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Genome-wide association study identifies 
48 common genetic variants associated with 
handedness
Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers  
in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness  
Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated 
(P < 5 × 10−8) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS  
in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted.  
We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia 
and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (rG = 0.26),  
which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness 
is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with 
some psychiatric disorders.

Handedness refers to the preferential use of one hand over the 
other. Conversely, ambidexterity refers to the ability to per-
form the same action equally well with both hands. Hand 

preference is first observed during gestation as embryos begin to 
exhibit single arm movements1,2. Across the life span, the consistent 
use of one hand leads to alterations in the macromorphology and 
micromorphology of bone3, which results in enduring asymmetries 
in bone form and density4,5. At the neurological level, handedness is 
associated with the lateralization of language (the side of the brain 
involved in language) and other cognitive effects6,7. The prevalence 
of left-handedness in modern western cultures is approximately 9%8 
and is greater in males than females9. While handedness is concep-
tually simple, its aetiology and whether it is related to brain and vis-
ceral (internal organ) asymmetry is unclear.

Since the mid-1980s, the literature regarding the genet-
ics of handedness and lateralization has been dominated by the 
right-shift10 and dextral-chance11 theories. Both theories involve 
additive biallelic monogenic systems in which an allele at the locus 
biases an individual towards right-handedness, while the second 
allele is a null allele that results in the random determination of 
handedness by fluctuating asymmetry. The allele frequency of the 
right-shift variant has been estimated at ~43.5%10, while that of the 
dextral-chance variant has been estimated at ~20% in populations 
with a 10% prevalence of left-handedness11. A joint analysis of data 
from 35 twin studies found that additive genetic factors accounted 
for 25.5% (95% confidence interval (CI) of 15.7, 29.5%) of the phe-
notypic variance of handedness12, which is consistent with predic-
tions of the variance explained under the single gene right-shift and 
dextral-change models. However, linkage studies13–16, candidate 
gene and genome-wide association studies (GWAS)17–21 have failed 
to identify any putative major gene for handedness.

Most recently, two large-scale GWAS identified four genomic 
loci containing common variants of small effect associated with 
handedness20,21. However, both GWAS failed to replicate signals at 
the LRRTM1, PCSK6 and the X-linked androgen receptor genes  
that had previously been reported in smaller genetic association 

studies17–19. In this study, we present findings from the world’s largest 
GWAS meta-analysis of handedness to date (N = 1,766,671), which 
combined data from 32 cohorts from the International Handedness 
Consortium (IHC) (N = 125,612), 23andMe (N = 1,178,877) and the 
UK Biobank (UKBB) (N = 462,182).

Results
GWAS of left-handedness. Across all studies, the handedness 
phenotype was assessed by a questionnaire that evaluated either 
which hand was used for writing or for self-declared handedness. 
All cohorts were randomly ascertained with respect to handed-
ness. Combining data across the 32 IHC cohorts, 23andMe and 
UKBB yielded 1,534,836 right-handed and 194,198 left-handed 
(11.0%) individuals (Supplementary Table 1). After quality control 
(Methods), the GWAS meta-analysis included 13,346,399 single 
nucleotide polymorphisms (SNPs; including autosomal and X chro-
mosome SNPs) with a minor allele frequency (MAF) of >0.5%.

The genetic correlations as estimated by bivariate linkage disequi-
librium (LD) score regression22 among the results from the UKBB, 
23andMe and IHC GWAS were rG

UKBB−23andMe = 0.88 (s.e. = 0.05), 
rG

UKBB−IHC = 0.73 (s.e. = 0.16) and rG
IHC−23andMe = 0.60 (s.e. = 0.11), 

which suggests that the three GWAS were capturing many of the 
same genetic loci for handedness. There was some inflation of the 
test statistics following meta-analysis (λGC = 1.22); however, the 
intercept from the LD score regression analysis23 was 1.01. This sug-
gests that the inflation was due to polygenicity rather than bias due 
to population stratification or duplication of participants across the 
UKBB, 23andMe and IHC studies.

We identified 41 loci that met the threshold for genome-wide 
significance (P < 5 × 10−8) (Fig. 1 and Supplementary Table 2).  
Loci were defined as distinct if independent genome-wide sig-
nificant signals were separated by at least 1 Mb, except for the  
MHC and 17q21.31 regions (the 17q21.31 region contains a com-
mon inversion polymorphism24) for which we only report the  
lead signals due to the extent of LD across these loci. Summary 
statistics for the lead variants at genome-wide significant loci  
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are presented in Table 1 along with the gene nearest to the lead 
SNP. A description of the putative functions of the nearest gene 
is included in Supplementary Table 2. Conditional analyses iden-
tified nine additional independent SNPs at genome-wide signifi-
cance near the lead SNPs on chromosomes 2q, 6p, 16q and 17q 
(Supplementary Table 3). Interestingly, the list of genome-wide 
significant associations included multiple variants close to genes 
involved in microtubule formation or regulation (that is, MAP2, 
TUBB, TUBB3, NDRG1, TUBB4A, TUBA1B, BUB3 and TTC28).  
A phenome-wide association scan (PheWAS) of the lead SNPs  
using GWAS summary data from 1,349 traits revealed that 28 out  
of the 41 lead SNPs have previously been associated with other 
complex traits (Supplementary Table 4). Among these results, 
we highlight that the rs6224, rs13107325 and rs45527431 vari-
ants have previously been associated with schizophrenia at 
genome-wide levels of significance (P < 5 × 10−8). Alleles at these 
loci had the same direction of effect (that is, those that increased 
the odds of left-handedness also increased the risk of schizophre-
nia). Furthermore, we found that seven variants associated with 
left-handedness were also associated with educational attainment; 
however, the direction of effect of these SNPs on left-handedness 
and educational attainment was not consistent. Future colocaliza-
tion analyses are needed to assess whether the same SNPs associ-
ated with handedness also affect these other traits or whether the  
pattern of signals are more likely due to LD with another causal 
variant.

To identify the most likely tissues and pathways underling 
the GWAS signals, we used DEPICT25 and MAGMA26. Results 
from both the DEPICT and MAGMA tissue-enrichment analyses 
implicated (false discovery rate (FDR) < 5%) the central nervous 
system, including brain tissues such as the hippocampus and cere-
brum (Table 2 and Supplementary Table 5), which is consistent 
with the hypothesis that handedness is primarily a neurological 
trait. We observed significant evidence for pathways involved in 
left-handedness (FDR < 5%), including regulation of microtubules 
and axons, as well as neurogenesis and morphology regulation of 
the cerebral cortex and hippocampus (Table 3).

We then performed gene-based analyses using gene-expression 
prediction models of brain tissues using S-MultiXcan to  

identify additional loci27. In total, we tested the association 
between the predicted expression of 14,501 genes in brain tissues 
and left-handedness. In addition to detecting significant associa-
tions (P < 3.44 × 10−6) of genes within the loci identified during the 
meta-analysis, we observed an association between left-handedness 
and the predicted expression of AMIGO1 (P = 2.82 × 10−7), a gene 
involved in the growth and fasciculation of neurites from cultured 
hippocampal neurons and may also be involved in the myelination 
of developing neural axons28. Supplementary Table 6 shows the sig-
nificant associations from the S-MultiXcan analysis.

We also applied the summary-data-based Mendelian randomiza-
tion (SMR) approach using expression quantitative trait loci (eQTL) 
data from PsychENCODE29,30 and from a meta-analysis of eQTL 
data from brain tissues31 that included results from GTEx32, CMC33 
and ROSEMAP34 to identify additional loci and to pinpoint genes 
behind the GWAS associations. Through this approach, we were 
unable to identify genes outside the loci from our main GWAS; how-
ever, we were able to implicate the NMT1, TUBA1C, FES, CENPBD1 
and BCR genes as candidates underlying some of our genome-wide 
significant associations. Supplementary Table 7 shows all the statis-
tically significant associations from the SMR analysis.

Multiple studies have reported that left-handedness and ambi-
dexterity are more prevalent in males than in females9. Consistent 
with this observation, we found that 11.9% of male participants 
in the IHC cohorts reported being left-handed or ambidextrous 
compared with only 9.3% of females (odds ratio (OR) = 1.31, 95% 
CI = 1.25–1.38, P < 2.2 × 10−16) (Supplementary Table 8). Similarly, 
in the UKBB data, 10.5% of males and 9.9% of females were 
left-handed (OR = 1.07, 95% CI = 1.05–1.09, P = 1.87 × 10−11), and 
in 23andMe, 15.6% of males and 12.6% of females were left-handed 
(OR = 1.28, 95% CI = 1.26–1.30, P < 2.2 × 10−16). Sex differences 
in ambidexterity were also apparent in the UKBB and 23andMe 
cohorts (these data were not available for the IHC cohorts). In  
the UKBB data, 2% of males and 1.30% of females reported being 
ambidextrous (OR = 1.55, 95% CI = 1.47–1.62, P < 2.2 × 10−16), 
while in 23andMe, 3.45% of males and 2.61% of females were  
ambidextrous (OR = 1.33, 95% CI = 1.28–1.37, P < 2.2 × 10−16). 
Birth year had a small but significant effect on left-handedness, 
with individuals who were born more recently being more likely 
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Fig. 1 | manhattan plot of the left-handedness meta-analysis. Manhattan plots for the left-handedness GWAS meta-analysis (N = 1,534,836 right-handed 
versus 194,198 left-handed). Each dot represents a SNP. The red broken line highlights the genome-wide levels of significance threshold (P < 5 × 10−8); the 
blue broken line shows the threshold for suggestive associations.
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to be left-handed (OR = 1.008 per year, 95% CI = 1.007–1.009, 
P < 2.2 × 10−16).

The differences in prevalence between males and females and 
a previously reported association between the X-linked androgen 
receptor gene and handedness17 could reflect the involvement of 

hormone-related genes in handedness aetiology. We therefore car-
ried out a sex-stratified GWAS of handedness in the UKBB data using  
left-handed individuals as cases and right-handed individuals as con-
trols; however, we did not identify any genome-wide significant loci.  
Despite this, the point estimate of the genetic correlation between 

Table 1 | Loci associated with left-handedness after a meta-analysis of 23andme, uKBB and iHC data

CHR BP SNP Gene ea Nea eaF Z oRa P Direction

1 44172458 rs34550543 ST3GAL3 T C 0.41 6.42 1.02 1.4 × 10–10 +++
1 160398240 rs66513715 VANGL2 D I 0.20 −5.46 0.97 4.77 × 10–8 –??

1 169112399 rs10081960 NME7 C G 0.60 −5.93 0.98 2.96 × 10–9 – – –

2 48624007 rs4953572 FOXN2 A G 0.66 6.70 1.02 2.11 × 10–11 +++

2 109954066 rs4676276 SH3RF3 A C 0.52 5.72 1.02 1.06 × 10–8 +++

2 187522750 rs13006483 ITGAV T G 0.28 6.59 1.03 4.51 × 10–11 +++

2 210300731 rs62213410 MAP2 A T 0.71 −11.45 0.96 2.37 × 10–30 – – –

3 18167162 rs1398651 SATB1 A T 0.56 5.49 1.02 4.11 × 10–8 +++

3 74246260 rs201072423 CNTN3 D I 0.51 5.53 1.02 3.17 × 10–8 +++

3 77574555 rs62251113 ROBO2 A C 0.37 5.45 1.02 4.94 × 10–8 +++

3 158017859 rs1526194 RSRC1 T C 0.58 −6.65 0.98 3.02 × 10–11 – – –

4 89910701 rs28658282:T FAM13A T C 0.10 −6.20 0.96 5.77 × 10–10 –??

4 103188709 rs13107325 SLC39A8 T C 0.08 7.54 1.06 4.62 × 10–14 +++

5 71890187 rs246628 LINC02056 C G 0.41 5.72 1.02 1.06 × 10–8 +++

5 87825490 rs2194028 TMEM161B-AS1 T C 0.34 6.59 1.02 4.52 × 10–11 +++

5 114471109 rs1422070 TRIM36 A C 0.60 −6.65 0.98 2.85 × 10–11 – – –

6 3143866 rs35551703 BPHL A G 0.04 −7.04 0.94 1.93 × 10–12 – – –

6 26599509 rs45527431 ABT1 A G 0.91 5.86 1.04 4.63 × 10–9 ++?

6 30688427 rs3132584 TUBB T G 0.21 −10.31 0.95 6.12 × 10–25 – – –

6 127643791 rs148342778:GTA ECHDC1 D I 0.65 −5.68 0.97 1.32 × 10–8 –??

7 127268806 rs806188 PAX4 T C 0.32 6.20 1.02 5.65 × 10–10 +++

8 134274226 rs2233324 NDRG1 C G 0.16 −7.66 0.96 1.86 × 10–14 – – –

10 124992505 rs12414988 BUB3 A G 0.21 5.46 1.02 4.75 × 10–8 +++

11 16474017 rs1000565 SOX6 A G 0.60 5.65 1.02 1.56 × 10–8 +++

11 66173400 rs11227478 NPAS4 A G 0.21 −6.00 0.98 1.97 × 10–9 – – –

11 77531890 rs11820337 RSF1 T C 0.35 6.27 1.02 3.64 × 10–10 +++

11 115081563 rs9645660 CADM1 T C 0.52 −6.51 0.98 7.43 × 10–11 – – –

12 49539892 rs11168884 TUBA1B T C 0.34 −6.37 0.98 1.96 × 10–10 – – –

12 100324975 rs7132513:G ANKS1B C G 0.61 6.70 1.03 2.1 × 10–11 +??

13 27294638 rs9581731 WASF3 T C 0.71 −6.05 0.98 1.49 × 10–9 – – –

14 29628115 rs8016028 AL133166.1 T C 0.81 −6.37 0.97 1.92 × 10–10 – – –

14 48430794 rs8012503 LINC00648 C G 0.88 5.48 1.03 4.27 × 10–8 +++

15 91423543 rs6224 FURIN T G 0.47 −9.39 0.97 6.16 × 10–21 – – –

16 28828834 rs62036618 ATXN2L A C 0.61 −7.39 0.98 1.43 × 10–13 – –?

16 69224615 rs1424114 SNTB2 T C 0.35 −5.48 0.98 4.21 × 10–8 – – –

16 89991599 rs4550447 TUBB3 C G 0.12 10.12 1.06 4.67 × 10–24 +++

17 43757450 rs55974014 CRHR1 A C 0.21 −11.43 0.95 2.97 × 10–30 – – –

19 6499231 rs66479618 TUBB4A T C 0.20 −6.87 0.97 6.48 × 10–12 – –+

19 42439263 rs112737242 RABAC1 D I 0.35 −7.80 0.97 6.4 × 10–15 – –?

22 23663848 rs4822384 BCR T G 0.39 −5.63 0.98 1.82 × 10–8 – – –

22 28628209 rs5762532 TTC28 T C 0.59 −5.88 0.98 4.04 × 10–9 – – –

BP, base pair positions based on the GRCh37–hg19 human genome assembly; CHR, chromosome; EA, effect allele; EAF, effect allele frequency; NEA, non-effect allele; P, meta-analysis P value; Z, Z-statistic. 
The direction of effects is shown in the following order: 23andMe, UKBB and IHC. aOR corresponds to that derived from the 23andMe results. Where the SNP is missing in a cohort, a question mark is 
indicated in the Direction column.
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male handedness and female handedness computed using LD score 
regression was lower than unity but not significantly different from 
one (rG = 0.77 (s.e. = 0.12), P = 0.055).

Associations with previously reported candidate genes. All loci 
identified in recent GWAS of handedness from the UKBB20,21 were 
replicated in our study. However, we found no evidence of association 
between left-handedness and genes and genetic variants reported in 
other prior studies. The SNPs rs1446109, rs1007371 and rs723524 in 
the LRRTM1 locus reported by Francks et al.18 did not reach nominal 
significance in any of the analyses performed (P > 0.05). Similarly, 
the SNP rs11855415 reported by Scerri et al.19 as associated with 
left-handedness in individuals with dyslexia did not show evidence of 
association (P > 0.05). Furthermore, we investigated whether the 27 
genes exhibiting asymmetric expression in early development of the 
cerebral cortex described by Sun et al.35 were associated with handed-
ness in our S-MultiXcan analyses. Only 11 out of the 27 asymmetry 
genes were available in our analysis, and after adjusting the results 
for multiple testing, we did not observe any significant association 
(Supplementary Table 9). In a more recent study, Ocklenburg and 
colleagues36 list 74 genes displaying asymmetric expression in cervi-
cal and anterior thoracic spinal cord segments of five human fetuses. 
In total, 43 out of the 74 genes were in our S-MultiXcan analyses, 
of which only HIST1H4C was statistically significant after correcting 
for multiple testing (P = 2.2 × 10−4) (Supplementary Table 10).

Heritability of left-handedness and genetic correlations with 
other traits. Previous twin studies have estimated the heritability of 
left-handedness as around 25%12. In the present study, we employed 
LD score regression, genome-based restricted maximum likelihood 
(REML) analysis, as implemented in BOLT-LMM, and maximum 
likelihood analysis of identity by descent (IBD) sharing in close 
relatives37 to provide complementary estimates of SNP heritability 
and total heritability that relied on a different set of assumptions 
to the classical twin model. Using GWAS summary statistics from 
our study and LD score regression, we estimated that the variance 

explained by SNPs was 3.45% (s.e. = 0.17%) on the liability scale, 
assuming the prevalence of left-handedness is 10% (Table 4). Using 
genotypic data from the UKBB study (and age and sex as covariates) 
and genome-based REML analysis, we also obtained low estimates 
of the SNP heritability (5.87%, s.e. = 2.21%). Due to the large dispar-
ity between estimates of heritability from twin studies and the lower 
estimates of SNP heritability from the above approaches, we esti-
mated the heritability of handedness using autosomal IBD informa-
tion from closely related individuals37 in the UKBB data (estimated 
genome-wide IBD > 8%). We partitioned the phenotypic variance 
into additive genetic effects (A), shared environmental effects (C) 
and individual environmental effects (E) (Methods). We estimated 
that additive genetic effects explained 11.9% (95% CI = 7.2–17.7) of 
the phenotypic variance in handedness, while shared environmen-
tal effects and individual environment effects accounted for 4.6% 
(95% CI = 0–9.0) and 83.6% (95% CI = 75.2–85.6) of the variance 
in liability, respectively (Table 4). Dropping (C) from the model did 
not significantly worsen the fit of the model (P = 0.29). The estimate 
from the A+E model was 19.7% (95% CI = 13.6–25.7) for additive 
genetic effects, which overlapped with those from twin studies.

We investigated the genetic correlation between left-handedness 
and 1,349 complex traits using LD score regression as implemented 
in the Complex-Traits Genetics Virtual Lab (CTG-VL)38. We did 
not observe any genetic correlations at FDR < 5% beside handed-
ness itself. However, we observed a general inflation of P values 
across the traits (that is, the expected number of traits with genetic 
correlations at P < 0.05 under the null hypothesis of no association 
was 67.45, whereas we observed 102 traits with P < 0.05). We also 
observed suggestive positive correlations with neurological and 
psychiatric traits, including schizophrenia (P = 0.005663), bipolar 
disorder (P = 0.0023), intracranial volume (P = 0.01205) and edu-
cational attainment (P = 0.001772), and negative correlations with 
mean pallidum volume (P = 0.01124) (Supplementary Table 11).

GWAS of ambidexterity. We carried out a separate GWAS of 
ambidexterity with the UKBB and 23andMe data using ambidex-
trous individuals as cases (N = 37,637; ~2% of the total sample) 
and right-handed individuals as controls (N = 1,422,823). This 
meta-analysis included 12,493,443 autosomal and X chromosome 
SNPs with a MAF > 0.5%.

Similar to the left-handedness GWAS, before the meta-analysis, 
we computed the genetic correlation between the UKBB ambidex-
terity GWAS and the 23andMe GWAS. The estimate of the genetic 
correlation was rG = 1 (s.e. = 0.15), which indicates that both GWAS 
were capturing the same genetic loci. After the meta-analysis, we 
identified seven loci with P < 5 × 10−8 (Fig. 2). Table 5 displays the 
summary statistics for the lead SNPs at these loci along with the 
closest gene. Full summary statistics and descriptions of the nearest 
gene for these loci are included in Supplementary Table 12. There 
was some overlap between genome-wide significant SNPs associ-
ated with left-handedness and ambidexterity. A total of 16 out of 
the 41 SNPs associated with left-handedness displayed a nominal 
significant association with ambidexterity (P < 0.05), 15 of which 
were also in the same direction of effect (Supplementary Table 13). 
Conditional analyses did not identify further independent signals at 
genome-wide levels of significance. PheWAS revealed that the lead 
SNPs have been implicated in anthropometric traits and blood bio-
markers (Supplementary Table 14).

The DEPICT analysis did not identify any tissue or pathway at 
FDR < 5%. However, the MAGMA tissue-enrichment analysis high-
lighted all the brain tissues tested (FDR < 5%), including brain cer-
ebellar hemisphere and the cerebellum (Supplementary Table 15). 
The MAGMA pathway analysis identified 16 pathways (FDR < 5%), 
including regulation of cell size, basal dendrite, postsynaptic cyto-
sol, among others that are hard to interpret such as pulmonary valve 
morphogenesis and development (Supplementary Table 16).

Table 2 | Results of the tissue-enrichment analysis for 
left-handedness (DePiCt)

tissue Group P value

Corpus striatum Nervous system 0.00000673

Basal ganglia Nervous system 0.0000148

Hippocampus Nervous system 0.0000227

Central nervous system Nervous system 0.0000327

Brain Nervous system 0.0000357

telencephalon Nervous system 0.0000398

Parahippocampal gyrus Nervous system 0.0000414

entorhinal cortex Nervous system 0.0000414

Limbic system Nervous system 0.0000423

Cerebrum Nervous system 0.0000427

Prosencephalon Nervous system 0.0000487

temporal lobe Nervous system 0.0000587

Cerebral cortex Nervous system 0.0000668

Parietal lobe Nervous system 0.000305

mesencephalon Nervous system 0.000843

occipital lobe Nervous system 0.00131

visual cortex Nervous system 0.00156

Brain stem Nervous system 0.00166

Only results with FDR values <5% are shown.
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A S-MultiXcan analysis based on the association between pre-
dicted gene expression in brain tissues and ambidexterity identified 
the genes QTRTD1, TMEM215, RPL41 and RAB40C in addition to 
those loci identified during the GWAS (Supplementary Table 17). 
The SMR analysis pinpointed TUBA1C and CYP51A1 as potentially 
behind the GWAS associations on chromosomes 12 and 7, respec-
tively (Supplementary Table 18).

Heritability of ambidexterity and genetic correlations. The 
number of ambidextrous individuals in the UKBB was not 
enough to precisely estimate heritability using maximum likeli-
hood analysis of IBD sharing in close relatives. However, the SNP 
heritability of ambidexterity on the liability scale (1% prevalence) 
estimated through LD score regression and REML implemented 
in BOLT-LMM was higher than that observed for left-handedness 
(h2

g = 0.12 (s.e. = 0.007) and h2
g = 0.15 (s.e. = 0.014)).

We estimated the genetic correlation between ambidexterity 
and a catalogue of 1,349 traits with GWAS summary statistics. Our 
analyses revealed 575 genetic correlations at FDR < 5%. Among the 
strongest correlations were positive genetic correlations between 
ambidexterity and traits related to pain and injuries, and body  
mass index, and a negative genetic correlation with educational 

attainment (Supplementary Table 19). Interestingly, the genetic cor-
relation between our left-handedness meta-analysis and our ambi-
dexterity meta-analysis was only moderate (rG = 0.24, s.e. = 0.03), 
which suggests that there are divergent genetic aetiologies.

Discussion
We carried out the largest genetic study of handedness to date. Our 
GWAS and SNP heritability analyses conclusively demonstrate 
that handedness is a polygenic trait, with multiple genetic vari-
ants that implicate multiple biological pathways each increasing 
the odds of being left-handed or ambidextrous by a small amount. 
We identified 41 left-handedness and 7 ambidexterity loci that 
reached genome-wide significance. Our findings are in contrast 
to the single-gene right-shift10 and dextral-chance11 hypotheses, 
whereby the causal genes are hypothesized to account for the heri-
tability of handedness. If these large-effect variants do exist, they 
should have been detected by our GWAS meta-analysis, which 
provided over 90% statistical power (Supplementary Table 20) to 
detect variants with effect sizes as small as a 5% increase in odds 
per allele for common variants (MAF > 0.05) at genome-wide sig-
nificance (α = 5 × 10−8). Instead, the present findings firmly support 
the hypothesis that handedness, like many other behavioural and  

Table 3 | Results from pathway-enrichment analysis for left-handedness (DePiCt and maGma)

Pathway iD Pathway description P value

DePiCt

MP:0000788 Abnormal cerebral cortex morphology 0.00000185

MP:0000807 Abnormal hippocampus morphology 0.00000187

GO:0008017 Microtubule binding 0.00000195

MP:0004275 Abnormal postnatal subventricular zone morphology 0.00000549

ENSG00000137285 TUBB2B subnetwork 0.00000571

MP:0000812 Abnormal dentate gyrus morphology 0.00000843

ENSG00000206211 ENSG00000206211 subnetwork 0.0000128

ENSG00000206283 PFDN6 subnetwork 0.0000128

ENSG00000204220 PFDN6 subnetwork 0.0000128

GO:0005874 Microtubule 0.0000140

GO:0021543 Pallium development 0.0000456

MP:0000790 Abnormal stratification in the cerebral cortex 0.0000500

ENSG00000147601 TERF1 subnetwork 0.0000596

GO:0015631 Tubulin binding 0.0000600

REACTOME apoptotic execution phase REACTOME apoptotic execution phase 0.0000665

GO:0021987 Cerebral cortex development 0.0000696

ENSG00000182901 RGS7 subnetwork 0.0000731

ENSG00000106105 GARS subnetwork 0.0000738

GO:0007409 Axonogenesis 0.0000902

REACTOME: apoptotic cleavage of cellular proteins REACTOME: apoptotic cleavage of cellular proteins 0.000108

maGma

REACTOME: CRMPs in SEMA3A signalling CRMPs in SEMA3A signalling 4.13 × 10–8

REACTOME: axon guidance Axon guidance 3.13 × 10–6

GO: neurogenesis Neurogenesis 3.53 × 10–6

REACTOME: semaphorin interactions Semaphorin interactions 9.84 × 10–6

Matzuk: preovulatory follicle Preovulatory follicle 1.26 × 10–5

REACTOME: SEMA3A–PAK-dependent axon repulsion SEMA3A–PAK-dependent axon repulsion 1.73 × 10–5

GO: regulation of non-motile cilium assembly Regulation of non-motile cilium assembly 3.01 × 10–5

Only results with FDR <5% are shown.
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neurological traits, is influenced by many variants of small effect 
and multiple biological pathways.

Using different methods and cohorts, we estimated the SNP 
heritability (hg

2) of handedness to be between 3% and 6%. However, 
by using IBD-based methods applied to siblings and other relative 
pairs, we estimated the narrow-sense heritability (h2) to be 11.9% 
(95% CI = 7.2–17.7). Although this is lower than that obtained 
from twin studies (25%, 95% CI = 15.7–29.5 (ref. 12) and 21%, 95% 
CI = 11–30 (ref. 39)), the CIs for the estimates overlap. Interestingly, 
hg

2 estimates for ambidexterity were larger (12–15%), which sug-
gests that common SNPs tag a higher proportion of variability in 
liability to ambidexterity than in liability to left-handedness.

Our GWAS meta-analysis of left-handedness identified eight 
loci close to genes involved in microtubule formation and regula-
tion. An enrichment for microtubule-related pathways was then 
confirmed by the DEPICT analysis. Microtubules are polymers that 
form part of the cytoskeleton and are essential in several cellular 
processes, including intracellular transport, cytoplasmic organiza-
tion and cell division. With respect to handedness, microtubule 
proteins play important roles during the development and migra-
tion of neurons, plasticity and neurodegenerative processes40,41. 
The association between handedness and variation in microtubule 
genes also provides insights into differences in the prevalence of 
various neuropsychiatric disorders and left-handedness observed 
in some epidemiological studies42,43. Recent genetic studies have 
identified mutations in a wide variety of tubulin isotypes and 

microtubule-related proteins in many major neurodevelopmental 
and neurodegenerative diseases40,44–46.

We observed an association between left-handedness and the 
17q21.31 locus. A deletion in this locus is known to cause Koolen de 
Vries syndrome, a disorder characterized by intellectual disability, 
developmental delay and neurological abnormalities of the corpus 
callosum, hippocampi and ventricles. Variation in the 17q21 locus, 
including structural variation, has been associated with schizo-
phrenia47, autism48,49 and cognition50. In addition, based on our 
PheWAS, the rs55974014 SNP within this locus has been associated 
with mood swings, neuroticism and educational attainment traits. 
The rs55974014 SNP is located near several genes with neurological 
functions, including CRHR1 and NSF. Other SNPs close to this gene 
have been associated with intelligence51 and Parkinson’s disease52. 
Future colocalization analyses are warranted to assess the veracity 
of the same variant affecting multiple traits.

The genetic correlation between left-handedness and ambi-
dexterity was low, which suggests that the genetic architecture 
underlying the two traits is different. Only 15 out of the 41 loci 
associated with left-handedness were associated with ambidexter-
ity at marginal significance levels or lower (P < 0.05). However, 
tissue- and pathway-enrichment analyses indicated that just as 
for left-handedness, the central nervous system was implicated. 
Ambidexterity showed significant genetic correlations with multi-
ple traits, particularly anthropometric and those involving pain and 
injuries. This suggests that reporting being able to write with both 
hands may be a result from injuries that led to the use of the other 
hand or may be due to increased injury risk. Future studies into the 
genetics of ambidexterity should include detailed phenotyping that 
considers the reasons leading to hand-use preference.

In contrast, left-handedness was not significantly genetically cor-
related with other (non-handedness) traits in our study. Given that 
previous studies have shown that the phenotypic correlation between 
left-handedness and most traits and diseases is low, it is perhaps 
unsurprising that the magnitude of most genetic correlations with 
left-handedness was low also. However, our lack of significant results 
was also partially a reflection of the large number of statistical tests 
performed and the conservative testing correction applied when esti-
mating the genetic correlation between left-handedness and other 
traits. Nevertheless, we observed a clear inflation of the distribution 
of P values when compared to the null, which indicates that there is 
likely to be a small degree of genetic overlap between handedness and 
other traits. Among the suggestive genetic correlations (P < 0.05), we 
observed positive genetic correlations between left-handedness and 
schizophrenia and bipolar disorder, which is consistent with previ-
ous observations of greater atypical hand dominance in patients with 
schizophrenia and in patients with bipolar disorder53,54.

The present study benefitted from having a large sample size that 
allowed the detection of dozens of novel variants of small effect on 
handedness. However, it is worth noting that the genetic correla-
tions derived from GWAS summary statistics of left-handedness 
in the IHC, 23andMe and UKBB data were high but statistically 
different from one, potentially affecting the statistical power of 
the meta-analysis. These differences may have been due to the 
way data were collected in each of the cohorts. For example, in the 
UKBB, handedness data were obtained at up to three occasions, 
while this was not the case for the 23andMe and the IHC cohorts. 
Furthermore, genetic correlations with the IHC data may have been 
affected by the IHC including ambidextrous and left-handed indi-
viduals as cases.

In summary, we report the world’s largest GWAS meta-analysis 
of handedness. We showed that handedness is polygenic and 
found evidence that microtubule genes may play an essential role 
in lateralization. Loci mapped in the present study warrant further 
exploration of their potential role in neurological development and 
laterality.

Table 4 | SNP heritability and heritability of left-handedness 
estimated using a range of different approaches

Data used method hg
2 (s.e.)—liability 

scale

IHC meta-analysis (32 
studies)

LD score regression 0.031 (0.013)

UKBB left-handed 
individuals only as cases

LD score regression 0.033 (0.004)

23andMe left-handed 
individuals only as cases

LD score regression 0.040 (0.002)

Meta-analysis UKBB, 
23andMe and IHC

LD score regression 0.035 (0.002)

UKBB left-handed 
individuals only as cases 
(males)

LD score regression 0.042 (0.006)

UKBB left-handed 
individuals only as cases 
(females)

LD score regression 0.032 (0.005)

UKBB left-handed 
individuals only as cases

REML (BOLT-LMM) 0.059 (0.003)

Right- versus left-handed 
0.08 < IBD < 0.3 relatives 
(no C) + siblings 
0.65 > IBD > 0.35 with C 
in the model

A+C+E model A = 0.12a (95% 
CI = 0.07–0.17), 
C = 0.045 (95% 
CI = 0–0.09)

Right- versus left-handed 
0.08 < IBD < 0.3 relatives 
(no C) + siblings 
0.65 > IBD > 0.35 without 
C in the model

A+E model A = 0.20 (95% 
CI = 0.14–0.26)

Meta-analysis of twin 
studies of handedness12

A+C+E model A = 0.25 (95% 
CI = 0.157–0.30), 
C = 0 (95% 
CI = 0–0.076%)

aEstimate of narrow-sense heritability (h2).
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methods
As described below, we performed a meta-analysis on GWAS results from the IHC, 
the UKBB and 23andMe. Informed consent was provided by all participants. The 
research was approved by the research ethics committee of each of the individual 
studies.

Genome-wide association in the UKBB. The UKBB is a large long-term biobank 
study from the United Kingdom that aims to identify the contribution of genetic 
and environmental factors to disease. Detailed information on phenotyping 
and genotyping is presented elsewhere55. In brief, the UKBB recruited 502,647 
individuals aged 37–76 years across the country and gathered information 
regarding their health and lifestyle, including handedness, via questionnaires. 
Genotype data from the UKBB are available for 487,411 participants. Genotypes 
were imputed by the UKBB against the UK10K reference panel using IMPUTE 
2 (ref. 56). In addition to the quality control metrics performed centrally by the 
UKBB55, we defined a set of participants of European ancestry by clustering the 
first two principal components (PCs) derived from the genotype data. Using 
a K-means algorithm with K = 4, we identified a group of 463,023 individuals 
of European ancestry. From this group, 462,182 individuals (250,767 females) 
provided self-reported data on handedness. In total, 410,677 participants identified 
themselves as right-handed, 43,859 as left-handed and 7,646 as ambidextrous. The 
mean birth year of the participants was 1951 (s.d. = 8.04).

We tested 11,498,822 autosomal and X chromosome SNPs with MAF > 0.005 
and info score of >0.4 for associations with handedness using BOLT-LMM, which 
implements a linear mixed model to account for cryptic relatedness and population 
structure. Sex and age were included as covariates in all models. We performed 

four analyses: (1) right- versus left-handed; (2) right versus ambidextrous; (3) 
right- versus left-handed (male only); and (4) right- versus left-handed (female 
only). Analyses of X chromosome genotypes were performed in BOLT-LMM, 
fitting sex as a covariate and coding the male genotypes as 0/2.

Genome-wide association in 23andMe. All individuals included in the analyses 
were research participants of the personal genetics company 23andMe, Inc., a 
private company. The phenotypes, including self-reported handedness, of the 
research participants were collected via online surveys. DNA extraction and 
genotyping were performed on saliva samples by the National Genetics Institute 
(NGI), a CLIA-licensed clinical laboratory and a subsidiary of the Laboratory 
Corporation of America. Samples were genotyped on one of five genotyping 
platforms. The v.1 and v.2 platforms were variants of the Illumina HumanHap550+ 
BeadChip, including about 25,000 custom SNPs selected by 23andMe, with a total 
of about 560,000 SNPs. The v.3 platform was based on the Illumina OmniExpress+ 
BeadChip, with custom content to improve the overlap with the v.2 array, with 
a total of about 950,000 SNPs. The v.4 platform was a fully customized array, 
including a lower redundancy subset of v.2 and v.3 SNPs with additional coverage 
of lower-frequency coding variation, and about 570,000 SNPs. The v.5 platform 
was an Illumina Infinium Global Screening Array (~640,000 SNPs) supplemented 
with ~50,000 SNPs of custom content. Samples that failed to reach a 98.5% call rate 
were re-analysed. Individuals whose analyses repeatedly failed were re-contacted 
by 23andMe customer service to provide additional samples.

For our standard GWAS, we restricted participants to a set of individuals who 
have a specified ancestry (predominantly European ancestry) determined through 
an analysis of local ancestry57. A maximal set of unrelated individuals was chosen 
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Fig. 2 | manhattan plot of the ambidexterity meta-analysis. Manhattan plots for the ambidexterity GWAS meta-analysis (N = 1,422,823 right-handed 
versus 37,637 ambidextrous individuals). Each dot represents a SNP. The red broken line highlights the genome-wide levels of significance threshold 
(P < 5×10−8); the blue broken line shows the threshold for suggestive associations.

Table 5 | Loci associated with ambidexterity after a meta-analysis of 23andme and uKBB data

CHR BP SNP Gene ea Nea eaF Z oRa P Direction

1 150317558 rs782122127 PRPF3 D I 0.19 −6.32 0.88 2.70 × 10−10 ?−
2 58196110 rs2030237 VRK2 A G 0.58 5.84 1.04 5.29 × 10−9 ++

2 104437850 rs139630683 AC013727.1 D I 0.45 5.85 1.05 4.88 × 10−9 +?

7 91899117 rs2040498 ANKIB1 A T 0.65 6.21 1.06 5.42 × 10−10 ++

8 77104817 rs10113066 RNU2-54P T G 0.51 5.90 1.05 3.74 × 10−9 ++

10 89722731 rs36062478 PTEN T C 0.87 −5.62 0.94 1.87 × 10−8 − −

12 49530132 rs35554786 TUBA1B D I 0.24 −6.05 0.93 1.49 × 10−9 −?

The direction of effects is shown in the following order: 23andMe and UKBB. aOR corresponds to that derived from the 23andMe results. Where the SNP is missing in a cohort, a question mark is indicated 
in the Direction column.
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for each analysis using a segmental IBD estimation algorithm58. Individuals were 
defined as related if they shared more than 700 cM IBD, including regions where 
the two individuals share either one or both genomic segments of IBD. This 
level of relatedness (roughly 20% of the genome) corresponds approximately to 
the minimal expected sharing between first cousins in an outbred population. 
In total, 1,012,146 individuals included in the analysis identified themselves as 
right-handed, 136,740 as left-handed and 29,991 as ambidextrous. The mean birth 
year of the participants was 1972.

We used Minimac3 to impute genotype data against a reference panel 
consisting of the May 2015 release of the 1000 Genomes Phase 3 haplotypes59 and 
the UK10K imputation reference panel60. We computed associations by logistic 
regression assuming additive allelic effects. We used the imputed dosages rather 
than best-guess genotypes and included covariates for age, sex, the top five PCs to 
account for residual population structure and indicators for genotype platforms 
to account for genotype batch effects. For associations on the X chromosome, 
male genotypes were coded as if they were homozygous diploid for the observed 
allele. For quality control of the GWAS results, we removed SNPs with rsq < 0.3, 
MAF < 0.005 and available sample size <20% of the total sample, as well as SNPs 
that had strong evidence of a platform batch effect. We also flagged logistic 
regression results that did not converge due to complete separation, identified by 
abs(effect) > 10 or s.e. > 10 on the log odds scale. Two analyses were performed: (1) 
right- versus left-handed and (2) right versus ambidextrous.

The IHC. The IHC is a large-scale collaboration between 32 cohorts (N = 125,612) 
with existing GWAS data to identify common genetic variants influencing 
handedness. Across all studies, the phenotype was collected by a questionnaire 
that asked either which hand was used for writing or for self-declared handedness. 
As these two measures are highly (~95%) concordant, not all studies reported on 
ambidexterity, and around 1–2% of participants reported being able to write with 
both hands12,61; both left-handed and ambidextrous individuals were classified as 
cases where this information was available. All cohorts were population samples 
with respect to handedness, thus combining the data from the 32 studies yielded 
13,599 left-handed and 112,013 right-handed individuals (Supplementary Table 1).

All individuals were of self-declared European ancestry (confirmed by 
genotypic PCA in each cohort). Within each cohort, the genotypic data were 
imputed to Phase I and II combined HapMap CEU samples (build 36 release 22) 
with the exception of the Finnish Twin Cohort study, the Health Professionals 
Follow-Up Study and Nurses’ Health Study HPFS/NHS, the Netherlands Twin 
Registry (NTR), and TOP cohorts, which were imputed to 1000G Phase 3 V5 
European population. Within each sample, genome-wide association analyses were 
conducted for both genotyped and imputed SNPs. The imputed genotypes were 
analysed using the dosage of an assumed effect allele under an additive model with 
covariates for year of birth and sex. Supplementary Table 21 shows the imputation 
and analysis software used in each of the cohorts.

To examine any potential impacts of including ambidextrous individuals 
as cases on the IHC, we ran a GWAS on the UKBB and 23andMe samples 
using both phenotypic definitions ((1) left versus right and (2) right versus 
left + ambidextrous) and computed the genetic correlations between the 
two analyses. The genetic correlations were rG

23andMe = 0.95 (s.e. = 0.003) and 
rG

UKBB = 0.98 (s.e. = 0.006), which suggests that there is only a minor impact of the 
inclusion of ambidextrous individuals as cases on the GWAS results.

Meta-analysis of IHC, UKBB and 23andMe. A weighted Z-score meta-analysis 
was conducted with the METAL software62 using the summary GWAS statistics 
from each of the 32 IHC cohorts, UKBB and 23andMe. Given the large 
discrepancies between the number of cases and controls, we elected to weight 
each sample by the effective sample size for binary traits, defined as Neff = 4/
(1/Ncases + 1/Ncontrols).

Before the meta-analysis, quality control thresholds were applied to each of the 
GWAS results from the individual studies (r2 ≥ 0.3, MAF ≥ 0.005, PHWE ≥ 1 × 10−5). 
We used EasyQC63 to identify and remove SNPs that had allele frequencies that 
substantially differed from the Haplotype Reference Consortium. In total, up 
to 13,346,399 SNPs remained for the left-handedness meta-analysis. For the 
ambidexterity meta-analysis, only 23andMe and the UKBB datasets were used. 
This meta-analysis included up to 12,493,443 SNPs.

Tissue-expression and pathway analyses. Tissue-expression and pathway analyses 
were performed using DEPICT (v.1 rel. 194)25 implemented in the CTG-VL (beta 
0.1)38 and MAGMA26 implemented in the functional mapping and annotation 
of genetic associations (FUMA) web application64 (accessed on 20 March 2020). 
DEPICT assesses whether genes in associated loci are highly expressed in any 
of the 209 medical subject heading (MeSH) tissue and cell-type annotations 
based on RNA sequencing data from the GTEx project32. Molecular pathways 
were constructed based on 14,461 gene sets from diverse database and data 
types, including Gene Ontology, the Kyoto encyclopedia of genes and genomes 
(KEGG) and REACTOME. As input for DEPICT, we used independent SNPs 
(based on clumping with a r2 (LD) between SNPs < 0.05 and 2-Mb windows) with 
P <1 × 10−5. MAGMA analyses were performed with the default options of FUMA 
using data 1000 Genomes Phase 3 for LD reference and GTEx v.8 (ref. 32) for the 

tissues-enrichment analysis. Enrichment analyses were performed for 15,483 
pathways from MsigDB v.7.0 (ref. 65) and 54 tissues from GTEx. Associations with 
Benjamini–Hochberg FDR values of <5% are reported for both analyses.

Gene-based association analyses. Gene-based association analyses were carried 
out using S-MultiXcan27 and the SMR method27 implemented in the CTG-VL 
(beta 0.1)38. S-MultiXcan conducts a test of association between phenotypes and 
gene-expression levels predicted by data derived from the GTEx project32. In this 
study, we performed S-MultiXcan using prediction models of all the brain tissues 
available from the GTEx project. This included amygdala, anterior cingulate cortex 
BA24, caudate basal ganglia, cerebellar hemisphere, cerebellum, brain cortex, 
frontal cortex BA9, hippocampus, hypothalamus, nucleus accumbens basal ganglia, 
putamen basal ganglia, spinal cord cervical c-1 and substantia nigra samples. 
As a total of 14,501 genes expressed in different brain tissues were tested, the 
Bonferroni-corrected significance threshold was set at P = 3.44 × 10−6.

SMR conducts a test for pleiotropic associations between the expression level 
of a gene and a complex trait using eQTL data and GWAS summary statistics. 
SMR uses a heterogeneity in dependent instruments (HEIDI) test to distinguish 
pleiotropy from linkage. A rejection (P < 0.05) of the null hypothesis (pleiotropy) 
indicates that the association of the SNP with gene expression and the trait of 
interest is probably due to linkage of that SNP with two distinct causal SNPs (one 
for the gene expression and one for the trait). In this study, we performed SMR 
using eQTL data derived from a meta-analysis of eQTL data from brain tissues 
(Brain-eMeta)31 that included GTEx32, CMC33 and ROSEMAP34. In addition to 
this, we carried out SMR analysis using PsychENCODE eQTL summary data from 
Wang et al.29 and Gandal et al.30. For each of the analyses, we report associations 
below a Bonferroni-corrected significance threshold based on the number of genes 
tested that was up to 11,013 genes (that is, P < 4.54 × 10−6).

Genetic correlations. To test whether handedness shares a genetic background 
with other complex traits with available GWAS summary data, we used CTG-VL38, 
which implements LD score regression and contains a large database of summary 
GWAS statistics. In total, we assessed the genetic correlation of left-handedness 
and ambidexterity with 1,349 different traits. As many of the 1,349 traits tested are 
correlated between each other, hence not considered independent tests, we adopted 
a Benjamini–Hochberg FDR of <5% to account for multiple testing.

Heritability estimates. To estimate the proportion of phenotypic variance 
explained by SNPs, we used two statistical methods. REML, implemented in 
BOLT-LMM, was used to estimate the variance explained by additive effects of 
genotyped SNPs (h2

g)66. Using a prevalence estimate of 10%, the observed h2
g was 

transformed to SNP heritability on an unobserved continuous liability scale67. LD 
score regression was used to estimate the variance explained by all the SNPs using 
the GWAS summary statistics. Similar to REML, the observed h2

g was transformed 
to the liability scale using a prevalence estimate of 10%.

To estimate the narrow-sense heritability, we fit a variance components model 
to estimate the proportion of phenotypic variance attributable to additive genetic 
effects (A), shared environmental effects (C) and individual environmental effects 
(E)37. We modelled the genetic sharing between close relative pairs using IBD 
information (as calculated by the KING software (v.2.1.6)68) on 20,277 sibling  
pairs (0.65 > IBD > 0.35) and 49,788 relative pairs with 0.3 > IBD > 0.8 from 
the UKBB study to estimate trait heritability. In the model, we also estimated 
a variance component due to a shared environment (siblings only), which 
made siblings potentially more similar in terms of handedness, and a unique 
environmental component, which did not contribute to similarity between relative 
pairs. Variance components were estimated using maximum likelihood using the 
OpenMx package69.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
GWAS summary statistics of the meta-analysis of the UKBB, IHC and 23andMe 
data for the top 10,000 independent SNPs as well as summary statistics of the 
meta-analysis between the UKBB and IHC data for all the SNPs are available at 
https://evansgroup.di.uq.edu.au/gwas-results.html. Access to the full summary 
statistics from the 23andMe sample (for all SNPs) can be obtained by qualified 
researchers through a data transfer agreement with 23andMe that protects 
participant privacy. Please contact 23andMe at https://research.23andme.com/
dataset-access for more information.

Code availability
The code used to perform the meta-analysis will become available on GitHub upon 
publication.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection This does not apply to this manuscript as the paper reports a meta-analysis and no data collection was undertaken

Data analysis Supplementary Table 21 show the imputation and analysis software used in each of the cohorts. 
The code used to perform the meta-analyses will become available upon publication on GitHub. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The code used to perform the meta-analyses will become available upon publication on GitHub. GWAS summary statistics of the Meta-analysis of UK Biobank, IHC 
and 23andMe data for the top 10,000 independent SNPs will be available upon publication as well as summary statistics of the Meta-analysis between UK Biobank 
and IHC for all the SNPs. Access to the full summary statistics from the 23andMe sample (for all SNPs) can be obtained by qualified researchers through a data 
transfer agreement with 23andMe. Please contact 23andMe in https://research.23andme.com/dataset-access for more information.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In this study, we present findings from the world’s largest GWAS meta-analysis of handedness to date (N = 1,766,671), combining data from 
32 cohorts from the International Handedness Consortium (IHC) (N = 125,612), 23andMe (N = 1,178,877) and UK Biobank (N = 462,182). 
No sample size/power calculations were undertaken.

Data exclusions At the site level participants were excluded if phenotype, covariate and/or genotypic data were missing or if the genotypic data for an 
individual failed quality control. All participants were of European ancestry. 
There were no cohort-level exclusions from the meta-analysis and all cohorts that contributed data were included in the analyses. 
Prior to meta-analysis, quality control thresholds were applied to each of the GWAS results from the individual studies (r2 ≥ 0.3, MAF ≥ 0.005, 
PHWE ≥ 1x10-5). We also removed genetic variants for which the frequency substantially differed from one of the Haplotype Reference 
Consortium panels (frequency difference > 0.2). We used EasyQC 55 to identify SNPs that had allele frequencies which differed substantially 
from the Haplotype Reference Consortium. In total, up to 13,346,399 SNPs remained for the left-handedness meta-analysis. For the 
ambidexterity meta-analysis, only 23andMe and the UK Biobank were used. This meta-analysis included up to 12,493,443 SNPs.

Replication As the frequency of left-handedness is ~10% in European populations there were no sufficiently large populations with GWAS data available 
to replicate these findings with sufficient power at the time of analysis. In the ST2 and ST12 we provide the results for both the meta-analysis 
and the cohort-level results from the UK Biobank, 23andMe and IHC analyses to allow readers to examine the replicability of findings. 
We used also LD-score genetic correlation analyses to assess the internal replicability of findings at the genome-wide level. The genetic 
correlations as estimated by bivariate LD-score regression between the results from the UK Biobank, 23andMe and IHC GWAS were high 
(rgUKB-23andMe = 0.88, s.e. = 0.05, rgUKB-IHC = 0.73, s.e. = 0.16, rgIHC-23andMe = 0.60, s.e. = 0.11). 

Randomization This is not applicable as the paper reports a meta-analysis of genome-wide association analyses for an observed variable with no experimental 
manipulation.

Blinding This is not applicable as the paper reports a meta-analysis of genome-wide association analyses for an observed variable with no experimental 
manipulation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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