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Multilevel exploratory factor analysis
of discrete data

Exploratory factor analysis (EFA] can be used to determine the dimensionality of a set of items. When data come
from clustered subjects, such as pupils within schools or children within families, the hierarchical structure of the
data should be taken into account. Standard multilevel EFA is only suited for the analysis of continuous data. However,
with the robust weighted least squares estimation procedures that are implemented in the computer program
Mplus, it has become possible to easily conduct EFA of multilevel discrete data. In the present paper, we show how
multilevel EFA can be used to determine the dimensionality in discrete two-level data. Measurement invariance
across clusters implies equal dimensionality across levels. We describe two procedures, one with and one without

measurement invariance restrictions across clusters. Data from educational research serve as an illustrative

example.
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Introduction

The dimensionality of a set of items can be defined
as the minimum number of underlying unobserved
(latent) variables that is needed to describe all
relationships between all item responses (Lord &
Novick, 1968; Zhang & Stout, 1999). If we restrict
ourselves to linear relationships, then exploratory
factor analysis (EFA) can be used to assess how
many latent variables (or common factors) are
needed to explain all item responses (e.g., Fabrigar,
Wegener, MacCallum, & Strahan, 1999; Conway &
Huffcutt, 2003). EFA is an appropriate technique to
determine dimensionality because the EFA model

is unconstrained, so that any misfit can only be
attributed to the number of factors being too small.
However, ordinary EFA is only suited for the analysis
of normally distributed continuous item responses.

Item responses are generally discrete. Test items
are often scored as ‘right’ or ‘wrong’, with binary
codings 1 and 0. Or respondents give judgements
on, for example, a three-point response scale with
‘not applicable to me’, ‘somewhat applicable to
me’, and ‘applicable to me’ scored as 1, 2, 3. Wirth
and Edwards (2007) give an overview of estimation
methods that can be used with discrete item

responses. Some of these have been implemented in
structural equation modelling computer programs
such as Mplus (Muthén & Muthén, 2010), and so

it has become feasible to conduct factor analysis of
discrete variables. Barendse, Oort, and Timmerman
(2012) conducted a simulation study of EFA of
discrete variables and found that robust weighted
least squares estimation with polychoric correlations
worked well in assessing dimensionality.

In social and behavioural research, we often
encounter hierarchically structured data, such as data
from students in schools, children in families, or
patients sharing the same physicians. Mixed model
or multilevel analysis accounts for the dependencies
in multilevel data (Snijders & Bosker, 1999). In

the case of two-level data, the first level pertains to
within-cluster variation (e.g., differences between
students within schools) and the second level to
between-cluster variation (e.g., differences between
schools). Due to the work of Asparouhov and
Muthén (2007), the robust weighted least squares
estimation implemented in Mplus (Muthén &
Muthén, 2010) can handle multilevel discrete data.

The purpose of this paper is to show how
multilevel EFA analysis can be used to assess the
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dimensionality of a set of discrete responses. We will
describe two procedures. In the first procedure we
separately assess the dimensionality of within-cluster
variance and between-cluster variance, without any
restrictions across levels. In the second procedure
we assume measurement invariance across clusters,
to make sure that the common factors have the

same interpretation across clusters. Jak, Oort, and
Dolan (2012a) have shown that this measurement
invariance restriction implies measurement
invariance across levels as well.

Both procedures will be illustrated with data
from educational research on student-teacher
relationships.

Methods

Below we briefly describe the two-level EFA model,
the identification and estimation of its parameters,
the evaluation of fit, the two procedures to assess
dimensionality, and the rotation of a two-level

EFA solution. We currently apply two-level EFA to
discrete item responses, but the approach can also be
applied to other variables (e.g., continuous scores,
counts), and be extended to more than two levels.

With discrete data we assume that the observed
discrete item responses are representations of
continuous unobserved responses. That is, the vector
of observed discrete item responses X, of individual
i in cluster j is considered to be a representation of a
vector of underlying continuous response variables
y,;» with associated thresholds that determine the X,
values (e.g., Olsson, 1979; Muthén, 1984).

Model

In multilevel models, the underlying continuous
variables y; are decomposed into cluster means I
and individual deviations from the cluster means 1),:

Y= W+, M

The individual deviations 7, are assumed to be
independent of the cluster means 1, so that variance-

TOTAL (Wlth
variances and covariances across all clusters), is the

covariance matrix of y, denoted =

sum of the variance-covariance matrix of p, denoted

2 serweey (With variances and covariances between

clusters), and the variance-covariance matrix of 1,
denoted X

WITHIN
within clusters),

(with variances and covariances

b

TOTAL = BETWEEN +2 WITHIN * (2)

In two-level factor analysis, the between and within
variance-covariance matrices can be separately
modelled as

) =A, @, A, +O,, 3)

BETWEEN
z WITHIN — Aw q)w va + ®w : “)
In Equation 3, @, is the variance-covariance matrix
of the common between factors of the cluster means
W, A, is the matrix of factor loadings of the cluster
means on these common between factors, and G)B
is the (diagonal) matrix with residual variances of
the cluster means. In Equation 4, @ is the pooled-
within variance-covariance matrix of the common
within factors of the individual deviations from the
cluster means, A, is the pooled-within matrix of
factor loadings of the individual deviations on these
common within factors, and ©  is the (diagonal)
pooled-within matrix with residual variances of the
individual deviations.

Measurement invariance

If we want to make sure that the interpretation of the
common within factors is the same in all clusters,
then we have to assume measurement invariance
across clusters (i.e., in factor analysis of mean and
covariance structures, intercepts and factor loadings
of y-variables are the same across clusters; Muthén,
1994; Rabe-Hesketh, Skrondal, & Pickles, 2004;
Jak, Oort, & Dolan, 2012a, 2012b). Jak et al. (2012a)
explain that measurement invariance across clusters
implies equal factor loadings across levels (A, = A,
= A), yielding the following two-level model:

2 BETWEEN = A (I)B A’ ’ (5)
WITHIN = A (I)W A, + ®W ’ (6)
where A is a matrix of factor loadings that is equal
across all clusters and across the within and between
levels, implying that common factors do have the
same interpretation across all clusters and across
levels. In addition, there is no residual variance at the
between level (©, = 0), implying that no other factors
than the common factors are affecting the between-
level responses (no ‘cluster bias’, Jak et al., 2012a).

Identification
In ordinary EFA, the (single level) model is
identified with sufficient and necessary scaling and
rotation constraints such as an identity matrix for
the variance-covariance matrix of common factors
(P =1) and echelon form for the matrix of factor
loadings (A elements )\pk =0if p <k). In two-level
EFA (Equations 3 and 4), sufficient constraints are
D =1, (I>B =1, and echelon form for both A, and
AB. However, if we assume measurement invariance
(Ay=Ay=A,and O, =0), then we can estimate
the variances of the common factors at the between
level (i.e., diagonal(®,) free instead of @, =1). In
addition, we can choose either
- to estimate the full factor loading matrix instead of
having an echelon form (A full free instead of A
echelon), or
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- to estimate correlations between the common
factors at the within level (diagonal(®,) =1
instead of @, =1), or

- to estimate covariances between the factors at the
between level (@, symmetrical free instead of @
diagonal free).

Estimation

The computer program Mplus provides various
estimation methods for SEM with discrete data
(Muthén & Muthén, 2010), such as the so-called
weighted least squares estimation method with a
robust mean-and-variance corrected chi-square fit
criterion (WLSMV; Muthén, du Toit, & Spisic,
1997), which has been advocated in previous
simulation studies (e.g., Beauducel & Herzberg,
2006; Barendse, et al., 2012). Asparouhov and
Muthén (2007) developed a method for multilevel
data that can be applied to discrete data, using
polychoric correlations. To compare nested
multilevel models, one should use the estimation
method with a mean-corrected chi-square fit criterion
(denoted WLSM,; rather than the mean-and-variance
corrected WLSMYV), as only WLSM provides a
valid chi-square statistic to test the difference in fit
of nested multilevel models (Muthén, 1998-2004;
Satorra & Bentler, 2001).

Evaluation of fit

As the evaluation of fit of multilevel models for
discrete data is still subject to study, we resort to
fit criteria that are commonly applied in structural
equation modelling. A significant chi-square test
of overall goodness-of-fit indicates that the model
does not fit the data (i.e., the hypothesis of exact
population fit is rejected). In addition to the chi-
square test of exact fit, we can use the root mean
square error of approximation (RMSEA) as an
index of approximate fit. RMSEA values below
0.08 and 0.05 indicate satisfactory and close fit,
respectively (Browne & Cudeck, 1992). We will
also report the standardised root mean square
residual (SRMSR) and its weighted counterpart
(WRMSR), which indicate the difference between
the polychoric correlations and the correlations
implied by the EFA model. SRMSR values below
0.05 (e.g., Sivo, Fan, Witta, & Willse, 2006) and
WRMSR values below 1.0 (Yu & Muthén, 2002)
are considered acceptable.

The difference in fit of two hierarchically related
models (or nested models) can be tested with the chi-
square difference test. We should note, however, that
with WLSM estimation, this chi-square difference is
subject to a scaling correction and cannot be calculated
by simply taking the difference of the two chi-square
values that are associated with the fit of two models
(Muthén, 1998-2004; Satorra & Bentler, 2001).

Dimensionality assessment
We describe two procedures to determine the
dimensionality of two-level data.

Procedure 1. The first procedure has two steps.

sETweey €€ O be

estimated, impose an exploratory factor model on

2 i (Equation 4), and fit a series of models with

increasing numbers of common within factors to

In the first step, we leave X

determine the minimum number of common within
factors that provides good fit. In the second step,
we retain the minimum number of common within
factors (determined in the first step), and fit a series
of models with increasing numbers of common
between factors to determine the minimum number
of common between factors that provides good fit.

Procedure 1 may yield a different number of between
factors than the number of within factors. So, the
dimensionality of the between structure may be
different from the dimensionality of the within
structure. Still, even if the dimensionality is the

same across levels, the interpretation of the between
factors is different from the interpretation of the
within factors as A, and AB are different. Moreover,
the interpretation of the factors across clusters is not
the same either, as the values of the A, elements are
pooled within values. Matrix A, can be interpreted as
the average of as many cluster specific A matrices as
there are clusters. So, in theory, the A, interpretation
may not apply to any of the individual clusters at all.

Procedure 2. In Procedure 2 we require measurement
invariance across clusters, which implies A, =

A, and O, =0 (Jak et al., 2012a). With these
restrictions, we fit a series of two-level EFA models
to Z ‘WITHIN and 2 BETWEEN
6, with increasing numbers of common factors, to

as given by Equations 5 and

determine the minimum number of common factors
that provides good fit. Due to the measurement
invariance restriction, the common factors have the
same number and the same interpretations across all
clusters and across both levels.

Rotation

Just as in ordinary (single level) EFA, the solution
can be rotated to facilitate interpretation. If the
solution is obtained through Procedure 1, using the
two-level EFA given by Equations 3 and 4, with both
@ and @ equal to identity and both A, and A
having echelon form, then the within and between
solutions can be rotated separately, in the same way
as in ordinary EFA (Browne, 2001; Oort, 2011).

If the solution is obtained through Procedure 2,
using the two-level EFA given by Equations 5 and 6,
with @ identity, <I)B free, and A echelon, then we
preserve the identical interpretation of within and
between factors by rotating the within and between
structures together. Application of a rotation criterion
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as desired to the echelon A yields a transformation
matrix T, and rotated factor loadings A* and
variance-covariance matrices ®_* and <I)B*,

A*=AT, %
O F=(T')(T)=(T"T)", 3)
@ = (T @, (T) . 9

See Browne (2001) for a comprehensive explanation
of rotation in EFA.

Illustration

As an illustrative example, we apply multilevel EFA
to data that were gathered with the student-teacher
relationship scale (STRS; Spilt, Koomen & Jak,
2012). We have complete data from 649 teachers
who reported about their relationships with two or
three children each, 1493 children in total, aged 3

to 12. The 28 items of the STRS are hypothesised
to capture three aspects of the student-teacher
relationship: closeness, conflict, and dependency.

The items have five-point response scales, ranging
from 1 (‘definitely does not apply’) to 5 (‘definitely
does apply’).

Preliminary analysis

First we check whether the between-level variances
and covariances are sufficiently large to warrant

a multilevel analysis. Intra-class coefficients of

the item responses vary between 0.15 and 0.49.
Furthermore, we fitted a Null Model (Z BETWEEN = 0,
2 o free) to test whether there is between-level
variance, and an Independence Model

diagonal, = free) to test whether

(2 BETWEEN WITHIN
there is between-level covariance. Neither model fits
the data: Null Model chi-square = 4547 .4, df = 389,
p <0.001, RMSEA = 0.085; Independence Model
chi-square = 4195.0, df =378, p <0.001, RMSEA
=0.082. As the intra-class coefficients are high and
the Null Model and Independence Model do not fit
the data, we conclude that these data require a model
that accounts for the two-level hierarchical structure

of the data.

Procedure 1 within-level results
Table 1 gives the fit results (chi-square, RMSEA,

Table 1 Series of multilevel exploratory factor analyses to determine the dimensionality

Number Number SRMSR Chi-square difference test
of within of between

factors factors DF Chi-square RMSEA Within Between WRMSR Chi-square DF Prob.
Series 1

1 n/a 350 13737.605 0.160 0.169 - 3.122 - - -
2 n/a 323 2302.291 0.064 0.059 - 1.061 16647.295 27 0.000
3 n/a 297 827.289 0.035 0.033 - 0.591 619.279 26 0.000
4 n/a 272 576.248 0.027 0.028 - 0.480 181.013 25 0.000
5 n/a 248 464.731 0.024 0.024 - 0.421 88.807 24 0.000
Series 2

3 1 647 3086.883 0.050 0.033 0.180 1.182 - - -
3 2 620 1332.493 0.028 0.033 0.077 0.685 338.595 27 0.000
3 3 594 1300.727 0.028 0.033 0.067 0.665 43.458 26 0.017
3 4 569 1258.966 0.028 0.033 0.061 0.650 44247 25 0.010
3 5 545 1223.605 0.029 0.033 0.058 0.639 37.789 24 0.036
Series 3

1 1 755 14252.961 0.109 0.170 0.589 3.483 - - -
2 2 726 4018.500 0.055 0.062 0.304 1.677 2004.806 29 0.000
3 3 697 2705.744 0.044 0.048 0.291 1.236 325.442 29 0.000
4 4 668 1923.310 0.035 0.034 0.278 0.920 198.966 29 0.000
5 5 639 1590.571 0.032 0.032 0.244 0.760 125.307 29 0.000

Note: 1493 pupils are rated by 649 teachers.
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SRMSR, WRMSR) for three series of two-level EFA

BETWEEN 1S unrestricted

conforms a one-, two-, three-, four-, or

models. In the first series,
and Z WITHIN
five-factor model (as in Equation 4). The chi-square
test is consistently significant, indicating that none of
the models fits the data exactly. However, the RMSEA
indicates satisfactory fit of the two-factor model and
close fit of the three-factor model. The SRMSR and
WRMSR indices also suggest acceptable fit of the
three-factor model. We therefore continue Procedure 1

with three factors at the within level.

Procedure 1 between-level results

In the second series, WITHIN is restricted to a three-
factor model (Equation 4),and = | - is restricted
to either a one-, two-, three-, four-, or five-factor
model (Equation 3). For each of these models, the
chi-square test of exact fit is significant, but due

to the gain in degrees of freedom, the relative fit

is much better than in the first series of models.
According to the RMSEA we would select the EFA
model with three within factors and two between
factors.

The chi-square difference test indicates that exact

fit keeps improving with each additional between
factor, but only if we test a 5% level of significance.
When testing at a 1% level of significance, we
would also select the EFA model with three within
factors and two between factors, because at 1%,

an additional between factor does not significantly
improve exact fit. The same model is also suggested
by the WRMSR, but the between-level SRMSR does
not fall below 0.05 for any of the models.

Procedure 2 measurement invariance results
In the third series of models we impose measurement
invariance restrictions and fit two-level EFA

models as given by Equations 5 and 6, with
increasing numbers of factors. All chi-square tests
are significant, thereby rejecting exact fit. The
three-factor model is the first model that meets the
RMSEA criterion of close fit (RMSEA < 0.05).

The same model also meets the SRMSR criterion
(SRMSR < 0.05), but only for the within part. The
WRMSR criterion (WRMSR < 1.0) suggests a four-
factor model, but fl)B estimates for this model have
unreasonably high standard errors.

Relying on the RMSEA index of fit and on the
substantive argument that the STRS is supposed to
cover three aspects of student-teacher relationships,
we prefer the three-factor model.

The three-factor EFA model with measurement
invariance restrictions is nested under the three-
within three-between factor model without
measurement invariance restrictions in the second
series. According to the Satorra and Bentler

(2001) chi-square difference test, the hypothesis of
measurement invariance should be rejected (chi-
square difference = 582.7, df = 103, p < 0.001).
However, as the RMSEA nevertheless indicates
close fit for the restricted model as well, we still
prefer the measurement invariant EFA model.

Rotation results

A substantive interpretation of the common factors
that is valid across all clusters requires measurement
invariance. To facilitate the interpretation of the
three-factor two-level EFA model with measurement
invariance (Equations 5 and 6), we use the oblimin
criterion to rotate the solution (Browne, 2001). As
student-teacher relationship factors are likely to be
correlated, we opted for oblique rotation, rather than
orthogonal. Rotation results are given in Table 2.

From Table 2 it appears that almost all conflict,
dependency, and closeness items have their highest
loadings on the first, second, and third factor. We
have therefore named these factors ‘Conflict’,
‘Dependency’, and ‘Closeness’. Oblique rotation
yields correlated factors. The correlations between
the factors Conflict and Dependency (0.39 within
level and 0.76 between level), and between Conflict
and Closeness (-0.40 within level and -0.64
between level) are substantial. Conspicuously, the
within-level correlation between Dependency and
Closeness is positive (0.17), albeit small, whereas
the between-level correlation is negative (-0.23),
showing a difference in the sign of the correlations
between judgements of pupils on the one hand and
judgements by teachers on the other hand. We note
that Koomen et al. (2011) found a zero correlation
between Dependency and Closeness, but they
neglected the two-level structure of the data and
conducted a confirmatory factor analysis with
simple structure.

Discussion

In this paper, we have proposed and illustrated two
EFA procedures to determine the dimensionality of
multilevel discrete data. The first procedure does
not involve any across level restrictions, leaving
room for different within-level and between-level
factor solutions. In that case, the within-level factor
loadings (A,,) should be interpreted as a summary
of all possible individual cluster factor loadings.

In the second procedure we assume measurement
invariance, to make sure that factors have the same
interpretation across all clusters. This assumption
entails across-level invariance of within-level and
between-level factor loadings (A, = A}).
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Without the measurement invariance restriction, between test scores are not completely attributable to
common factors may not have the same differences in the trait(s) one intended to measure. In
interpretation across clusters, or across levels, giving  our student-teacher relationships example, different
room to so-called ‘cluster bias’ (Jak et al., 2012a, STRS item scores should be fully explained by
2012b). In the presence of cluster bias, differences differences in scores on the common factors that

Table 2 Exploratory factor analysis of 28 items of the Student-Teacher Relationship Scale (STRS; 649 teachers and 1493 pupils): Oblimin

rotation of a three-factor two-level model with measurement invariance

Within- and between-factor loadings (A, = A)

Items Conflict Dependency Closeness

Closeness items

| share an affectionate, warm relationship with this child -0.485 0.050 1.415
If upset, this child will seek comfort from me 0.080 0.052 1.131
This child is uncomfortable with physical affection or touch from me 0.013 -0.038 0.601
This child values his/her relationship with me -0.206 -0.045 1.200
When | praise this child, he/she beams with pride 0.190 -0.066 0.780
This child is overly dependent on me -0.442 0.379 0.706
This child tries to please me -0.009 0.014 1.031
Itis easy to be in tune with what this child is feeling 0.113 0.076 1.315
This child openly shares his/her feelings and experiences with me -0.514 0.107 1.104
This child allows himself/herself to be encouraged by me 0.014 0.147 0.746
This child seems to feel secure with me -0.466 -0.067 1.225
Conflict items
This child and | always seem to be struggling with each other 1.369 -0.071 -0.127
This child easily becomes angry with me 1.293 0.059 0.106
This child feels that | treat him/her unfairly 1.313 0.024 -0.118
This child sees me as a source of punishment and criticism 0.943 0.240 -0.423
This child remains angry or is resistant after being disciplined 1.477 0.022 0.134
Dealing with this child drains my energy 1.957 -0.014 0.067
When this child is in a bad mood, | know we're in for a long and difficult day 1.583 0.176 0.163
This child’s feelings toward me can be unpredictable or can change suddenly 1.572 0.133 -0.117
Despite my best efforts, I'm uncomfortable with how this child and | get along 1.187 0.176 -0.838
This child whines or cries when he/she wants something from me. 0.644 0.713 -0.160
This child is sneaky or manipulative with me 0.918 0.099 -0.390
Dependency items
This child reacts strongly to separation from me 0.050 0.672 0.069
This child is overly dependent on me -0.373 1.609 -0.203
This child asks for my help when he/she really does not need help 0.241 0.619 0.099
This child expresses hurt or jealousy when | spend time with other children 0.525 0.650 -0.022
This child fixes his/her attention on me the whole day long 0.039 0.898 0.209
This child needs to be continually confirmed by me 0.156 0.685 0.028
Within-factor correlations (®,) Between-factor correlations ( ®,)
Conflict Dependency Closeness Conflict Dependency Closeness
Conflict 1.000 0.201
(1.000)
Dependency 0.391 1.000 0.314 0.857
(0.757) (1.000)

Closeness -0.402 0.173 1.000 -0.197 -0.114 0.466

(-0.644) (-0.228) (1.000)

* Correlations are given within parentheses; factor loadings > 0.6 are in bold type set; residual variances (8,) not shown.
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we named Conflict, Dependency, and Closeness. If
there is cluster bias then apparently other between
factors, such as the sex of the teacher or size of the
class, also directly affect the STRS item scores.
Cluster bias in item responses would then invalidate
comparisons of groups that differ in, for example,
teacher sex or class size.

In the illustrative analysis of the STRS data, the
hypothesis of measurement invariance in the three-
factor two-level EFA is rejected by the chi-square
difference test (WLSM chi-square difference = 582.7,
df =103, p <0.001). With higher dimensional models,
the hypothesis is rejected as well (four-factor WLSM
chi-square difference = 562.8, df = 124, p < 0.001;
five-factor WLSM chi-square difference = 603 .4,

df = 143). This suggests that measurement invariance
does not really hold (in the population). However,
considering the fit criteria that indicate close fit, we
still prefer the three-factor measurement invariant
EFA model, especially because the measurement
invariance restriction is substantively important.
Without this restriction we cannot validly interpret
the within-level EFA results, and therefore we are
willing to sacrifice exact fit for interpretability.

The evaluation of fit of multilevel models to discrete
data is still subject to study, with inconclusive
results, both in the structural equation modelling of

discrete data and in the structural equation modelling
of multilevel data. Fit measures of multilevel models
express the combined (mis)fit at multiple levels. As
there are many more observations at the within level
than at the between level, the within level has more
influence on the overall fit than the between level.
Ryu and West (2009) and Boulton (2011) proposed
level-specific fit measures for multilevel structural
equation modelling (e.g., SRMSR within and
SRMSR between). As yet, it is most sensible not to
rely on a single fit criterion, and to take the within-
and between-level sample sizes into account.

In the present study we combined the challenges
of multilevel data and discrete data. Our example
analysis shows that it is possible to conduct

EFA with multilevel discrete data, that it yields
interpretable results, but that the evaluation of fit is
partly subjective.
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