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a b s t r a c t

Theory of Mind, empathy, and action observation are central themes in social neurosci-

ence research. Meta-analyses of functional neuroimaging studies show substantial het-

erogeneity in brain activation for these cognitive abilities, depending on the type of

experimental task used. We followed up on these findings by a comparison to basic con-

nectivity networks of the brain. In particular, we evaluated to what extent brain activation

for social cognition tasks draws on areas of different fMRI resting-state networks (e.g.,

Default Mode, Ventral Attention Network) in parallel. Our review illustrates high preva-

lence of such network co-recruitments across Theory of Mind, empathy, and action

observation tasks. To characterize these observations in more detail, we additionally

conducted a literature review of fMRI effective connectivity studies. Findings reveal two

main types of cross-network interactions in social cognition tasks: Negative coupling

(segregation) between Default Mode and Control Networks (Ventral Attention, Frontopar-

ietal, and Dorsal Attention Network), and positive coupling (integration) between these

networks. The two patterns reflect different types of brain network organization taking

place in the context of social cognition tasksesegregation for specialized, versus integra-

tion for flexible processing. We discuss evidence from connectivity research in other

research fields, suggesting that increased network integration indicates more effortful and

controlled processing. Based on that, we consider how findings of network segregation

versus integration can provide new perspectives on dual-system accounts of social

cognition, which differentiate between automatic and controlled processes. Moreover, we

discuss how the reviewed evidence relates to neural processes which are assumed to take

place during naturalistic social cognition.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Successful social interactions require representing themental

states of others, such as their thoughts, emotions, and goals.

Over the last two decades, neuroimaging research has sought

to delineate how the brain enables such representations of

information about other minds. In particular, three topics

have been highly popular and subject of hundreds of pub-

lished neuroimaging studies. The first topic, often referred to

as Theory of Mind or mentalizing, covers research on how we

represent cognitive states of others, such as their thoughts

and beliefs (e.g., Adolphs, 2009; Kanske, 2018; Keysers &

Gazzola, 2009; Premack & Woodruff, 1978). Second, empathy

research has studied how more affective states of others are

represented (Gallese, 2003; Jackson, Meltzoff, & Decety, 2005;

Singer et al., 2004; Titchener, 1909). While both aforemen-

tioned topics feature representations of internal mental

states, a third research theme has focused on processes un-

derlying action observation and imitation (Buccino et al., 2004;

Grafton, Arbib, Fadiga, & Rizzolatti, 1996; Rizzolatti, Fadiga,

Gallese, & Fogassi, 1996). Some of these processes have been

linked to the “mirroring” of actions, which facilitates under-

standing of others' goals (e.g., Fabbri-Destro & Rizzolatti, 2008;

Gallese & Goldman, 1998; Rizzolatti & Craighero, 2004).

Over recent years, neuroimaging meta-analyses have

increased our knowledge of these processes, and systemati-

cally investigated the consistency of brain activation across

different types of tasks used for studying Theory of Mind (e.g.,

Molenberghs, Johnson, Henry, & Mattingley, 2016; Schurz,

Radua, Aichhorn, Richlan, & Perner, 2014), empathy (e.g.,

Fan, Duncan, de Greck,&Northoff, 2011; Timmers et al., 2018),

and action observation (e.g., Hardwick, Caspers, Eickhoff, &

Swinnen, 2018; Molenberghs, Cunnington, & Mattingley,

2011). In particular for Theory of Mind and empathy, recent

meta-analyses show limited convergence of brain activity

across different task-types (e.g., Schurz et al., 2014; Timmers

et al., 2018).

High task-related heterogeneity in brain activation for so-

cial cognition tasks may be driven by different factors. Part of

this heterogeneity could reflect low-level stimulus and

instruction-related processes, which might be less interesting

for understanding social cognition (see e.g., Mar, 2011; Schurz

et al., 2014). On the other hand, component processes of social

cognition could be co-recruited in some tasks, and thus be

flexibly combined across domains (topics). To illustrate, we

observed that a subset of Theory of Mind tasks engage left

inferior frontal areas (Schurz et al., 2014), which overlap with

areas typically found in empathy and action observation

studies. Likewise, several authors have hypothesized that

Theory of Mind and empathy processes are engaged concur-

rently in some tasks, which they linked to concepts like

“Cognitive Empathy” (e.g., Hooker, Verosky, Germine, Knight,

& D'Esposito, 2010; Preston & de Waal, 2002; Shamay-Tsoory,

Aharon-Peretz, & Perry, 2009) and “Affective Theory of Mind”

(e.g., Mier et al., 2010a,b; Sebastian et al., 2012; Shamay-Tsoory

& Aharon-Peretz, 2007). Similarly, researchers have proposed

that action observation and empathy share common pro-

cesses (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003;

Gazzola, Aziz-Zadeh, & Keysers, 2006). Another type of social
cognition task, asking participants to inhibit the imitation of

an observed action (see Darda & Ramsey, 2019 for a meta-

analysis), has been thought to engage processes linked to

both action observation and Theory of Mind (e.g., Brass, Ruby,

& Spengler, 2009). As discussed by Happ�e, Cook, and Bird

(2017), processes engaged by different social cognition tasks

could be related in various forms. Tasks could broadly overlap

in terms of engaged processes, or engage some common and

some distinct processes. Alternatively, processes engaged by

one task could be a sub-set of those engaged by others.

Taken together, these points suggest that multiple and

functionally distinct component processes are combined by

some Theory of Mind, empathy, and action observation tasks.

The present review aims at delineating these functional pro-

cesses in terms of resting-state networks, which offer a task-

free demarcation of major networks of the brain and are

assumed to indicate different types of functional processing

(Cole, Ito, Bassett, & Schultz, 2016; Smith et al., 2009; Tavor

et al., 2016). This approach enables us to delineate different

types of processes implicated in social cognition tasks,

without the need of referring to the supposed outlines of

“Theory of Mind”, “empathy”, and “action observation” areas/

networks. As the connectivity pattern of an area determines

the inputs it receives and outputs that it can send, it is

considered as an important constraint of its function (see

Passingham, Stephan, & K€otter, 2002). Resting-state (e.g.,

Tavor et al., 2016) and diffusion-weighted (e.g., Osher et al.,

2016; Saygin et al., 2016) imaging studies showed that (task-

unrelated) connectivity patterns at individual voxels in the

brain carry enough information to predict whether they will

activate in certain experimental tasks. This predictive rela-

tionship has been found across a range of different cognitive

tasks (see Tavor et al., 2016).

Our approach is also motivated by previous research sug-

gesting overlap between areas of task activation and resting-

state networks for each of the three topics we consider.

Note, however, that resting-state networks cannot be linked

to specific forms of social cognition in a one-to-one fashion.

Rather, it has been argued that they reflect a history of co-

activation between brain regions during cognitive activity,

irrespective of cognitive domain (see e.g., Fair et al., 2007;Wig,

Schlaggar, & Petersen, 2011). Researchers have proposed that

social functions, in turn, are embedded into those resting-

state networks that support a set of cognitively related or

compatible processes (see e.g., Kanske, B€ockler, Trautwein, &

Singer, 2015). To illustrate, Theory of Mind tasks activate on

average most frequently around bilateral temporo-parietal

and anterior temporal cortex, medial prefrontal cortex, pos-

terior cingulate, and precuneus (e.g., Amodio & Frith, 2006;

Frith & Frith, 2006; Mitchell, 2009). These areas largely over-

lap with the so-called Default Mode Network (DMN), which is

assumed to mediate self-generated cognition decoupled from

the physical world (e.g., Andrews-Hanna, Smallwood, &

Spreng, 2014). This function is compatible with processes

engaged during some Theory of Mind tasks, where we do not

have immediate perceptual access to others’ mental states

(see Buckner & Carroll, 2007; Bzdok et al., 2013; Frith & Frith,

2003; Lieberman, 2007; Mars et al., 2012a). Also for empathy

and action observation, overlaps between areas of task acti-

vation and resting-state networks have been noticed. Brain

https://doi.org/10.1016/j.cortex.2020.05.006
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activity for empathy tasks falls typically in bilateral insular

cortices, inferior frontal gyri, midcingulate cortex, supra-

marginal gyri, and somatosensory cortices (e.g., Bzdok et al.,

2012; Decety & Jackson, 2004; Kanske et al., 2015). Moreover,

as empathy produces an emotional response in the observer,

it also engages brain areas for emotion regulation (e.g.,

Kanske, Heissler, Sch€onfelder, Bongers, & Wessa, 2011;

Steinbeis, Bernhardt, & Singer, 2015), such as the dorsolat-

eral prefrontal cortex. These areas overlap with two resting-

state networks, the Ventral Attention Network (VAN) and

the Frontoparietal Network (FPN). In addition to functional

activation, structural variations in these two networks are

linked to empathy and Theory of Mind capacities as well (Valk

et al., 2017). Studies on action observation typically found

activation in bilateral fusiform, posterior temporal, parietal

and premotor/inferior frontal areas (e.g., Caspers, Zilles, Laird,

& Eickhoff, 2010; Hardwick et al., 2018; Molenberghs,

Cunnington, & Mattingley, 2009; Van Overwalle & Baetens,

2009), which overlap with parts of yet another resting-state

network, the Dorsal Attention Network (DAN). In the present

review, we follow up on these previous observations by a

systematic and quantitative assessment of overlaps.

While the first part of our review is assessing whether

multiple distinct networks are engaged by individual social

cognition tasks, we next review how these networks interact.

Therefore, the second part of our review gives an overview of

task-based connectivity studies on social cognition that

analyzed cross-network interactions. In particular, we seek to

characterize which networks tends to drive interactions, i.e.,

are “orchestrating” information exchange. We thus focus our

review on studies of effective connectivity, which give results

on direction and sign of interactions. In other words, we re-

view how networks implicated in social cognition are influ-

encing each other's activity, and if interactions are positive

(i.e., excitatory) or negative (i.e., inhibitory).
2. First part: characterizing network co-
activations by comparing meta-analyses to
resting-state networks

2.1. Methods

We carried out conjunction analyses to calculate overlaps

between meta-analysis and resting-state connectivity maps.2

For resting-state maps, we used the MNI-space version (“lib-

eral mask”) of the seven network parcellation by Yeo et al.

(2011). Meta-analysis maps were also given in MNI space. For

one meta-analysis (Schurz et al., 2014), we re-analyzed data

with a more recent software version (AES-SDM 4.31, Radua

et al., 2012; www.sdmproject.com). This was done to obtain

result maps in MNI space (while Schurz et al., 2014 originally

reported results in Talairach space). To adjust images in terms
2 Meta-analysis maps report areas which are consistently
activated for a certain task type. For simplicity and brevity, we
refer to these maps as “task-activation maps”. However, techni-
cally, most meta-analytic maps covered in this review indicate
the strength of convergence across studies, rather than the
strength of underlying brain activation.
of size and resolution, we ran a simple SPM reslice job for all

meta-analysis maps, using Yeo et al.'s (2011) maps as image

defining space. This was carried out with SPM12 (www.fil.ion.

ucl.ac.uk/spm). Finally, as the Yeo et al. (2011) parcellation

covers only cortical but no sub-cortical areas, we restricted

(masked) all meta-analysismaps to these cortical areas for the

calculation of overlaps.

For quantifying overlaps, we used a variant of the dice

score: For each meta-analysis map, we determined the per-

centage of voxels falling within each different intrinsic con-

nectivity network of the Yeo et al. (2011) parcellation.

Therefore, with i1 being a meta-analysis map and i2 an

intrinsic connectivity network, we calculated (n voxels in

i1&i2)/(n voxels in i1). By calculating percentages scaled to the

total number of voxels comprising each meta-analysis, we

aimed at using a comparable metric despite meta-analyses

being different in overall size and voxel extent (as they were

carried out using different methods and statistical thresh-

olding). For all meta-analyses in our review, we show maps at

the same thresholds as used in the original studies. Bar charts

in Figs. 1e3 summarize the percentage scores.

For display purposes, we projected meta-analysis maps as

well as outlines of the Yeo et al. (2011) seven network par-

cellation to a cortical surface. All maps were projected to the

Human Connectome Project (HCP) group average template

“HCP_S1200_inflated_MSMAll”, using the volume-to-surface

function in wb_command (www.humanconnectome.org).

Note that, for the sake of coherence among surfaces, we also

projected an MNI-space version of Yeo et al.'s (2011) parcel-

lation (“liberal mask”, https://surfer.nmr.mgh.harvard.edu/

fswiki/CorticalParcellation_Yeo2011) to the HCP surface

using the volume-to-surface function. While surfaces are

presented for illustrative purposes, we refer to the bar charts

in Figs. 1e3 for quantitative assessments of overlap (which are

based on calculations in MNI volume space).

2.2. Tasks in our review

2.2.1. Theory of Mind
For Theory of Mind (see Fig. 1), we cover meta-analyses of a

pooled sample and four individual task groups from Schurz

et al. (2014). Among the task groups, False Belief tasks pre-

sented verbal stories about characters holding mistaken be-

liefs. Trait Judgment tasks presented personality trait words

and asked participants to judge if they applied to a certain

person (e.g., a celebrity). Both tasks groups show predominant

activation in medial prefrontal cortex, precuneus, and bilat-

eral temporo-parietal cortexeareas which have been

frequently mentioned in reviews of Theory of Mind task-

activation (e.g., Frith & Frith, 2003; Koster-Hale & Saxe, 2013;

Mitchell, 2009; Murray, Schaer, & Debbane, 2012; Van Over-

walle, 2009).

Furthermore, we included two task groups from the same

meta-analysis for which we also found activation in fronto-

temporal areaseSocial Animations and Reading the Mind in

the Eyes tasks. Tasks from the former group showed anima-

tions of simple geometric shapes moving in a way which

resembled intentional or social interactions. Tasks from the

latter group presented photographs of eye-regions of faces

and asked participants which mental-state word best

http://www.sdmproject.com
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.humanconnectome.org
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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Fig. 1 e Meta-analysis maps displayed on the cortical surface, along with the borders of the Yeo 7 Network parcellation (Yeo

et al., 2011). We showmeta-analysis maps for a pooled Theory of Mind sample (All tasks), and task groups False Belief, Trait

Judgments, Social Animations, and Reading the Mind in the Eyes (Schurz et al., 2014). Bar charts show the percentage of

voxels from each meta-analysis map which fall into different intrinsic connectivity networks. Networks: VIS, Visual

Network; SOM, Somatomotor Network; DAN, Dorsal Attention Network; VAN, Ventral Attention Network; LIM, Limbic

Network; FPN, Frontoparietal Network; DMN, Default Mode Network.
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described the state of the persons depicted. Based on

observing activation in inferior frontal areas for both tasks, we

have suggested (Schurz et al., 2014) that the Theory of Mind

network receives support from areas linked to action obser-

vation and mirroring in these contexts. Moreover, perfor-

mance on the Reading the Mind in the Eyes task was found to

be related more strongly to individual differences in alex-

ithymia than autism spectrum disorder (Oakley, Brewer, Bird,

& Catmur, 2016), which suggests that it measures emotion

recognition ability, in addition to (or even rather than) ToM

abilities. Besides the four Theory of Mind task groups shown

in Fig. 1, we show overlaps for further task groups3 from the
3 These additional two meta-analyses show highly similar
patterns of overlap as found for False Belief and Trait Judgment
tasks, which is why we do not present them in the main text for
sake of brevity.
meta-analysis by Schurz et al. (2014) in Supplementary

Figure 1.

2.2.2. Empathy
In Fig. 2, we show a pooledmeta-analysis of empathy and four

maps from different empathy task categories (Timmers et al.,

2018). The authors split the empathy meta-analysis according

to two orthogonal factors. First, the sample was divided into

Cognitive/Evaluative tasks (e.g., ratings of pain or emotional

states in other persons) versus Perceptual/Affective tasks (i.e.,

no task instructions, passive observation of others’ emotional

states). Second, it was distinguished between Pain tasks (i.e.,

presenting pain stimuli, such as displays of painful stimula-

tion or painful facial expressions) and Non-Pain Negative

Affect tasks (e.g., presenting displays of facial expressions or

emotional scenes). Among these subgroups, we expect in

particular Cognitive/Evaluative Empathy tasks to activate

https://doi.org/10.1016/j.cortex.2020.05.006
https://doi.org/10.1016/j.cortex.2020.05.006


Fig. 2 e Meta-analysis maps displayed on the cortical surface, along with the borders of the Yeo 7 Network parcellation (Yeo

et al., 2011). For empathy, maps from the meta-analysis by Timmers et al. (2018) are shown separately for a pooled meta-

analysis (All tasks), and the task categories Pain, Non-Pain Negative Affect, Cognitive/Evaluative, and Perceptual/Affective.

Bar charts show the percentage of voxels from each meta-analysis map which fall into different intrinsic connectivity

networks. Networks: VIS, Visual Network; SOM, Somatomotor Network; DAN, Dorsal Attention Network; VAN, Ventral

Attention Network; LIM, Limbic Network; FPN, Frontoparietal Network; DMN, Default Mode Network.
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Theory of Mind and affect-processing areas conjointly.

Several researchers have linked more cognitive forms of

empathy to Theory of Mind processes (e.g., Dziobek et al.,

2011; Hooker, Verosky, Germine, Knight, & D’Esposito, 2010;

Shamay-Tsoory et al., 2009). Besides the contrasts shown in

Fig. 2, additional contrasts carried out by Timmers et al. (2018)

are shown in Supplementary Figure 1.

2.2.3. Action observation
For action observation (see Fig. 3), we included the meta-

analyses of a pooled sample and three individual task

groupseArm, Leg, and Face Movement Observation tasks

(Hardwick et al., 2018). All task groups contained passive

paradigms, in which participants were asked to merely

observe presented movement. Whereas Arm and Leg

Movement Observation tasks tapped more strongly into

processing of purely motor-related information, part of the
Face Movement Observation tasks also contained emotional

content conveyed by facial expressions. This links the latter

task group to empathy; also in the empathy meta-analyses

included in our review, a fraction of tasks presented pain-

ful or emotional facial expressions.

2.3. Findings

As shown in Figs. 1e3, only a small number of task activation

maps showed clear preference for a single intrinsic connec-

tivity network in terms of overlap. The most noticeable ex-

amples for this patternwere found in the Theory of Mind field,

namely False Belief and Trait Judgment tasks. To illustrate,

around 80% of brain regions engaged for Trait Judgments fell

within the Default Mode Network. All the other network-

overlaps comprised less than 10% of that task activation

map. For the topics empathy and action observation, task

https://doi.org/10.1016/j.cortex.2020.05.006
https://doi.org/10.1016/j.cortex.2020.05.006


Fig. 3 e Meta-analysis maps displayed on the cortical surface, along with the borders of the Yeo 7 Network parcellation (Yeo

et al., 2011). For action observation, we show meta-analysis maps for a pooled sample (All tasks), as well as Arm, Leg, and

Face Movement Observation tasks individually (Hardwick et al., 2018). Bar charts show the percentage of voxels from each

meta-analysis map which fall into different intrinsic connectivity networks. Networks: VIS, Visual Network; SOM,

Somatomotor Network; DAN, Dorsal Attention Network; VAN, Ventral Attention Network; LIM, Limbic Network; FPN,

Frontoparietal Network; DMN, Default Mode Network.
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groups showed less strong preferences in overlap. Highest

overlaps were found for the tasks Empathy for Pain (Ventral

Attention Network) and Observing Arm Movement (Dorsal

Attention Network), respectively. However, in both cases,

networks of highest overlap only contained about half of task-

active areas (53% and 43%, respectively).

More distributed patternswere found for a number of tasks

for each of the three topics. Among these, some tasks showed

slightly preferential overlap with one network, but a compa-

rable amount of overlap with the two next best overlapping

networks. For example, for Social Animations (Theory of

Mind), 39% of task-activation overlapped with the Default

Mode Network, and 36% overlapped with the Ventral Atten-

tion and the Somatomotor Networks taken together. Similar

patterns of overlap across three networks were found for the

pooled meta-analyses (across all tasks) for empathy and ac-

tion observation, as well as the task Observing Leg Movement.

Moreover, a number of tasks showed even more broadly
distributed network overlap. Here, the highest amounts of

overlap were not only found in a single, but at least in two

different networks. This was the case, for example, for the

Reading the Mind in the Eyes task from the Theory of Mind

field (32% Default Mode and 28% Ventral Attention Network).

Similar patterns were found for Perceptual Empathy and Face

Movement Observation tasks.
3. Second part: effective connectivity
findings on cross-network interactions

To follow up on our observations of joint engagement of

multiple socially-relevant connectivity networks, we carried

out a literature review on connectivity studies. We focused on

studies reporting effective (i.e., directed) connectivity findings

between areas from different socially-relevant networks. All

studies we cover in this review relied on Dynamic Causal

https://doi.org/10.1016/j.cortex.2020.05.006
https://doi.org/10.1016/j.cortex.2020.05.006


4 Note that in a DCM analysis, positive coupling parameters
indicate that an increase in area A is associated with an increase
in area B, which we will refer to as excitatory (for simplicity).
Negative coupling parameters indicate that an increase in area A
is associated with a decrease in area B, and thus an inhibitory
relationship.

5 Note that the medial prefrontal area in the DCM study by
Regenbogen et al. (2013) was actually located at the border of the
FPN and DMN.
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Modeling (DCM, Friston, Harrison, & Penny, 2003) to estimate

effective connectivity.

3.1. Methods

To identify studies reporting cross-network connectivity in

the context of social tasks, we conducted a systematic litera-

ture search using PubMed and Web of Science databases in

June and July of 2019. We conducted the following key word

searches: First (‘empathy’ AND/OR ‘Theory of Mind’) AND

(‘dcm’ OR ‘granger causality modeling’), yielding 12 and 14

search items. In addition (‘empathy’ AND/OR ‘Theory of

Mind’) AND (‘effective connectivity’), yielding 335 and 52

search items. Due to our focused research question, we

excluded a large part of retrieved studies (see exclusion

criteria below). Further literature was found by forward and

backward searches within reference lists of most recent and

relevant studies found in our database search (yielding 14

additional items).

We limited our sample to studies applying methods of

effective connectivity on fMRI data in healthy adult subjects,

and presenting tasks which explicitly measured empathy

(e.g., participants were asked to empathize with a person in a

video clip) or Theory of Mind (e.g., participants were asked to

identify what a person in a video clip was thinking about).

These selection criteria excluded, for example, studies in

which participants were merely observing emotional expres-

sions, or were asked to label facial affect (e.g., Arioli et al.,

2018; Torrisi, Lieberman, Bookheimer, & Altshuler, 2013). We

furthermore excluded studies that focused on empathy-

related features of spoken language (i.e., affective prosody, see

Ethofer et al., 2006).

Because of our specific interest in cross-network in-

teractions, we additionally excluded studies analyzing con-

nectivity only for areas of one canonical resting-state network

linked to social cognition (i.e., all areas falling either within

the Default Mode, Ventral Attention, Frontoparietal, or Dorsal

Attention Network). Similarly, we excluded studies analyzing

connectivity only for one resting-state network linked to so-

cial cognition, and only low-level areas besides (Hillebrandt,

Friston, & Blakemore, 2014; Pehrs et al., 2017). As the resting-

state parcellation by Yeo et al. (2011) does not cover subcor-

tical areas, we also excluded connectivity analyses that cen-

trally feature corticalesubcortical interactions (e.g.,

amygdala: Bruneau, Jacoby, & Saxe, 2015; hippocampus:

Pehrs, Zaki, Taruffi, Kuchinke, & Koelsch, 2018; cerebellum:

Van Overwalle, Van de Steen, & Mari€en, 2019). Moreover, as

we were interested in directed connectivity, we excluded

studies applying Psycho-Physiological Interaction (PPI) anal-

ysis to assess connectivity, as this method does not provide

information about the direction of an interaction (e.g., Lamm,

Meltzoff, & Decety, 2010; Zaki, Ochsner, Hanelin, Wager, &

Mackey, 2007).

Seven studies matched all our selection criteria. In the

following, we will give a short overview of these studies and

their findings. Note that if studies reported effective connec-

tivity for multiple conditions and modulatory effects, we

report only the effect best reflecting a change in (cognitive or

affective) mental state related contents. For example, the

study by Regenbogen, Habel, and Kellermann (2013) reported
one main effect of emotional information, three different

additional effects of incongruence between emotional chan-

nels, and one effect of incomprehensible speech. For

simplicity, we only illustrate connectivity patterns related to

themain effect of emotional information in Fig. 4 butmention

the other conditions alongside.

3.2. Findings

Fig. 4 illustrates modulatory effects on cross-network con-

nectivity found for social conditions in our reviewed studies.

We organize these results by networks driving the in-

teractions. In terms of signals originating from the Default

Mode Network (DMN), two studies found top-down influences

by medial prefrontal areas onto areas of the Ventral Attention

Network (VAN) and Dorsal Attention Network (DAN). In

particular, a False Belief reasoning study (Schuwerk et al.,

2014) reported negative coupling, that is, inhibitory influ-

ence,4 whereas a perspective taking study (Hillebrandt,

Dumontheil, Blakemore, & Roiser, 2013) found positive

coupling, that is, excitatory influence. In terms of signals

driven by areas of the VAN, a social attentional reorienting

task (Schuwerk, Schurz, Müller, Rupprecht, & Sommer, 2017)

reported positive bottom-up signalling from a posterior

medial temporal area (sometimes referred to as TPJ anterior,

e.g., Bzdok et al., 2013; Mars et al., 2012b) to the anterior

cingulate cortex in the DMN.

Finally, two patterns of interactions were found for the

Frontoparietal Network (FPN). Two studies from the empathy

field (Kanske, B€ockler, Trautwein, Parianen Lesemann, &

Singer, 2016; Regenbogen et al., 2013) found negative sig-

nalling from frontal (mPFC, insula) areas of the FPN,5 exerted

onto temporo-parietal areas of the DMN. Both of these

studies used tasks in which participants were asked to pro-

cess feelings (and thoughts) of persons presented via video.

By contrast, a study (Tettamanti et al., 2017) on mentalizing

based on linguistic input (i.e., inferring the intention

conveyed by a person's utterances or gestures) found left and

right inferior frontal areas within the FPN to drive activation

in DMN areas. Similarly, Van Ackeren, Smaragdi, and

Rueschemeyer (2016) asked participants to infer speaker's
intentions (indirect speech) and found an inferior frontal

area to have a positive influence on DMN areas. Note, how-

ever, that in that study, the inferior frontal area was falling

into the VAN rather than the FPN.
4. Discussion

In this review, we compared meta-analyses on three promi-

nent topics in social cognition researcheTheory of Mind,
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empathy, and action observation. We evaluated whether

brain activation for different tasks probing these cognitive

abilities engages only one or several more basic (resting-state)

networks of the brain. In addition, we reviewed findings of

effective connectivity studies to sort out how areas from

different networks interact during social cognition tasks. Our

main hypothesis was that a part of Theory of Mind, empathy,

and action observation tasks co-recruit multiple functionally

distinct processes and corresponding brain networks.

4.1. Co-activation of multiple networks implicated in
social cognition

In the first part of our manuscript we reviewed the overlap

between resting-state networks and areas of task activation

found in meta-analyses of Theory of Mind, empathy, and ac-

tion observation. Coherence among these two types of neu-

roimaging evidence varied considerably. For some tasks, in

particular from the Theory of Mind field, activation maps

showed strong correspondencewith a single network (e.g., the

Default Mode Network). For other cases, however, task acti-

vation was distributed across multiple different networks. For

all three topics, we found tasks for which activation over-

lapped both with the Default Mode and the Ventral Attention

Network. Among themwere, for example, Reading theMind in

the Eyes tasks (Theory of Mind), Cognitive/Evaluative

Empathy tasks, and Face Movement Observation tasks (action

observation).

The fact thatwe found strong variability in correspondence

between resting-state networks and meta-analytic maps also

supports the soundness of our analysis approach. Meta-

analytic maps are spatially smooth in nature. In principle,

this could lead to generally diffuse overlap, that is, all task-

activation networks falling into multiple distinct resting-

state networks (because of high spatial smoothness of the

former). We observed a different pattern of results. To illus-

trate, one Theory of Mind task (Trait Judgments) had an

overlap of 80% with one network, compared to only 7% with

the next best matching network. In contrast, for another

Theory of Mind task (Reading the Mind in the Eyes), we found

overlap values of 32% and 28% for this comparison. Both of

these task-maps were created with the same meta-analysis

method and identical smoothing (see Radua et al., 2012 for

methods). This speaks against the concern that distributed

patterns of overlap are only a consequence of strong meta-

analytic smoothing. Note also that at least equally strong

smoothing was applied for the meta-analyses we mentioned

(Schurz et al., 2014), and the other meta-analyses covered in

this review (Hardwick et al., 2018; Timmers et al., 2018; see

Eickhoff et al., 2009 for methods).

4.2. Cross-network interactions

Given the co-activations of different networks we have

reviewed, an outstanding question is whether and how these

networks interact with each other. In the second part of our

review, we summarized effective connectivity studies

analyzing cross-network interactions. We organize our dis-

cussion of these findings along a prominent theme in network

neuroscienceeinteractions between the Default Mode and
“Control Networks” (e.g., Cole, Repov�s, & Anticevic, 2014;

Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008). The

latter term subsumes three important networks for this re-

view, the Ventral Attention, Dorsal Attention, and the Fron-

toparietal Network.

4.2.1. Negative coupling (segregation) between Default Mode
and Control Networks
Awell-documented finding of cross-network interaction is the

inhibitory and competitive relationship between the Default

Mode Network and Control Networks. The Default Mode

Network has been found to decrease its activity during tasks

that require externally focused attention (e.g., Mazoyer et al.,

2001; Raichle et al., 2001; Shulman et al., 1997). Moreover,

studies found an inhibitory relationship between the Ventral

Attention and the Default Mode Network, which has been

considered to reflect the former down-regulating the latter to

reduce interference from task-unrelated processes (Goulden

et al., 2014; Wen, Liu, Yao, & Ding, 2013; Trautwein, Singer,

& Kanske, 2016; see also Anticevic et al., 2012). At passive

rest, Default Mode and Ventral Attention Networks have been

found unrelated (e.g., Alcal�a-L�opez et al., 2018) and sometimes

anti-correlated in terms of activity (Bzdok et al., 2013; Chai,

Casta~n�on, €Ongür, & Whitfield-Gabrieli, 2012; Fox et al., 2005;

Zhou et al., 2018). In a task-based fMRI study, Trautwein et al.

(2016) analyzed functional connectivity for a combined

stimulus-driven reorienting and executive control paradigm.

The authors could show that both attentional control pro-

cesses, which are linked to distinct control networks in the

brain, have a similar down-regulating effect on the Default

Mode Network.

Consistent with these findings of inhibitory interactions,

our review of effective connectivity studies found negative

signalling from the Frontoparietal to the Default Mode

Network. Two studies presenting affective contents (Kanske

et al., 2016; Regenbogen et al., 2013) found a negative signal

from frontal (mPFC, insula) areas of the Frontoparietal

Network, exerted onto temporo-parietal areas of the Default

Mode Network. A commonality of these studies is that they

presented videos of persons telling emotional autobiograph-

ical stories. Kanske et al. (2016) suggested that the negative

coupling could reflect that affective processes (i.e., empa-

thizing) are taking precedence relative to mentalizing. Auto-

biographical stories are rich and naturalistic stimuli, which

provide grounds for both empathizing and mentalizing.

Therefore, inhibition of Default Mode Network activation

could reflect focusing of attention on those aspects of the

social input that potentially require the most immediate ac-

tion (see Menon & Uddin, 2010).

Besides, we found another pattern of negative coupling in a

belief-reasoning study by Schuwerk et al. (2014). Participants

viewed a false-belief cartoon animation (about object location)

and were asked to make own-belief and other-belief judg-

ments. For this task, the authors found a negative top-down

signal from the medial prefrontal cortex (Default Mode

Network) to posterior temporal areas (at the border between

Ventral/Dorsal Attention Networks). Although the literature

has reported inhibitory influences in this direction less

frequently, some theoretical accounts are in line with such a

pattern. Researchers have hypothesized that posterior parts of

https://doi.org/10.1016/j.cortex.2020.05.006
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medial prefrontal cortex implement a “decoupling” process

for Theory of Mind (e.g., Gallagher & Frith, 2003; Frith & Frith,

2003; see also; Leslie, Friedman, & German, 2004; Rothmayer

et al., 2011; D€ohnel et al., 2012; Sommer et al., 2007). This

process is thought to separate belief representations from

representations of reality. Based on this idea, inhibitory sig-

nals from the posterior medial prefrontal cortex (i.e., the

Default Mode Network)may down-regulate bottom-up signals

from the Ventral Attention Network, which convey new in-

formation about ongoing external events. For example, for

maintaining a representation of another person's belief, novel
incoming information about how reality changes needs to be

separated.

Consistent with the notion of segregation, behavioral and

patient studies also found some Theory of Mind (i.e., Default

Mode) and empathy (i.e., Ventral Attention) related processes

to be largely independent (Reiter, Kanske, Eppinger,& Li, 2017;

Stietz, Jauk, Krach, & Kanske, 2019; Winter, Spengler,

Bermpohl, Singer, & Kanske, 2017). In the “EmpaToM” task,

Kanske et al. (2016) used a combined task framework that

behaviourally measured Theory of Mind (accuracy and speed

in inferring other's beliefs) and empathy (emotional valence

ratings) in a large group of healthy adults (see also Kanske

et al., 2015). The two measures were uncorrelated. In a

further analysis that combined Theory of Mind and empathy

measures from additional tasks, the authors found no corre-

lation either. Also, studies that tested more cognitive (Strange

Stories) versus more affective (Reading the Mind in the Eyes)

measures of Theory of Mind found no correlation between

them (Dziobek et al., 2006; Rice, Moraczewski,& Redcay, 2016).

Furthermore, studies in brain damaged patients found a

double-dissociation between cognitive and affective forms of

Theory of Mind (Shamay-Tsoory & Aharon-Peretz, 2007; see

also Shamay-Tsoory et al., 2009).

4.2.2. Positive coupling (integration) between Default Mode
and Control Networks
Functional networks and their interactions are constrained by

underlying structural brain connectivity (e.g., Bullmore &

Sporns, 2009; Honey et al., 2009). Therefore, classic findings

of segregation between Default Mode and Control Networks

presumably reflect a predominant pattern of network inter-

action over time. Nevertheless, recent studies have pointed

out another pattern of cross-network interaction, which takes

place during particular cognitive states. For cognitively

demanding tasks, large scale networks of the brain have

shown to increase their integration (i.e., form positive asso-

ciations). A prominent example are increases in global

network integration for higher-levels of N-back working

memory tasks (e.g., Shine et al., 2016; Vatansever, Menon,

Manktelow, Sahakian, & Stamatakis, 2015; Wendelken,

Ferrer, Whitaker, & Bunge, 2016). Shine et al. (2016) could

further show that network integration increases across a va-

riety of other cognitive tasks (compared to passive rest). In

that study, a Theory of Mind task (Social Animations) and an

N-Back workingmemory task showed the highest integration.

Researchers hypothesized that high network integration re-

flects a response to task complexity, characterized by goal-

directedness and cognitive control (for a review, see Shine &

Poldrack, 2018).
Concerning network integration, it is interesting to note

that the Default Mode Network mainly consists of richly

connected network “hubs” (Barbey et al., 2018; Gu et al., 2015).

For example, the precuneus and posterior cingulate cortex are

thought to build a structural “core” of the brain, and to have

the highest number of connections with other areas/networks

of the brain (Hagmann et al., 2008; Van den Heuvel & Sporns,

2013). Based on a comprehensive analysis of brain structure,

functional connectivity, and large-scale meta-analytic acti-

vation, Margulies et al. (2016) argued that the far-reaching

pattern of connectivity of the Default Mode Network enables

to establish highly multimodal and abstract representations.

Somewhat relatedly, the “global workspace”model posits that

the Default Mode Network provides a hub for generating

highly associative representations (e.g., Dehaene& Changeux,

2011; Vatansever et al., 2015).

In this light, several positive cross-network interactions

identified in our review are of interest. Tettamanti et al. (2017)

as well as Van Ackeren et al. (2016) asked participants to infer

others' mental states based on linguistic information (i.e.,

inferring intentions conveyed by a person's utterances). Both

studies found that the left inferior frontal gyrus (as part of

Frontoparietal Network/Ventral Attention Networks) drives

activation in areas of the Default Mode Network. This pattern

is compatible with the idea that areas of the Default Mode

Network integrate information for generating abstract repre-

sentations: Language processing areas parse linguistic input

and then forward that information to the Default Mode

Network for subsequent analysis (e.g., mentalizing). Notably,

Tettamanti et al., 2017 additionally reported negative signal-

ling from the right inferior frontal gyrus (Dorsal Attention

Network) to multiple Default Mode Network areas. This

pattern was found for a second experimental condition, in

which participants were asked to infer intentions from ges-

tures, rather than speech. However, due to the way the DCM

analysis was set up in that study (i.e., specification of re-

gressors), these negative coupling values indicated reduced

coupling for speech versus gesture conditions. In other words,

coupling was relatively stronger (less negative) during the

gesture condition. Based on the notion of the Default Mode

Network as an information integrator, we speculate that this

could reflect that right inferior frontal areas are implicated in

parsing non-verbal gestural information, and then send the

results to Default Mode areas for further analysis. Several

functional connectivity studies based on Psycho-Physiological

Interaction (PPI) analysis support a similar interpretation. In

various settings, participants were asked to infer others' in-
tentions or beliefs from their actions. Themain result of those

studies was that connectivity between Default Mode Network

(medial prefrontal and temporo-parietal cortex) and fronto-

parietal action observation areas was increased (Ciaramidaro,

Becchio, Colle, Bara, & Walter, 2014; Sperduti, Guionnet,

Fossati, & Nadel, 2014; Spunt & Lieberman, 2012a,b; Thioux,

Suttrup, & Keysers, 2018; see also Schippers, Gazzola,

Goebel, & Keysers, 2009; Schippers, Roebroeck, Renken,

Nanetti, & Keysers, 2010).

Besides studies that found influence from inferior frontal

areas on the Default Mode Network, our review also contained

one study (Schuwerk et al., 2017) which found bottom-up

signalling from the posterior middle temporal gyrus (Ventral
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Attention Network) to the anterior cingulate cortex (Default

Mode Network). Here, participants performed an attention-

reorienting task in a social context, i.e., they were told that

attention cues signal another person's expectation (belief)

about where the target will appear. Again, this finding is

compatible with the idea that the Default Mode Network in-

tegrates information from other networks. Specifically, pos-

terior temporal areas may be involved in processing

information about a social context and forward the output to

the Default Mode Network for further processing. Another

study in our review, however, shows a less coherent result

pattern. Hillebrandt et al. (2013) found a positive top-down

signal from a Default Mode Network area (anterior cingulate

cortex) to posterior temporal and visual areas that are part of

the Dorsal Attention and Visual Networks. This finding goes in

the opposite direction compared to previous ones, suggesting

that the Default Mode Network is the source of signals, rather

than receiving them. Hillebrandt et al. (2013) suggested that

their results could reflect Default Mode Network areas inhib-

iting low-level visual representations by regulating activation

in the area. While such an interpretation is consistent with

negative coupling as discussed in the preceding section

(rather than global integration), further evidence is necessary

to disambiguate findings.

4.3. Summary and outlook

We have reviewed how task-activation for social cognition

studies maps onto basic connectivity networks of the brain.

Correspondencewas found at varying degrees. For some tasks,

we found high overlap with a single connectivity network. For

other tasks, widely distributed patterns of overlap were found,

which indicates that they engage functionally distinct net-

works in parallel. To characterize how areas from these

different networks interact with another, we reviewed effec-

tive connectivity studies on social cognition. Findings show

two types of cross-network interactions: Negative coupling

(i.e., segregation) and positive coupling (integration) between

different networks. Finding both segregation and integration

among networks does not imply a contradiction, but rather

reflects two rivalling constraints on cognitive function (e.g.,

Shine & Poldrack, 2018). While segregation enables functional

specialization, integration enables neural flexibility. In terms

of cognitive processing, it has been hypothesized that network

integration reflects more controlled and effortful processing

(e.g., Kitzbichler, Henson, Smith, Nathan, & Bullmore, 2011;

Shine & Poldrack, 2018; Vatansever et al., 2015). This relation-

ship could help to characterize social cognitive tasks. Re-

searchers have hypothesized that one fundamental difference

among cognitive components of social cognition (e.g., Apperly

& Butterfill, 2009; Happ�e et al., 2017) is whether they are effi-

cient and automatic versus effortful and controlled. Interest-

ingly, however, several neuroimaging studies reported

common areas activated for automatic versus controlled tasks.

For example, researchers observed that “implicit” (i.e. simple,

uninstructed and requiring little control) and “explicit” Theory

of Mind tasks recruit overlapping brain areas (e.g., Bardi,

Desmet, Nijhof, Wiersema, & Brass, 2016; Bardi, Six, & Brass,

2017; Boccadoro et al., 2019; Naughtin et al., 2017; Nijhof,

Bardi, Brass, & Wiersema, 2018; see also; Van Overwalle &
Vandekerckhove, 2013). Looking at patterns of network inte-

gration in such studies could further specify how the same

brain areas may implement more effortful versus more auto-

matic mentalizing via different patterns of network

interactions.

Finally, the reviewed evidence on cross-network integra-

tionmay highlight mechanisms relevant for more naturalistic

(and complex) forms of social cognition. Studies presenting

more vivid social stimuli, such as scenes or videos of social

interactions (e.g., Deuse et al., 2016; Wolf, Dziobek, &

Heekeren, 2010), found areas linked to Theory of Mind and

empathy to be jointly activated. Moreover, co-activation of

areas linked to Theory of Mind and action observation has

been found during interpersonal interactions (see Schilbach

et al., 2013), which undoubtedly play a central role in

everyday social life. For example, in an fMRI study, Schilbach,

Eickhoff, Mojzisch, and Vogeley (2008) measured social in-

teractions in terms of brain activity related to facial mimicry.

Results showed brain activation in the precuneus and other

medial areas on the one hand, and premotor areas such as the

precentral gyrus on the other hand. In another seminal study,

Zaki, Weber, Bolger, and Ochsner (2009) asked participants to

watch videos of people who were telling stories about auto-

biographical events. Participantswere also asked to judge how

the person in the video felt. Besides, the narrators in the video

themselves reported their mood during story-telling. Partici-

pants were considered accurate in their empathic judgment if

their judgment was close to the narrator's self-report. During

moment of high accuracy, participants' brain activity was high

both in areas linked to Theory of Mind (e.g., medial prefrontal

cortex) and action observation (e.g., premotor cortex). Taken

together, these studies once again highlight the idea that so-

cial abilities are not only characterized by activation levels of

isolated networks, but also by the level of information inte-

gration between them.
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