the KL scores

(y-axis, smaller is better, log scale) achieved by the 0-ranked agents (the
Pareto front) for each model variant (x-axis, sync.: synchronous model vari-
ant, async.: asynchronous model variant and async. linearity constraint: asyn-
chronous model variant with linearity constraint, see Section 5.5.2 for full de-
tails) in each speaking rate condition (fill colours), in each objective (panels).
The coloured dots indicate the model fits for the three-way interaction term in
the regression model. Fourth panel: the fits of the model variant term from the
regression model (main effect shown as black dots, fits of rate condition:model
variant interaction in smaller coloured dots). 95% confidence intervals are
omitted because they are too small to be visible. Significant differences in the
main effect are indicated. The main effect of model variant is plain to see; the
asynchronous model variant performs significantly better (achieves lower KL
scores) than the synchronous model variant. The asynchronous model variant
without the linearity constraint outperforms the asynchronous model variant
with the linearity constraint.
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In Figure 5.9, we show the distributions resulting from combining the duration
distributions predicted by each member of the Pareto front of each run as solid
violins. These are compared against the target distributions measured from the
corpus (translucent violins with dashed edges).

For all three model variants, relatively good fits are achieved to the syllable
2 duration distribution, with the asynchronous model variant arguably mimick-
ing the precise shape of the distrubution somewhat better than the synchronous
model variant and the asynchronous model variant with linearity constraint. In
fitting the syllable 1 duration distribution, the synchronous model variant pro-
duces a bimodal distribution, rather than the unimodal distribution in the ob-
served data, and also fails to fit the central tendency well. The asynchronous
variant performs better, although the distributions it predicts are slightly too
narrow. The asynchronous variant with linearity constraint predicts syllable
1 duration distribution very well. In fitting the overlap duration distribution,
the asynchronous model variant performs best, fitting the central tendency well
but overestimating the spread of the distribution somewhat. The asynchronous
model variant with the linearity constraint predicts a slightly wider unimodal
distribution. The synchronous model variant again predicts a bimodal distribu-
tion where one mode matches the density peak of the observed distribution.

It should be noted that the vast majority of simulation papers in this domain
report only central tendencies. The distributional fits that we achieve seem ac-
ceptably good in (qualitative) comparison with the few psychological modelling
studies that we found that did fit distributions (Wiecki & Frank, 2013, Figure 4;
Engbert et al., 2005, Figure 10).

5.5.4 Summary of strand 1

In strand 1 of this study, we introduced EPONA, a new model inspired by the
DBS model, that was successful in predicting the temporal structure of disyl-
labic word production. EPONA provides the first computationally explicit con-
nectionist account of speakers’ ability to modulate the speech production system
to achieve different speaking rate.

The methods that we used to train and evaluate the variants of the model were
alsonovel. We adopted a framework whereby the model predicts distributions of
three objectives, which were measured from the PINCeR corpus of elicited speech
(Rodd, Bosker, ten Bosch, et al., 2019a): the duration of the first syllable, the du-
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Figure 5.9: The duration (x-axis) distributions (filled violins) predicted by three mod-
els variants (facets) at the three rate conditions (colours) for each of the
three target distributions (y-axis), compared against the observed distribu-
tions (translucent violins with dashed edges).

ration of the inter-syllable overlap, and the duration of the second syllable. We
assumed that the central tendency and the variability of these distributions to-
gether reflect the characteristics of the underlying cognitive system. This means
that during the training process, the models learned to resemble the underlying

cognitive system.

Training proceeded using an evolutionary algorithm that optimised the pa-
rameter values so as to minimise the Kullback-Leibler divergence scores asso-
ciated with each objective distribution. The success of the evolutionary algo-
rithm in learning parameter values that fitted the objective distributions for
each model variant is an index of how well suited that model variant is as a model

of the formulation phase of speech production.

Alongside the asynchronous and synchronous model variants, we introduced
a third model variant that was fitted using a different optimization regime. This
allowed us to directly test the prediction of a single gait system, where all three
speaking rates are linearly related in parameter space. This model is discussed

further in strand 2.

The asynchronous model variant without the linearity constraint performed
best on the quantitative criteria we set and offered the most plausible predicted
fingerprint durations. We therefore perform further analyses for strand 2 only

on the asynchronous model variant.
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5.6 How do regimes relate to each other? (strand 2)

To explore how executive control might be exerted on the EPONA model to
achieve different speech rates, and thereby assess whether different rates are
achieved by shifting between multiple qualitatively different ‘gaits’ of speech
production, we need to compare the best parameter values identified by the op-
timiser for each speaking rate condition. We can think of the solutions as posi-
tions in a multidimensional space where each parameter of the model is mapped
to one dimension. In such a space, the Euclidean distance between a pair of lo-
cations in parameter space represents the difference between solutions.

Note that we have assumed that only one regime exists for each speaking rate,
while of course several distinct configurations may have emerged to account for
the temporal structure of speech at a given rate. We tested for this possibility
by performing k-means clustering on the parameter values associated with each
speaking rate. The clustering did not support multiple regimes in any of the

rates; see the online supplementary materials for full details.

5.6.1 How are regimes arranged relative to each other?
Method

Having identified the best solutions for each rate, we consider how the regimes
adopted for each rate relate to the regimes adopted for the other rates. To do
this, we perform principal component analysis (PCA), which involves project-
ing the 12 parameters on which the speaking rate regimes vary onto prinicipal
components (PCs). The procedure loads as much variance as possible onto each
component in turn, whilst ensuring that each component is orthogonal to the
preceding PCs. A full listing of the parameters is provided in the online supple-
mentary materials. PC1 (the first PC) accounted for 30.0% of the variance, PC2
accounted for 11.6% of the variance, PC3 for 8.6% and PC4 for 5.3%. The loadings

of the parameters onto the PCs are listed in the online supplementary materials.

Results

Figure 5.10 shows the spread of solutions across the rate conditions in the first
and second principal components. Note that since this is a projection of multiple

dimensions into two, much variation is not visible, and points that appear adja-
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Figure 5.10: the Pareto optimal solutions identified for the fast (red), medium (green), and
slow (blue) rate conditions, plotted for PC1 (x-axis) and PC2 (y-axis).

cent on the PC1-PC2 plane depicted may be quite distant on other dimensions.
For this reason, it is not certain that medium and slow are closer together than
medium and fast, or slow and fast, although it appears so on the PC1-PC2 plane.
The optima associated with the three rates (fast in red, medium in green, and
slow in blue tones) occupy broadly different areas of the PC1-PC2 plane. On this
plane, the clusters of solutions of the three conditions are well separated, and
the spread of the solutions in the three conditions is broadly comparable.

The spatial organisation of the rate conditions on the PC1-PC2 plane is clearly
not axial in nature, ruling out the single gait account. This is in line with the
observation in strand 1 that an asynchronous model variant constrained to only
consider linear arrangements of the rates in parameter space performed worse
than the asynchronous variant without this constraint. Instead, the gaits are
arranged as a triangle, supporting a multiple gait interpretation. Decelerating
from the medium speaking rate to the slow speaking rate involves increasing PC2
while slightly decreasing PC1. Accelerating from the medium speaking rate to
the fast rate involves increasing both PC1 and PC2.

5.6.2 Which regimes belong to which gaits?
Extrapolating fingerprint durations between rate centres

The previous finding suggests that there is more than a single gait adopted by
speakers to control their speaking rate. The parameter optimisation analysis
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cannot, however, allow us to assess which, if any, of the three regimes belong to

the same ‘gait’. To assess that, we conducted a further exploratory analysis.

We calculated the mean position of each speaking rate regime in parameter
space. These means form the ‘reference’ points. Between each pair of refer-
ence points, we interpolated 5 equally spaced points along a straight line (axis)
through parameter space. Additionally, we extrapolated two extra points on
each of these axes beyond the reference points. We therefore have axes from
fast to slow, from fast to medium, and from medium to slow, that intersect at the
reference points. The arrangement is illustrated the upper panel of Figure 5.11.

We then took the parameter values associated with the location of each point,
and constructed and ran new instances of the asynchronous model with these
parameter settings, to predict the distributions of the three ‘fingerprint’ dura-
tions. Just as in the optimisation procedure, the parameters were noisified, and
50 runs were conducted (see Figure 5.5 and accompanying text for more details).
These durations, along with the word duration are indicated in the raincloud
plots in Panel C of Figure 5.11, and normalised in Panels D and E.

In Section 5.1.2, we identified five possible mappings of the speaking rate
regimes onto one to three gaits (single gait, three gaits, slow is distinct while fast
and medium are mapped to the same gait, fast is distinct, medium is distinct).
These possible mappings are depicted diagramatically in Panel B of Figure 5.11.
We directly modeled and compared the plausibility of these five hypothetical
mappings. If a pair of speaking rate regimes belong to the same gait, we would
expect the fingerprint distributions of the interpolated points between them to
follow a linear trend, and that all the interpolated points would result in plausi-
ble fingerprint distributions. If, however, the regimes belong to different gaits,
we would expect to see a non-linearity at some point along the axis, indicating a
shift from areas of parameter space associated with one gait to areas of parame-
ter space associated with the other gait, possibly with an area of ‘unproductive’
parameter space in between where non-plausible fingerprint distributions are

predicted.

We tested the presence of linearity in the axes through statistical modelling
of the simulated durations depicted in the lowers panel of Figure 5.11. We con-
ducted both Bayesian (MCMC sampling) and non-Bayesian analyeses using linear
regression models and generalised additive models (GAMs, Wood, 2017). Both
types of model were multivariate, in that they fitted the simulated durations
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of the three axes simultaneously in a single model. The results of the two ap-
proaches were comparable. For brevity, only the Bayesian analysis is reported

here. The GAM analysis is reported in the online supplementary materials.

Bayesian linear switchpoint regression

For each axis of the extrapolated fingerprint duration data, we regressed the
normalised fingerprint durations by the number of the step along the axis. The
Bayesian models allow us to identify the locations in parameter space of the
switchpoints along the axes, and additionally exploited variation in the distri-
bution along the length of the axes.

Axes could be modelled with either a ‘uniform’ linear fit, or a ‘switching’ fit
that permitted non-linearity. The uniform fit predicted normalised duration
(both u and o) by the step number, with distinct slope and intercept parame-
ters for each component x axis combination for p and o. The switching fit split
the axis into two halves at a fixed switchpoint, and fitted a separate regression
with separate parameters for each half. For each axis, different fixed switch-
points were tested, namely between steps 4 and 5; between steps 5 and 6; be-
tween steps 6 and 7; or between steps 7 and 8. This means that different num-
bers of models were required for each mapping, ranging from 1 model for the
‘no gaits’ mapping, to 64 models for the three ‘distinct gaits’ mapping (43). A
Student ¢ distribution was used as the likelihood. This has heavier tails than a
normal distribution, meaning that it is a form of robust regression and can bet-
ter accomodate heteroskedasticity. For all slope and intercept parameters, mild
N(0, 1) priors were applied, which makes the assumption that most effects are
smaller than Cohen’s d = 1 and nearly all effects are smaller than Cohen’s d = 2.
The fit resulting from the model fitting the ‘fast is special’ mapping is depicted
in Panel E of Figure 5.11, by way of example.

For each model, 8 chains of 8000 samples (of which 4000 warm up) were sam-
pled by NUTS in RStan (Stan Development Team, 2018, version 2.18.2). No con-
vergence issues, assessed by the Gelman-Rubin diagnostic R, effective number
of samples and visual inspection of traceplots, were noted for any of the models.
Full details of the Bayesian linear switchpoint analysis are available in the online

supplementary materials.
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Figure 5.11: Panel A: The extrapolated axes projected onto the PC1 (x-axis) - PC2 (y-
axis) plane through parameter space. Each black point indicates a location
at which the model was run and fingerprint distributions were calculated.
Behind, the optimal solutions identified by the optimisation procedure are
shown (See Figure 5.10 for details). Panel B: the hypothetical mappings
of rates to gaits, represented diagramatically, enclosing lines indicate rates
achieved by the same gait. Panel C: the distributions of the durations (y-axis),
of the overlap, syllable 1 and syllable 2 (colours), shown as rainclouds at each
step (x-axis) of the three axes (panels). Black points indicate the median val-
ues. Shading indicates the reference points where the axes intersect. Panel
D: example fit of the Bayesian linear switchpoint models for the "fast is spe-
cial’ mapping for the three axes (columns) and fingerprint component distri-
butions (rows, colours). Panel E: point estimates and standard errors of the
quality of fit of the Bayesian linear switchpoint regression models for each
mapping, quantified by an information criterion calculated by leave-one-out
cross validation. For each mapping, the models other than the best perform-
ing are plotted more lightly.
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Results

Panel E of Figure 5.11 presents the model comparison results of both the Bayesian
linear switchpoint models. We compare models on information criteria, which
aim to quantify the explanatory power of the models in terms of the amount of
information lost, while at the same time penalising model complexity to avoid
over fitting. Specifically, we calculate an information criterion by leave-one-out
cross validation (the LOOIC, Vehtari et al., 2017).

The ‘one gait’ mapping performs notably worse than the other models, achiev-
ing higher LOOIC values. That this model performs worst is a useful sanity check,
since the earlier findings of worse performance in the linearly constrained model
variant, and the triangular arrangement of the rates in parameter space for the
unconstrained model variant should have ruled this possibility out. Next comes
the ‘medium is special’ mapping. This mapping predicted a distinct gait for
medium speech, and a fall-back gait engaged to produce other speaking rates.
Such a configuration might emerge as a consequence of speakers producing
speech almost always around a specific habitual rate, which would become more
practiced. The remaining mappings perform the best. The LOOIC estimation for
the Bayesian linear switchpoint models additionally allows us to quantify the
uncertainty about the point estimates of model fit. In panel E of Figure 5.11,
lines extending from the points indicate the standard error around the LOOIC
estimate. For the three best performing mappings, the standard error ranges
around the point estimates are extensively overlapping, meaning that we can-
not with confidence claim support for any of the three mappings ahead of the

other two.

5.6.3 Summary of strand 2

In strand 2 of this study, we explored how cognitive control might be exerted on
the parameters of EPONA to model speech produced at different rates. Differ-
ent settings of the model parameters can be conflated with different regimes of
the cognitive system underlying natural speech production. We examined how
the regimes related to each other, hypothesising that there might be ‘gaits’ in
the speech production system that speakers switch between to achieve differ-
ent speaking rates. Five hypothetical mappings of rate regimes onto gaits were
considered.
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We found evidence that different speaking rates were achieved by distinct pa-
rameter values, and that these were arranged in a triangle in parameter space,
rather than along a straight line. The triangular arrangement rules out a map-
ping whereby a single gait is quantitavely modulated to achieve different speak-
ing rates. With the aim of distinguishing between the remaining mappings, we
conducted further statistical modelling. This modelling ruled out one further
account, namely the medium-is-special mapping, but did not allow us to dis-
tinguish between the three remaining mappings. It therefore remains an open
question whether slow and medium speech is achieved by one gait and fast by
another (the ‘fast is special’ account), whether slow speech is achieved by one
gait and fast and medium by another (the ‘slow is special’ account), or whether
all three rates are achieved by qualititavely distinct gaits (the ‘three gait’ ac-
count). Nevertheless, the findings of strand 2 provide strong evidence for a
model of speech production control whereby speakers shift between different

gaits to achieve different speaking rates.

5.7 General discussion

This study had two aims. In strand 1, we sought to establish EPONA, a new model
inspired by the DBS model that would predict the duration of syllables and the
duration of the overlap between them, and thereby characterise the configura-
tion of the speech production system at different speaking rates. Subordinate to
this aim, we sought to explore how the temporal properties of a word could best
be encoded in the frame node.

In strand 2, we explored how cognitive control might be exerted on the param-
eters of EPONA to model speech produced at different rates. Different settings of
the model parameters can be seen as corresponding to different regimes of the
cognitive system underlying natural speech production. We sought to examine
how the regimes relate to each other, hypothesising that there might be ‘gaits’ in
the speech production system that speakers switch between to achieve different

speaking rates.

5.71 Computational model (strand 1)

The evolutionary algorithm learned distinct parameter settings for each speak-

ing rate for the three model variants, though the quality of the predictions made
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by the trained models varied. Linear regression analyses revealed significant dif-
ferences in performance between the model variants, and effect size analysis al-
lowed us to quantify the extent of the performance differences, demonstrating
a distinct performance advantage for the asynchronous model variant ahead of

the control and synchronous model variants.

A salient difference between the model variants is that the control and syn-
chronous models exhibit bimodal distributions in their fitting of the overlap du-
ration and syllable 1 duration (see Figure 5.9). In contrast, the asynchronous
variant predicts uni-modal distributions for these objectives. It is noteworthy
that the modelled syllable 1 duration and overlap duration distributions resem-
ble each other in their overall shape. In examining the duration distributions
independently for a sample of the front members (a figure showing these is in-
cluded as the online supplementary materials), it was plain that the bi-modality
of the combined distribution arises because some solutions predict distributions
that contribute to the first ‘bump’ of the bimodal distribution, and others pre-
dict distributions that contribute to the second. This result suggests that the
control and synchronous model variants were not successful in finding a param-
eter set that solved both the serial order problem and fitted the distributions of
the objectives adequately.

The observed distributions for overlap duration for all three speaking rate
conditions exhibited notably less spread than the observed distributions for the
two syllable duration targets. None of the model variants were particularly good

at predicting the spread of the overlap, instead showing excessive spread.

Although the fits achieved by the model are satisfactory for the purposes of
our strand 2 investigation, some aspects of EPONA could potentially be revised to
broaden its utility. Firstly, the model at present is only capable of producing di-
syllabic words. Extending the model to produce a variety of word lengths would
be relatively trivial, and would potentially allow us to explore questions regard-
ing the extent of the gestural score, i.e., are whole syllables encoded, or instead
smaller segmental or demi-syllabic level chunks; or larger chunks at the level of
phonological words or entire intonational phrases? Secondly, the current im-
plementation of EPONA produces one word at a time, and cannot capture the
interactions between previous and upcoming words, and between target words

and competitors in the lexicon, although there is no reason why this could not be
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implemented as a network of interconnected EPONA ‘columns’. How that might

work is discussed further in Section 7.2.2.

Modelling considerations

oth century by

The EPONA model follows many speech production models of the 2
implementing a strict separation between the formulation and execution phases
(e.g. Dell & 0’Seaghdha, 1992; Levelt, 1989; Levelt et al., 1999; Stemberger, 1985).
The execution phase of the model is also in its conception ballistic, meaning that
once activation arrives at the formulation-execution frontier and speech articu-
lation begins, the gestural score will be played out without regard to what hap-
pens in the formulation phase after the onset of production.

Recent work has demonstrated that formulation and execution processes are
not entirely discrete. Lexical competitors have been found to influence the de-
tails of articulation of target words (e.g. Goldrick & Blumstein, 2006; McMillan
& Corley, 2010), whilst the articulation of slip errors has been found to differ
from canonical productions of the same form (e.g., “pig” erroneously produced
as [big] differs from canonical “big” in voice onset time; Goldrick et al., 2016).
Relatedly, contextual predictability and frequency predict the extent to which
words are reduced by shortening the word duration and eliding segments (e.g.
Pluymaekers et al., 2005; Bell et al., 2009). That errors and contextual priori-
ties that arise during formulation propagate into the domain of execution has
been taken as evidence in favour of cascading activation, that is, partially ac-
tive ‘competitor” units from the formulation phase activate the corresponding
articulatory plans.

A fully ballistic, cascading system would require no control on the execution
phase over and above the control exerted on the formulation phase. This is of
course attractive, but implausible; at the very least, a mechanism is required to
allow the interruption of erroneous productions (Levelt, 1983). Alternatively, it
is possible that the dynamics of the planning system after the onset of articu-
lation also influence ongoing articulation. Fink et al. (2018) set out to test the
assumption of a ballistic execution component, measuring response latency and
word duration in sequential picture naming tasks designed to introduce seman-
tic interference. If the production system is ballistic, effects of semantic inter-
ference on response latency (an index of planning) and word duration (an index
of articulation) should be positively correlated since variation in both metrics
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arises from the same process. A ballistic process cannot, however, account for ef-
fects of semantic context on duration over and above the effects correlated with
the effects on latency. Fink et al. (2018) found consistent coupling of articulation
and planning, compatible with the ballistic account, but also some evidence of
interaction effects, suggesting that ongoing planning can exert moderate influ-
ence on execution after the onset of articulation.

Although EPONA as presented here does not explicitly model for cascading
activation and has no mechanism to predict the articulatory outcome of simul-
taneous activation of multiple articulatory plans, it contains no features that
are incompatible with the cascade concept. Similarly, the model could be con-
sidered non-ballistic, in that sustained activation of the syllable gestural score is
required to cause articulation of the required syllable. A more elaborate model
of the execution phase might predict the articulatory outcomes of simultaneous
activation of competitors (for instance, in the VOT of stops, as investigated by
Goldrick et al., 2016), and of changes in the activation dynamics of the output

nodes of the formulation network after word onset.

We followed Dell et al. (1997) in favouring a simple and interpretable model
that explains the underlying psychological processes of speech production at a
functional level, rather than striving for any semblance of neurobiological plau-
sibility. The predefined activation patterns that the frame node produces on
each of the ports are crucial to ensuring the correct ordering of syllable units
is achieved, and have a large influence on the timing of syllable production. In
general, the requirements to (1) prime upcoming units, (2) activate them at the
correct time and (3) deactivate them once they have been produced is referred to
as the serial order problem. Dell, Burger and Svec’s (1997) approach to resolving
the serial order problem using predefined activation patterns is functional and

minimal.

It is, however, also possible to achieve correct serial ordering using only com-
ponents from the standard connectionist toolbox. In this respect, a promising
approach is competitive queueing (Grossberg, 1978; Houghton, 1990), which em-
ploys a two-layer sub-network to maintain serial order. The first layer is a plan-
ning layer, where all nodes for all the elements in a sequence become active in
parallel, with their relative activation encoding the order of realisation (a pri-
macy gradient). The nodes of the planning layer project onto the same number

of nodes in the second, competitive choice layer, where inhibitory connections
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ensure that only the activation of the most active node at any given time is trans-
mitted to the output nodes, and a switch-off mechanism ensures that success-
fully produced items are inhibited, allowing subsequent items to be produced
(see Hurlstone et al., 2014, for an extensive review). It would be fruitful to evalu-
ate a model that employed competitive queueing in the frame node. This would
remove the need for the implausible stepped activation patterns in the frame
node.

The activation function (that is, the function that computes the activation of
a node from the activation arriving at it through connections, also known as a
transfer function) in the model is strictly linear. Sigmoid activation functions
such as tanh (Harm & Seidenberg, 1999) or soft-max (Chang, 2002; Chang et al.,
2006) are employed in several more recent models where competition between
nodes at the same level is modelled. It is, however, unlikely that a different choice
of activation function would have made a large difference to the outcomes of
this study, since our model does not simulate between-node competition. In a
model with competitive queuing, a non-linear activation function might prove

advantageous.

5.7.2 How do regimes relate to each other? (strand 2)

Since the asynchronous model variant performed significantly better than ei-
ther the control or synchronous model variants, we performed analyses in pa-
rameter space only for this variant. The following discussion refers therefore to
the asynchronous model variant only.

The speaking rate regimes identified in this investigation can be compared
along two dimensions; firstly, in terms of the parameter values that the model
engages to achieve each targeted speaking rate (comparison in parameter space),
and secondly in terms of the predicted fingerprint durations (comparison in pre-
diction space).

Which, if any, gaits are present?

To distinguish between single-gait and multiple-gait scenarios, we examined the
arrangement of the regimes in parameter space. We predicted that in the single-
gait scenario, the three regimes would be arranged sequentially along an axis in

parameter space. In a multiple gait scenario, the three regimes would be ar-
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ranged in a triangle in parameter space. The arrangement of the optima on the
PC1-PC2 plane was clearly non-axial (see Figure 5.10). Our results therefore in-
dicate that cognitive regimes adopted to achieve different speaking rates are ar-
ranged in a manner that is incompatible with a single-gait system.

It could however, still be the case that, although the optimisation routine had
settled on a non-linear arrangement of rates, a linear arrangement could have
been able to fit the data adequately. A further asynchronous model variant was
fitted to test this, where the arrangement of the rates in parameter space was
constrained to be linear or axial (see Section 5.5.2). This model fitted the data
less well than the unconstrained model, reinforcing our conclusion that multiple

gaits are present.

Having established that the single gait configuration was unlikely given the
data, we moved on to comparing the regimes in prediction space. Aside from
all rates being produced by one gait, there are four further possible mappings of
rates onto gaits: three gaits; slow is distinct while fast and medium are mapped

to the same gait; fast is distinct; medium is distinct.

The plausibility of these mappings could be teased apart by examining the
extent of non-linearity in the predicted distributions of models fitted with pa-
rameter values taken from the spaces between the centres identified in the evolu-
tionary optimisation. We performed statistical fitting to test for (non-)linearity
along the axes linking the centre points of each rate, and compared the quality of
fit of models instantiating the five possible mappings. We used Bayesian linear
switchpoint models, which are able to fit variation in the spread of the distribu-
tion, and allowed us to quantify certainty at all stages of modelling, including

model comparison.

This statistical modelling allowed us to directly test the plausibility of the five
mappings. The one-gait mapping was rejected, consistent with the triangular
arrangement of the rates in parameter space and the rejection of the model vari-
ant with the linearity constraint in the optimisation paradigm. Support for the
‘medium is special’ mapping was limited. Although the ‘three gaits’ mapping
had numerically the best fit, the statistical modelling was unable to distinguish
between this mapping and the ‘fast is special’ and ‘slow is special” accounts. This
means that all three mappings are plausible models of the cognitive reality, given
the present dataset and modelling approach. While we believe that the statistical

modelling is sufficiently sensitive to evaluate the plausibility of the mappings, it
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is of course dependent on the data provided by the simulations. These data may
be insufficient in two ways. Firstly, they consist only of predicted distributions
of the three fingerprint durations, which may not be rich enough a representa-
tion of the acoustic reality to highlight subtle differences in linearity between
the speaking rates. Secondly, the variability that was valuable in the parame-
ter optimisation paradigm for the reconstruction of the distributions to be com-
pared with the observed distributions may have proved counterproductive for
the statistical modelling we conducted.

Further experimental work is required to clarify the nature of the mapping
of speaking rates to gaits, possibly testing more than three speaking rates in a

denser sampling.

The consequences of the presence of gaits for models of speech production and
perception

Our concept of different ‘gaits’, each encompassing qualitatively similar regimes
in the formulation component of the speech production system, represents a
theoretical step forward that makes predictions that may be fruitfully explored
in future modelling and empirical work, building on the conception of gaitedness

at the execution level.

Although this study concerned speaking rate variation and demonstrated the
presence of cognitive gaits to achieve different speaking rates, it is plausible to
think of switching between qualitatively different parameter regimes as a more
general mechanism to deliberately modulate the acoustic and temporal proper-
ties of speech to suit various communicative situations (Lindblom, 1990; Lind-
blom et al., 1991).

Natural speech produced by any one speaker varies in many more ways than
along a single dimension of speaking rate, in effect adopting what has often
been called different registers or speaking styles (Hirschberg, 2000). It has been
observed that speakers transform the acoustics of their speech to enhance its
intelligibility for their interlocutor, or in response to the reverberance or back-
ground noise of their environment (Cooke et al., 2014). Prepared speech, such
as reading aloud, varies from spontaneous speech (e.g. Furui, 2003). Typically,
these speaking styles have been thought of (or at least treated as) categorically
distinct, driven perhaps by the methodologies used to elicit the speech during
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experiments and corpus gathering, or to categorise the situations in which the
speech arose in generalist corpora (Hirschberg, 2000).

Although acoustic differences emerge between speech categorised according
to these situational categories, knowing that such differences exist says little
about how speakers modulate the speech formulation and execution mecha-
nisms to achieve that variation. This is because it remains unknown to what
extent the speech planning system engages categorically distinct regimes to
achieve different speaking styles, and whether these researcher-imposed situa-

tional labels bear any resemblance to the underlying cognitive categories.

If different speaking styles are achieved by switching between qualitatively
different gaits of the speech planning system, we would expect there to be ob-
servable clustering in the acoustic characteristics of speech across the range of
speech variability, reflecting the categorical shifts between cognitive gaits. Two
recent findings suggest that speaking style variation may be at least to some ex-
tent categorical. The first concerns reduced pronunciation variants, that is, pro-
nunciations of words where acoustic cues, segments, and sometimes entire syl-
lables are omitted, generally when words are highly predictable and in informal
spontaneous speaking situations (e.g. Ernestus & Warner, 2011; Ernestus et al.,
2015), for example the realisation of American English “yesterday”, the canoni-
cal form of which is /jestare1/, as [jefer]. Reduction of this type is one of the ways
in which acoustic differences between speaking styles surface and can be quan-
tified. Hanique et al. (2013) found evidence that both categorical and gradient
processes were simultaneously responsible for an instance of schwa deletion in
Dutch.

The second concerns the retrieval of speaking style labels through machine-
learning techniques. Bentum et al. (2019) employed a language modelling and di-
mensionality reduction approach to characterise word choice and co-occurance
across the speaking styles in the orthographic transcriptions of a corpus of Dutch
speech containing many different speaking styles (Oostdijk, 2000). Many of the
speaking styles labelled in the corpus emerged as distinct clusters, whilst other
groups of speaking styles merged to form a single cluster. Again, this hints that,
underlyingly, speaking styles differ categorically from each other on various di-

mensions.

The finding of gaitedness in speech production has consequences for models
of speech perception. If the speech produced by speakers varies qualitatively be-
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tween gaits, then listeners might also be expected to adopt different processing
strategies to make the most of the cues available in the speech signal associated
with a specific gait. If that were the case, we might expect to see gaits in speech
perception to mirror those in speech production.

5.8 Conclusion

We proposed that to achieve different speaking rates, the speech planning sys-
tem adopts different configurations, or regimes. Since speakers are able to vol-
untarily adjust their speaking rate, they must have a control mechanism that
enables them to shift from regime to regime. Describing the way in which these
regimes are arranged relative to each other in parameter space is highly infor-
mative for understanding the nature of the control mechanism that is engaged
to shift between regimes, and how control might be exerted on speech produc-
tion in general. We hypothesised that speech rate control might be achieved by
shifting between different, qualitatively distinct ‘gaits’ of the speech production
mechanism. Alternatively, different speaking rates might be achieved by con-
tinuous adjustment within a single rate.

We set ourselves the task of distinguishing these hypotheses. We developed
EPONA, a model inspired by the influential DBS model (Dell et al., 1997), to pre-
dict the distributions of syllable and syllable-overlap durations that characterise
speech production in a specific speaking rate regime. By optimising the parame-
ters of this model to fit each of three rate conditions independently, we identified
optimal parameter settings for each speaking rate, which we conflate with the
dimensions of the regime-space of the underlying cognitive system. By examin-
ing the arrangement of the parameter optima of the model, we could infer the
arrangement of the underlying cognitive system. The model optima resembled
atriangle (Figure 5.10), rejecting the idea that the regimes of the speech produc-
tion system all belong to a single qualitatively consistent gait. By fitting further
models where linearity in parameter space was enforced, we provided further
evidence ruling out a single-gait account.






6 Asymmetric switch costs between
speaking rates: Experimental
evidence for ‘gaits’ of speech planning

A recent model of speech production, EPONA, proposes that speakers adopt dif-
ferent configurations of the cognitive speech formulation system to achieve dif-
ferent speaking rates. It characterises these configurations as analogous to the
qualitatively distinct gaits (walking, running) adopted in locomotion. Critically,
it is assumed that a relatively small set of gaits are required to cover the range
of possible speaking rates, and that switching gait is more effortful than modu-
lating speaking rate within a gait. This study tested whether we could find em-
pirical evidence for gaits in speech production by assessing whether switching
between one set of rates is more difficult than switching between other sets of
rates. In a multiple picture naming task, speakers were required to begin speak-
ing at one of three pre-trained rates. During the trial, the required speaking rate
changed. We quantified (1) speakers’ success in achieving the rates and (2) how
quick they were to switch from the initial rate to the new rate. A Bayesian analy-
sis showed that speakers were slower to shift between fast and medium speaking
rates than they are to switch between slow and medium speaking rates. This is
consistent with the presence of a ‘run’ gait for the fast speaking rate, and a ‘walk’
gait for slow and medium speech. We discuss the implications of the finding in
the context of the EPONA model.

This chapter was adapted from Rodd, J., Bosker, H. R., Ernestus, M., ten Bosch, L., & Meyer, A. S.
(under review). Asymmetric switch costs between speaking rates: Evidence for gaits of speech
planning.

Code and supplementary materials are available at https://osf.io/rugze/


https://osf.io/ruqze/
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6.1 Introduction

Speech is hugely variable, in both the spectral and temporal domains. A salient
feature in the temporal domain is variation in speaking rate. Different speakers
have different habitual speaking rates, and individual speakers can vary their
speaking rate from situation to situation, and even within utterances in the same
conversation (e.g. Miller et al., 1984; Quené, 2008). The fact that humans have
control over the rate at which they speak means that they are capable of adjust-
ing the cognitive apparatus that plans speech, from the selection of words to the
tightly coordinated movements of the articulators of the vocal tract. But how do
speakers control their speaking rate? This article sets out to explore how control
is exerted on the formulation phase of speech production, testing the hypothe-
sis that speakers switch between ‘gaits’ for different speaking rates, analogous

to walking and running gaits in locomotion.

The process of speech production can be divided into two architecturally dis-
tinct phases: formulation including the processes of lemma retrieval, morpho-
logical encoding and phonological encoding stages; and execution involving pho-
netic encoding and motor control. These phases are qualitatively distinct in
the operations conducted: the formulation phase involves competition between
representations, and incorporates threshold mechanisms to gate the flow of ac-
tivation. The execution phase, by contrast, involves no competitive selection,
instead mapping the abstract representations of the formulation domain onto
the more concrete plans of the motor domain (Levelt, 1989). In particular, the
execution phase can be thought of as a ‘faithful servant’ of the formulation
phase. This is compatible with various models of speech (motor) planning (Dell
& O’Seaghdha, 1992; Levelt et al., 1999; Stemberger, 1985; Tourville & Guenther,
2011; Parrell et al., 2019). Although the two phases are architecturally very dif-
ferent, they must closely cooperate, not least to remain synchronised and thus
make an extensive buffer unnecessary. This cooperation may be thought to oc-
cur by direct spreading of activation from the output level representations of the
formulation phase into the input level representations of the execution phase,
consistent with the finding that competing representations in the formulation
phase exert influence on articulation (e.g. Goldrick & Blumstein, 2006). The tight

coupling between formulation and execution also means that both phases must
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cooperate to achieve the stylistic outcome that best supports the communicative
goal (Lindblom, 1990; Pouplier, 2012).

Speech rate control might be thought to be achieved purely through linear
up- or down-regulation of the cognitive speech planning apparatus. Alterna-
tively, the speech planning system might be reconfigured into qualitatively dis-
tinct configurations to suit different ranges of speaking rates. The gaits of the
locomotion system have been proven an appealing analogy to apply to charac-
terise this reconfiguration account (c.f. Pouplier, 2012; Rodd et al., 2020), since
both locomotion and speech are motor behaviours operating at a continuously
varying range of speeds. While gaits have proven a fruitful analogy for control
of the execution phase of speech planning (e.g. Pouplier, 2012), the analogy can
be taken further and applied to the control of the formulation phase as well. In
the formulation domain, speaking gaits reflect configurations of the cognitive
apparatus supporting higher level processes of speech production, like retrieval
of word forms, their phonological encoding and the timely activation of lower-
level planning units.

The EPONA model (Rodd et al., 2020, Chapter 5) is a connectionist model that
proposes a mechanism that can explain how temporal aspects of variation emerge
in the formulation phase of speech production. Gaits may arise in the control
mechanisms of EPONA, but the model does not pre-suppose them. EPONA is in-
spired by the DBS model (Dell et al., 1997). At its core, it assumes a layer of frame
nodes that capture temporal properties of words, encoding when syllable-level
gestural scores should be produced. In EPONA’s computational implementation,
activation spreading and thereby the timing of word production is controlled by

13 parameters.

6.2 This study

In the simulation with the EPONA model conducted by Rodd et al. (2020, Chap-
ter 5), the model’s 13 parameters were optimised to fit the temporal properties of
speech elicited in a multiple picture naming task at fast, medium and slow speak-
ing rates (Rodd, Bosker, ten Bosch, et al., 2019a, Chapter 4), where the speaking
rate was indicated by a red cueing dot that indicated when each picture was to
be named. Each speaking rate was optimised independently, to minimise the di-
vergence between the simulated and observed distribution of three measurable
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features: the duration of the first syllable, the duration of the second syllable
and the duration of the between-syllable overlap. The parameters that fitted
each rate best differed qualitatively, and a model variant that was constrained
to only consider linear regulation of the speaking rate fit comparatively poorly.
This indicated that, to achieve the best fit to the observed data, the model would
switch between different configurations, or gaits, to achieve different speaking
rates.

Whilst Rodd et al. (2020) were able to discount linear modulation in favour of
a gaited account, the results of the simulation were not sufficient to distinguish
between all five logically possible mappings of the three tested speaking rates

onto gaits. Three mappings were equally plausible, given the simulation data:

1. three-gait mapping: The cognitive system uses three gaits to achieve the
sampled speaking rates, one for each speaking rate. These three gaits are
qualitatively different, like walking, trotting, and galloping in horse loco-
motion.

2. fast-is-special mapping: The cognitive system uses two gaits, grouping
the medium speaking rate with the slow rate.

3. slow-is-special mapping: The cognitive system uses two gaits, grouping
the medium speaking rate with the fast rate.

The present study has two aims. Firstly, we aim to provide additional evidence
independent of the simulation study that distinguishes between a gaited and a
wholly linear control of formulation. Secondly, we aim to build on the conclu-
sions of the simulation study to evaluate the plausibility of the three remaining
mappings of speaking rates onto gaits.

In the current experiment, speakers named pictures from a visual display
with pictures arranged around a ‘clock face’, at one of three speaking rates (fast,
medium, slow) that they had previously been trained to achieve reliably. Un-
like the experiment used to elicit the data for the previous simulation study
(Rodd, Bosker, ten Bosch, et al., 2019a, Chapter 4), no cueing dot was used for
the test phase, because an external rate stimulus might interfere with the effect
we hoped to measure. Instead, speakers had to learn to maintain the speaking
rate themselves. The rate that they were required to speak at was indicated by
a coloured frame around the clock face display. During each trial, the rate they
were required to speak at changed, indicated by a change in the colour of the
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frame. We term the rate before the switch the ‘initial rate’ and the rate after the
switch the ‘subsequent rate’. Switches occurred along the fast<»medium axis
(from fast to medium or from medium to fast), and along the slow<smedium
axis (from slow to medium or from medium to slow). A two-step Bayesian sta-
tistical analysis was used to quantify how quickly speakers were able to adjust
their speaking rate. The model predicted this by the axis along which they had to
switch (fast<smedium vs. slow<smedium), and whether the switch involved ac-
celeration or deceleration. The model also accounted for variability attributable
to the measured difference between the realised initial and subsequent rates.

If, to switch from a initial speaking rate to an subsequent speaking rate, speak-
ers have to reconfigure the production system by switching gaits, we assume
that they will be slower to do so, relative to switching from a initial rate to an
subsequent rate that can both be achieved with the same gait. We base this as-
sumption on findings from the switch costs literature that switching between
disparate tasks is more difficult than switching between similar ones (Arrington
et al., 2003; Taube-Schiff & Segalowitz, 2005). The first hypothesis that we test
relates to the first aim of the study: we hypothesise that there will be an effect of
axis. This finding (regardless of the direction of the effect) would be consistent
with the concept of gaits, and contrary to wholly linear modulation of speaking

rate.

The second aim of the study is adressed by making more specific predictions
about the direction of the effect of axis. The direction of the effect can distin-
guish between the three remaining mappings. The fast-is-special mapping pre-
dicts quicker switching on the slow«+>medium axis than on the fast<»medium
axis, because the latter crosses a gait boundary, while the former does not. The
slow-is-special mapping predicts the opposite: that it should be quicker to switch
along the fast«»medium axis than along the slow<s>medium axis. The three gaits
mapping predicts no effect of axis: since both axes involve crossing a gait bound-
ary, it should be equally difficult (or easy) to switch between either pair of speak-
ingrates. Anon-gaited, purely linear model of speaking rate control also predicts
no effect of axis, since if there are no gaits, it should be equally difficult (or easy)
to switch between either pair of speaking rates, but note that this possibility was
unlikely given the results of Rodd et al. (2020).
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6.3 Methods

6.3.1 Participants

Healthy native Dutch speakers with no hearing or language impairments and
uncorrected normal vision were recruited from the Radboud University commu-
nity to take part in the experiment (N = 18, Mg = 23.4). All participated with
informed consent. The study was approved by the Ethics Committee of the So-
cial Sciences faculty of Radboud University (project code: ECSW2014-1003-196).
Participants came for a single 1.5 hour session, and were paid for their time.

6.3.2 Materials

For comparability with Rodd et al. (2020, Chapter 5), we used a subset of the same
materials Rodd, Bosker, ten Bosch, et al. (2019a, Chapter 4). Twelve disyllabic
Dutch concrete nouns with stress on the first syllable were selected, for instance
snavel ['sna:.val] “beak”, vriezer ['vri.zar] “freezer” and wafel ['wa:.fal] “waffle”,
and line drawings were prepared for each word. A full list is provided in the

supplementary materials.

6.3.3 Experimental procedure

Participants were tested individually in a sound attenuated booth. An eye-tracker
(Eyelink 1000 in desktop configuration with forehead stabiliser; SR Research, Ot-
tawa, ON, Canada) recorded right eye gaze position.

Stimulus presentation, eye-tracker synchronisation and audio recording were
controlled by Presentation software (Version 16.5; Neurobehavioral Systems,
Berkeley, CA, USA). A Sennheiser ME64 directional microphone was used to record
the participants’ speech at a sampling rate of 48 kHz.

Sampled speaking rates

The three speaking rates used by Rodd, Bosker, ten Bosch, et al. (2019a) (fast,
medium, slow) were also used in the present study. The medium and fast rates
were selected by identifying comfortable and maximal rates in a non-cued pretest.
The slow rate was selected to be equally distant from the medium rate as the fast

rate, in log ms. The rates are summarised in Table 6.1.
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Figure 6.1: Panel A: a general depiction of the experimental display. Panel B: colour map-
ping for frame indicating cueing rate, letters on the frame also indicate the
cueing rate (S =snel ‘fast’, red; N = normaal ‘medium’, yellow; L = langzaam ‘slow’,
blue). Panel C: a diagrammatic depiction of the sequence of a trial in the test
phase of the experiment, showing how pictures are added or replaced (green
‘starburst’ pattern) in response to fixations (blue dots).

Table 6.1: The target speaking rates used in the experiment

word duration (ms)  word rate (Hz) ~ syllable rate (Hz)  syllable rate (log Hz)

456 2.19 439 1.48

646 1.55 3.10 1.13

915 1.09 2.19 0.78
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Picture familiarisation

The session began with familiarisation of the pictures and their names, by means
of (1) a printed card which the participant was invited to study whilst the ex-
perimenter set up the experiment, and (2) naming of the pictures as they were
displayed individually on screen, in a pseudo-randomised order with two rep-
etitions of each picture. The experimenter immediately gave the correct name

when the participant named a picture incorrectly.

Clock face display

In all training and test phases of the experiment, the same visual display was
used to instruct the participant which pictures to name, and to indicate the re-
quired speaking rate. The display was derived from that used in Rodd, Bosker,
ten Bosch, et al. (2019a). The pictures were displayed, white on black, in a clock-
face arrangement with 9 positions (Figure 6.1A). Initially, position 9 at 11 o’clock
was left empty, to visually reinforce the beginning of the sequence of pictures
at 12 o’clock. The clock-face fitted into an area of 780 x 780 pixels. Each picture
was scaled such that it would occupy an area of 90 x 90 pixels. The clock-face
was surrounded by a coloured square frame (940 x 940 pixels, 20 pixels wide).
The colour of the frame indicated the rate that was required from the partici-
pant (Figure 6.1B), along with letters that intersected the frame. During the trial,
the pictures opposite the picture presently being fixated were replaced so that
the participant could make multiple circuits of the display (Figure 6.1C). In this
way, the trial could in principle continue indefinitely. On the last circuit of the
trial, the pictures were removed rather than being updated. In all experimental
phases, lists were constructed such that words occurred equally frequently and

that the frequency of all word-to-word transitions was approximately balanced.

Training: cued rate learning

In the first training phase, the participants had to practice the speaking rates
that they would use in the experiment proper, and become familiar with the
paradigm. They started with learning the medium speaking rate. Each trial
started with a mock drift correction, where a fixation cross was displayed in the
centre of the display. They pressed the space bar to begin the trial. A fixation

cross was displayed at the location of the first picture for 700 ms, then the pic-
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tures appeared. For 316 ms, the pictures were displayed as ‘preview time’, based
on the extra latency before naming the first picture by participants in a non-
cued pretest. After the preview time, a red cueing dot appeared over the first
picture. Every 456, 646 or 915 ms (see Table 6.1), the dot jumped clockwise to the
next picture. As each picture was cued, the ‘opposite’” picture across the clock
face was updated if necessary, in preparation for the upcoming circuit. In the
cued training phase, each trial contained 12 pictures. After five trials practising
the medium rate, participants practised the slow rate for five trials, followed by
the fast rate for five trials. Following the cued training, the participant placed
their forehead in the stabiliser and the eye-tracker was calibrated with a 13 point

sequence.

Training: non-cued rate learning

In the second training phase the participants learnt to produce the required
speaking rates accurately, without the support of the cueing dot. Again, they be-
gan with the medium rate. The eye tracker recorded the location of the fixations.
The precise moment that the participant fixated each picture was recorded.
When a new fixation was detected, the ‘opposite’ picture was updated. In this
phase, each trial contained 30 pictures. After the trial, the median temporal
interval between fixations was calculated. Since speakers in multiple picture
naming tend to have tight eye-speech synchrony (Meyer et al., 2012), we could
use this interval as a rough measure of speaking rate (word duration) that was
immediately available. The median rate was displayed on a graphical interface
on a second monitor that was visible only to the experimenter, along with a tar-
get word duration range (from 826 to 1014 ms around the target of 915 ms for
the slow rate, from 586 to 712 ms around the target of 646 ms for the medium
rate, and from 416 to 500 ms around the target of 456 ms for the fast rate). The
experimenter compared the displayed median against the target, and informed
the participant whether the rate in the previous trial was good, too fast, or too
slow.

The training started with two non-cued trials. If the median rate of the sec-
ond non-cued trial was outside the target range, a cued trial was conducted to
remind the participant of the required speaking rate. After the second non-cued
trial or the cued reminder trial, three further non-cued trials were conducted. If

these were all within the required rate range, the training proceeded to the next
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rate. Otherwise, another cued trial and another three non-cued trials were con-
ducted. Therefore, participants performed minimally five and maximally eight
non-cued training trials at each speaking rate, and possibly a further one or two
cued reminder trials. On average, they performed 7.5, 7.1 and 6.8 non-cued trials
for fast, medium and slow speaking rates, respectively. The number of training
trials performed was not a criterion for excluding participants.

Test phase and task familiarisation

In the test phase, the required rate was changed part way through the trial (Fig-
ure 6.1C). This was communicated to the participant by changing the colour of
the frame surrounding the picture display and the letters embedded into it. The
switch occurred at the moment of fixation of a predetermined picture for each
trial. The switch picture could be the 12th to the 28th, randomly sampled from a
uniform distribution; each trial contained 40 pictures. Switches always occurred
between the extreme rates (slow and fast) and the medium rate, meaning that
the possible switches were slow—medium, medium—slow, fast—medium and
medium—fast. Participants were informed that all trials would involve a switch
either from or to the medium rate, and completed a familiarisation block with
one of each switch condition. In the test phase, blocks were constructed con-
sisting of two trials of each switch condition, with the order of trials within the
block shuffled. Between blocks, a reminder cued trial was conducted for each
speaking rate. Since the duration of the experimental session was fixed and the
number of trials in training phase was variable for each participant, and in some
cases, multiple eye-tracker calibration attempts were required, the number of
test blocks that each participant completed before the end of the experimental
session varied (minimally 5, maximally 10, median 7).

6.3.4 Annotation

The recordings for the test trials were annotated to the word level by hand by a
panel of phonetically trained research assistants and the first author. This was
done using the distributed browser-based annotation system developed by Rodd
et al. (in press, Chapter 3). First, the trial recordings were broken into chunks
that were typically a few words long, by splitting at automatically detected si-
lences (chunking). Second, these chunks were orthographically transcribed by
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hand in a browser-based interface, which suggested words from the experi-
mental vocabulary as the research assistant typed (orthographic transcription).
Third, the chunks were forced-aligned to the word-level using the MAUS system
(Schiel, 2015). Fourth, the annotators screened the forced-aligned words for the
accuracy of the automatic segmentation (triage). Fifth, the annotators adjusted
the segmentation of words that were marked as incorrectly segmented in the
triage step (retrimming). Information about speaker and forced-alignment er-
rors is available in the supplementary materials.

6.3.5 Post-processing

To calculate an index of the local speaking rate during the trial, we measured
the durations of the onset-onset intervals and offset-offset intervals between
pairs of words. Pairs that were interrupted by a hesitation or filled pause were
excluded. The onset-onset intervals and offset-offset intervals were transformed

to syllable rates in Hz.

6.4 Results

6.4.1 Statistical modelling

All the statistical models reported were fitted with the package brms (Biirkner,
2018) in R (version 3.5.2, R Core Team, 2018), allowing us to fit Bayesian mixed-
effects and non-linear (stepwise) regression models. Unless otherwise reported,
models were sampled with the NUTS sampler with 6 chains of 7,000 warm-up and
7,000 test iterations, with thinning retaining every third iteration. All models
converged, as assessed by the Gelman-Rubin diagnostic R being within 0.00001
of 1.0. For the models fitted here, we take advantage of possibilities not readily
available in frequentist statistical modelling: fitting arbitrary non-linear models
for the single-trial models, and using the quantified certainty of the estimates of
the trial level models in the meta-analytic model. Rather than dealing in binary
decisions between significant and not significant, Bayesian regression focuses
on quantifying uncertainty about the magnitude of an effect (e.g. Vasishth et al.,
2018), so no p-values are reported. Instead, we report the size of the effects we

identify, in their relevant units, and where appropriate, standardised for com-
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Figure 6.2: Panel A: Violins show the measured local syllable rates in the before- and after-

switch analysis windows. The colours and x-axis indicate the different switch
conditions. The target rates are shown in facets. There are therefore two vio-
lins for each condition, one for the rate in each analysis window. White dots
indicate the median. Panel B: translucent violins show the observed differ-
ences from the target by the required rate (colours, x-axis). Solid violins show
the model posteriors of the mean for each condition with median (points), 95%
HDIs (thin black lines) and 66% HDIs (thick black lines). Negative values indi-
cate measured rates slower than the target. The y-axis is cropped to highlight
the model posteriors, see the supplementary materials for a larger, uncropped
version. Panel C: The effect of the previous rate on the realised speaking rate
in the subsequent rate. Again, with median, 95% and 66% HDIs. Negative val-
ues indicate measured rates slower than the random intercept for the relevant
rate.

parability (Cohen’s d). All intervals reported are 95% highest density intervals

(HDIs).

6.4.2 Rate compliance

To assess how well speakers complied with the required speaking rates, we calcu-

lated the average rate in two windows during the trial. The before-switch win-

dow contained the six words immediately before the switch. The after-switch

window contained the first six complete words beginning 7000 ms following

the switch, at which time we assumed that the speaker would be stable in the

new speaking rate. The measured local syllable rates are shown as violins in
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Figure 6.2A. Each switch condition appears twice, the separate violins show the
rates in the before-switch window and after-switch window, respectively.

In general, speakers tended to speak more slowly than required. To charac-
terise this undershooting, we constructed a Bayesian mixed-effects regression
model, predicting the difference from the required rate (by subtracting the re-
quired speaking rate from the measured speaking rate; negative values indicate
rates slower than the target) by the speaking rate condition. Full details about
this model are in the supplementary materials. The fits of this model are shown
in Figure 6.2B. The model revealed that, in all cases, speakers were slower than
required. For fast: -0.22 log Hz [-0.27, -0.17]; for medium: -0.11 log Hz [-0.16,
-0.065]; for slow: -0.043 log Hz [-0.093, 0.0067].

A second striking pattern in the data is that speakers seem to ‘hyper-correct’
when they have to switch rates. That is, a rate is realised slower if the speaker
previously had to speak at a relatively faster rate, and a rate is realised faster
if the speaker previously had to speak at a relatively slower rate. To quantify
this in a statistical model, we created a new categorical variable, ‘previous rate’.
All the measurements from before the switch were coded as ‘baseline’. All the
measurements from after the switch were coded according to the relative rate
before them: if the speaker had to accelerate in that trial, we coded ‘previous
was slower’, if the speaker had to decelerate, we coded ‘previous was faster’. A
Bayesian mixed-effects regression model predicted the realised speaking rate by
the relative difference of the previous rate with random intercepts for the target
speaking rate. Full details about this model are available in the supplementary
materials. The model revealed a small, asymmetrical contrastive effect: if the
initial rate was slower, the subsequent rate was realised faster than baseline,
0.062 log Hz [0.046, 0.078], Cohen’s d = 0.22; if the initial rate was faster, the sub-
sequent rate was realised marginally slower than baseline, -0.019 log Hz [-0.035,
-0.0024], Cohen’s d = 0.066. The contrastive effect of the previous rate is depicted
in Figure 6.2C.

6.4.3 Speed of speaking rate switch

To assess how quickly speakers were able to adjust to the new speaking rate af-
ter the switch, we modelled speakers speaking rate behaviour in a two-stage

Bayesian regression procedure, consisting of a non-linear (stepwise) Bayesian
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Figure 6.3: An example single trial model for the trial with a switch between slow and
medium. Blue dots indicate measured rates, red dots with CIs indicate model
fits. The plateau before 0 ms captures the initial rate. After the switch (0 ms)
the slope of the model is allowed to vary. An additional parameter determines
when the slope ends and the plateau for the subsequent rate begins. See the
text for full details.

regression for each trial, followed by a meta-analytic Bayesian regression model

to characterise patterns between trials.

Single-trial modelling

The single trial model captures the change in speaking rate during the trial. The
dependent variable is the log-transformed speaking rate at the onset and off-
set of each word measured in Hz, the calculation of which is described in Sec-
tion 6.3.5. The times in the model are shifted, such that the switch occurs at 0
ms.

The model fit for an example trial is depicted in Figure 6.3. Three parameters
are used to fit the data, an intercept, a slope, and an offset time. The model fit is
non-linear, and always adopts a broadly sigmoid shape to predict the relation-
ship between time in the trial and the speaking rate, with a plateau before the
switch, a sloped part after the switch, and a second plateau later on in the trial.

For all times before 0 ms (the switch), the model predicts the speaking rate
with the intercept only. After 0 ms, the model predicts the speaking rate as in-
tercept + slope x time. A third parameter determines when the second plateau
begins. At times after the value of that parameter, the model predicts the speak-
ing rate as intercept + slope x offset.

Weakly informative priors were set: for the intercept, a normal distribution
centred at 1.13 Hz (the required medium rate) with a sigma of 1.13 Hz. For the
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slope, a normal distribution centred at 0 with a o of 0.0005, and for the offset
parameter, a normal distribution centred at 5500 ms after switch onset, with a
sigma of 500 ms, with a lower-bound set at 1000 ms after switch onset. For each
model, 6 chains of 4000 warm-up and 4000 test iterations were run. From these
models, the estimate for the slope and the error associated with that estimate

were extracted.

Meta-analysis

To test the hypotheses of interest, we constructed a meta-analytic model that
predicted, for each trial, the estimate for slope and the error associated with that
estimate (errgp), as determined by the single trial models. The model had a fixed
effect predictor, rate difference for the difference between the measured speak-
ing rate in the before-switch and after-switch windows in each trial, included
to control for the large proportion of the variance in the slope magnitude ac-
counted for variance in the difference between realised intial and subsequent
rates (see Section 6.4.2 for more details). For deceleration trials, slope and rate dif-
ference was subtracted from 0, so that slope represents the magnitude of the slope,
and rate difference represents the magnitude of the difference between initial and
subsequent rates. Both slope and rate difference were centred around 0 and stan-
dardised for the model fitting, all reported values are back-transformed. Two
two-level deviation-coded categorical predictors were included, describing the
switch condition relevant to the trial; axis, which had levels of fast<smedium (1)
and slow<smedium (-1), and accelerate, which had levels of accelerate (1) and de-
celerate (-1). The interaction between axis and accelerate was also included. Ran-
dom intercepts were included for speaker. In the brms dialect of the Wilkinson-

Rogers notation, the model formula was:

slope|se(errgop.) ~ 1 + rate difference + axis * accelerate + (1|speaker)

The same weakly informative priors were set for all predictors, a normal dis-
tribution centred at 0 with a o of 1.08 hours. For the model intercept, the prior
was a Student-¢ distribution centred at 0 with a 0 of 10 and a v of 3.

The distributions of the model coefficients of interest are shown in Figure 6.4.

There was a small effect of axis (panel A), whereby the fast<»medium axis has
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Figure 6.4: The distributions and medians (points), 95% HDIs (thin black lines) and 66%
HDIs (thick black lines) of the model coefficients for: (panel A) the main effect
of axis; (panel B) the main effect of accelerate and (panel C) the combined
effects of axis and accelerate.



6 Asymmetric switch costs between speaking rates 129

steeper slopes than the slow«>medium axis (difference between means: 0.0034
log Hz/s [0.00087, 0.0058], Cohen’s d = 0.26). This means that speakers found it
easier to shift along the slow«s>medium axis than along the fast«»medium axis.
This effect is equivalent in size to a difference between picture naming RT dis-
tributions of 105 ms. See the supplementary materials for full details of this
comparison, which is based on data from Zormpa et al. (2019).

There was a larger effect of acceleration (panel B), where deceleration is asso-
ciated with steeper slopes than acceleration (difference between means: 0.0043
log Hz/s [0.0019, 0.0067], Cohen’s d = 0.33), meaning that, across axes, slowing
down is easier than speeding up. This effect is equivalent in size to a difference
between picture naming RT distributions of 133 ms. There was a medium effect
of the rate difference control predictor, 0.0036 log Hz/s slope change per log Hz
of rate difference [0.0034, 0.0039], Cohen’s d = 0.74. The interaction effect was so
small as to be meaningless, -0.00041 log Hz/s [-0.0019, 0.0011], Cohen’s d = 0.014.

6.5 Discussion

This study sought to contribute to our understanding of how speakers control
their speaking rate, by testing for an effect predicted by the notion of gaits in
the context of the EPONA model of speech production. Specifically, we hypoth-
esised that, if gaits were present, some pairs of speaking rates should be harder
to switch between than other pairs of rates, once the difference between the ini-
tial and subsequent rates was accounted for. A further goal was to test support
between the three remaining mappings of speaking rates onto gaits that Rodd et
al. (2020) could not distinguish between, based on the assumption that shifting
between rate pairs that involve crossing a gait boundary would be harder than
between rate pairs that do not.

We found a clear effect of axis (Cohen’s d =0.26). We found shallower slopes for
the fast<»medium axis than for the slow<>medium axis, indicating that speakers
found it harder to switch between fast and medium speaking rates compared to
switching between slow and medium speaking rates. This was interpreted as ev-
idence for gaits in speech production because if no gaits were present, we would
have predicted no difference between axes in their slope. Moreover, this spe-
cific result supports the fast-is-special mapping, under which the three sampled

speaking rates are achieved by two gaits, grouping medium and slow together,



130 6 Asymmetric switch costs between speaking rates

and using a separate gait for fast. This interpretation is based on the assump-
tion that switching between gaits is harder than modulating speaking rate within
them. This is in line with the task switching literature, where switching between
tasks is more difficult than continuing to perform the same task (Meiran, 2010)
and switching between more disparate tasks is harder than switching between
tasks that are more similar (Arrington et al., 2003; Taube-Schiff & Segalowitz,
2005). To draw this conclusion, we are assuming that the different gaits repre-
sent more disparate tasks sets than the different tasks sets associated with mod-
ulating a single gait to be suitable for different speaking rates. One or more of
the mechanisms that are proposed to be the underlying cause of switch costs,
such as task-set inertia (whereby the previous task requires executive control
engagement to suppress) or stimulus set binding (whereby the stimuli become
associated with a task set) may explain why speakers find it harder to switch

between rates involving crossing a gait boundary.

We also found an effect of acceleration. Slopes were steeper under deceler-
ation than acceleration, meaning speakers found it easier to switch from a rel-
atively faster rate to a relatively slower rate than to do the reverse. There are
two appealing possible explanations for this. Firstly, the acceleration effect may
result from an asymmetric switch cost, whereby it is more costly to switch from a
harder task to an easier task than to make the reverse switch. Classical exam-
ples are the switch from colour naming to word naming in a Stroop task (e.g.
MacDonald et al., 2000), or the switch from naming in a non-dominant language
to naming in the dominant one (e.g. Costa et al., 2006). It is proposed that this
paradoxical cost is the consequence of greater executive control engagement to
keep the easier or dominant task inhibited, while performing the less dominant
task. After switching task, this inhibition is slow to dissipate, causing the switch
cost. In our case, the fast rate (syllable rate 4.39 Hz) is closest to the median
spontaneous speaking rate for Dutch disyllabic words for demographically sim-
ilar speakers to ours (6.86 Hz, based on modelling by Quené, 2008), suggesting
that this most common rate might require the most inhibition, making it hard-

est to switch to.

That our fast rate was slower than Quené’s estimate of a median speaking rate
is a constraint inherent to multiple picture naming, which is a demanding task

given the absence of predictability of upcoming words. The requirement to train
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the participants to produce each rate also limited us in the number of rates that

could be sampled.

Secondly, the acceleration effect may be a carry-over effect from engagement
of an underlying domain-general rate control mechanism. Loehr et al. (2011) ex-
amined pianists’ ability to coordinate their performance of complex rhythms to
a metronome that slowed or sped up gradually. They also found that accelera-
tion was harder than slowing down. They found better fits to the deviation from
the required rhythm with an oscillator model, compared to a linear ‘timekeeper’
model, implying that the oscillator was the better model of the underlying rate
control mechanism. To what extent this account can explain the acceleration
effect remains an open question, as does the level of speech planning at which

such an oscillator might be engaged.

Finally, we found a ‘hypercorrection’ effect, such that subsequent rates were
more extreme than initial rates. This might be thought to be driven by a general
communicative need to boost contrastivity, given the centrality of speech rate
normalisation in perception (e.g. Maslowski et al., 2019b).

The presence of gaits, encompassing qualitatively similar configurations in
the formulation phase of the speech production system is of consequence for our
understanding of speaking rate control, and represents a conceptual foundation
to allow further development of theory to link domain-general control mech-
anisms to speech production models. Although this study concerned speaking
rate variation and demonstrated the presence of cognitive gaits to achieve dif-
ferent speaking rates, it is plausible to think of switching between qualitatively
different parameter regimes as a more general mechanism to deliberately mod-
ulate the acoustic and temporal properties of speech to suit various communica-
tive situations (Lindblom, 1990).

That we conclude that gaits are present, and that a gait boundary lies between
fast and medium, but not between medium and slow speaking rates invites a few
speculations. It might be supposed that the true system contains three or more
gaits, adding a further gait faster than our ‘fast’ rate, or slower than our ‘slow’
rate. To test this, an alternative paradigm is required that allows sampling of
faster and slower rates than possible with picture naming. Here we present the
gait system of an average speaker, but it might be speculated that where gait
boundaries fall varies somewhat between speakers, in line with variation in ha-

bitual speaking rate. Further, one might speculate that, because of the gaits,
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speakers would display preferences in their speaking rates, as is the case in lo-
comotion (Hoyt & Taylor, 1981), though to what extent such preferences might
surface in speech, where many more contextual and communicative factors in-

fluence speaking style choice is unclear.

6.6 Conclusion

In this study, we examined how speakers switched their speaking rate between
three pre-learnt rates in a multiple picture naming task, equating slower rate
transitions with more difficulty switching. We found that switching between
fast and medium speaking rates was harder for speakers than switching between
slow and medium rates. We also found that accelerating was harder than decel-
erating. This study has provided experimental evidence in favour of a conceptu-
alisation of the formulation phase of speech planning whereby speakers switch
between qualitatively distinct gaits to control their speaking rate, complement-
ing the computational results of Rodd et al. (2020, Chapter 5), and is consistent
with the EPONA model of formulation. Gaits in formulation have wide reaching
theoretical implications for models of speech production, and potentially for our

view of the mental lexicon in general.
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This thesis examined how the speech production system is voluntarily con-
trolled to achieve different speaking rates. Control of speaking rate is an es-
sential communicative skill, since speakers must design their speech to make it
optimally communicative, given context (Hazan & Baker, 2011; Pouplier, 2012).

This question was explored through experiments and simulation of a com-
putational model, EPONA, which was developed as a component of the thesis.
This chapter summarises and discusses the results of the preceding chapters,
and elaborates on the utility and implications of the EPONA model of speech
production and the notion of gaits as a mechanism of speaking rate control.

71 Summary of contributions and findings

Chapters 2 and 3 were methodological chapters, and described and validated
analysis tools that were developed to prepare the data for the later chapters.

A recurring problem in psycholinguistic modelling of speech is that models
operate on units that make sense psychologically, but that are impossible to ob-
serve directly (e.g. Levelt, 1989; Levelt et al., 1999; Tourville & Guenther, 2011).
This disconnect between model and what is feasible to test experimentally has
limited progress in the development of models that describe more complex tasks
than the production of monosyllables. In Chapter 2, two analysis approaches
were developed that identified the onset and offset times of psychologically rel-
evant planning units from electromagnetic articulography (EMA) tracks of artic-
ulator movement and from the acoustic speech signal only. These methods im-
prove on previous practice by making it practical to test computationally imple-
mented speech production models on multisyllabic and multi-word speech data,
but necessarily constrain the possible speech materials to a subset of speech seg-
ments at critical positions in words. Despite using data of different modalities,
the outcomes of the two metrics were substantially correlated, validating that
they captured the same underlying construct.

The acoustic metric was used to prepare the PiNCeR corpus (Rodd, Bosker, ten
Bosch, et al., 2019a, see Chapter 4), which was the dataset modelled by EPONA in
Chapter 5. The software implementing these metrics is freely available for other
researchers to use.

The quality of the segmentation of speech data that is obtained automatically
is in general insufficient for fine-grained phonetic and psycholinguistic analyses.
However, conventional manual segmentation of speech data is very time con-
suming. Chapter 3 introduced a speech segmentation system, POnSS, that was
developed to allow efficient segmentation to the word-level of the speech ma-
terials elicited in the various experiments. Compared to conventional, manual
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segmentation using Praat TextGrids, POnSS enables much quicker segmentation
of speech data to the word-level by dividing tasks that must be performed by hu-
mans into small chunks that can be distributed dynamically over a group of an-
notators, and, where feasible, automating aspects of the process. In a validation
experiment, POnSS was shown to be as reliable as conventional segmentation,
but about 20% faster. The software implementing POnSS is freely available.

Chapter 4 introduced a pair of related behavioural experiments and a speech
corpus containing speech elicited in the experiments, which was then used in
Chapter 5. In the experiments, speakers had to name pictures, in Dutch, at one
of three pre-determined speaking rates. The pictures were arranged around a
‘clock-face’, and a dot jumped clockwise from picture to picture to indicate which
picture was to be named when. The data were segmented with POnSS, and the
analysis technique introduced in Chapter 2 was used to identify the onsets and
offsets of syllable-level planning units. The resulting PiNCeR corpus contains
productions of disyllabic words with known, stable speaking rates from 25 speak-
ers, along with onset and offset times of syllable-level planning units.

Chapter 5 introduced our model of speech production, EPONA. The construc-
tion of the model is in itself an important contribution to the field of computa-
tional models of speech production; EPONA is the first computationally explicit
model of the formulation phase of speech production that describes the tem-
poral unfolding within words. It is also the first frame-based model to have a
contemporary computational implementation suitable for fitting to speech data.
Chapter 5 reported simulations of the model that aimed to ascertain how speak-
ers adjusted the formulation system to control their speaking rate.

An evolution-inspired optimisation algorithm was used to find the values for
the parameters of the model that resulted in simulated speech durations that
most resembled those observed in Chapter 4. The multi-dimensional space formed
by considering each parameter of the model as a dimension was taken as an ap-
proximation of the cognitive space of the human speaker. We found that the
parameter values supporting the three speaking rates available in the PiNCeR
corpus patterned in a triangle. This result indicated that at least two quali-
tatively distinct configurations of the speech production system were present,
consistent with the hypothesis that speakers achieve rate control by switching
within an inventory of such qualitatively distinct configurations, called gaits
here. Furthermore, in a control analysis, we found that an optimisation run
that had been constrained to only consider linear arrangements of the rates in
parameter space was clearly outperformed by the unconstrained model, rein-
forcing our conclusion that there are multiple gaits involved in the formulation
system. In a further analysis, we attempted to quantify support for different
possible mappings of the three speaking rates in the PINCeR corpus onto two or
three gaits by statistically modelling the (non-)linearity in the outcome dura-
tions along axes between pairs of speaking rates. This analysis was inconclusive,
possibly because the representation of the outcome in terms of syllable duration
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and overlap duration was insufficiently rich for the predicted non-linearities to
be reliably detectable.

Chapter 6 built on the findings of Chapter 5. It described a behavioural exper-
iment that aimed to test the key conclusion of Chapter 5 more directly, without
dependence on the computational model. In the experiment, speakers named
pictures from a clock-face display, similar to the display used in Chapter 4. This
time, speakers were taught to speak at three set speaking rates before the ex-
periment. They then had to maintain the speaking rates themselves. The re-
quired speaking rate was indicated by the colour of a frame placed around the
picture display. At an unpredictable moment during the trial, the colour of the
frame changed, indicating that the speaker should adjust their speaking rate.
We expected that speakers would differ in how quickly they would be able to
switch between different pairs of speaking rates: faster adjustment would indi-
cate that less cognitive reconfiguration was required to make the switch between
the relevant rates. We found that speakers were quicker to switch between slow
and medium speaking rates than they were to switch between fast and medium
speaking rates. That there was a difference at all was interpreted as consistent
with the gaits hypothesis: if no gaits were present, we would have predicted no
difference to emerge. Beyond this general confirmation of support for the gaits
hypothesis, Chapter 6 also aimed to lend support to one of the mappings of rates
onto gaits, which had not been possible based on the analysis in Chapter 5. The
finding that it was quicker to switch between slow and medium rates than be-
tween fast and medium rates implied a mapping where slow and medium are
supported by one gait, and fast is supported by a second, qualitatively distinct
gait.

Chapters 5 and 6 provide complimentary evidence from different approaches
that speakers switch between qualitatively different configurations of the cogni-
tive system that plans speech to achieve different speaking rates, much as some
animals with legs switch between gaits to achieve different movement speeds.

7.2 What is a gait?

While Chapters 5 and 6 make clear that gaits are switched between to achieve
gross shifts in speaking rate, what a gait precisely is, remains rather vague. Fur-
ther research will be required to make progress towards a more concrete oper-
ationalisation of what a gait actually is, and what surface features in the speech
signal are consistent within gaits. In the next subsections I make some sugges-
tions regarding the nature, purpose, and consequences of gaits in the formula-
tion system.
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7.2.1 The link between speaking rate and reduction

A possible reason that gaits may exist is to prepare so-called reduced pronunciation
variants. Alongside variation in the speaking rate, there is also extensive tem-
poral variation in how words themselves are produced. Words are seldom pro-
nounced in their canonical ‘dictionary’ form. Instead, acoustic cues, segments
and sometimes entire syllables are degraded or omitted, generally when words
are highly predictable and in informal spontaneous speaking situations (Ernes-
tus & Warner, 2011; Johnson, 2004). For example, American English “yesterday”,
the typical full form of which is [jesta:rei], may be reduced to [jefer]. The con-
text of the utterance (speaking style, sentence-level prosody, and in particular
speaking rate) has a large bearing on the degree to which reduction phenomena
appear. That more than just the immediate phonetic context and the speaking
rate influence the degree to which a given word is reduced implies that reduc-
tion phenomena are not solely a product of phonetic processes in the execution
phase, but must also involve adjustments to the higher-level planning process,
i.e., the formulation phase (Ernestus, 2014). Reductions that emerge in formula-
tion might be expected to be more categorical in nature (stepwise reductions in
gesture duration or excursion, or binary omission of cues), while reductions aris-
ing in execution might be expected to be purely gradient (continuous reduction
in gesture duration or physical excursion until a cue is no longer observable).
Hanique et al. (2013) found evidence of categoricality in the distribution of the
durations of phonemes eroded by a reduction process in Dutch. A further argu-
ment that reductions can emerge in formulation is the finding that words are
less reduced if the following word is less predictable. This is explained by ex-
tra time for the more difficult planning of the upcoming word being ‘bought’ by
reducing the word currently being produced comparatively less (e.g. Bell et al.,
2009; Pluymaekers et al., 2005).

That reduction processes can arise at the formulation level and that variants
can differ from each other categorically raises the question of how different pro-
nunciation variants might be represented in the lexicon. One proposal is that
multiple units in the lexicon are required, one for each variant. Such an arrange-
ment is compatible with evidence that the relative frequency of pronunciation
variants influences naming times (Biirki et al., 2010) and speed of recognition
(Brand & Ernestus, 2018), but is problematic for the dominant theories of plan-
ning in speech production, which contend that each word is represented by one
unit in the lexicon (e.g. Levelt, 1989; Caramazza, 1997; Levelt et al., 1999). Fur-
thermore, a formal model of how variant pronunciations are connected and or-
ganised in the lexicon should also explain the mechanism by which contextual
factors might influence the selection of a variant pronunciation.

It seems plausible that the mechanisms that support control of speaking rate
in the formulation phase may be closely related to the mechanisms that support
categorical reductions. One might hypothesise that the purpose of gait shifting
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Figure 7.1: A sketch of an EPONA network containing the nodes necessary to produce
the Dutch disyllabic words navel ['na:.val] ‘navel” and snavel ['sna:.val] ‘beak’,
adding the reinforcement route and multiple frame and structure nodes to
capture gaited behaviour. Each panel shows one of the routes of the model,
the remaining routes are shown in translucent behind. Colours indicate dif-
ferent gait reinforcement networks. See the text for details.

is to prepare speech involving different degrees of reduction, such that by en-
gaging a gait, we are engaging a stratum of stored variants of different words
that are similar in their degree of reduction. If that were true, there would be
a number of observable effects that we should expect to see, that to my knowl-
edge have not been tested for. Firstly, there should be trends in the frequency of
reduced pronunciation variants by speaking rate; some variants should emerge
at moderate speaking rates; some, presumably the most heavily reduced, only at
the fastest rates. Furthermore, these trends should be non-linear: at different
rates supported by the same gait, we should see similar patterns in the relative
frequencies of reduced pronunciation variants.

7.2.2 EPONA as a network model

To be able to make testable predictions about the nature of gaits, and thus ex-
plore how gait selection would work as a mechanism to control speech rate in
multi-word, continuous speech, a fully operationalised model is required. Al-
though EPONA as presented in Chapter 5 is a ‘single column’ model describ-
ing the production of a single word in isolation from other words and without
connections to representations associated with other words (see Figure 5.1), the
model can be readily extended to form an interactive network model of the selec-
tion of word form variants that might form the basis of a model of the production
of multi-word utterances.

A network view of EPONA, as illustrated in Figure 7.1, isolates the different
parameter settings associated with each gait in a ‘variant’ frame node for the
relevant word shape, which is in turn connected to ‘variant’ structure nodes en-
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coding different temporal realisations of the relevant structure. Each word in
the lexicon is connected to all frame nodes suitable to produce that word shape.

We postulate exhaustive excitatory and inhibitory connections between re-
lated variants of different frame nodes, and inhibitory connections between
variants of the same frame node. This interconnection allows priming activation
and suppression that tends to ensure that adjacent words are produced with the
same speaking style. We will call these connections between the frame nodes
the ‘reinforcement route’, consistent with the segmental and metrical routes.

In the reinforcement route, networks or families of related frame nodes, de-
picted in Figure 7.1 as different colours of nodes, are connected together by heav-
ily weighted connections. Although three families of frame nodes are depicted
in Figure 7.1 for each word form, it is clear that different word shapes will have
differing number of frame node variants, reflecting different possibilities for cat-
egorical reduction. Some frame node variants will therefore belong to multiple
interconnected networks of related frame nodes. A gait in the EPONA model
is then the reinforcement network of strongly interconnected frame node vari-
ants, which tend to prime each other, and whose priming activation tends to
suppress the frame node variants belonging to other gaits. The weightings of
the connections in the reinforcement networks are established by associative
learning, such that pairs of frame nodes that co-occur in time develop strong
excitatory connections, and those that do not co-occur develop inhibitory con-
nections. The excitatory connections within gait networks and inhibitory con-
nections between them have the property of introducing inertia into the system:
the default behaviour is always to continue speaking in the same gait. Priming
between the nodes is a possible explanation for why switching between rates
within a gait should be easier than switching between rates achieved by differ-
ent gaits, as we find in Chapter 6. This is because executive control would be re-
quired to boost the target network and suppress the current network and other
competitor networks to achieve switching. This momentary adjustive executive
control might be thought of as a ‘gait shifter’. If executive control is invoked to
moderate the activation in competing and target gait networks, it might be pos-
sible to detect correlations between the various components of executive control
ability (Miyake et al., 2000) and individual differences between speakers in their
success at modulating their speaking rate.

7.2.3 Gait networks predict ‘sweet spots’

By analogy with locomotive gaits, we might expect speaking gaits to have default
rates at which they are most efficient. In human and animal locomotion, the
selection of gaits is tightly linked to their relative efficiency. In horses, which
typically have walking, trotting, and galloping gaits, each gait has a clear ‘sweet
spot’ speed, at the approximate centre of the range of speeds achievable with
that gait, where exertion (ml 0, consumed to move 1 metre) is minimised (Hoyt &
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Figure 7.2: Panel A: Adapted from Figure 2 of Hoyt and Taylor (1981). Above: how the oxy-
gen cost to move 1 metre declines to a minimum in each gait, and below, how
a free-walking horse selects the speeds in the most efficient range of speeds
for each gait. Panel B: A possible system of attractor basins for speaking gaits,
showing three putative gaits, and below, indicating which gaits should be pre-
ferred and dispreferred in such a system.

Taylor, 1981, their Figure 2, key aspects of which are reproduced in Figure 7.2A).
Horses and migratory animals select these speeds preferentially (Pennycuick,
1975), and avoid inefficient speeds in the shoulder of each gait.

In her proposal that qualitatively distinct coordination modes of the speech
execution system resemble locomotive gaits, Pouplier (2012) suggested that dif-
ferent modes in execution were each optimal in different contexts, but all equiv-
alent in acoustic outcome for the listener and effortfulness for the speaker. In
the case of the cognitive gaits considered in this thesis, a more direct analogy
from the locomotion system is possible. Hoyt and Taylor (1981) depict a fit to
their data where each gait is a U-shaped curve (Figure 7.2A). The most efficient
speed for each gait is in the valley of the curve for that gait. The curves for dif-
ferent gaits intersect, showing speeds where multiple gaits are viable. Such an
arrangement can be thought of as a system of attractor basins, where the speeds
that are most efficient are the attractors, and speeds that are hard to achieve by
any of the gaits are repellers between the basins. This attractor basins concept
may apply directly to speaking rates, too. Such an arrangement is sketched in
Figure 7.2B, showing three putative gaits, and should be identifiable by testing
for preference effects in speaking rates. It is unlikely that preferences in speak-
ing rate are as readily observable as those in horse locomotion; if they were,
they would have long been reported. Instead, they are presumably obscured by
speaking rate variation arising in satisfaction of communicative aims. It may;,
however be possible to detect preferences experimentally by quantifying how
difficult individual rates are to maintain. Two possible experiments that may be
able to do this are described in Box 7.1.
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Box 7.1: Experimental approaches to detect rate preferences

Experimental approaches may be able to detect preferences for certain
rates by ‘amplifying’ the biases inherent to the cognitive process of speak-
ing. One way to do this would be to ask speakers to read aloud, staying
synchronised to a recording of the same text presented over headphones.
While the speaker was reading, the recording would drop out, but the
speaker would have to continue. Throughout the trial, the speaking rate
would be tracked, rather as was done in Chapter 6. Depending on the rate
at which they had started, speakers would presumably slow down or speed
up to a rate that was easier to achieve, in effect ‘sliding’ down the flanks
of the attractor basins towards the sweets spots.

Another possible approach would be to have speakers shadow pro-
ductions of sentences at known, stable speaking rates, then iteratively
shadow their own productions, like a game of ‘broken telephone’ (e.g. Ja-
coby & McDermott, 2017; Griffiths & Kalish, 2007). Over a number of it-
erations, their rate would deviate, again either speeding up or slowing
down to move in the direction of the sweet spots of the gaits. In contrast
to the first experiment, it would be difficult, however, to know whether
the biases detected by this experiment arose in comprehension (because
participants perceived the speech as slower or faster) or in production.

Either of these experiments would allow the reconstruction of a sys-
tem of attractor basins as illustrated in Figure 7.2B, and would allow the
sampling of many more speaking rates than the experiments employed in
Chapters 4 and 6 support.

7.3 Speaking rate control within gaits

This thesis describes the mechanism of gross rate control as switching between
gaits. How finer-grained, within-gait rate switching might work has not been ex-
plicitly discussed in this thesis. However, if there are relatively few gaits, which
is the assumption underlying the experiment in Chapter 6 and the suggestion
that gaits represent categorically distinct reduction possibilities, then some fur-
ther control mechanism must exist to moderate speaking rate within gaits.

One possible fine-grained control mechanism is implied by the alternative hy-
pothesis in Chapter 5, namely that rate control is simply achieved by tweaking
the ‘gain’ in the system. An obvious candidate for such a gain manipulation is
the general level of activation in the stratum of plan nodes in EPONA; such that
more activation results in faster productions. This is broadly consistent with
strategies hypothesised to be engaged to control the time course of lexical pro-
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cessing (Ratcliff, 1978; Lupker et al., 1997; Kello & Plaut, 2000). I will term this
mechanism the ‘rate moderator’.

To describe how the rate moderator can stretch and compress the realisation
of speech, we require a more explicit account of the execution phase, such as the
DIVA model (Guenther, 2016b; Tourville & Guenther, 2011) or the FACTs model
(Parrell et al., 2019). I will take the DIVA model as the starting point for now. An
assumption inherent to EPONA and to the working model introduced in Chap-
ter 1 is that the activation of the content node is one and the same as the activa-
tion of the associated planning unit in the speech sound map (SSM) that forms
the input to the feedforward controller of the DIVA model, consistent with the
idea of cascading activation (e.g. Goldrick & Blumstein, 2006). In the feedforward
controller of DIVA, the ‘playback’ speed of the motor target is linearly related to
the magnitude of the activation of the planning unit: the feedforward controller
subtracts the current motor state from the motor target and then multiplies it
by a ‘GO’ signal and a constant to calculate the movement commands to the ar-
ticulators. This means that a higher level of planning unit activation will linearly
speed up production, and result in higher velocity of articulator movement. Con-
versely, a lower level of content node activation will result in a linearly slowed
down production, and a lower velocity of articulator movement.

This linearity between speaking rates that are close enough together to be
achieved by the same gait should be detectable, as attempted to do in Section 5.6.2
of Chapter 5. This type of linearity is of course in contrast to the classic finding of
non-linear scaling between more disparate rates (e.g. Gay, 1981). In the light of
the gaits findings presented in this thesis I would argue that the non-linearities
detected by Gay (1981) instead represent the consequences of both within-gait
and across-gait speech rate modulation.

74 A working theory of mechanisms of speaking rate
control

In this section, the proposals for mechanisms of speaking rate control are sum-
marised into a working theory, based on the EPONA model as described in Chap-
ter 5. This working theory is illustrated in Figure 7.3A.

I propose that speakers have two main ways to control their speaking rate,
which they must use in concert to achieve a continuous range of speaking rates.
The first mechanism, the gait shifter, is a form of executive control that is en-
gaged momentarily and changes the relative activation of gait ‘reinforcement
networks’ of frame nodes. It does so by boosting activation in the network suit-
able for the target speech rate and suppressing activation in the current network
and other competitor networks. The gait shifter is invoked by a variety of higher
level processes, such as: voluntary, concious gait shifts, of the type elicited in
Chapter 6 of this thesis; rate shifts associated with automatic responses to en-
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Figure 7.3: Panel A: A working theory of mechanisms of speaking rate control, showing
the rate moderator, which continuously modulates the activation of the stra-
tum of planning nodes, and the gait shifter, which momentarily engages to
modulate the activation in the gait reinforcement networks of frame nodes.
Panel B: A possible system of attractor basins for speaking gaits, showing three
putative gaits, and below, the general level of activation (y axis) in the stratum
of plan nodes that the rate moderator needs to achieve to move to that rate, a
separate line indicates each gait. A number of example speaking rates are in-
dicated (letters). Some rates are achievable using multiple gaits, such as rate
y. Panel C: the engagement of the rate moderator and gait shifter to achieve
different speaking rate shifts.

vironmental noise, as discussed later in Section 7.5.2; and temporary rate shifts
undertaken to mark prosodic structure or mark prosodic prominence, as dis-
cussed later in Section 7.5.3. The second mechanism, the rate moderator, is
continuously engaged to a greater or lesser extent, to achieve deviation from
the natural, ‘sweet-spot’ rate of a gait, at which its engagement is minimised. To
speed up, the rate moderator boosts the activation of the strata of plan nodes; to
slow down, the rate moderator suppresses this activation.

Figure 7.3B shows a putative system of gait attractor basins, with five speaking
rates labelled, and beneath a depiction of the general level of activation in the
stratum of plan nodes. To shift from rate v to rate w, the rate moderator reduces
its suppression of activation in the plan node stratum, which causes the faster
unfolding of metrical sequences in the frame nodes and faster playback of the
syllable-level planning units. To shift from rate w to rate x, the rate moderator
boosts activation in the plan node stratum, which further speeds up the unfold-
ing of metrical sequences and the playback of planning units. To shift from rate
to rate y, there are two options: either to use only the rate moderator to further
boost activation in the plan node stratum, and thus speaking rate, or to switch
gait by momentarily invoking the gain shifter to boost activation in the network
for gait 2 and suppress activation in the other gait networks, and simultaneously
use the rate moderator to suppress activation in the plan node stratum. Which
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option is chosen from each starting point would be a means to diagnose the rel-
ative cost of engaging each moderator. To shift from rate x to rate z, however,
invoking the gait shifter is the only option, since rate z cannot be achieved by
gait 1.

7.5 Implications of gaits for phenomena adjacent to
speaking rate control

The findings in this thesis are based on experiments concerning voluntary con-
trol of speaking rate, but the notion of gaits as a mechanism of speaking rate
control can be readily extended to other phenomena that might be thought to
contribute to inter- and intra-speaker rate variation or co-occur with speaking
rate variation. This section discusses how gaits might inform thinking about
these phenomena and how these phenomena might be integrated into the no-
tion of gaits to work towards a more comprehensive theory of speaking style
control.

7.5.1 Inter-speaker variation in gait inventories and habitual speaking
rate

In this thesis, it is assumed that all speakers have a similar inventory of gaits for
the three rates sampled in the experiments. The participants who are included in
the studies are demographically similar; all are native Dutch-speaking members
of the Radboud University community, with an average age of 22.7 years, with
relatively little variation (s.d. 2.77 years), which led us to assume that they would
behave similarly. Furthermore, our sample of three very disparate speaking rates
meant that it was unlikely that, even if speakers did vary in precisely which rate
ranges were achieved by each gait, we would be able to detect such variation.

To identify the mapping between speaking rates and gaits of individual speak-
ers, which might well prove to vary, different experimental designs are required,
whereby many more speaking rates can be sampled than was possible with the
picture naming experiments reported in Chapters 4 and 6. Such dense sampling
would be possible with either of the experiments described in Box 7.1. Variation
in the inventory of gaits might be an explanation for a further highly salient
feature of variation in speaking rate, variation in habitual speaking rate.

Part of that variation is not yet understood, and part is conditioned by lan-
guage and dialect (Quené, 2008), but there are also demographic trends in that
variation. Differences in gait inventory may explain both of these. One often re-
ported trend is that older speakers tend to speak more slowly (Duchin & Mysak,
1987; Harnsberger et al., 2008; but c.f. Quené, 2013). In the context of gaits, an
appealing explanation for this slowing down would be a change in the gait in-
ventory over the lifetime, such that the fastest gaits are not engaged by older
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speakers. Establishing whether older speakers do indeed differ in gait inventory
is highly feasible using the experimental techniques suggested in Box 7.1. How-
ever, the directionality of such a change would be hard to establish; do older
speakers reduce their speaking rate for other reasons and the gait network sup-
porting the fastest rates therefore deteriorate from disuse, or is a change in the
gait inventory instead the cause of the change in behaviour?

7.5.2 Variation in speaking rate driven by communicative and
environmental context

Voluntarily deciding to speed up or slow down is likely not the most frequent
reason that speakers adjust their speaking rate; instead, they do this in response
to environmental and communicative context in support of communicative suc-
cess (e.g. Hazan & Baker, 2011). Manipulating communicative context while
maintaining tight experimental control is challenging. Techniques that might be
hoped to do so, such as virtual reality (Peeters, 2019), have the potential to elicit
changes in speech behaviour in response to features of the virtual interlocutor
(e.g. Heyselaar et al., 2017), but implementation of experiments in virtual reality
is expensive and time consuming (Casasanto & Jasmin, 2018). The ventriloquist
paradigm, which combines pre-recorded speech with a human interlocutor (e.g.
Felker et al., 2018) may well prove to be the optimal way to perform such manip-
ulations as the technique matures.

Manipulating environmental context is however much easier. The Lombard
effect, whereby speakers slow down in response to noise (Lombard, 1911; van
Summers et al., 1988), can be elicited simply by presenting noise binaurally over
headphones. This effect is largely automatic (Garnier et al., 2010), making it a
good counterpoint to the voluntary rate control examined in this thesis. Along-
side the slowing down effect, Lombard speech is also characterised by increased
intensity, increased F0, enhanced amplitude modulations in the temporal enve-
lope, and increased power in the higher frequencies of the spectrum (Bosker &
Cooke, 2018; Bosker & Cooke, in press; Lu & Cooke, 2008). It is unknown to what
extent the speech rate components and vocal effort components of the Lombard
effect are independent of each other, or are controlled together. My intuition is
that the slowing down component of the Lombard effect may be supported by
the gait shifting mechanism described in this thesis. To test this, the switching
experiment described in Chapter 6 could be repeated, but rather than training
and cueing participants to speak at particular rates, noise would be switched
on or off during the trial. The same analysis as in Chapter 6 would reveal how
quickly speaking rate was shifted in response to the noise. If the slope coeffi-
cients found were comparable to those measured in Chapter 6, it could be con-
cluded that the gait mechanism is also engaged to shift speaking rate in response
to environmental noise.
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If the vocal effort components of the Lombard effect arise through the same
control process, then they should take a similar amount of time to engage (or
shut down) as the slowing down in speaking rate, which would emerge as a sim-
ilar slope coefficient. However, my hunch is that the two aspects of Lombard
speech are controlled independently, and would thus have differing slope coef-
ficients as they become engaged in response to noise onset. This result would
call into question whether it is valid to characterise Lombard speech as a single
phenomenon or as a constellation of speaking style changes that co-occur.

7.5.3 Intonation and prosodic structure

Speaking rate and intonation are very tightly related: speaking rate is typi-
cally considered bundled together with intonation in treatments of prosody
(Ladd, 2008), and it has been suggested that speech rate variation contributes
to the marking of prosodic phrasing (Nooteboom & Eefting, 1994). Furthermore,
the realisation of an intonational melody is highly dependent on the speaking
rate (Gussenhoven, 2005). Words may be lengthened preceding prosodic phrase
boundaries, or when they should be marked as extra prominent (Wightman et
al., 1992). Reduction phenomena and prominence are inversely related; such
that only the least prominent words get reduced (e.g. Pluymaekers et al., 2005).
This suggests that, if (categorical) reductions are determined largely by the cur-
rently engaged gait, the relative activation of the other gait networks needs to be
modulated momentarily to ensure that the most prominent, most information
bearing words are less reduced than other words.

7.5.4 Scope of frame nodes and planning units

The key component of the gait networks described in Section 7.2.2 is the frame
node at the heart of the metrical route. This node captures the word-level tem-
poral and metrical structure, mediating the retrieval of syllable-level planning
units. That the unit that mediates between the formulation and execution phases
is a syllable is a well established assumption made in various models of speech
production. For instance, the Levelt et al. (1999) model provides syllabified out-
put. The DIVA model (Guenther, 2016b; Tourville & Guenther, 2011) is agnostic
with regards to the length of the planning unit stored in the speech sound map,
though syllable level units are privileged in the DIVA literature over segmental
or word-level planning units. This ‘mental syllabary’ of stored syllable represen-
tations (Levelt & Wheeldon, 1994) is a parsimonious idea, and one that is adopted
in many models (Crompton, 1982; but c.f. Goldstein & Fowler, 2003; Levelt et al.,
1999; Varley & Whiteside, 2001; Walsh et al., 2010; Whiteside & Varley, 1998).

A key testable prediction of the syllabary concept is that there should be a re-
sponse time advantage for high frequency syllables compared to low frequency
syllables, since the high frequency syllables can be retrieved whilst the low fre-
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quency syllables need to be composed. The predicted response time advantage
for high frequency syllables is small but well established (in Dutch: Levelt &
Wheeldon, 1994; Cholin et al., 2006; Cholin & Levelt, 2009; in Spanish: Dominguez
et al., 1993; Perea & Carreiras, 1995; Perea & Carreiras, 1998; Carreiras & Perea,
2004; in French: Brand et al., 2002; Laganaro & Alario, 2006; Perret et al., 2014;
in German patients with apraxia of speech and controls: Aichert & Ziegler, 2004;
Staiger & Ziegler, 2008; in English: Cholin et al., 2011; Croot et al., 2017). Evi-
dence for the syllabary concept also comes from articulation, where timing dif-
ferences have been observed between consonant clusters composed of segments
from two adjacent syllables (in “bass cap”) or from segments from one sylla-
ble (in “a scab” or “mask amp”; Byrd, 1996). A further source of evidence is
repetition-suppression in MRI (Peeva et al., 2010), which showed sensitivity to
syllabic units in the left ventral premotor cortex, the region associated with the
speech sound map (planning units) in the DIVA model (Guenther, 2016b; Guen-
ther et al., 2006). Lesion of this region (among others) has also been implicated
in acquired apraxia of speech, a disorder which is thought to reflect impaired
retrieval or unpacking of planning units, or impaired feedforward control of the
motor system (Maas et al., 2015; Terband et al., 2019; Varley et al., 1999).

Although this evidence suggests that syllables are a real unit of the planning
system, it does not exclude that syllable-level units and units at other levels co-
occur. A mixture of syllables and other units is consistent with Levelt and Wheel-
don’s (1994) mental syllabary, where syllable representations were proposed to
be available for the most frequent syllables, which are ‘over-learned’, and online
composition would be required for the rest.

Formalised models of the production system that account for variation promise
to provide further evidence to address this fundamental question of what the
units in the lexicon actually are, since these units must be implicated in rate
modulation strategies used by speakers. This might emerge through instanti-
ation of variant frame nodes suitable for different speaking rates and degrees
of reduction, as suggested in Section 7.2.2. It should be possible to identify
the boundary between over-learned syllables and online composed syllables in
how they are manipulated to speed up or slow down. Further modelling with
EPONA implementing different assumed granularities of frame nodes and plan-
ning units and the gait reinforcement networks may reveal which levels of gran-
ularity are best at predicting the speakers’ choice of categorically distinct re-
duced pronunciation variants.

7.6 Conclusion

The research in this thesis has indicated that, to control the rate of speaking,
speakers switch between qualitatively distinct configurations of the cognitive
system (i.e., the formulation phase) that plans their speech. This was shown
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by simulating speech produced at different speaking rates with a computational
model of speech production, EPONA. In some ways, these configurations resem-
ble the gaits that animals with legs adopt to move at different speeds, like walk-
ing and running. We therefore termed them the ‘gaits of speech’. Like locomo-
tive gaits, speech gaits are suitable for a range of speeds. In a sample of three
speaking rates, we established that relatively fast speech was achieved by one
gait, whereas medium and slower speaking rates were achieved by a second gait,
by showing that speakers found it easier to switch between medium and slow
speaking rates than they did to switch between medium and fast speaking rates.

To reach this conclusion, new analysis methods were developed. The first of
these methods facilitates the identification of the onset and offset times of psy-
chologically relevant planning units from the acoustic speech signal. Next, an
efficient system for the segmentation of speech data was developed. This al-
lowed us to identify the onsets and offsets of words relatively quickly, to prepare
for modelling with EPONA. The EPONA model itself is also innovative, as the first
computationally explicit production model that can account for speakers’ ability
to voluntarily adjust speaking rate.

Future work may aim to map the inventory of gaits more extensively, which
may reveal differences between individuals and explain, for instance, why speak-
ers have different habitual speaking rates. The EPONA model and the notion of
gaits may also be extended to account for adjacent phenomena in the speech
production system, such as reduction and intonation.
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Appendix: elicitation materials

Table A.1: Filler words were included in the first, penultimate and last slots of
each trial.

orthography phonetic form  meaning

gieter 'xi.tor watering can
kabel 'kaz.bal cable

lasser 'la.sar welder
lichaam lix.aim body

molen 'mo:.lan windmill
monnik 'mo.nik monk
spiegel 'spi.xal mirror

tafel 'ta.fol table

trommel 'tro.mol drum
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Table A.1: Filler words were included in the first, penultimate and last slots of
each trial. (continued)

orthography phonetic form  meaning

vinger 'za.par finger

zanger 'za.por singer

Table A.2: Target words were included in the second to sixth slot of each trial.

orthography phonetic form  meaning

=
hagel 'har.xal hail NN
hamer 'ha:.mar hammer f
havik 'har.mar hawk
nagel 'na:.xal fingernail @
navel 'nar.val navel ) /;v— {

sinus 'si.nus sine wave /\/

slager 'slaz.xar butcher
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Table A.2: Target words were included in the second to sixth slot of each trial.

(continued)
orthography phonetic form  meaning
snavel 'sna:.val beak é
visum 'vi.sum visa
vlieger 'vli.xar kite ﬁ
vriezer 'vri.zor freezer %
wafel 'wa fal waffle
zoemer 'zu.mar alarm \(Z%%\\\
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ledereen kent wel iemand die bijzonder snel spreekt, of juist buitengewoon traag.
Naast verschillen tussen sprekers van dezelfde taal, bestaan er ook verschillen
tussen talen in hoe snel ze gesproken worden. En zelfs één en dezelfde spreker
kan variéren in hoe snel zij of hij spreekt. Zo gaan sprekers bijvoorbeeld trager of
sneller spreken, athankelijk van de communicatieve situatie. Dit gebeurt zowel
automatisch, afhankelijk van omgevingsgeluid (zoals in een luidruchtige kroeg),
als vrijwillig, bijvoorbeeld in gesprek met iemand met een slecht gehoor, of ie-
mand die de taal nog aan het leren is. Meestal vinden mensen het moeilijk dit
soort vrijwillige spraaksnelheidsaanpassingen vol te houden, wat impliceert dat
er wat cognitieve inzet nodig is om spraaksnelheid aan te passen.

Om vloeiend te spreken, moeten sprekers abstracte concepten in concrete
woorden omzetten, en deze vervolgens weer omzetten in plannen voor hoe de
spieren van het spraakkanaal moeten bewegen. Dit hele proces noemen we
‘spraakvoorbereiding’. Huidige theorieén van spraakvoorbereiding hebben geen
verklaring voor hoe sprekers vrijwillig hun spraaksnelheid aan zouden passen.

Dit proefschrift haakt in op de vraag hoe sprekers hun spraakvoorbereiding
aanpassen om op verschillende snelheden te kunnen spreken. Dit is interes-
sant om drie redenen. Ten eerste, een goede theorie van spraakvoorbereiding
moet variatie in spraaksnelheid kunnen verklaren, aangezien variatie zo veel
voorkomt. Ten tweede, als we begrijpen hoe spraaksnelheid aangepast wordt,
begrijpen we ook beter hoe ‘executive control’-processen (zoals aandacht) op
spraakvoorbereiding inwerken. Ten derde, het is nuttig om uit te zoeken welk
deel van de variatie in spraaksnelheid opzettelijk is, en welk deel ruis is. Dit
draagt bij aan het ontwikkelen van nieuwe theorieén van spraakvoorbereiding.

Dit proefschrift bevat een inleiding, vijf empirische hoofdstukken, en een af-
sluitende discussie. Hoofdstukken 2, 3 en 4 beschrijven methodes die ik heb
ontwikkeld en gebruikt om de data te verzamelen en voor te bereiden. Hoofd-
stukken 5 en 6 beschrijven simulaties en experimenten, die direct bijdragen aan
het beantwoorden van de hoofdvraag.

In Hoofdstuk 2 beschrijf ik een manier om vast te stellen wanneer, in lopende
spraak, lettergrepen precies beginnen en eindigen. Dit doe ik alleen aan de hand

van het opgenomen geluid van de spraak. Dit probleem is verrassend moeilijk,
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omdat lettergrepen akoestisch gezien in elkaar ‘overlopen’. Ik heb een methode
ontwikkeld die kijkt naar hoeveel het akoestische signaal verandert en vervol-
gens de pieksnelheid van verandering identificeert. Het begin van deze piek ne-
men we over als het begin van de nieuwe lettergreep. Het eind van de piek laat
het eind van de vorige lettergreep zien. De resultaten van deze methode heb ik
vergeleken met begin- en eindtijden van lettergrepen die bepaald waren op ba-
sis van bewegingsmetingen van de tong en kaak. De uitkomsten van deze twee
methodes bleken sterk gecorreleerd te zijn. Dit onderstreept de validiteit van

mijn nieuwe akoestische methode.

In Hoofdstuk 3 ontwikkel ik een oplossing voor een tweede praktisch prob-
leem. Onderzoek naar spraakproductie houdt normaliter in dat de begin- en
eindtijden van woorden handmatig vastgesteld worden. Dit wordt handmatig
gedaan omdat volautomatische spraakherkenningssoftware onvoldoende be-
trouwbaar is. Deze handmatige ‘segmentatie’ is een zeer tijdrovende praktijk,
en kan ook nog eens foutgevoelig zijn. Onderzoeksassistenten gebruiken soft-
ware die voor algemene fonetiek bedoeld is om de segmentatie uit te voeren.
Deze software is niet geoptimaliseerd voor deze taak. De experimenten in dit
proefschrift hebben veel data geleverd, wat er toe leidde dat het wenselijk was
om meer gebruik te maken van automatisatie, en om de handmatige procedure
efficiénter te laten verlopen.

Mijn oplossing was om een speciaal databanksysteem te bouwen, POnSS, dat
de spraak op automatische wijze kon segmenteren. Daarna konden de onder-
zoeksassistenten inloggen bij een speciale omgeving, waarbij de woorden een
voor een afgespeeld werden, samen met een visuele weergave van de bijbe-
horende geluidsgolven. Dan moesten ze beslissen of de segmentatie voldoende
accuraat was. In een tweede omgeving, pasten ze de begin- en eindtijden van
woordsegmentaties die afgekeurd werden in de vorige fase aan. De omgevingen
zijn te zien in Figuur 3.2, op pagina 37. Ik heb vervolgens geanalyseerd of de
segmentaties afkomstig van POnSS even betrouwbaar waren als die van de con-
ventionele procedure. Dit bleek inderdaad zo te zijn. Ik heb ook berekend hoe
lang het zou duren om dezelfde hoeveelheid spraakdata op conventionele wijze
te segmenteren, in vergelijking tot POnSS. Het bleek dat POnSS 23% sneller was.

In Hoofdstuk 4 beschrijf ik het experiment dat ik heb gebruikt om de spraak-
data mee te eliciteren (‘op te nemen’). Deze data heb ik vervolgens gebruikt in de
simulaties in Hoofdstuk 5. Sprekers moesten plaatjes benoemen in het Neder-



Nederlandse samenvatting 173

lands op drie vooraf bepaalde spraaksnelheden (snel, gemiddeld en langzaam).
De plaatjes werden weergegeven op een soort wijzerplaat. Er was een rood pun-
tje dat van plaatje naar plaatje met de klok mee sprong, om aan te geven welke
plaatje wanneer benoemd moest worden. Op die manier specificeerde ik de
spraaksnelheid. Vervolgens liet ik de data segmenteren met behulp van POnSS
(Hoofdstuk 3), en zette ik de analyse uit Hoofdstuk 2 in om de begin- en eindtij-
den van de lettergrepen vast te stellen.

Hoofdstuk 5 richt zich op het beantwoorden van de overkoepelende onder-
zoeksvraag. Ik introduceer twee mogelijke hypotheses over hoe spraaksnel-
heid gereguleerd wordt in het cognitieve systeem dat verantwoordelijk is voor
spraakvoorbereiding. Eén mogelijkheid is dat snel spreken in essentie hetzelfde
is als langzaam spreken, maar slechts versneld op lineaire wijze. Dit zou beteke-
nen dat de snelheidsbeheersing op een gaspedaal zou lijken. 1k noem dit de
‘gaspedaal’-hypothese. Anderzijds zou het kunnen zijn dat sprekers kwalitatief
verschillende cognitieve configuraties aannemen voor verschillende snelheden.
Dit zou te vergelijken zijn met de verschillende ‘gangen’ die dieren met benen of
poten aannemen om voort te bewegen, (zoals paarden, die drie gangen kennen,
stap, draf en galop). Het zou kunnen dat sprekers een ‘loop-spreken’ configu-
ratie aannemen om langzaam te praten, maar dat ze ‘ren-spreken’ voor snelle

spraak. Ik noem deze mogelijkheid de ‘gangen’-hypothese.

Om uit te zoeken welke hypothese klopt, heb ik een model van spraakvoor-
bereiding geprogrammeerd dat voortbouwt op bestaande theorieén. Het doel
van het model is het nabootsen van het tijdspatroon van de spraak van echte

sprekers die meededen aan het experiment van Hoofdstuk 4.

Het model heeft parameters die te vergelijken zijn met draaiknoppen. Ver-
schillende standen van deze parameters zorgen voor verschillende voorspellin-
gen. lk gebruikte kunstmatige intelligentie om standen te vinden die leidden tot
een goede nabootsing van de echte spraak. Dit gebeurde met vallen en opstaan:
het algoritme probeerde verschillende standen uit, en berekende hoeveel het
resultaat van het model op de echte spraak leek. Dit werd duizenden keren her-
haald, om tot optimale standen te komen. Dit gebeurde afzonderlijk voor iedere
snelheid, wat er toe leidde dat ik verschillende standen vond die optimaal waren

voor snelle, gemiddelde en langzame spraak.

Om te kunnen onderscheiden tussen de ‘gaspedaal’- en ‘gangen’-hypotheses,

bekeek ik vervolgens de standen van de parameters van het model die opti-
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maal waren voor iedere spraaksnelheid. Dit deed ik door ze (als het ware) in
een multidimensionale ruimte te tekenen, waarbij de verschillende parameters
de dimensies vormden. De gaspedaal-hypothese voorspelt dat de drie spraak-
snelheden een rechte lijn vormen binnen de ‘parameter-ruimte’. De gangen-
hypothese voorspelt daarentegen dat de drie spraaksnelheden in een driehoek
zouden zitten. 1k vond een driehoekige opstelling, wat overeen kwam met de
gangen-hypothese.

Dit resultaat liet zien dat er verschillende configuraties, of gangen, in het
cognitieve systeem bestaan. Maar ik kon nog niet zeggen hoeveel gangen er
waren, of welke spraaksnelheden gerealiseerd werden met welke gangen. Om
daar achter te komen, voerde ik nog een laatste experiment uit. Dit experiment
beschrijf ik in Hoofdstuk 6.

In dat experiment gebruikte ik een vergelijkbare wijzerplaat met plaatjes als ik
in Hoofdstuk 4 gebruikte. Dit keer moesten de sprekers vooraf de drie snelheden
leren, waarna ik het rode puntje dat de spraaksnelheid aangaf weghaalde. Hi-
erna moesten ze de snelheid dus zelf handhaven. De benodigde spraaksnelheid
(langzaam, gemiddeld, snel) gaf ik aan door middel van een kleurenbalk rondom
de plaatjes. Op een onvoorspelbaar moment tijdens het spreken, veranderde de
balk van kleur, als signaal voor de spreker om van spraaksnelheid te wisselen.

Ik verwachte dat er verschillen zouden voorkomen in hoe snel sprekers
zouden kunnen wisselen tussen snelheidsparen. Wanneer de sprekers hun
spraaksnelheid heel snel aan de nieuwe snelheid konden aanpassen, dan zou dit
laten zien dat ze het relatief makkelijk vonden om tussen de snelheden te wis-
selen, terwijl langzamere aanpassingen zouden laten zien dat sprekers het re-
latief moeilijker vonden. Ik vond dat sprekers sneller konden wisselen tussen
langzaam en gemiddelde snelheden dan tussen gemiddelde en snelle spraak. Dit
komt overeen met de uitkomst van Hoofdstuk 5, en daarnaast laat dit me con-
cluderen dat er twee ‘gangen’ zijn: één voor langzame en gemiddelde spraak-
snelheden, en een tweede voor de snelste spraaksnelheden.

Samenvattend, laten de resultaten van dit proefschrift zien dat het waarschi-
jnlijk is dat spraaksnelheid wordt aangestuurd door te schakelen tussen verschil-
lende configuraties van het cognitieve spraakvoorbereidingssysteem. Een in-
teressante vervolgstudie zou kunnen laten zien of er nog meer verschillen zijn

tussen de verschillende ‘gangen’.



English summary

Everyone knows someone who speaks particularly fast, or especially slowly. Dif-
ferent languages and language varieties have different typical speaking rates, as
do different individuals who speak the same language variety. Speaking rates
are also highly variable within individuals. Speakers slow down or speed up,
depending on the communicative situation. This happens both automatically,
in response to environmental noise (like in a busy pub), and voluntarily, for in-
stance when speaking to someone who is hard of hearing, or is a learner of the
language being spoken. We normally find it hard to maintain this kind of volun-
tary speech rate change, which implies that extra cognitive effort is required to
adjust our speaking rate.

To speak fluently, speakers must turn abstract concepts into concrete words
and then into plans for how to move the muscles of the vocal tract. We will call
this process ‘speech planning’. The state-of-the art theories of speech planning
don’t explain how speakers voluntarily vary the rate at which they speak.

This thesis addresses the question of how speakers tweak speech planning,
so that they can speak at different rates. This is interesting for three reasons:
Firstly, a good theory of speech planning should account for variation, since it
is so prevalent. The account that I propose and the data that we collect will
help inform how theories might explain voluntary variation in speaking style.
Secondly, understanding how speech planning is adjusted may clarify how ‘ex-
ecutive control’ processes (like attention) interact with speech planning itself.
Thirdly, identifying which fraction of the variation in speaking rate is deliber-
ate, and which fraction is just ‘random noise’ may also help in developing new
theories of speech planning.

The thesis contains an introduction, five main chapters, and a general discus-
sion. Chapters 2, 3 and 4 describe tools and methods used to collect and prepare
the data. Chapters 5 and 6 describe simulations and experiments that were de-
signed to answer the primary research questions.

In Chapter 2,1describe a technique to work out when, within words, syllables
start and end in running speech, using just the recorded sound of the speech.
This is a surprisingly difficult problem, because syllables overlap in time. I de-

veloped a method that looks at how much the acoustic signal changes, and finds
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peaks in the rate of acoustic change. The beginning of the peak is associated
with the start of the new syllable, and the end of the peak is associated with the
end of the previous syllable. The results of this method were compared with
the syllable times that we found by examining data taken from measurements of
tongue and jaw movements. I found that the results of the two techniques were
strongly correlated with each other. This showed that my new acoustic method

was valid.

In Chapter 3, I develop a solution to a second practical problem. Typically,
research in speech production involves manually determining when each word
begins and ends. This is because automatic speech recognition systems don’t
work reliably enough. This ‘segmentation’ is a very time consuming process,
which can be error-prone if not done carefully enough. Research assistants use
general purpose phonetics software to perform the segmentation, which is not
optimised for this specific task. The experiments in this thesis generated lots of
speech data, so it was desirable to have a system to make more use of automation,
and make the manual intervention more efficient. My solution was to construct
a database system, POnSS, that automatically segmented the speech. Research
assistants could then log in to a special website, which presented the segmented
words one by one. Their task was to listen and look at the waveform depiction
of the sound, and decide whether the segmentation was sufficiently good. In a
second web interface, they adjusted the boundaries of word segmentations that
had been rejected previously. The two interfaces are shown in Figure 3.2, on
page 37. I analysed whether the word segmentations produced by POnSS were
as reliable as conventional segmentation, and found that they were. I also cal-
culated how long it would take to segment the same set of data conventionally
and using POnSS, finding that POnSS was 23% faster than the conventional tech-

nique.

In Chapter 4, I describe the experiment used to elicit the data that were mod-
elled in Chapter 5. In the experiment, speakers had to name pictures, in Dutch,
at three pre-determined speaking rates. The pictures were arranged around a
‘clock-face’, and a dot jumped clockwise from picture to picture to indicate which
picture was to be named when, and thus specify the required speaking rate. The
data were segmented with POnSS (Chapter 3), and the analysis technique intro-
duced in Chapter 2 was used to identify the onsets and offsets of syllable-level

planning units.
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Chapter 5 finally begins to address the main question of the thesis. I intro-
duce two possible hypotheses of how speaking rate might be regulated in the
cognitive system responsible for speech planning. One possibility is that speak-
ing fast is essentially the same as speaking slowly, but sped up in a linear fash-
ion. This would mean that control resembles pressing harder on the accelerator
pedal. I called this possibility the ‘accelerator hypothesis’. Alternatively, speak-
ers might use qualitatively distinct configurations for different rates. This would
resemble the qualitative difference between walking and running gaits that an-
imals with legs adopt to move around: speakers might go into a ‘walk-speaking’
configuration for slow speech, but ‘run-speaking’ configuration for fast speech.
I called this possibility the ‘gait hypothesis’.

To test which of these hypotheses was true, I programmed a ‘model’ of speech
planning, that extends existing theories. The model aims to imitate the timing of
the speech of real speakers as they perform the picture naming task from Chap-
ter 4 at fast, medium and slow rates. The model has parameters (like control
knobs). Different settings of these parameters lead to different output. I used
machine learning techniques to find values for the parameters that resulted in
good imitation of the real speech. This happened by trial and error: the algo-
rithm tried out different settings, evaluated how similar the model’s output was
to the data. This was repeated thousands of times to gradually find optimal pa-
rameter settings. This was done separately for each rate, so I found different

parameter settings that were optimal for slow, medium and fast speaking rates.

To distinguish between the ‘accelerator’ and ‘gait” hypotheses, I then exam-
ined the values of the parameters of the model that were optimal for each rate. I
did this by placing them into a multi-dimensional space, where the different pa-
rameters of the model were the different dimensions. The accelerator hypoth-
esis predicted that the three speaking rates would be arranged in a straight line
through this ‘parameter space’. The gait hypothesis predicted instead that the
three rates would be arranged in a triangle. I found a triangular arrangement,
consistent with the gait hypothesis.

This result demonstrated that there were different configurations, or gaits, in
the cognitive system, but I couldn’t yet say how many gaits there were, or which
speaking rates were produced using which gaits. To work that out, I conducted
another experiment, described in Chapter 6. In this experiment, I used a sim-

ilar clock-face display with pictures to the one I used in Chapter 4. This time,
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speakers were trained to speak at the three predetermined speaking rates be-
fore the experiment. Then, I removed the red cueing dot, and the speakers had
to maintain the rates themselves. The required speaking rate was indicated by
the colour of a frame placed around the picture display. At an unpredictable
moment during the trial, the colour of the frame changed, indicating that the
speaker should adjust their speaking rate.

I expected that differences would emerge in how quickly it would be possi-
ble to switch between different pairs of speaking rates: faster adjustment would
indicate that speakers found it easier to switch between the rates involved,
whereas slower adjustment would indicate that they found it harder. I found
that speakers were quicker to switch between slow and medium rates than they
were to switch between fast and medium rates. This reinforced the conclusion
of Chapter 5, and additionally allowed me to conclude that there are two gaits:
one for slow and medium rates, and a second for the fastest speaking rates.

In general, the results from this thesis show that speaking rate is likely to be
controlled by switching between different configurations of the system. Excit-
ing next steps would be to see whether we can see other differences in speech
produced using the different gaits, and to explore whether the gait switching
mechanism might be generalised to other aspects of speech style.
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