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Abstract

The concept of minimal cut sets (MCS) provides a flexible framework for analyzing properties

of metabolic networks and for computing metabolic intervention strategies. In particular, it

has been used to support the targeted design of microbial strains for bio-based production

processes. Herein we present a number of major extensions that generalize the existing

MCS approach and broaden its scope for applications in metabolic engineering. We first

introduce a modified approach to integrate gene-protein-reaction associations (GPR) in the

metabolic network structure for the computation of gene-based intervention strategies. In

particular, we present a set of novel compression rules for GPR associations, which effec-

tively speedup the computation of gene-based MCS by a factor of up to one order of magni-

tude. These rules are not specific for MCS and as well applicable to other computational

strain design methods. Second, we enhance the MCS framework by allowing the definition of

multiple target (undesired) and multiple protected (desired) regions. This enables precise tai-

loring of the metabolic solution space of the designed strain with unlimited flexibility. Together

with further generalizations such as individual cost factors for each intervention, direct combi-

nations of reaction/gene deletions and additions as well as the possibility to search for sub-

strate co-feeding strategies, the scope of the MCS framework could be broadly extended.

We demonstrate the applicability and performance benefits of the described developments

by computing (gene-based) Escherichia coli strain designs for the bio-based production of

2,3-butanediol, a chemical, that has recently received much attention in the field of metabolic

engineering. With our extended framework, we could identify promising strain designs that

were formerly unpredictable, including those based on substrate co-feeding.

Author summary

The targeted modification of metabolic networks, e.g. for designing microbial cell facto-

ries or to combat cancer cells, is often supported by computational methods. The frame-

work of Minimal Cut Sets (MCS) uses a constraint-based approach to determine a

minimum set of reaction deletions in a metabolic network that enforce desired pheno-

types according to user-defined specifications. In this work we generalize the MCS
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approach by introducing several new features making it suitable for a broader range of

applications. Among other extensions, the new features support (1) the combination of

multiple strain design specifications at once and thus more precise metabolic network tai-

loring, (2) the optional addition of alternative substrates or of heterologous reactions in

combination with reaction deletions, and (3) an improved direct computation of gene-

based intervention strategies also exploiting new compression rules for gene-reaction-

enzyme relationships. We use the example of designing E. coli strains with different speci-

fications for growth-coupled production of 2,3-butanediol to demonstrate the functional

and performance benefits of our methodological enhancements.

This is a PLOS Computational Biology Methods paper.

Introduction

Metabolic engineering of cell factories has become an essential technology for developing bio-

based production processes as sustainable alternatives to conventional petrochemical synthe-

ses [1]. Various computational methods and strain optimization approaches have been devel-

oped to support the analysis and rational design of metabolic networks in microbial strains,

most of which belong to the class of constraint-based modeling approaches (for reviews see

[2–4]). OptKnock [5] was one of the first algorithms for metabolic design and introduced the

principle of growth-coupled product synthesis. It identifies suitable knockouts in the metabolic

network that ensure product synthesis under assumption of optimal microbial growth. Opt-

Knock is based on a bi-level optimization problem, which can be converted to a single-level

Mixed Integer Linear Program (MILP). It stimulated the development of a number of related

methods such as RobustKnock [6], OptORF [7], OptStrain [8], or MOMAKnock [9], to name

only a few. Common to all these methods (sometimes called “biased” strain design methods

[3]) is the optimization of product synthesis around a certain operation point, typically at max-

imal growth rate. Since solving the respective MILP in a genome-scale network can be a deli-

cate problem, simulation-based metaheuristics like evolutionary algorithms may represent

good alternatives [10,11]. While they cannot guarantee the attainment of global optima, they

allow handling of more complex objective functions and may perform better on bi-level prob-

lems that are hard to transform entirely into MILPs.

Another class of computational strain optimization methods is based on the framework of

Minimal Cut Sets (MCS) [12–15]. Initially, the concept of MCS was introduced to enumerate

all combinations of knockouts that eliminate certain functionalities in the network, e.g.,

growth (synthetic lethalities) or synthesis of undesired products [12,15]. The potential of using

MCS for metabolic network design was pointed out later. When designing a production host,

one would target steady-state flux vectors that synthesize undesired products or that lead to

poor product yields. However, the deletions needed to eliminate the targeted (undesired) phe-

notypes can interfere with parts of the metabolic network that are essential for the desired phe-

notypes of the strain (growth with high product yields). Therefore, the extended framework of

constrained MCS introduced the option to demand the conservation of desired behaviors [14].

This was an important step for establishing MCS as a strain design method in metabolic engi-

neering. Examples of successful applications of MCS for designing microbial cell factories with
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excellent product yields include the growth-coupled synthesis of itaconic acid [16] by Escheri-
chia coli and of a heterologous secondary metabolite (indigoidine) by Pseudomonas putida
[17]. In the latter case, as many as 14 multiplexed gene knockdowns were implemented as sug-

gested by MCS analysis. A large-scale computational study based on the MCS framework also

proved that growth-coupled product synthesis is—at least stoichiometrically—feasible for a

broad range of metabolic products thus providing a widely applicable strain design principle

[18].

The computation of MCS was originally based on elementary modes (EMs). The user

needed to specify a set of undesired (target) EMs and, in the case of constrained MCS, a set of

EMs that exhibit the desired behavior (desired modes) from which at least some must not be

eliminated by the cuts. The search for MCSs is then equivalent to the search for minimal hit-
ting sets of these EMs [12,14,19]. The bottleneck of MCS computation with this approach was

the inevitable preceding enumeration of EMs, which is still infeasible in genome-scale models

due to the large number of EMs [20]. Here, the insight that MCS in the primal network are

EMs in a corresponding dual network [21] helped overcoming these limitations. The duality

principle was used to develop the MCSEnumerator, an algorithm that computes the shortest

MCSs from a specified target region and a specified desired region instead of target and desired

EMs [13,18]. This duality approach enabled for the first time the enumeration of thousands of

MCS in genome-scale models and initiated the developments of other variants of duality-

based MCS calculations ([22], [23]). cRegMCSs, another extension of the MCS framework,

allows the use of regulatory interventions, i.e. up- and down-regulation of fluxes, alongside

with reaction knockouts [24]. Yet, even with this extension, the MCS considered only reaction
knockouts or regulations. To account for genetic interventions, Machado et al. [25] proposed

to incorporate gene-protein-reaction (GPR) associations into the metabolic network and to

use the MCSEnumerator to compute strain designs on a genetic level. Another technique, the

gene MCS (gMCS) framework, maps the relationships between sets of gene deletions and their

resulting reaction deletions before the MCS are computed. This approach was designed to find

lethal gene knockouts in cancer cells [26,27], however, the feature of conserving desired behav-

iors was not integrated in this approach.

In this work, we introduce a number of extensions and generalizations for the MCS frame-

work that improve algorithmic performance and broaden the scope of applications, especially

in the context of strain design. The main extensions include (1) the specification of multiple

target and desired regions; (2) the possibility to consider combinations of reaction deletions

and additions; (3) the computation of substrate co-feeding strategies; (4) an improved tech-

nique for integrating gene-protein-reaction (GPR) associations into the metabolic models and

a number of effective preprocessing and compression steps to reduce the GPR rules and thus

to accelerate the computation of gene MCS; and (5) the possibility to associate individual cost

factors to each intervention. We demonstrate the relevance and applicability of these develop-

ments by computing MCS for realistic examples of genome-scale strain designs of Escherichia
coli for the growth-coupled production of 2,3-butanediol. In particular, we could identify

promising new strain designs that were formerly unpredictable, e.g. based on substrate co-

feeding. The example calculations also confirm considerable runtime speedups when using the

introduced rules for compressing GPR associations.

Methods

Definitions and state of the art

We consider a metabolic network with m metabolites and n reactions whose structure is

captured in a stoichiometric matrix N 2 Rm�n
. In steady state, where the metabolite

PLOS COMPUTATIONAL BIOLOGY A generalized framework for minimal cut sets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008110 July 27, 2020 3 / 29

https://doi.org/10.1371/journal.pcbi.1008110


concentrations are constant, the reaction rate vector r 2 Rn fulfills the equation

Nr ¼ 0 ð1Þ

Individual reaction rates ri may be constrained with upper (ubi) and lower (lbi) bounds

expressing known irreversibilities (lbi� 0) and physiological flux ranges (e.g. substrate uptake

or ATP maintenance demand):

lbi � ri � ubi ð2Þ

By Irrev we denote the indices of all irreversible reactions, i.e. Irrev = {i | lbi� 0}, and with

Rev the indices of all reversible reactions, i.e. Rev = {i | lbi< 0}. Note that the flux bounds (2)

can also be expressed as

ri � ubi

� ri � � lbi

ð3Þ

and we will later make use of this representation. In some cases we only need the subset of the

flux bound constraints expressing pure irreversibility constraints:

ri � 0 8i 2 Irrev ð4Þ

In addition to flux bounds, other linear (in)equalities, e.g. from enzyme allocation con-

straints [28,29] may exist that further constrain the possible space of steady-state flux vectors:

Ar � b ð5Þ

The set of solutions r obeying Eqs (1), (2) and (5) spans the space of feasible steady-state

flux vectors, also called the (flux) polyhedron. For the calculation of MCS, one first needs to

specify a target region which contains the undesired steady-state fluxes that must all be elimi-

nated by the knockouts of an MCS. The target region (more precisely, the target polyhedron)

forms a subset (or sub-polyhedron) of the flux polyhedron and can conveniently be character-

ized by inequalities posed by a matrix T 2 Rt�n and a vector t 2 Rt:

Tr � t ð6Þ

As a typical example in computational strain design, (6) may contain an inequality that

describes (undesired) flux vectors with a low product yield below a given threshold (P: prod-

uct; S: substrate; rp: product synthesis rate; rs: substrate uptake rate, YP=S
min : lower product yield

threshold):

rP
rS
� YP=S

min , rP � YP=S
min � rs � 0 ð7Þ

The case of the (undesired) operation of one or several (target or objective) reactions as

originally introduced in [15,30] can also be expressed by (6). Importantly, the target region is

defined by specific target constraints (6) together with the general network constraints (1), (3)

and (5). For technical reasons, we directly incorporate the flux bounds (3) (excluding pure

irreversibility constraints (4); these will be treated separately) and the inhomogeneous con-

straints (5) in (6); the target region is then spanned by (1), (4) and (6).

In addition to the target region, a desired region can be defined which contains the wanted

stationary flux vectors of which at least some must be kept feasible after introducing the inter-

ventions of an MCS. As for the target region, the desired region (desired polyhedron) can be
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specified by suitable inequalities using an appropriate matrix D 2 Rd�n
and a vector d 2 Rd

:

Dr � d ð8Þ

Inequalities (8) may, for example, express a demanded minimum product yield

rP
rS
� YP=S

min , � rP þ YP=S
min � rs � 0 ð9Þ

or/and that a reaction rate, e.g. the growth rate rBM, can operate above a certain threshold:

rBM � 0:1 , � rBM � � 0:1 ð10Þ

For example, the combination of the target region (7) with the desired region defined by (9)

and (10) enforce coupling of growth with product synthesis [18,31], a frequently used strain

design principle. Again, the actual desired region is contained in the flux polyhedron and is

defined by (8) in combination with the general network constraints (1), (2) and (5). Similar as

for the target region, we assume that constraints of type (5) are incorporated in the specifica-

tion of the desired system (8), but, in contrast to the target system, for reasons shown below,

the flux bounds remain here separated. Hence, the desired region is now spanned by (1), (2)

and (8). Depending on the application, the desired space can also be absent if the only goal is

solely to inhibit certain flux vectors. This is the case, for example, when computing synthetic

lethals [13,27].

As has been shown in [21] and [13] together with extensions in [32] and [18], based on the

Farkas Lemma and duality theory, a system can be constructed from which the MCS can be

computed that, as demanded, block all flux vectors in the target polyhedron and keep some

flux vectors of the desired system feasible (Fig 1, first row):

� �� �=≤=≤�
− �

, = 0 → ≤ 0 , , = 1 → ≥∀ ∈ : , = 0 → ≥ 0 , , = 1 → ≤ −∀ ∈ : , = 0
, + , =(1 − ) ∙ ≤ ≤ (1 − ) ∙∈ ℝ , ∈ ℝ , ∈ ℝ≥ , > 0, , ∈ ℝ , , , , , ∈ {0,1}

ð11Þ

The blocking of the target region is addressed in the first two rows of the matrix in (11) via

a duality-based relationship where the stoichiometric matrix N and the matrix T for the target

region are used with their transposed version (cf. [21]). The associated variables for this dual

subsystem are u, v and w. We note that there are variants in treating the n × n identity matrix I

and its associated vector v (for example, reversible and irreversible reactions can be separated

PLOS COMPUTATIONAL BIOLOGY A generalized framework for minimal cut sets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008110 July 27, 2020 5 / 29

https://doi.org/10.1371/journal.pcbi.1008110


and the reversible be split into a positive and a negative part [18]) but we choose the above ver-

sion, which is more concise. In contrast to the target region, the requirements for the desired

region (third and fourth row in the matrix in Eq (11) as well as the flux bounds for the associ-

ated flux variable r) are given in their primal representation directly expressing Eqs (1), (2)

and (8). The continuous dual (u, v, w) and primal (r) variables are interconnected via the

binary zi variables. Each zi is linked with vi via two other binary variables (zp,i and zn,i). Effec-

tively, cuts are marked by the zi that are equal to 1, which happens if the associated dual vari-

able vi of a reversible reaction i is non-zero or if vi of an irreversible reaction i is positive

(hence, negative entries for irreversible reactions in v do not count). The smallest MCS can be

found by a mixed-integer linear optimization problem (MILP) with an objective function that

minimizes the number of cuts:

minimize
X

i

zi ð12Þ

As mentioned above, the computed MCS C is given by C = {i | zi = 1}. Furthermore, multi-

ple MCS solutions (with increasing cardinality) can be found by adding integer cut constraints

to the MILP for a previously found solution. If Ck denotes the set of reaction indices that are

knocked-out in the k-th MCS, then the integer cut constraint reads

X

j 2Ck

zj � jCkj � 1 ð13Þ

A new MILP optimization based on (11)–(13) is then performed. Furthermore, instead of

searching for an MCS with minimal cardinality via the objective function (12), one may also

search for an arbitrary feasible solution for (11). This solution would deliver a cut set C, but

Fig 1. Exemplary illustration of metabolic solution spaces (solid black lines) of wild type and mutant strains for traditional and extended/

generalized MCS computation. Red areas: target regions, green areas: desired regions, blue area: flux states accessible through the addition of

reactions.

https://doi.org/10.1371/journal.pcbi.1008110.g001
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not necessarily a minimal (irreducible) cut set, i.e. C might contain redundant knockouts.

However, by applying, in a second step, objective function (12) to a confined MILP setup,

where only the found interventions in C are allowed, a true (support-minimal) MCS will be

identified. Still, this MCS is not necessarily an MCS with the fewest number of interventions.

Nevertheless, a larger sample of MCS can be quickly generated in this way, which is often faster

than always demanding to find the cardinality-minimal MCS in the next iteration.

When particular reactions are not allowed to be knocked-out (e.g., because they are not

associated with a targetable gene), their indicator variables can be fixed to zi = zp,i = zn,i = 0, or

completely be removed from the system together with vi and the corresponding columns in

the matrix in (11). Furthermore, the number of interventions can be bounded by

X

i

zi � maxCuts ð14Þ

Extension 1: Multiple target and desired regions

So far, only one target and one desired region can be considered in (11). This is sufficient for

many applications, however, there are cases where multiple target regions or/and multiple

desired regions must be defined to properly formulate a strain or network design problem.

The idea of multiple desired regions was already discussed in [14]. However, applications with

multiple target regions were not considered and, most importantly, the calculation of MCS for

multiple desired regions was so far only possible for the classical way of MCS calculation via

elementary modes, which, in contrast to the duality-based approach, is not applicable to

genome-scale models.

To motivate the use of multiple target regions, we consider an example for the design of a

two-stage process. The cells should grow aerobically with high biomass yield in the first phase

which requires to block synthesis of acetate as byproduct of overflow metabolism. For the

anaerobic production phase we demand a minimum product per substrate yield (YP=S
min e.g., eth-

anol per glucose) and allowance of some minimum growth rate. Accordingly, we have two tar-

get regions that need to be blocked. The first covers flux vectors with production of acetate

above a certain minimum value (here set to 1)

� rAc � � 1

which can be written in standard form as (again, T1 and t1 also include the constraints (5)):

T1r � t1

The second target region comprises anaerobic flux vectors with product per substrate yields

below a threshold YP=S
min . Importantly, the trivial (zero) flux vector must not belong to the target

region, because this flux distribution can never be eliminated through knockouts and the prob-

lem would have no solution. In the first target region this is ensured by the constraint of mini-

mum acetate excretion. In the second target region we ensure this by assuming a strictly

positive substrate uptake reaction (rs). Constraint-based models often hold constraints that

already exclude the zero-flux vector as feasible solution (e.g., a minimum non-growth associ-

ated ATP maintenance demand). If this is not the case, we must explicitly exclude the trivial

flux vector, e.g. by demanding a minimum substrate uptake rate for the target region. The
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second target region can thus be expressed by the three inequalities

rO2up
� 0

rP � YP=S
min � rs � 0

� rs � � 0:1

which can again be expressed in matrix notation:

T2r � t2

For the example, we also need to specify two desired regions: The first expresses that a high

biomass yield, above a specified threshold YBM=S
min , must be attainable (under some minimal sub-

strate uptake). We do not need to specify that this holds for the aerobic phase as the highest

biomass yields are only possible under aerobic conditions and the solver will automatically

keep some of those vectors. We thus have

� rBM þ YBM=S
min � rs � 0

� rs � � 0:1

making up the first desired system

D1r � d1

We then also need to ensure that, under anaerobic conditions, where high product yield is

guaranteed due to the elimination of low-yield solutions in the second target region, some

minimum growth is still possible. This gives rise to the second desired region for which we can

use Eqs (9) and (10) in combination with the constraint for anaerobic conditions

rO2up
� 0

and include them all in the compact description

D2r � d2

It is important to notice that the desired systems 1 and 2 cannot be jointly represented by a

single desired system because their union is not convex (the same holds for the two target

regions).

As a generalization, we allow in the following the definition of arbitrary many target

regions, each defined by inequalities posed by an appropriate pair of matrix and vector (T1,

t1), (T2, t2), . . ., (T1, t1). Likewise, we allow the definition of arbitrary many desired regions

represented by (D1, d1), (D2, d2), . . .,(Dk, dk). In the MILP formulation (11), each target region

and each desired region needs to be integrated as separate blocks in the formulation, analogous

to the single regions in the original formulation. For example, an integrated MILP with two
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target (T1, T2) and two desired (D1, D2) regions reads:

⎝

⎜
⎜
⎜
⎜
⎜
⎛

T
1

1
T

T
2

2
T

1

2⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎛

1
1
1
2
2
2
1
2 ⎠

⎟
⎟
⎟
⎟
⎞

=
≤
=
≤
=
≤
=
≤⎝

⎜
⎜
⎜
⎜
⎛
−

−

1

2⎠

⎟
⎟
⎟
⎟
⎞

1, , = 0 → 1, ≤ 0 , 1, , = 1 → 1, ≥
∀ ∈ : 1, , = 0 → 1, ≥ 0, 1, , = 1 → 1, ≤ −

2, , = 0 → 2, ≤ 0 , 2, , = 1 → 2, ≥
∀ ∈ : 2, , = 0 → 2, ≥ 0, 2, , = 1 → 2, ≤ −

∀ ∈ : 1, , = 2, , = 0
0.25 1, , + 0.25 1, , + 0.25 2, , + 0.25 2, , ≤

(1 − ) ∙ ≤ 1, ≤ (1 − ) ∙
(1 − ) ∙ ≤ 2, ≤ (1 − ) ∙

, ∈ ℝ , ∈ ℝ| |, ∈ ℝ≥
| |, 2 ∈ ℝ| |, 2 ∈ ℝ≥

| |, > 0, , , , ∈ ℝ ,
∈ ℝ| |, ∈ ℝ| |,

1, , , 1, , , 2, , , 2, , , ∈ {0,1}

ð15Þ

The same objective function (12) as used for single target/desired regions can be applied.

Another application of multiple target and desired regions will be presented later when

searching for MCS for substrate co-feeding strategies.

Extension 2: Weighting of interventions with cost factors

A further generalization of the MCS MILP problem is to replace the original objective function

(12), which simply counts the number of interventions, with a weighted cost function:

minimize
X

i

pizi ð16Þ

The weights pi can be specified by the user and reflect the experimental costs of implement-

ing the respective intervention. For example, blocking oxygen uptake to enforce anaerobic

conditions is a frequent intervention in many MCS when searching for strain designs with

high product yields. Clearly, this “intervention” is experimentally easy to implement and in

many biotechnological applications even the preferred process condition. The weight factor

for the oxygen uptake reaction could thus be set to zero.

There is one important change in the interpretation of MCS when using the generalized

objective function (16). Minimization of the original (simpler) objective function (12) (which

is equivalent to set all pi to unity in (16)) always delivers MCS with a minimum number of

knock-outs, hence, of MCS with minimal support. With the generalized objective function

(16), the MCS still ensure that the cost function is minimized (which still justifies the use of the

term “minimal” cut set). However, if some pi are set to 0, then MCS may be found where the
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set of reaction knockouts is not support-minimal since some deletions may be added “for

free”. In those cases, there can be MCS with identical costs that differ only in the presence/

absence of these cost-free reaction deletions. It is easy to filter out equivalent MCS that are

supersets of others in a postprocessing step, however, in some cases it might just be the goal to

find all these alternatives. Generally, even if the pi of a reaction is zero, it might not be remov-

able as the desired region may require the presence of this reaction.

Extension 3: Combination of reaction deletions and additions and its

application to find substrate co-feeding strategies

Most computational strain optimization algorithms use combinations of (gene or reaction)

knockouts to enforce desired phenotypes. However, some dedicated methods have been devel-

oped for biased strain design techniques to also allow addition of heterologous reactions along-

side reaction deletions, to further enlarge the search space for network design [8,33,34]. So far,

this feature is not available in the MCS approach, but will be developed in the following. As

one particular application, we will describe how substrate co-feeding strategies can be com-

puted with this extended MCS approach.

For combining reaction deletions and additions in the MCS framework, the (new) addable

reactions are included in the original network and every reaction is then marked as either

“deletable”, “addable” or “non-targetable”. In contrast to deletable reactions, where the knock-
out of a reaction i is marked by (zi = 1) and implies costs in the objective function (16), addable

reactions are treated inversely so that the last two equations in (11) (and analogously in (15))

for addable reactions change to:

zp;i þ zn;i � ð1 � ziÞ

zi � lbi � ri � zi � ubi

ð17Þ

The non-use of an addable reaction i is the standard case, indicated by (zi = 0), while the

incorporation of a reaction into the network is marked by (zi = 1) and therefore leads to

increased costs in the objective function (16).

Fig 1 illustrates that, compared to the traditional MCS approach, the generalized design

specifications (multiple target and desired regions) and the extended search space (by reaction

additions) enormously increase flexibility in formulating and solving complex network and

strain design problems. The solid black lines mark the solution spaces of steady-state flux vec-

tors of the wild type and of the different mutants after applying an MCS, respectively. While

each target and each desired polyhedron is always convex (as are the solution spaces of the

wild type and of the MCS mutant), the union of multiple target or of multiple desired regions is,

in general, not.

With the extensions of multiple target regions (extension 1) and possible addition of reac-

tions (extension 3), we are now able to compute suitable MCS that exploit substrate co-feeding,

which adds another dimension for strain design strategies. Co-feeding of substrates has been

used in metabolic engineering, for example, to enhance the productivity of a designed strain

[35–37], to cope with genetic knockouts that induce auxotrophies [16], or to specifically design

auxotrophic [38] and biosensor strains [39]. Substrate co-feeding can also be used to effectively

regenerate or balance cofactors [40,41] or to provide product precursors [42]. Despite these

applications, as pointed out by [42], directed strain design harnessing substrate co-feeding

opportunities has rarely been employed so far. Fig 2 shows an example network holding poten-

tial for different strain design strategies that rely either on single substrate feeding or co-feed-

ing. The main (standard) substrate S can be metabolized to biomass (BM) and four different

products (P (desired product), Q, R, U). Dashed reaction arrows with yellow captions indicate
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exchange reactions (the latter are assumed to happen spontaneous, i.e., they are non-target-

able). The blue dashed reaction indicates that U could potentially also be taken up and thus

serve as a substrate. As we will see later, especially treating the case of a metabolite either being

an excreted product or serving as a potential substrate is technically challenging. A realistic

example would be acetate that can often be excreted as product but may also serve as relatively

cheap (co-)substrate in bioprocesses. We assume that P is the product of interest. As a typical

strain design strategy we may enforce growth-coupled product synthesis where the target

region contains flux vectors with low product yield (e.g., YP=S ¼
rP;ex
rS;up
� 0:4; see Eq (7)), while

the desired region demands that biomass synthesis is feasible (e.g., rBM� 0.1; see Eq (4)). A

traditional MCS-based strategy delivered by the algorithm is indicated in Fig 2 (knockouts

marked in orange): S is used as the sole substrate and r3, r7, r9 and r12 are deleted. In the

remaining network, ATP production entails the generation of Z, a metabolite that can only be

drained by synthesizing and excreting P. The option to co-feed metabolite U offers now

another coupling strategy by dissecting the metabolism into an upper and a lower part (inter-

ventions marked in blue in Fig 2). The removal of r6 and the addition of the uptake reaction

for U (rU,up) leads to a functional separation of the two substrates: S is then used for ATP and

product synthesis while U is needed as biomass precursor.

Generally, scenarios with multiple substrates require a suitable redefinition of the yield to

properly account for both substrates. In our example we would consider the combined yield

YP=ðSþUÞ ¼
rP;ex

rS;upþrU;up
and specify the target region by YP/(S+U)� 0.4. We could then mark rU,up as

addable reaction and try to search for both classical one-substrate strain designs (using only S)

as well as substrate co-feeding strategies (using S and U). If U would only act as optional sub-

strate and the excretion of U was not possible, then co-feeding strategies could be straightfor-

wardly identified by marking the uptake of U as addable reaction. However, in this example

Fig 2. Example network illustrating substrate co-utilization. The wild-type strain that can be turned into a production host for the target product P, either by

using substrate S and four knockouts (orange MCS) or by a co-utilization of S and U, which requires one deletion and the addition of the uptake reaction for U

(blue MCS). Reactions with dashed arrows and yellow names indicate non-targetable exchange reactions.

https://doi.org/10.1371/journal.pcbi.1008110.g002
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with U also being a potential product, this alone would not be sufficient to find suitable co-

feeding solutions. The MCS algorithm would seek to eliminate all flux states with yields infe-

rior to YP/(S+U). Yet, the cycle of the sink pseudo-reaction rU,ex and an activate uptake reaction

rU,up can carry high fluxes and inflate the denominator of the yield function, making it impos-

sible to disrupt all flux distributions with yields below the threshold. Allowing the deletion of

rU,ex would affect the correct identification of single substrate strategies because the algorithm

would then be able to generate solutions that delete the secretion reaction rU,ex although it is

non-targetable.

A solution to this dilemma is the definition of two target regions. The first target polyhe-

dron describes undesired solutions for the “classical” one-substrate usage where U is not taken

up:

T1 : YP=S ¼
rP;ex
rS;up
� 0:4; rS;up � 0:1

mmol
gDW h

; rU;up ¼ 0
mmol
gDW h ð18Þ

These constraints can be reformulated to bring them into the required form T1r� t1. The

second target region specifies undesired solutions for the case where U is taken up, using the

combined yield term. Importantly, in the definition of this second target region, only the rele-

vant cases where U is not excreted are considered. Hence, with the defined target regions 1

and 2, the irrelevant case with an active cycle in rU,up and rU,ex is simply not included in the set

of target vectors:

T2 : YP=S;U ¼
rP;ex

rS;up þ rU;up
� 0:4; rS;up � 0:1

mmol
gDW h

; rU;ex ¼ 0
mmol
gDW h ð19Þ

Together with the desired region (rBM� 0.1), the enumeration of strain designs with the

introduced MCS algorithm extended with multiple target regions and addition of reactions

will return both solutions (blue and orange in Fig 2). This MCS computation example is also

available at GitHub (see below).

Extension 4: Compression of GPR rules for computing MCS with genetic

interventions

The MCS approach was originally constructed to find suitable combinations of reaction dele-

tions that block a certain metabolic phenotype. However, when using it for strain design in

metabolic engineering, in most cases only genes can be targeted directly (exceptions are

pseudo-reactions for uptake of oxygen or substrates, which can be switched off by removing

the respective compound from the medium). A translation of reaction deletions to corre-

sponding gene deletions is often possible, however, there are also complicated relationships,

where this translation is not straightforward, for example, when an enzyme or enzyme subunit

is involved in several reactions. Hence, for the application as strain design tool, MCS should

deliver suitable combinations of gene interventions (gene MCS), which induce the desired

metabolic phenotype by indirectly targeting the operation of certain reactions [25]. This

requires the incorporation of gene-protein-reaction (GPR) rules, which has been done in sev-

eral strain optimization methods [7,18,25,26,43,44]. GPR rules are typically Boolean functions

in disjunctive normal form (DNF) describing how the enzymes catalyzing the metabolic reac-

tions in the network are made from combinations of gene products. Two major approaches

for integrating GPR rules in the MCS framework have been suggested [25,26]. Herein we

adopt the approach of Machado et al. [25] where the GPR rules are translated to pseudo-reac-

tions and pseudo-metabolites, which are seamlessly integrated into the metabolic network.

The reaction-based MCS algorithm can then remove or add genes via their associated
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pseudo-reactions. In the original approach of Machado et al., each gene product (i.e., either an

enzyme or an enzyme subunit denoted by E, E1, E2 . . . in Fig 3) is introduced as a pseudo-

metabolite that is generated by an individual “enzyme synthesis” pseudo-reaction (denoted by

g1, g2 . . . in Fig 3) from its corresponding gene. (Note that, depending on the context, we will

use the symbols g1, g2 . . . interchangeably either as the enzyme synthesis pseudo-reaction or as

the actual gene from which the enzymes are made. This is justified because there is a 1:1 rela-

tionship between both.) Each enzyme pseudo-metabolite E, E1, E2 . . . is then integrated as a

reactant in the respective reaction(s) it catalyzes and it thus becomes essential for the operation

of the(se) reaction(s). Reversible reactions need to be split and considered as separate reactions

for both directions. Depending on the GPR rules, it can happen that (1) one enzyme catalyzes

multiple reactions, (2) a reaction requires several enzyme subunits, or (3) one reaction is cata-

lyzed by multiple (iso)enzymes (see Fig 3). In the latter case, Machado et al. split the reaction

to account separately for each isoenzyme [25]. A disadvantage of this approach is that copying

an isozyme reaction with a finite and non-zero flux bound may result in an effective reaction

flux that is multiple times higher than intended by the original model (see Fig 3C). We there-

fore choose a slightly different representation of the GPR rules, which guarantees that the flux

ranges from the original model are conserved for all reactions (see right column in Fig 3). The

Fig 3. Integration of GPR rules into the metabolic network structure. In contrast to the approach of Machado et al. [25], in the variant

introduced herein, every reaction with a GPR rule consumes a pseudo-metabolite Q that represents a pool of enzymes catalyzing this

reaction. Example cases: A) reversible reactions; B) enzymes with subunits; C) promiscuous enzymes (g1) and isoenzymes (g1, g2).

https://doi.org/10.1371/journal.pcbi.1008110.g003
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key difference of this approach is that we introduce for each reaction a separate pseudo-metab-

olite (Q) representing the pool of all enzymes (including those arising by the combination of

enzyme subunits) that can catalyze this reaction. This reaction-specific enzyme pool can be

filled by pseudo reactions (p1, p2 . . . in Fig 3) according to the respective GPR rules. The

enzyme pool Q is then “consumed” in its associated reaction. Hence, reactions are only split in

the case of reversibility, where the flux boundaries can easily be mapped from the original reac-

tion. Auxiliary pseudo-reactions are all unidirectional and unbounded. Our approach adds

more pseudo-metabolites and pseudo-reactions than the original approach, however, many of

these additional elements disappear again when compressing the network with integrated

GPR rules (see below).

Once the GPR rules have been added to the metabolic network, the MCS algorithm can be

used to generate gene intervention based strain designs. Here, metabolic reactions remain pro-

tected from knockouts (non-targetable) while the manipulation of the pseudo-reactions yield-

ing the enzymes or enzyme subunits from the genes (reactions g1, g2 . . . in Fig 3) is allowed.

Reactions such as oxygen or substrate uptake, which have no associated genes but can be con-

trolled externally, can also be kept targetable. In this way, the MCS algorithm can identify suit-

able combinations of genetic interventions and process conditions to meet the strain design

specifications.

The extension of metabolic networks with GPR rules as described above may significantly

increase the network size and thus the complexity of strain design methods. Generally, com-

pression techniques and preprocessing steps to cope with the complexity of (classical)

genome-scale MCS calculations are essential and integrated in some strain design (including

MCS) algorithms. These methods include, for example, the removal of conservation relations

and blocked reactions as well as lumping of coupled reactions (see e.g. [30,45]). In addition to

these network compression techniques already in use, we here propose a set of preprocessing

steps to also reduce and simplify GPR rules before integrating them in the metabolic network.

For gene-based MCS, every gene is simulated as a targetable reaction that has an associated

Boolean variable in the underlying MILP indicating whether it is active or not. Boolean vari-

ables are computationally more expensive than continuous variables. The compression steps

introduced below seek to reduce the number of targetable reactions (here corresponding to

targetable genes) without losing any MCS solution.

A first step for the reduction of network and GPR rules is the identification and removal

of blocked reactions and their genes. More advanced compression steps described below

exploit the fact that the desired region(s) render several reactions essential. This can be used

to discard certain targetable genes from the model as their knockout would block essential or

at least never affect non-essential reactions. For example, if some minimum growth rate has

to be maintained in the designed strains, any gene being essential for growth needs not be

considered as knockout candidate and can be removed from the GPR rules. In practice,

essential reactions can be identified by flux variability analysis (FVA), performed on each

desired region. If, for any desired region, upper and lower bound of a reaction are non-zero

and have the same sign, then the reaction is essential and must not be blocked by any set of

gene deletions. Apart from essential genes, our compression steps introduced below also

exploit the occurrence of “equivalent genes” which can be lumped. In total, we use the follow-

ing seven compression steps to reduce the number of genes and GPR rules added to the

model:

1. Remove GPR rules of blocked reactions. Deletion (or addition) of genes will have no effect

on these reactions, hence their rules are not relevant for the MCS computation.
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2. Mark a gene gp as protected (gp = 1) and thus non-targetable if it occurs exclusively in GPR

rules for essential reactions. Knock-out of such a gene can never contribute in blocking

non-essential reactions.

3. Mark a gene as protected if it is essential for at least one essential reaction since deleting this

gene will inevitably result in disrupting the desired behavior (note: rule 3 differs from rule 2

as the gene in rule 2 might not be essential).

4. Identify GPR terms (disjunctions) that cannot be targeted due to protected genes. If one of

the conjunctions of a DNF consist exclusively of protected genes, then the respective reac-

tion cannot be knocked out by any combination of gene deletions (e.g., if gene gp is pro-

tected (gp = 1) then g
W

gp = 1). This makes the GPR rule irrelevant for MCS computation

and it can be discarded.

5. Discard all protected genes. After step 4, all protected genes occur in conjunctions with

unprotected genes and their consideration is no longer necessary (gp = 1! g
V

gp = g).

6. Reduce non-minimal conjunctions in the GPR rule that arose by the previous steps (e.g., g1W
(g1

V
g2) = g1).

7. Lump equivalent gene deletion candidates that always occur together in conjunctions (e.g.,

g1

V
g2) and lump gene addition candidates likewise. In some cases, another lumping can

be performed inside single GPR rules if the genes do not occur in any other context. Finally,

repeat the substitution also for the disjunctions of type (g1
V

2

W
g3). To map the original

intervention costs, each lumped gene carries the minimum intervention costs of the gene

rule that was substituted. Computed MCS involving lumped genes must be expanded in a

post-processing step.

We added the GPR rule compression and integration as a building block in the pipeline for

MCS computation. This pipeline now involves problem setup, GPR rule compression and

integration, network compression, and post-processing steps for expanding computed MCS

(see also the example in Figs 4 and 5 discussed below):

(0). Definition of network, target and desired regions(s), and of addable/deletable/non-tar-

getable reactions/genes.

(1). FVA of the full model to find blocked reactions and FVA of the desired regions to iden-

tify essential reactions

(2). Compression of GPR rules (making use of the FVA results from step (1))

(3). Integration of compressed GPR rules in the network

(4). Network compression (removal of blocked reactions and conservation relations, lump-

ing reactions, protection of essential reactions, determination of effective flux bounds

etc.)

(5). MCS computation using the MCS core algorithm

(6). Decompression of lumped reactions

(7). Decompression of lumped genes

Note that the steps (4)-(6) (leaving out steps (1)-(3) and (7)) can still be used to compute

classical MCS with reaction knockouts. In CellNetAnalyzer (see below), these steps are con-

ducted by a function called CNAMCSEnumerator2. The steps (1)-(3) and (7) are specific for

the calculation of gene MCS and in CellNetAnalyzer they are performed by the function
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Fig 4. Example illustrating the 7 steps of gene MCS calculation. Red arrow: targeted reaction; green arrows: protected reactions; blue:

GPR rules; dashed blue arrows: switchable gene pseudo-reactions. For the sake of readability, the protein pool pseudo-reactions (p)

connecting the enzymes (E) with the enzyme pools (Q) were not labeled in the network in step 3 and 4. The reactions rc1 . . . rc4 represent

lumped reactions resulting from network compression (the contained reactions are shown below the box of step 4). The subsequent steps

5–7 of this example are shown in Fig 5.

https://doi.org/10.1371/journal.pcbi.1008110.g004
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CNAgeneMCSEnumerator which calls the CNAMCSEnumerator2 between step (3) and (7) as

a sub-module. In this way, the actual gene MCS are computed as reaction knockouts of the

enzyme synthesis reactions as explained above.

Figs 4 and 5 show an example of the whole pipeline demonstrating how the compression of

the GPR rules and subsequently of the network structure reduces the dimension of the prob-

lem. In the presented example network, the substrate S can be turned into biomass and the

two products P and D. The strain design goal is to inhibit the production of D by suitable

genetic knockouts, while maintaining the ability to grow. An FVA shows that the reactions r1

and r2 are essential for the desired flux states. This information is used to compress the original

GPR ruleset along the presented steps (Fig 4). The reconfigured network with integrated com-

pressed GPR rules is presented in Fig 4, step 3, showing that from the nine genes only four

(partially lumped) genes remain in the network after GPR compression. Next, classical net-

work compression (Fig 4, step 4) lumps coupled reactions, not distinguishing between “real”

metabolic reactions and GPR pseudo-reactions. Analogous to lumped gene interventions, for

each lumped reaction (like rc1, rc2 and rc3 obtained in step 4), an individual cost-factor is gener-

ated that equals the minimal intervention cost for the ensemble of the original reactions.

Applied to the compressed network, the MCS algorithm will deliver two solutions to sup-

press the undesired behavior: either the knockout of g8 or of the lumped reaction rc1 (Fig 5,

step 5). In order to match the original model, these solutions need to be expanded by reversing

the previous compression steps, first at the reaction (Fig 5, step 6) and then at the gene level

(Fig 5, step 7). In the example, decompressing the MCS results in four final solutions: A knock-

out of g8, a knockout of g4 or a knockout combination of either g5 and g7 or g7 and g9.

As shown in this example, decompression of lumped genes and reactions will not only

result in a higher number of MCS, it may also lead to a higher number of interventions per

MCS or to more expensive MCS. Yet, the cost-reattribution during GPR compression step 7

Fig 5. Continuation of the exemplary gene MCS calculation from Fig 4. Shown are the three final steps of MCS computation (step 5), expansion/

decompression of MCS at the reaction (step 6) and then at the gene (step 7) level. For better readability, the protein pool pseudo-reactions (p) connecting

the enzymes (E) with the enzyme pools (Q) were not labeled in the network in step 5.

https://doi.org/10.1371/journal.pcbi.1008110.g005
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ensures that any MCS found in a compressed network still expands to at least one MCS in the

original network with identical costs (e.g. g((5
V

9)
W

7) would have deletion costs of 2 in the com-

pressed network). In more complex cases where MCS have multiple expansions with different

costs, all MCS that exceed the MCS cost limit are discarded.

Implementation and availability

All scripts and network files needed to reproduce the example calculations from Figs 2 and 4,

and 5 as well as the calculations performed in the Results section are provided at GitHub:

https://github.com/ARB-Lab/MCS_extended. The scripts can be run with the newest version

(2020.2) of the freely available MATLAB toolbox CellNetAnalyzer [46,47], where the new fea-

tures described herein have been integrated in API functions. For all benchmarking and

genome-scale MCS computations presented in the Results section we used MATLAB 2019b

and IBM ILOG CPLEX 12.10 on a high-performance cluster. Each computation was per-

formed on single nodes with two 8-core Intel Xeon Skylake Silver 4110 and 192 GB memory.

Results

In the Methods section we introduced several generalizations and new algorithmic develop-

ments for the computation of MCS, which are especially (but not exclusively) useful for strain

design applications. In the following, we will demonstrate the applicability and the perfor-

mance benefits of these extensions by realistic example calculations of relevant E. coli strain

designs for production of 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical whose bio-

based production received much attention in the field of metabolic engineering [48,49]. The

spectrum of its industrial application covers a broad range from cosmetics and nutrition to

bioplastic [50]. Previous studies could increase the productivity of natural producers like Kleb-
siella pneumonia or Bacillus licheniformis, however, the use of these species has several disad-

vantages due to requirement of complex and expensive medium components and potential

pathogenicity [51]. Other studies therefore aimed to synthesize 2,3-BDO with more established

production organisms such as E. coli via heterologous pathways [51–53]. For the computation

examples presented below, we therefore consider E. coli, equipped with the heterologous linear

pathway for 2,3-BDO synthesis via α-acetolactate and R-acetoin [51] and computed different

sets of MCS to design strains with growth-coupled 2,3-BDO synthesis. Using different scenar-

ios, we first benchmarked the performance gain in the MCS computation through our intro-

duced compression rules for GPR associations against the conventional approach in both a

core and a genome-scale model of E. coli. Afterwards, we exemplify the use of multiple target

and desired regions and the possibility to consider combinations of gene deletions and addi-

tions to obtain different strain designs including substrate co-feeding strategies for 2,3-BDO

synthesis.

Effect of GPR rule compression on MCS computation performance

MILPs used in the context of different strain design techniques are often very large and com-

plex, especially when applied in genome-scale networks. Loss-free compression techniques

may enhance the performance of these MILPs and are often even essential to reach acceptable

runtimes and to obtain a significant pool of solutions. Network compression has become a

standard tool in many constraint-based calculations [30,45], including MCS approaches [18].

In addition, we herein introduced a set of rules for compressing GPR associations, which are

relevant when metabolic interventions are directly calculated at the gene instead of the reac-

tion level. Thus, GPR and network compression tackle different model redundancies.
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To benchmark the effectiveness of GPR and/or network compression, we compare the

impact of both compression routines on the final problem size, the MILP runtime and the

computational overhead in a small-scale (a slightly adapted version of EColiCore2, a model of

the central metabolism of E. coli presented by Hädicke and Klamt (2017) [54]) as well as in a

genome-scale (iML1515 model by Monk et al. (2017) [55]) MCS computation setup (Table 1).

Within these two models, which were both extended with GPR rules as described in the Meth-

ods section, we fully enumerate gene MCS up to the size of 9 (core) and 7 (genome-scale) gene

knockouts to obtain growth-coupled strain design that produce 2,3-BDO from glucose with a

minimum product yield of at least 30% of the theoretical (stoichiometric) maximum under a

minimum attainable growth rate of 0.05 h-1. As explained in the Methods section, these con-

straints can be expressed by one target and one desired region. We assume that all genes are

targetable. Furthermore, the oxygen uptake reaction remains targetable so that the algorithm

may also find anaerobic strain designs. Although (non-exhaustive) sampling of single or

multiple MCS is possible and sometimes preferred in practice [18], we here perform a full enu-

meration up to the given maximum MCS size to ensure that identical pools of solutions are

delivered for the different runs. With the specified target and desired regions, there exist 6025

solutions (MCS) in the core and 2632 solutions in the genome-scale setup (Table 1).

A comparison of the MILP runtimes for the four different runs (with/without GPR rule

compression and with/without network compression) reveals the effectiveness of the state-of-

the-art network compression procedure but also demonstrates the advantages of an extended

compression by the herein presented GPR compression procedure. In fully uncompressed

models, the computation time for MCS lies in the range of days even in the core model while

genome-scale computation is not possible at all. The benchmarked scenarios show that at least

one sort of problem compression, network or GPR rule, is necessary to achieve reasonable

runtimes of the MCS algorithm. The different compression steps reduce the number of reac-

tions and metabolites by up to more than 90%, which in turn also leads to an enormous

Table 1. Benchmark results of different compression scenarios in two MCS computation setups (core and genome-scale model of E. coli) for growth-coupled

2,3-BDO synthesis. The rows “#Genes” and “#GPR rules” refer to the respective number of genes and GPR rules eventually integrated in the network after GPR rule com-

pression (as long as the latter is conducted; otherwise it refers to the original number of genes and GPR rules). Likewise, the rows “#Species”, “#Reactions”,”#Targetable

reactions/genes” refer to the numbers of species, reactions, and targetable genes/reactions, respectively, after integration of the (compressed/non-compressed) GPR rules

and/or after network compression.

Target: Y23BDO/GIc� 0.3 � Y23BDO/GIc,max, Desired: μ � 0.05 h−1

EColiCore2 (max MCS size: 9) iML1515 (max MCS size: 7)

502 reactions, 486 species,

508 genes, 683 GPR rules

2715 reactions, 1879 species,

1516 genes, 3828 GPR rules

No com-

pression

Network com-

pression

GPR com-

pression

Network + GPR

compression

No com-

pression

Network com-

pression

GPR com-

pression

Network + GPR

compression

#Genes (after

compression)

508 508 114 114 1516 1516 649 649

#GPR rules 683 683 163 163 3828 3828 1531 1531

#Species 1435 244 682 107 5616 1207 3529 1068

#Reactions 1690 500 799 233 8103 2513 4995 2245

#Targetable reactions/

genes

251 181 64 58 1320 631 574 528

#MCS found 6025 92 169 89 Not finished

(>100h)

177 190 177

#MCS found after

decompression

6025 6025 6025 6025 2632 2632 2632

Runtime [min] 5199.7 178.9 41.0 11.5 707.8 846.9 180.3

Pre- and post-processing

overhead [min]

3.8 6.4 8.4 6.2 18.8 12.3 11.7

https://doi.org/10.1371/journal.pcbi.1008110.t001
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reduction in the number of MCS found in the compressed network (e.g., 89 vs. 6025 in the

core network), which are expanded to the full set of MCS in a post-processing step. Each MCS

of the compressed network is a representative of an MCS equivalence class (see [56]). As

expected, MCS computation with combined network and GPR compression has superior per-

formance: compared to the traditional pure network compression it runs about 15 times faster

in the core setup and reduces the runtime of the genome-scale setup by a factor of about 4.

The overhead of the pre- and post-processing steps, which includes network and GPR com-

pression, is comparably small, especially in the genome-scale network (<7%), and thus more

than justified. The additional speedup achieved by the GPR rule compression is vital for

genome-scale computation of gene MCS, since the runtimes can range from hours to days and

up to weeks. It should also be noted that we considered all 1516 genes in the genome-scale

model as potential targets, in contrast to many other studies where the set of targetable genes

(or reactions) is often manually reduced to shrink the problem size to a manageable

dimension.

Next we compared our approach for calculating MCS with integrated GPR associations

with the gene cut set (gMCS) approach of Apaolaza et al. [26,27]. The latter determines in a

preprocessing step a mapping of minimal gene knockout sets required to block at least one

reaction. As the gMCS method can so far only deal with target reactions but not with desired

regions we used the calculation of synthetic lethals (SL; combinations of reaction knockouts

that block growth) in the genome-scale iML1515 network as benchmark. We enumerated all

SL up to size 4 and found with both methods the identical set of 889 MCS which confirms

their consistency. For the runtimes we determined 65 minutes with our method and 163 min-

utes with gMCS. The scripts of these calculations are also available at the provided GitHub

link.

Using new MCS features for strain design

Next, we used the 2632 strain designs found for 2,3-BDO synthesis from glucose in the

genome-scale model as a reference to compare it with the new features of the MCS framework

such as multiple target and desired regions, gene/reaction additions and substrate co-feeding.

The different computation setups are listed in Table 2. As a first extended setup, we con-

strained the genome-scale search of MCS for growth-coupled 2,3-BDO synthesis by introduc-

ing a second desired region that requires any mutant to cope with an increased ATP

maintenance rate (rATPM � 18 mmol g � 1
BDW h� 1; scenario 2 in Table 2). This supplementary

constraint could be used for developing more stress resistant strains or to prime strains for

ATP-wasting boosted production [57–59]. The enumeration of gene MCS for this problem up

to size 7 returned 544 strain designs, expanded from 25 MCS found by the MILP in the com-

pressed network. As expected, for reasons of consistency, all 544 MCS were contained in the

Table 2. Different genome-scale MCS computation setups for growth-coupled 2,3-BDO synthesis.

Scenario Model Target regions Desired regions Max. MCS size/cost Runtime [h] Solutions

1 Standard (cf. Table 1) iML1515 1 1 7 3.0 2632

(S1 Table)

2 High ATP maintenance iML1515 1 2 7 3.3 544

(S2 Table)

3 Multiple substrates iML1515 2 1 6 35.3 2611

(S3 Table)

4 Multiple substrates + high ATP maintenance iML1515 2 2 6 17.3 995

(S4 Table)

https://doi.org/10.1371/journal.pcbi.1008110.t002
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previously found set of 2632 MCS. To ensure that the found solutions were not only correct

but also complete, we filtered the 2632 original MCS (from Table 1; see also scenario 1 in

Table 2) by their compliance with the ATP maintenance constraint and obtained an identical

set of 544 MCS. Interestingly, all these MCS with increased ATP production capabilities use

aerobic conditions, while all remaining MCS involve the removal of the oxygen supply.

To validate the operability of MCS searches also with multiple target regions and with reac-

tion/gene additions, we included options to use alternative substrates or to use co-feeding of

multiple substrates (Table 2, scenario 3). We extended the network with uptake reactions for

acetate and glycerol and tagged them as addable, together with glucose. Accordingly, the algo-

rithm now finds MCS that use glucose, glycerol, or acetate or any combination of these. We

adapted the previously defined yield constraint to account for all three substrates. The individ-

ual weight of the substrates (and the product) in the yield function was determined by the

number of carbon atoms in the corresponding molecules. As a result, the yield constraint

expresses a minimum threshold for the carbon recovery of the combined substrates in the final

product. Acetate, however, takes on a dual role in this scenario because some strain designs

might require it as a co-substrate while others require its secretion as a by-product. To account

for this equivocalness, the minimum yield constraint was expressed by two target regions, as

described in the Methods section, one for acetate by-production (Eq (20)) and one for the case

when acetate is used as a (co-)substrate (Eq (21)):

T1 : 4 r23� BD;ex þ 0:3 �
4

6
Ymax

23� BDO=glc ð6 rglc;up þ 3 rglyc;upÞ � 0 ; rac;up ¼ 0 ð20Þ

T2 : 4 r23� BDO;ex þ 0:3 �
4

6
Ymax

23� BDO=glc ð6 rglc;up þ 2 rac;up þ 3 rglyc;upÞ � 0 ; rac;ex ¼ 0 ð21Þ

Note that in the specification above, we follow the definition of iML1515 where the

exchange reactions are positive if they export a compound and negative if they import it. The

carbon yield threshold was again set to 30% of the maximum stoichiometric carbon yield,

referring to glucose as the substrate. This definition of the yield threshold ensures that the sub-

set of the found MCS that rely solely on glucose is directly comparable to the previously found

2632 MCS. In the latter case, the carbon-based yield formulation is equivalent to the previously

used molar yield constraint. In the same manner, the desired region was now specified as bio-

mass yield per carbon-weighted substrate:

D1 : � rBM � 0:005 �
1

6
ð6 rglc;up þ 2 rac;up þ 3 rglyc;upÞ � 0 ð22Þ

Again, an additional specification of the requested minimal 2,3-BDO yield is not necessary

because all (target) regions with lower product yields will be eliminated by the MCS while the

desired Region D1 ensures that other flux vectors, then with high product yield, still exist.

The described scenario with multiple substrates leads to a largely extended solution space of

feasible flux vectors, which, together with the more complex description with two target

regions, render the MCS computation significantly more complex. For this reason, we enu-

merated MCS only up to the cost of 6. In this scenario, gene knockouts were attributed with a

cost factor of unity while the addition of substrates and the removal of the oxygen supply reac-

tion remained “free” (zero costs).

The MILP for finding MCS for growth-coupled synthesis of 2,3-BDO on multiple substrates

returned 574 solutions in the compressed network. Removing the redundant (non-minimal)

cut sets resulted in a solution pool of 184 MCS which were then expanded to 2611 MCS (see

scenario 3 in Table 2). This pool contained 2112 MCS with glucose as the sole substrate, 24
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MCS relying on glycerol alone, and 475 MCS that utilize glucose with co-feeding of acetate

(these solutions are further discussed below). As a proof of consistency, it was verified that the

2112 MCS with glucose as sole substrate are all contained in the pool of 2632 MCS from the

initial (benchmark) setup (the additional 520 MCS require 7 gene knockouts whereas only 6

were allowed in the multiple substrates scenario).

In the last scenario 4 (Table 2) we extended the previous setup for multiple substrates (with

two target regions and one desired region) by a second desired region that demands the pro-

tection of high ATP maintenance rates as previously used in scenario 2

(rATPM � 18 mmol g � 1
BDW h� 1). This computation returned 955 non-redundant MCS. Among

these solutions were 24 purely glucose-based MCS, which are identical to the 24 MCS of size 6

contained in the MCS solution pool of scenario 2 in Table 2, again confirming correctness and

completeness. Another set of 24 MCS, solely based on glycerol as the substrate, is identical to

the set of glycerol MCS found in scenario 3 with two target and one desired region. The other

947 of the 995 MCS were supersets of the formerly found MCS in scenario 2. They nevertheless

represent truly distinct and minimal intervention strategies for this particular scenario: all of

these MCS add the supply of glycerol and/or acetate to satisfy the higher ATP maintenance

rate. 208 of these MCS contain further cuts because the expansion of the solution space by the

additional substrates would otherwise render the target region feasible again and thus allow

lower product yields. All MCSs computed in the four scenarios in Table 2 have been ranked

according to the criteria proposed in [60] and are provided in the S1–S4 Tables. In the follow-

ing we discuss major principles of the found strain designs with or without substrate co-feed-

ing in scenarios 1–3.

Key principles of the found intervention strategies for 2,3-BDO synthesis

The pool of the found MCS with or without substrate co-feeding can be divided into three

major classes, according to their growth-coupling mechanisms (Fig 6). 2088 of the 2632 MCS

with glucose as sole substrate use anaerobic conditions (Fig 6, red) establishing growth cou-

pling by a suitable combination of redox balancing and exclusion of alternative carbon drains.

Since the 2,3-BDO pathway (consuming one NADH) is imbalanced with glycolysis (yielding

two NADH), these anaerobic strategies require at least one additional by-product to balance

the cell’s redox state (e.g. succinate). However, these MCS must then also ensure that only a

limited amount of the substrate can run to this additional side product since otherwise only a

low yield of 2,3-BDO would be achieved. The other 544 of the 2632 MCS found in scenario 1

(with glucose as substrate) favor aerobic conditions (Fig 6, blue) and use oxygen as electron

acceptor. In contrast to the anaerobic strategies, all pathways to alternative fermentation prod-

ucts as well as parts of the respiratory pathway (e.g., ATP synthase) must be blocked to prevent

the complete oxidation of glucose to CO2 in the presence of oxygen. When acetate is available

as a co-feeding substrate (scenario 3), the extended MCS algorithm was able to identify

completely anaerobic strain designs where redox balance could be established by reducing the

provided electron acceptor acetate to ethanol (Fig 6, shown in green). Furthermore, it was able

to identify alternative strain designs that replace glucose with glycerol as the sole carbon and

energy source under aerobic conditions (S3 Table).

MCS for growth-coupled 2,3-BDO synthesis in two other genome-scale

models

To finally demonstrate that our extended MCS approach also works with other metabolic net-

works, including an eukaryotic one, we repeated all calculations for growth-coupled 2,3-BDO

synthesis with E. coli (Tables 1 and 2) in the genome-scale networks of Saccharomyces
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cerevisiae (yeastGEM [61]; 1147 genes and 3989 reactions) and Pseudomonas putida (iJN746

[62]; 746 genes and 1054 reactions). We found similar trends in the benchmark computations

(see S5 Table). The GPR compression rules are particularly beneficial for the yeast model

where we found a speedup factor of 20, while it is 2.2 for the smaller network of P. putida. The

scripts to reproduce these scenarios are also available under the GitHub link.

Discussion

We herein introduced several new features and developments generalizing the framework of

minimal cut sets and broadening its scope of applications, especially for metabolic network

design. We first enhanced the MCS approach by allowing the definition of multiple target

(undesired) and multiple protected (desired) regions. These extensions enable now a precise

tailoring of metabolic solution spaces of the strain to be designed. We are not aware of any

strain design approach that allows such an unlimited flexibility in the description of arbitrary

(especially non-convex) spaces of desired and protected metabolic behaviors. Specifying multi-

ple target and desired regions thus represents an entirely new feature and facilitates the treat-

ment of completely new classes of complex design problems. It is not only essential for the

computation of co-feeding strategies, where a substrate may also act as potential byproduct,

Fig 6. Main principles of MCS found for the growth-coupled production of 2,3-BDO in E. coli. Red: anaerobic production (e.g., scenario 1: geneMCS-611 (reaction

MCS_043) in S1 Table: -O2, ΔadhE, ΔadhP, ΔldhA, ΔmgsA, ΔsatP). Blue: aerobic production (scenario 2: geneMCS-449 (reaction MCS_08) in S2 Table: +O2, ΔaceE,

ΔatpA, ΔdeoC, ΔldhA, ΔpflA, ΔpflC, ΔpoxB). Green: anaerobic production with substrate co-feeding (scenario 3: geneMCS-1039 (reaction MCS_095) in S3 Table: -O2,

+acetate, ΔaceE, ΔfrdA, ΔldhA, ΔpflA, ΔpflC, Δpfo).

https://doi.org/10.1371/journal.pcbi.1008110.g006
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but also allows one to demand distinct behaviors and responses to different (process) condi-

tions. This could be used for designing production hosts for multi-stage processes, or, as

shown in our example calculations, for finding growth-coupled strains designs where the

organism can also withstand higher ATP maintenance requirements.

A second extension we introduced is a modified approach for integrating (compressed)

gene-protein-reaction (GPR) association in constrained-based models for the computation of

intervention strategies. In the context of MCS calculations, so far only few studies attempted to

account for GPR associations. One example for such an approach is gMCS [26,27]. In a pre-

processing step, this algorithm assesses correspondences between gene knockouts and associ-

ated reaction deletions and integrates these relationships in a subsequent gene MCS

computation [26]. The authors used their algorithm for computing synthetic lethalities. How-

ever, the gMCS algorithms does not support the direct computation of constrained MCS, that

maintain a desired behavior as needed, for example, for strain design applications. Moreover,

compression techniques have not been proposed for reducing the dimension of the problem.

Machado et al. [25] proposed a more general approach for integrating GPR rules in con-

straint-based metabolic network models. This approach uses pseudo-metabolites and pseudo-

reactions to represent genes and their connections with enzymes and reactions in the meta-

bolic model. Among other applications, this integrated representation was also used for the

computation of gene MCS [25]. We adopted this approach herein and first introduced a modi-

fication that ensures that the original flux space is preserved also in cases where specific flux

bounds (different from zero or infinity) are given. Generally, the integration of GPR associa-

tions into the metabolic network with this approach largely increases the network size which

may limit its application in genome-scale networks. To reduce this overhead, we introduced a

set of compression rules that remove redundancies in GPR associations and genes, many of

which cannot be addressed by classical network compression alone. The benchmark calcula-

tions showed a performance benefit with a factor of 6–8. Importantly, these compression rules

for GPR associations can as well be applied in conjunction with other strain optimization

methods.

As another major extension, we generalized the MCS framework to now also allow combi-

nations of reaction/gene deletions and additions and to assign arbitrary cost factors to each

intervention. We exemplified this feature for finding substrate co-feeding strategies for

growth-coupled strain designs, however, other applications include the search for strain

designs where, in combination with suitable gene/reaction knockouts, heterologous reactions

or pathways are added to the network to achieve optimal production behavior with minimal

intervention costs. Clearly, as demonstrated in the application example, offering a larger num-

ber of addable reactions may vastly increase the solution space, especially when searching for

co-feeding strategies on multiple possible substrates. Hence, the repository of optional inser-

tions should be limited to a manageable number of (preselected) reactions or pathways. Gener-

ally, a full enumeration of all MCS in genome-scale models is typically only feasible up to a

certain maximal number of interventions (for example, an enumeration of MCS with 9 or

more interventions for 2,3-BDO synthesis in iML1515 was not possible due to memory over-

flow). On the other hand, the calculation of single MCS is often possible also in very large

networks.

We note that some of the presented features, in particular substrate co-feeding or reaction

additions, have partly been addressed also in previous studies that used bi-level optimization

approaches [7,8,33,34,63]. However, neither individual cost factors nor reaction additions and

co-feeding strategies have so far been used in the more general framework of MCS. Moreover,

co-feeding strategies, where an external metabolite may act as (addable) substrate or
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byproduct, requires the definition of multiple target regions and can thus only be handled by

the extended MCS approach.

The new algorithmic developments have been integrated in the freely available open source

package CellNetAnalyzer. The respective functions can identify a single MCS, a certain number

of MCS, or enumerate all MCS with a given maximum number of interventions. The extended

MCS framework is backwards compatible and can be applied, out of the box, to previous MCS

setups as used, for example, by Harder et al. (2016) [16] or von Kamp and Klamt (2017) [47].

The functionality of regulatory MCS [24] can now directly be handled within the new frame-

work: for each reaction, whose flux is considered to be adjustable, several copies of this reac-

tions with different flux bounds are provided as addition candidates. The algorithm will then

return MCS that propose the deletion of certain reaction/genes in combination with the addi-

tion of the regulated reaction with adequate bounds. A comparative study on computation of

synthetic lethals revealed consistency with the gMCS [26,27] method, confirming suitability of

our approach also for the identification of synthetic lethals on the genetic level. A potential

direction for future research is the combination of our extended MCS framework with the

MCS2 algorithm, a recently published variant of the duality-based MCS base algorithm [23],

which holds promises to further reduce the MILP size and thus to further speed up MCS

computation.

We exemplified the new developments for the MCS framework by computing strain

designs for the growth-coupled production of 2,3-butanediol in E. coli, S. cerevisiae and P.

putida. Here, benchmark calculations showed a clear benefit of the new compression rules for

GPR associations. The analysis of the computation results for E. coli showed that the new fea-

tures allow the identification of qualitatively new strain designs that could not be generated

with existing methods. Previous experimental works favored the use of microaerobic condi-

tions for 2,3-BDO production in E. coli [51,52,64]. The employed strain designs are similar to

those found in our computed strategies. Alternative fermentation pathways were blocked, e.g.

by knockouts of ldhA, adhE, and pta. In addition, the excess of reduction equivalents arising

from the unbalanced net stoichiometry of the 2,3-BDO synthesis pathway must be handled by

the (limited) formation of another byproduct. This includes CO2 if some amount of oxygen is

supplied. Yet, these microaerobic fermentation strategies, which balance the NADH surplus

through respiration, are highly sensitive to the ratio of oxygen and substrate uptake rates.

Higher oxygen uptake rates lead to an increased CO2 and biomass production and conse-

quently to a decreased 2,3-BDO yield. Low oxygen uptake rates, on the other hand, limit

NADH recovery and result in poor cell viability, reduced 2,3-BDO productivity or increased

synthesis of reduced by-products like succinate [52]. Our computed strain designs confirm

that the simultaneous synthesis of reduced by-products is required to balance the reduction

equivalents when operating under fully anaerobic conditions. However, the supply of a poten-

tial electron acceptor (e.g. acetate) permits the recovery of reduction equivalents under anaero-

bic conditions without losing the primary substrate in redox-balancing by-products. We also

note that microaerobic strategies for 2,3-BDO synthesis could also be found by our MCS

approach by offering several addable oxygen uptake reactions with different maximum uptake

rates, which can then be combined with suitable gene deletions to find production strains that

can operate under limited oxygen supply.
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