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S1. Nonlinear transfer matrix method

A numerical model is developed to compute nonlinear
frequency conversions in layered van der Waals (vdW)
stacks, which allows for implementation of an arbitrary
symmetry group, twist angle and nonlinear efficiency
into each composite layer. Nonlocal multipole moments
of the nonlinear polarization are incorporated. Phase-
matching effects and multilayer reflections are included.
The method is based on a transfer matrix formalism
initially employed for studying generation and propaga-
tion of high harmonic electromagnetic waves in multilayer
nonlinear thin films [23]. The model proposed in Ref.[23]
calculates third harmonic generation. In this work it is
adapted to calculate second harmonic generation (SHG)
from multilayered hexagonal boron nitride (BN) rotators,
with polarization resolution and arbitrary crystal orien-
tation for each layer. Owing to the nature of transfer ma-
trix formalism, it is also convenient to resolve the SHG
contribution from each single layer of BN, allowing us to
separately compute the interface and bulk effects. Each
BN layer within the rotator structure is modeled by lin-
ear refractive indexes of bulk BN in the visible and near
infrared region [45], and the thickness is assumed to be
the interlayer spacing, i.e. 0.334 nm. Interlayer couplings
are not included, and each layer is assumed to be a rigid
plate without any lattice reconstruction or strain effects.
The depletion of the pump field due to frequency conver-
sion is also neglected, which is a good approximation for
relatively low field experiments. This model may be also
applied for calculating other complex vdW heterostruc-
tures in the frequency range where interlayer coupling is
minimal.

The principle of the nonlinear transfer matrix calcu-
lation is illustrated by Fig. S1 and summarized as fol-

lows. In this coordinate system, +z is the out-of-plane
direction pointing from air to substrate. Each layer is
indexed by numbers 0, 1, . . . i, j, k, . . . f − 1, f , with
0 being air, f being the substrate, and 1, 2, .. f − 1 rep-
resenting monolayer BN. The crystal orientation of each
BN layer is described by ϕj which is the angle between
BN armchair direction and the +y direction, as shown
by Fig. S1. The pump field in any layer j is described
as a two-component pseudovector Ej

ω,y = [Ej,+ω,y , E
j,−
ω,y ]

where Ej,+ω,y (Ej,−ω,y ) is the complex amplitude of forward
(backward) propagating electric field. Without loss of
generality the incident pump field is set to be along the
+y direction in the lab frame. Since the linear index of
BN is in-plane isotropic, the polarization of the pump
field in each layer will be preserved and will be along
the y direction (but with different phases). For polariza-
tion dependent calculations, we rotate crystallographic
orientation of the BN layers by setting arbitrary ϕj for
each layer, which is equivalent to a rotation of optical
polarization. Fig. S1a illustrates the calculation of SHG
contribution from layer j. In low pump field regime, de-
pletion of the pump field can be neglected [23], thus the
nonlinear electric field contribution from each layer can
be linearly summed together to obtain the total response.
In the source layer j with nonzero χ(2), the nonlinear po-
larization P j

2ω,y and P j
2ω,x generate bound waves at fre-

quency 2ω, which are represented by Ej
S,y = [Ej,+S,y , E

j,−
S,y ]

and Ej
S,x = [Ej,+S,x , E

j,−
S,x ]. Then the bound waves in the

source layer drives free waves at 2ω frequency (denoted
Ej

2ω,yand Ej
2ω,x) in all the layers, including the reflected

SHG wave collected experimentally in the air medium.

The detailed calculation steps are described below.
The wave propagation of the pump field and the SHG
field through the multilayer structure are calculated fol-
lowing standard linear optical transfer matrix methods



used in previous work [25]. The field pseudovectors in
neighboring layers are related by transfer matrices M ij

which are calculated for the proper frequency (ω or 2ω)
and polarization (x or y) based on the Fresnel reflec-
tion and transmission coefficients rij and tij . The total
transfer matrix T for the specific frequency (ω or 2ω) and
polarization (x or y) can then be calculated as follows:

Ei = M ijEi (S1)

M ij =
1

tij

[
1 rij

rij 1

]
(S2)

T = Mf(f−1)Φ(f−1)M (f−1)(f−2)Φ(f−2)...M10 (S3)

Φi =

[
φi 0
0 1

φi

]
(S4)

where φi = einωk
0
ωd

i

, wherein k0ω = ω/c (or 2ω/c) satisfies
(kω,x)2 +(kiω,z)

2 = εi(k
0
ω)2 for a free wave propagating in

layer i with wavevector ~k
i

ω = [kω,x, kω,y, k
i
ω,z]

T (note, c is

the speed of light), niω = ni(ω) + iκi(ω) where ni(ω) and
κi(ω) are the frequency-dependent real and imaginary
components of the linear refractive index nω in layer i
respectively, and di is equal to the thickness of layer i
(0.334 nm for the BN layers, ∞ for the air above and
substrate below the stack).

Within BN layer j, the elementary nonlinear polariza-
tion is P j2ω,α where α denotes the polarization direction

(α = x or y). In general, P j2ω,α includes multipole con-

tributions, with the dipole moment P j,d2ω,α, quadrupole

moment P j,q2ω,α, and higher order terms with decreasing
magnitudes in the low-field regime:

P j2ω,α = P j,d2ω,α + P j,q2ω,α + ...

= ε0χ
(2)
αβγE

j
ω,βE

j
ω,γ + ε0χ

q,1L
αβγzE

j
ω,β

∂Ejω,γ
∂z

+ ...

(S5)

Here χ
(2)
αβγ are elements of the nonlinear susceptibility

tensor χ(2) with the subscripts α, β, γ denoting in-plane
polarization directions in Cartesian coordinates. χq,1Lαβγz

are elements of quadrupolar nonlinear susceptibility ten-
sor χq,1L for the quadrupole moment from a monolayer
BN. The last subscript is fixed to be z as only plane waves
are considered in the calculation. ε0 is the vacuum per-
mittivity. Ejω,β is the complex amplitude of the pump
electric field in layer j polarized along the β direction.
Note that we follow the Einstein notation for summing
over subscripts α, β, γ whenever they are repeated.

Since each monolayer BN belongs to the point group
of D3h, its nonvanishing χ(2) tensor elements are:

χ
(2)
y′y′y′ = −χ(2)

y′x′x′ = −χ(2)
x′x′y′ = −χ(2)

x′y′x′ = |χ(2)| (S6)

with x′ and y′ being the zigzag and armchair orientations
as shown by Fig. S1. We note that in this section we use
primed (’) coordinates for the material frame–elsewhere
we drop the prime when it is implicit that subscripts refer
to the material frame.

The monolayer quadrupole moments P j,q2ω,α in (S5) will
vanish due to the reflection symmetry σh in the D3h point
group, i.e., χq,1Lαβγz = 0. In the case of normal incidence,
the minimum unit structure to hold a quadrupole mo-
ment is a bilayer BN that breaks σh. In our transfer ma-
trix computational method, the bilayer quadrupole mo-
ment arises from the variation of elementary dipole mo-
ments across neighbouring monolayers as a result of the
gradient of the pump electric field. For example, consider
nonlinear polarization from an AA’-stacked bilayer unit
including layer j and j + 1 is, where the dipole moment
vanishes due to centrosymmetry leaving the quadrupole
moment as the leading term:

P j,j+1,q
2ω,α = P j,d2ω,α + P j+1,d

2ω,α

= ε0χ
(2)
αβγ(Ej+1

ω,β E
j+1
ω,γ − E

j
ω,βE

j
ω,γ)

= 2ε0χ
(2)
αβγdBNE

j
ω,β

∂Ejω,γ
∂z

+ ...

(S7)

with dBN representing the BN interlayer distance. From
(S7), we note that our transfer matrix model is equivalent

to taking the quadrupole susceptibility χq,2Lαβγz for an AA’-
stacked bilayer unit as:

χq,2Lαβγz = 2χ
(2)
αβγdBN (S8)

This is consistent with the expectation that relative con-
tribution of increasingly higher-order multipole moments
scale like ak, where a is the typical atomic dimension of
the system, and k is the typical magnitude of wave vector
[2].

Next the model computes how the nonlinear polariza-
tions drive second harmonic waves and their propagation
throughout the structure. Due to multilayer reflections,
the electric field Ejω,β is a superposition of both forward
and backward propagating waves:

Ejω,β = Ej,+ω,βe
ikωz + Ej,−ω,βe

−ikωz (S9)

Here kω = nωk
0
ω is the reduced wavevector, k0ω is free-

space wavevector, and nω is the linear refractive index
all evaluated at the pump frequency ω.

Without loss of generality, the pump polarization is
fixed along the y direction, and the twist angle of each
layer is ϕj for layer j as shown in Fig. S1. Therefore, the
nonlinear polarization in layer j can be expressed as:

P j2ω,y = ε0|χ(2)|cos(3ϕj)
[
Ej,+ω,ye

ikωz + Ej,−ω,ye
−ikωz

]2
(S10)



P j2ω,x = ε0|χ(2)|sin(3ϕj)
[
Ej,+ω,xe

ikωz + Ej,−ω,xe
−ikωz

]2
(S11)

As a result of mixing forward- and backward-propagating
waves in Eq. (S10) and Eq. (S11), nonlinear polariza-
tions with different wavevectors (±2kω or ±0) will be
generated. Although the phase change within the source
layer j is negligible due to the atomic thickness of mono-
layer BN, the different wavevectors will lead to apprecia-
bly different propagation effects when the whole device
structure with hundreds of layers is considered. There-
fore the nonlinear polarization pseudovector P has four
contributions accounting for different polarization direc-
tions (x or y) and different wavevectors (±2kω or ±0).
These are written in the pseudovector form as below:

P j,2kω
2ω,y = ε0|χ(2)|cos(3ϕj)

[
Ej,+ω,y

2

Ej,−ω,y
2

]
(S12)

P j,2kω
2ω,x = ε0|χ(2)|sin(3ϕj)

[
Ej,+ω,y

2

Ej,−ω,y
2

]
(S13)

P j,0
2ω,y = ε0|χ(2)|cos(3ϕj)

[
Ej,+ω,yE

j,−
ω,y

Ej,+ω,yE
j,−
ω,y

]
(S14)

P j,0
2ω,x = ε0|χ(2)|sin(3ϕj)

[
Ej,+ω,yE

j,−
ω,y

Ej,+ω,yE
j,−
ω,y

]
(S15)

The nonlinear polarization terms above serve as the
sources in generating second harmonic waves. In the
low-field regime, depletion of the pump beam can be ne-
glected, and we can solve decoupled inhomogeneous wave
equations for 2ω [1]. As shown by (S12)-(S15), there are
in total eight independent nonlinear polarization sources
(for two polarizations x and y, two wavevectors 2kω and
0, and forward/backward propagating directions). For
the y-polarized forward-propagating polarization with a
wave vector of 2kω, the inhomogeneous wave equation in
layer j is:

∂2Ej2ω,y
∂z2

+ k22ωE2ω,y = −4π(2ω)2

c2
P j,2kω,+2ω,y (S16)

with k2ω being the reduced wavevector k2ω = n(2ω)2ω/c.
The solution to (S16) is

Ej,2kω,+2ω,y = Ej,+2ω,ye
ik2ωz + Ej,2kω,+S,y ei2kωz

= Ej,+2ω,ye
ik2ωz +

4π

εω − ε2ω
P j,2kω.+2ω,y ei2kωz

(S17)

Here Ej,+2ω,y is the complex amplitude of the homogeneous
solution which needs to be further determined by match-
ing boundary conditions in the transfer matrix formal-
ism, and Ej,2kω,+S,y (bound electric field) is the particular

solution as determined by the source term. We note that
the denominator of the bound electric field explicitly re-
flects a phase-matching condition, and the divergence is
caused by non-depletion assumption of the pump field.
Solutions for other polarizations, wavevectors, and prop-
agation directions can be similarly obtained. The re-
sulting particular solutions of bound electric field can be
grouped into pseudovector form as:

Ej,2kω
S,y =

4π

εω − ε2ω
P j,2kω

2ω,y (S18)

Ej,2kω
S,x =

4π

εω − ε2ω
P j,2kω

2ω,x (S19)

Ej,0
S,y = − 4π

ε2ω
P j,0

2ω,y (S20)

Ej,0
S,x = − 4π

ε2ω
P j,0

2ω,x (S21)

The bound waves in layer j drives 2ω free waves in adja-
cent layers (Ei,±

2ω,y, Ei,±
2ω,x in layer i, and similarly denoted

for layer k). The free waves, being solutions to homo-
geneous wave equations in each layer, have wavevectors
of k2ω = n2ωk

0
2ω. The relationship between the ampli-

tudes of the bound waves in layer j and free waves in
the same layer and adjacent layers are determined by
matching boundary conditions for the proper type of po-
larization at 2ω. The second harmonic free waves can be
solved by using transfer matrix method at 2ω [23]. The
y-polarization components can be derived as below, while
the x-polarization expressions are similar and omitted.

Ek
2ω,y = Mkj

2ωΦ
j
2ω(M ji

2ωE
i
2ω,y + Sj,2kω2ω,y + Sj,02ω,y) (S22)

Sj,2kω2ω,y = (Φj
2ωM

js,2kω
2ω Φ2kω

2ω −M
js,2kω
2ω )Ej,2kω

S,y (S23)

Sj,02ω,y = (Φj
2ωM

js,0
2ω Φ0

2ω −M
js,0
2ω )Ej,0

S,y (S24)

(Note: in the above we do not follow Einstein notation
rules, i.e. we do not sum over repeated layer number
indices j and S)

In the equations Eqs. (S22)-(S24), the bound waves
in layer j are reformed into the effective source vectors
Sj,2kω2ω,y and Sj,02ω,y for convenience. Note that in the above,

Φ ≡ Φ−1, the matricesMkj
2ω and Φj

2ω are ordinary trans-
fer matrices defined for the 2ω frequency free waves, while
M js,2kω

2ω and Φ2kω
2ω are pseudo transfer matrices where

Fresnel reflection and transmission coefficients for the
second medium (source medium s) need to be evaluated



using effective indexes nj,2kωS and nj,0S corresponding to
the bound wave wavevectors 2kω and 0:

nj,2kωS = njω (S25)

nj,0S = 0 (S26)

The 2ω free waves in layer i and k as obtained by
Eq. (S22) can be further propagated through the entire
twisted multilayer structure, giving rise to the field of
transmitted and reflected SHG: Ef,+2ω,y(j) and E0,−

2ω,y(j).
This is obtained by solving linear transfer matrix problem
for the multilayer structure at frequency 2ω. These are
expressed in Eqs.(S27)-(S29) below. Here the index j
in the parenthesis denotes that the these output SHG
fields are the contribution from nonlinear polarization
generated in layer j.

Rjf
2ω

[
Ef,+2ω,y

0

]
−Lj02ω

[
0

E0,−
2ω,y

]
= (Sj,2kω2ω,y + Sj,02ω,y) (S27)

Rjf
2ω = Φj

2ωM
jk
2ωΦ

k
2ωM

k(k+1)
2ω ...Φf−1

2ω M
(f−1)f
2ω (S28)

Lj02ω = M ji
2ωΦ

i
2ωM

i(i−1)
2ω ...Φ2

2ωM
21
2ω (S29)

(Note: in the above we do not follow Einstein notation
rules, i.e. we do not sum over repeated layer number
indices j and S)

Finally, the reflected SHG field amplitude contributed
by each layer are linearly summed up to give the total
SHG field polarized along the y direction (E0,−

2ω,y) and

the x direction (E0,−
2ω,x). The corresponding total SHG

intensities along y and x directions (ItotSHG,y and ItotSHG,x)
are computed as squared norm of the coherently summed
electric fields:

ItotSHG,‖ = ItotSHG,y = |E0,−
2ω,y|

2
= |

f∑
j=0

E0,−
2ω,y(j)|2 (S30)

ItotSHG,⊥ = ItotSHG,x = |E0,−
2ω,x|

2
= |

f∑
j=0

E0,−
2ω,x(j)|2 (S31)

ItotSHG = ItotSHG,‖ + ItotSHG,⊥ (S32)

The contribution from the interface bilayer and the rest
of bulk parts of the BN rotator device are then computed
as:

IinterfaceSHG = |
NTOP+1∑
j=NTOP

E0,−
2ω,y(j)|2+|

NTOP+1∑
j=NTOP

E0,−
2ω,x(j)|2

(S33)

IbulkSHG =|
NTOP−1∑
j=0

E0,−
2ω,y(j) +

NTOP+NBOT+1∑
j=NTOP+2

E0,−
2ω,y(j)|2

+ |
NTOP−1∑
j=0

E0,−
2ω,x(j) +

NTOP+NBOT+1∑
j=NTOP+2

E0,−
2ω,x(j)|2

(S34)
In this way, we numerically evaluate how interface and

bulk SHG contribution varies as a function of twist angle
for fabricated micro rotator devices, and compared with
experimental data, as shown by Fig. S4

S2. Calculation of interfacial stacking configuration

We carried out first-principles calculations as im-
plemented in the Vienna Ab initio Simulation Pack-
age (VASP) [42], with Perdew–Burke–Ernzerhof (PBE)
exchange-correlation energy functional and projector-
augmented wave (PAW) pseudopotentials [43]. We used
a plane-wave cutoff of 400 eV and vacuum regions of
more than 15 Å between periodically repeated slabs.
The first Brillouin zone was sampled using a 10x10x1
k-point grid and vdW interactions were included using
the opt88 functional [44]. All structures were fully re-
laxed until the force on each atom was less than 0.01
eV Å

−1
. Here, we calculated the relative energies of

different stacking orders with the AB stacking order
(∆E = Eshift–EAB). AB stacking is the lowest-energy
configuration for θ = 60circ up to 14 layers as shown by
calculation results in Fig. S3, and we reasonably extend
that the conclusion holds for bulk BN as well.

S3. SHG enhancement factor optimization based
on layer numbers

In a homostructure with NTOP and NBOT layers in the
top and bottom BN crystal, the SHG intensity IAA′ for
an AA’-homostructure is dependent on NTOTAL and its
respective parity, as shown by Fig. 1c in the main text,
as well as Fig. S2c. On the other hand, the SHG intensity
IAB for an AB-homostructure is a superposition of the in-
terface dipolar SHG from the bilayer at the interface, and
bulk SHG from the NTOP+NBOT -2 layers left over in the
top and bottom bulk BN parts, with simulation results
shown by Fig. S2b. Therefore, the SHG enhancement fac-
tor of a single device, defined here as the intensity ratio
IAB/IAA′ between its AB-homostructure form and AA’-
homostructure form can be optimized by layer number
selections. The simulation results are shown by Fig. S2a.
The results suggest that optimum enhancement factors
can be achieved first by selecting NTOTAL to suppress
bulk SHG in the AA’ interfacial configuration, and sec-
ondly selecting NBOT (or equivalently, NTOP ) to enhance



the dipole-allowed SHG at the AB interfacial configura-
tion. Importantly, in the optimized devices (Devices 1
and 2), SHG from the top and bottom bulk BN are both
minimized, leaving SHG predominantly coming from the
interfacial bilayer, as shown by simluation in Fig. S2d-f.
Finally, experimental and simulation data are compared
in Fig. S2j, showing good agreement.

For micro rotator devices, the twist-angle-dependent
experimental and simulation data of SHG intensities are
compared in Fig. S4. For simulation results, contribu-
tions from bulk and interface can be separated. Device
1 features negligible bulk contribution. At θ = 60◦, as
shown by the schematics on the right side of Fig. S4a,
the total SHG is dominated by strong interface contri-
bution, with a minor bulk contribution that only slightly
counteracts the interface dipole moment. At θ = 0◦, the
interface dipole moment vanishes, and the total SHG is
close to zero. Similar results are observed for Device 2
which is also interface-dominated, as shown by Fig. S4b.
In Device 3, as shown by the schematics on the right side
of Fig. S4c, the bulk contribution from the top BN is ap-
preciable compared to the interface contribution. This is
because the NTOP -1 layers in the top BN correspond to a
large quadrupole SHG, as shown by Fig. 1c. At θ = 60◦,
the aligned interface dipole moments are largely coun-
teracted by bulk contribution from the top, resulting in
only moderate SHG intensity. At θ = 0◦, despite vanish-
ing interface dipole moment, the bulk contribution still
persists, with intensity close to that at θ = 60◦. There-
fore the effective tuning range of Device 3 is low. Similar
results are observed for Device 4, as shown by Fig. 1d.

Comparing data listed in Fig. S2j, as well as the data
shown in Fig.1c and Fig.4E of the main text, we observe
a trend that the theoretical calculation and the experi-
mental values tend to deviate with increasing total layer
number. This could be originating from multiple reasons.
The BN refractive index we used for the calculation may
deviate from actual the experimental material, and thus
the calculated optical phases of fundamental and second
harmonic waves tend to be more inaccurate with longer
propagation length (i.e. in thicker BN films). Addition-
ally, potential existence of polymer residues at the in-
terface, despite the post-annealing processes and utmost
care to keep the interfacial surfaces untouched during
stacking, may lead to some experimental uncertainties in
both optical and AFM measurements.

S4. SHG polarization patterns of monolayer and
bulk BN

Monolayer BN belongs to the D3h point group

[22]. The nonvanishing χ(2) elements are χ
(2)
yyy =

−χ(2)
yxx = −χ(2)

xxy = −χ(2)
xyx where y(x) refers to the arm-

chair(zigzag) direction. In our experiments, the pump
beam is linearly polarized, and the collected SHG beam

with polarization parallel to the pump is selectively de-
tected. In this colinear configuration, the measured SHG
intensity ISHG,‖ will be:

ISHG,‖ ∝ |χ(2)|2cos2(3ϕ)I2pump (S35)

where ϕ is the angle between monolayer BN’s armchair
direction and the pump polarization direction.

Bulk hexagonal BN crystal belongs to the centrosym-
metric D3d point group with preserved inversion symme-
try, as a result of the AA’ stacking between each neigh-
bouring layers. However, when such a bulk BN film is
placed on a substrate with finite refractive index, the
pump field may become highly nonuniform with a large
gradient along the z-direction. This is illustrated by
Fig. S5c which shows the calculated z-directional pro-
file of pump field intensity Ipump inside a 300-layer BN
on top of a fused silica (F.S.) substrate and a 285-nm-
SiO2/Si substrate. The gradient of pump field breaks
reflection symmetry along the x-y plane (i.e., the plane
including armchair and zigzag orientations). Therefore,
dressed by the optical field, the net symmetry is reduced
from D3d to C3v which has nonvanishing χ(2) elements

of χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx, χ
(2)
xzx = χ

(2)
yzy,

χ
(2)
xxz = χ

(2)
yyz, χ

(2)
zxx = χ

(2)
zyy, and χ

(2)
zzz. As a result, the

same in-plane polarization dependence as in Eq. (S35)
would be expected, i.e., a sixfold flower pattern, where
the maximum intensity is aligned with armchair orienta-
tion as shown by S5b.

S5. Locking behavior of BN rotators

In all rotatable homostructures of BN we observe lock-
ing at angles set 60◦ apart, meaning that at these special
rotation states the BN rotators can no longer be pushed
by the AFM tip. Fig. S6a illustrates the stages of a push
sequence during which the locking occurs, and Fig. S6b-d
shows AFM scans before and after the progression illus-
trated in Fig. S6a. The locking condition is found to
perfectly correspond with crystallographic directions as
corroborated both by alignment with straight BN edges
and SHG characterization, and can therefore serve as a
reference for intermediate rotation angles as measured
from AFM scans.

S6. BN-Graphene-BN devices: effect of interface
modification on SHG

In order to further consolidate verify the dominant role
of the BN-BN interface in generating the SHG signal,
monolayer graphene (G) is inserted encapsulated in be-
tween the top and bottom BN of an AB-homostructure,
forming a stationery BN-G-BN device, as shown by the
schematic in Fig. S7a. The graphene lattice is aligned



with both top and bottom BN. Owing to its centrosym-
metric crystal structure, monolayer graphene itself does
not generate additional SHG under normal in-plane ex-
citation. However, the inserted encapsulated graphene
layer may substantially alter interlayer charge transfer
between the interfacial bilayer BN (shaded green), and
subsequently change the oscillator strength responsible
for interfacial dipolar SHG. On the other hand, due to
its monolayer thickness, the extra layer of graphene will
only induce negligible optical phase shift to affect any
bulk SHG contribution. Therefore, we can further ver-
ify the interface-dominated SHG by observing whether
an inserted encapsulated monolayer graphene can cause
appreciable changes in SHG intensity.

Fig. S7b shows a confocal image of a device with a
BN-G-BN region, a BN-BN AB-homostructure region, as
well as bare bottom and top BN regions. The emission
spectra from the BN-G-BN and BN-BN regions are com-
pared in Fig. S7c. Note that we observed a broadband
of fluorescence signal from graphene, which makes the
BN-G-BN appear brighter in the image in Fig. S7b. For
the narrow-band SHG intensity, we found it to be signif-
icantly reduced in the BN-G-BN region as compared to
BN-BN AB-homostructure region, validating our assign-
ment of the SHG as dominated by the interfacial bilayer
rather than the bulk. We note that similar results are
also reported in Ref.[18].

S7. Extended SHG polarization data from BN
micro rotators: effect of substrate and bulk

contributions

In the devices designed for maximizing the interface
SHG contribution, the polarization patterns are deter-
mined by the D3 symmetry of the moiré bilayer lattice
and they closely follow the rotation of moiré angle. On
the other hand, in devices with strong bulk SHG re-
sponse, the polarization pattern reflects the reduced C3

symmetry.
Fig. S8a shows the polarization patterns measured

for Device 2 (NTOP=150, NBOT=138) on 285 nm
SiO2/Si substrate. Compared to polarization pat-
terns of interface-dominated devices (see Fig. S9 and
Fig. S10), bulk-dominated devices show appreciable
nonzero isotropic center circles. As shown in Fig. S5c, an
interference effect from the presence of the 285 nm thin
film of SiO2 on top of the Si substrate induces a signifi-
cant breaking of reflection symmetry with respect to the
interface plane, and thus causes strong bulk SHG contri-
bution in this device when placed on the 285 nm SiO2/Si
substrate. With arbitrary top-bottom twist angle θ, and
a broken reflection symmetry, the net symmetry has to be
further reduced to only C3. The in-plane nonvanishing

elements for C3 are χ
(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx,

χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx. The resulting expres-

sion for parallel-polarized SHG intensity ISHG,‖ is:

ISHG,‖ ∝ [|χ(2)
yyy|cos(3ϕ) + |χ(2)

xxx|sin(3ϕ)]2I2pump (S36)

As shown by Eq. (S36), the resulting polarization pat-
tern may not have zero nodal points. Fig. S8b shows the
simulated polarization pattern from bulk and interface
contributions, for a twist angle of 87.5◦ for the struc-
ture of Device 2 (on 285 nm SiO2/Si substrate). The
simulation is performed by the nonlinear transfer matrix
method. The interface polarization shows a sixfold flower
pattern with zero nodal points, while the bulk polariza-
tion has a nonzero center circle which is characteristic
of the C3 (as in Eq. (S36)). With the combination of
bulk and interface effects, the total SHG polarization also
shows C3 symmetry.

In comparison, Fig. S9 shows the polarization patterns
for the same device (Dev. 2, NTOP=150, NBOT=138)
when it’s transferred onto a bulk fused silica substrate.
On a substrate such as this, with no oxide thin film be-
low the bottom BN, the gradient of pump field is much
smaller and there’s significantly less SHG contribution
from bulk BN (Fig. S8). In addition, Fig. S10 shows
polarization patterns measured for Device 1 (NTOP=7,
NBOT=148) on fused silica substrate, which is also opti-
mally designed for maximizing the interface effect. The
polarization patterns for both are sixfold flowers (with
negligible isotropic centers) generated by the D3 inter-
face moiré superlattice.

S8. Fabrication of stationary devices with AB and
AA’ stacked interfaces

The stationary device shown in Fig. 1e in the main
text, Device 0, includes both AB and AA’ stacked in-
terfaces. In order to achieve this configuration, a bulk
BN crystal with uniform thickness is broken into multi-
ple pieces during the exfoliation process, and re-stacked
with 0◦ and 60◦ of relative rotation using a high-precision
rotation stage in the transfer station setup [15]. Fig. S11a
shows the fractured BN crystal used for assembling De-
vice 0. Fig. S11b-h shows the pick-up sequence for the
bulk BN crystal of thickness N = 192 layers, with regions
of thickness 2N = 384 layers that include an artificially
stacked interface between the BN layers. The PPC film
is first touched-down and spread over the surface of the
target fractured piece, as shown in Fig. S11b. After each
pick-up shown in Figs. S11c-h, the pieces of BN mounted
on the surface of the PPC film above the substrate surface
appear less saturated in color than the BN still mounted
on the SiO2 surface, and interfacial homostructure re-
gions formed by overlapping BN crystals appear darker
in color. At an intermediate point during assembly, the
remaining target BN crystal pieces on the substrate are
rotated 60◦ relative to the BN crystals mounted on the



PPC film, as shown in Fig. S11e. Fig. S11i shows the fi-
nal twist configuration of Device 0. We observe minimal
sliding of the interfaces during transfer to a fused silica
substrate, and after annealing, presumably because the
crystallographically aligned interfaces are at their lowest
energy stacking configurations and are therefore locked
in place.

This technique is adapted from those described in the
supplementary information of Ref.[11] for fabrication of
stationary double-aligned graphene-BN heterostructures,
and can be extended to deterministically set a collection
of alignment states for any broken vdW crystal with uni-
form layer number thickness.

S9. Mechanical relaxation near 60◦ twist

Atomic relaxation calculations of twisted bilayer BN
near θ = 60◦ were performed following the method pre-
sented in Ref.[39]. The function parameters of the gener-
alized stacking fault energy were taken from Ref.[41], and
the elastic coefficients of single BN layer were taken from
Ref.[40]. The total energy, composed of a stacking energy
term and an elastic energy term, was minimized within a
continuous model to produce the local displacement fields
of the relaxed system. Fig. S12a shows the stacking en-
ergy density, ESTACKING, plotted in real space over the
moiré unit cell for several twist angles near θ = 60◦. It is
qualitatively apparent that as the twist angle approaches
θ = 60◦ the area of mechanically relaxed BN stacked in
the energetically favorable AB or BA stacking increases.

We illustrate this onset of mechanical relaxation quan-
titatively in Fig. S12b, where we show a rapid increase
in the percent-area taken up by AB and BA stacked
BN within the moiré unit cell, and a rapid decrease in
the percent-area taken up by AA stacked BN within the
moiré unit cell as the twist angle decreases past 61◦. The
range in values of ESTACKING assigned to the energet-
ically degenerate AB and BA stacking is taken to be
within 5 meV/nm2 of the minimum ESTACKING com-
puted, and similarly the range in values of ESTACKING
assigned to AA stacking is arbitrarily taken to be within 5
meV/nm2 of the maximum ESTACKING computed. Any
value of ESTACKING falling outside of these ranges is
labeled as other, a designation that dominates at large
angle since the twisted BN lattices are incommensurate
in this regime.

The symmetry pinning effect discussed in the main text
and shown in Fig. 3f is potentially related to the rapid in-
crease in the areal coverage of symmetry-broken AB and
BA stacked BN at a twist angle near 61◦. The bottom
BN is much larger than the rotator, and presumably well-
coupled to the fused silica substrate, mechanically. If the
bottom BN can be considered microscopically stationary
with respect to the lab frame, then in the presence of re-
laxation effects the top BN should locally twist to match

the rigid bottom BN within the AB and BA domains.
In this scenario the AB and BA domains would be ef-
fectively aligned to the bottom BN crystal, even though
the moiré pattern itself would be at some angle θM . This
would generate SHG inconsistent with what we predict
for the non-zero global twist of the top BN rotator. This
hypothesis is difficult to test without direct visualization
of the buried moiré. Future experiments involving scan-
ning probe measurements and polarization resolved SHG
mapping with resolution below the scale of the moiré pat-
tern features would resolve the microscopic symmetries
and would detail the effects of mechanical relaxation. Ad-
vancements in experimental techniques combined with
the modeling techniques adopted here are likely neces-
sary to understand this symmetry pinning effect.



FIG. S1. Schematic of the nonlinear transfer matrix calculation method. (A) Side-view of multilayered BN on
substrate. The forward- and backward-propagating pump field Ej,+

ω and Ej,−
ω generate nonlinear polarization P j

2ω in layer j,

which serves as the source for driving second harmonic field that propagates both forward (Ej,+
2ω ) and backward (Ej,−

2ω ) in the
multilayers. The squared norm of reflected SHG field E0,−

2ω corresponds to the experimentally measured quantity. The total
SHG response is the coherent sum of SHG field amplitudes driven by nonlinear polarization in each layer. See text for meaning
of notations and more detailed model descriptions. (B) Top-view of representative layer j and layer k showing the in-plane
coordinate system used for calculation. The angle ϕj is defined as between the +y direction in the lab frame, and the armchair
direction of layer j, +y′ in the material frame. Arbitrary rotation angles can be implemented for each individual layers.



FIG. S2. Simulation results for layer-dependent SHG enhancement factor and phase shift. (A), Simulation of the
SHG enhancement factor IAB/IAA′ as a function of top and bottom BN layer numbers NTOP and NBOT , respectively, calculated
by the nonlinear transfer matrix method. IAB and IAA′ represents SHG intensity for AB-homostructure and AA’-homostructure
interfacial configurations, respectively. The markers tag the layer number configurations of experimentally fabricated devices
with SHG results listed in the table shown by h. Simulation results of the SHG intensity from AB-homostructure IAB ,
AA’-homostructure IAA′ , AB interfacial bilayer, top bulk BN, and bottom bulk BN are shown by (B), (C), (D), (E), (F),
respectively. Data is normalized to monolayer SHG intensity of BN. (G), The phase of SHG electric field from dipole and
quadrupole contributions, as a function of the odd total layer number NTOTAL. Results for even NTOTAL is not shown, since
the dipole moment vanishes. (H), The magnitude of SHG electric field from dipole and quadrupole contributions, as a function
of the odd NTOTAL. (I), The phase shift between reflected SHG from the AB interface and the bulk, as a function of NTOP

and NBOT . (J), Comparison of experimental and calculated results for all devices.



FIG. S3. Schematic atomic structures and energy contours of BN rotators for the twisted angle of 60◦. (A), Top
and side views of the energy minimum of BN rotator with the twisted angle of 60◦. (B), Relative energy contour for the BN
rotator with top 3 layers and bottom 3 layers. (C)((D)), Same quantity as in panel (B) for the BN rotator with top 3 (7) and
bottom 11 (7) layers.



FIG. S4. Bulk and interface SHG contributions in micro rotator devices The results are shown for (A) device 1, (B)
device 2, (C) device 3, and (D) device 4. Markers are experimental data. Solid/dashed/dotted lines are simulation results for
total/interface/bulk contributions based on the nonlinear transfer matrix method. The schematics on the right side of each
panel illustrate the nonlinear polarization in the interfacial bilayer (pink) and bulk parts (grey). Solid/transparent blue arrows
represent high/low magnitude of nonlinear polarization.



FIG. S5. Polarization dependent SHG for (A) monolayer and (B) bulk BN. Data are measured with the parallel
polarization configuration as described in the text. For monolayer BN the sixfold pattern originates from the D3h symmetry.
For bulk BN, although the lattice belongs to centrosymmetric D3d point group, inversion symmetry is broken by the gradient
of pump field as shown in (C), resulting in a net C3v symmetry whose non-vanishing χ(2) elements would generate a similar
sixfold polarization pattern. (C) The z-directional profile of pump field intensity Ipump calculated for a 300-layer BN on a fused
silica (F.S.) and a 285-nm-SiO2/Si substrate. The field gradient breaks reflection symmetry.

FIG. S6. Locking behavior observed for a vdW homojunction (A) Push progression through a locking state, with
velocity of the top BN rotator arm, vBN , and the velocity of the tip, vTIP , indicated for states i-v with labels and black arrows
when the velocity is not equal to zero. Yellow arrow represents the planned push, and the yellow plus-symbol represents the
tip position after the push. Purple highlight added to iv-v. to indicate a locked-interface. AFM scans (B) before, and (C)
after pushing the top BN crystal with an AFM tip. The rotator axis is illustrated with a white-dashed line, and the axis of a
lattice unit vector (e1, blue arrow) is illustrated with a blue-dashed line. Scale bar for (B)-(C) is 1 µm. (D) The locking axes
of rotators are always 60◦ apart, as illustrated with lattice vectors e1 (blue) and e2 (red) parallel to the rotation axes of the
two locked rotators, highlighted in blue and red. The rotator highlighted in light-blue in (D) is the same rotator shown (C) in
its final state. The scale bar is 5 µm.



FIG. S7. SHG from BN-graphene-BN heterostructure. (A) Cross-sectional schematics of the BN-graphene-BN device.
The top BN and bottom BN form AB-homostructure as in Fig. ??A. The monolayer (1L) graphene is aligned with both top and
bottom BN. (B) Confocal scanning image of the sample using 820 nm pulsed laser. Regions of BN-G-BN, BN-BN, and top and
bottom BN crystals are labelled. (C) Emission spectra collected from the BN-G-BN region (red) and BN-BN region (blue).
The BN-BN region shows a prominent SHG peak, while the BN-G-BN region shows much weaker SHG with a broadband
fluorescence signal (likely from the graphene).



FIG. S8. SHG polarization pattern measured for device 3 on 285 nm SiO2/Si substrate, showing competing
interface and bulk effects. (A) Extended polarization data at various twist angles. Red squares are experimental data and
solid lines are simulation results of this device based on the nonlinear transfer matrix method. (B) Simulated polarization
patterns for contribution from the interface (blue dashed line), the bulk(blue dotted line), and the total device (red solid line).

The interface bilayer belongs to D3 point group, and the non-vanishig χ(2) elements are χ
(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx.
The resulting polarization pattern is a sixfold flower (without any isotropic center parts, i.e., nodal points reaching zero) and
maximum intensity angle aligned along the C2(x) axes. The twisted bulk structure has a reduced C3 symmetry, and has two

independent sets of non-vanishig χ(2) elements: χ
(2)
xxx = −χ(2)

xyy = −χ(2)
yxy = −χ(2)

yyx, χ
(2)
yyy = −χ(2)

yxx = −χ(2)
xxy = −χ(2)

xyx. The
resultant polarization pattern will not necessarily reach zero at the nodal points and therefore shows an isotropic center pattern.
(C) Simulated profile of pump field intensity through the BN layers. When on 285 nm SiO2/Si substrate, interference effects
result in a larger z-gradient that breaks centrosymmetry, leading to stronger bulk SHG contribution.



FIG. S9. SHG polarization patterns measured for device 3 transferred onto a fused silica substrate. Red squares
are experimental data and solid lines are simulation results from the nonlinear transfer matrix calculation.

FIG. S10. SHG polarization patterns measured for device 1 on a fused silica substrate. Blue dots are experimental
data and solid lines are simulation results from the nonlinear transfer matrix calculation.



FIG. S11. Assembly of a BN homostructure with both AB and AA’ stacked interfaces. (A), Bulk BN crystal
on SiO2 (top) with black outline (bottom) indicating fracture lines. Scale bar is 10 µm (B), Spreading of the poly-propylene
carbonate (PPC) film over the BN crystal prior to pick-up 1. Touched-down region labeled as PPC, thin film interference
pattern formed by the thin layer of air between the PPC and the target substrate. (C)-(H), Stack in-progress immediately
following each pick-up, with an intermediate rotation of the substrate by 60◦ shown in (E). (I), Final relative twist configuration
of the BN pieces for device 0 discussed in the main text, with overlap regions highlighted in light-green.

FIG. S12. Mechanical relaxation of twisted bilayer BN near θ = 60◦ (A), Stacking fault energy density, ESTACKING, for
twisted bilayer BN moiré unit cell as a function of twist angle near θ = 60◦. Domains identified by their corresponding stacking
order are labeled on the leftmost plot. Direction of increasing AB/BA domain area indicated below. Magenta scale-bars at the
lower right of each map are all 1 nm. (B), Moiré domain area as a function of twist angle near θ = 60◦. The total percent area
of energetically favorable AB/BA stacking is plotted in green, energetically unfavorable AA in red, and all other stacking in
blue. AB/BA (AA) stacking energy is defined as being within 5 meV/nm2 of the minimum (maximum) ESTACKING computed.

FIG. S13. Experimental setup for SHG measurements.
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