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The study of language processing in the brain requires taking into consideration several

of the properties of the linguistic stimuli and the operations the brain ought to perform in the

course of processing itself. In the course of this dissertation, computational linguistic models

are used to study: the properties of the stimulus that the brain is sensitive to, the structures

that the brain constructs in order to comprehend it, and the putative basic operations that

make processing possible.

4 Chapter 1 Introduction



The primary goal of this dissertation is to investigate the information types, structures,

and operations that make up the sophisticated machinery underpinning natural language

processing. The starting intuition is that the brain does not support a simple sequential

pipeline where one type of information is processed at a time, and one type of representation

is computed after another, but rather that it is composed of a multitude of co-existing and

potentially synchronous and interacting processes.

In this dissertation, these intuitions are investigated using naturalistic stimulus paradigm

data and computational linguistic modeling to link brain and behavioral data to different types

of sequential properties of the stimulus, structural analysis, and basic processing operations.

The reason for taking such an approach originates from the acknowledgment that language is

a highly complex, yet structured, phenomenon, matched by the equally high complexity of the

neural correlates that support it.

Properties of the stimulus – in the context of this dissertation – consist of the information

that the brain extracts from the sequence of sounds or graphic signs that make up the stimulus

itself. In the course of the dissertation, these properties are analyzed at the level of sequences

of phonemes, words, and grammatical classes. Besides being sensitive to these sequential

properties, the brain is also likely to perform a structural analysis of the incoming linguistic

material. The brain constructs a network of relations between the lexical units recognized

from the input stimulus. In the context of this dissertation, by basic operations, I refer to the

retrieval of lexical information from the mental lexicon and the integration of this information

in larger representations in the course of the analysis of the incoming linguistic stimulus.

1.1 Levels of language processing in the brain
In this section, I will further elaborate on the different aspects of language processing in the

brain that are the focus in the present dissertation (see Figure 1.1). First I will discuss the fact

that sequential properties of the stimulus may be decomposed by the brain in several types of

information encompassing at least the surface word sequences, the sequences of grammatical

categories these words assume in their context, and their phonotactic structure, at least when

presented as a speech signal. I will then introduce the concept of syntactic structural analysis,

which the brain is supposed to undertake to reach a sentence-level interpretation of the input;

and the fact that these structures can also be decomposed in different typologies. Finally, I

will introduce a somewhat orthogonal topic with regards to the types of operations that are

assumed to enable the processing of the stimulus and the computation of its sentence-level

interpretation: lexical retrieval and lexical integration into context.
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Figure 1.1: Conceptual map of the different aspects of language processing in the brain that will
be considered and investigated using a combination of naturalistic stimuli, brain imaging data, and
computational linguistics.

1.1.1 Properties of the sequential stimulus
(1) The man saw a brown dog in the park.

Sentence 1 is a fluent grammatical sentence in English. It consists of a string of symbols

that, when spoken, unfold in time. When tokenized, it is composed of 9 word forms. Besides

its surface form, Sentence 1 is composed by a sequence of 5 distinct grammatical categories

(determiner, common noun, finite verb, adjective, and preposition)1, and 17 distinct phonemes

(Table 1.1).

The man saw a brown dog in the park.
w1 w2 w3 w4 w5 w6 w7 w8 w9
DT NN VBD DT JJ NN IN DT NN
[D@] [mæn] [sO:] [@] [braUn] [dAg] [In] [D@] [pA:k]

Table 1.1: Sentence 1 can be seen as a sequence of word forms, part of speech tags, and phonemes.

Although a natural language sentence is a linear sequence of surface forms, it allows

being decomposed into different levels of information at the phrasal, word, and sub-word
1DT = determiner, NN = noun singular, VBD = verb past tense, JJ = adjective, IN = preposition. From Penn

Treebank II Part-of-Speech tag set (https://www.clips.uantwerpen.be/pages/mbsp-tags).
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level. These levels of information are what we might call, following traditional linguistic

schools: syntax, lexico-semantics, and phonology (Jackendoff, 2003, 2007). The sentence

as a sequence of words co-exists with the sentence as a sequence of phonemes and the

sentence as a sequence of grammatical categories. Models of language processing typically

decompose language into these co-existing levels of information (Hagoort, 2013a). These

different levels are probably processed, at least partially, separately by the language faculty

(Hagoort, 2005; Vigneau et al., 2006). It is, therefore, no surprise that the study of the neural

basis of language comprehension has adhered to studying one of these types of information at

a time. Kemmerer, 2014 offers a clear overview of the state of the art in each sub-discipline in

the cognitive neuroscience of language.

In this dissertation, the neural bases of the three levels of information processing during

language comprehension are investigated simultaneously, within one experiment. I want to

know whether it is possible to fraction the neural signature of language processing of natural

speech into different types of sequential information.

1.1.2 Structural analysis
Besides the multiple levels of sequential information mentioned above, language comprehen-

sion requires the construction of syntactic structures. From a neurobiological stance, sentential

structural analysis is evidenced by the observation of the effects related to the syntactic struc-

ture of the stimulus on the patterns of brain activity involved in language processing. The

neurolinguistic literature reports the existence of a network of mostly left-lateralized cortical

regions whose activity appears to be modulated by the presence of linguistic stimuli that

require, or allow, syntactic structural analysis. These areas usually include the left inferior

frontal gyrus (IFG) (Caramazza & Zurif, 1976; Friederici et al., 2005; Tyler et al., 2008;

Pallier et al., 2011; Zaccarella & Friederici, 2015; Zaccarella et al., 2015), the left posterior

superior temporal gyrus (pSTG) and the left anterior temporal pole (ATP) (Mazoyer et al.,

1993; Stowe et al., 1998; Friederici et al., 2000; Humphries et al., 2006, 2007; Baron et al.,

2010; Baron & Osherson, 2011; Bemis & Pylkkänen, 2011, 2013; Westerlund et al., 2015;

Bemis & Pylkkänen, 2013).

The involvement of several areas in structural analysis raises the question of whether

these areas are sensitive to different types of structures or if the whole process is composed

of a set of sub-processes. In this dissertation, I compare two types of syntactic structures

represented by phrase-structure grammar (PSG) and dependency grammar (DG). These

two grammars differ in several aspects. DG builds structures solely on the words and on binary

relations holding between them. In contrast, PSG relies on grouping words in phrases that

can, in turn, be grouped in larger phrases introducing a hierarchical structure composed by

1.1.2 Structural analysis 7



both surface forms (the words of the sentence) and non-observable abstract nodes that are

assumed to be computed by the human brain. DG relates words through head-dependent

relations, similar to predicate-argument structures. For this reason, it captures more closely

the argument structure of the sentence. On the other hand, PSG captures hierarchical relations

between phrasal groupings within the sentence.

In this dissertation, I will compare the predictive power of measures derived from these

two types of grammars with regard to the activity in syntax-sensitive regions (left IFG, pSTG,

ATP). These analyses are aimed to investigate the involvement of these areas in structural

processing, and identify which areas are more sensitive to which type of structural description

(PSG or DG). Data outside the neuroimaging domain can provide another way into the

exploration of the type of structural analysis performed by humans during language processing.

If the effects of structural analysis are detectable from patterns of brain activity, effects might

also be noticed in behavioral or eyetracking data. In this dissertation, besides neuroimaging

data, I also analyze patterns of eye movement during natural sentence reading, by testing the

hypothesis that eye movements during reading reflect online syntactic analysis.

1.1.3 Basic operations
Cognitive and neural models of language comprehension typically distinguish two fundamental

functional processes: retrieval and integration (Jackendoff, 2003; Hagoort & Levelt, 2009;

Friederici, 2011; Kemmerer, 2014). First, the information relative to the incoming word is

retrieved from memory. Memory refers to the long-term representation of word meaning from

a putative “mental lexicon” (Damasio et al., 1996; Caramazza, 1996; Ullman, 2012). Second,

an integration mechanism is needed that allows for these elements to be combined with each

other in meaningful ways.

The distinction between retrieval and integration can be traced back to the observation

that the language system seems able to deal with a virtually infinite number of utterances,

which in turn seem to be composed by a limited, although flexible, set of primitives, such

as phonemes, morphemes, words, and phrases. By storing these primitives in a hypothetical

partition of long-term memory, recalling them when necessary, and combining them in

a seemingly unbound number of configurations, humans can deal with a large variety of

messages in a parsimonious, flexible and creative way. The present dissertation frames this

distinction in terms of contextualization of lexical items, based on the assumption that the

meaning of a word depends both on its lexical semantics and on the context in which it is

embedded.

(2) In order to open a new account, you should go to a bank.
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(3) A fisherman is sitting with his rod on the bank of the river Thames.

Presented with Sentences 2 and 3, humans distinguish the meaning of bank as "building

or financial institution" or as "the shore of a river" depending on whether it is encountered

in the context of "In order to open a new account, you should go to a bank" or "A fisherman

is sitting with his rod on the bank of the river Thames". The string "a new account" steers

the interpretation towards the financial domain, whereas the string "a fisherman" acts as bias

towards a river-related interpretation of the word bank.

It has been suggested that the human brain creates representations of words that are

different according to such contextual cues (Willems & Casasanto, 2011). Brain activity

related to language comprehension is composed of processes that involve different areas of

the brain at different moments in time following the onset of the stimulus (Friederici et al.,

2000; Friederici, 2002; Hagoort, 2005). It is, therefore, capital to show that the putative

similarity between a model and a brain process regards not only areas associated with such

process, but also that it does so in a time frame that is compatible with the time course

of language processing. For this reason, I use a magnetoencephalographic (MEG) dataset

collected during sentence reading. MEG records brain activity at the level of milliseconds,

and with a reasonable anatomical resolution, making it ideal for a study interested in the when,

and not only, the where of a specific neural process.

Binder et al., 2009 and Binder & Desai, 2011 provide a comprehensive picture of the

cortical areas substantiating semantic memory. Memory, semantic memory in particular, is

associated with the lateral portion of the left temporal cortex (middle temporal gyrus), parts

of the inferior temporal gyrus, and the inferior parietal cortex. An important role is also

hypothesized for the anterior portions of the temporal lobe (anterior temporal pole, ATP). The

involvement of the ATP is confirmed by both studies on semantic dementia (SD) (Hodges

et al., 1992; Rogers et al., 2004), and by a large neuroimaging literature (Tyler et al., 2004;

Bright et al., 2005; Moss et al., 2004; Rogers et al., 2006). These findings were summarised

by Patterson et al., 2007 and led to the formulation of the hub and spoke model, which posits

that concepts are represented by a network of sensorimotor representations converging in

the ATP which acts as a hub collecting and controlling modality-specific features to produce

supra-modal representations. The input word lexical meaning is retrieved from semantic

memory approximately between 150 and 300 ms after the onset of the word itself (Friederici,

2002; Humphries et al., 2007).

Integration operates on the representations retrieved from semantic memory, and in its

most basic formulation, it consists of merging two linguistic tokens (e.g., two words) and

creating a larger unit, such as a phrase or, more simply, a bi-gram. If one takes the concept

of context in to consideration, integration can be seen as an operation that takes a token and

1.1.3 Basic operations 9



embeds it in the context represented, for instance, by the other tokens making up the sentence

in which it is presented. Brain imaging and brain lesion studies suggest that the inferior frontal

gyrus, in interaction with areas in the perisylvian and temporal cortex, plays an essential role

in lexical integration (Hagoort, 2005, 2013a). The anterior temporal areas have also been

proposed to be involved in integration. For instance, several works have reported an increase

in activity in these areas during the reading or listening of sentence as compared to word lists

(Mazoyer et al., 1993; Stowe et al., 1998; Friederici et al., 2000; Humphries et al., 2006, 2007),

under the assumption that the former condition requires word integration in larger syntactic

units as compared to the later. This is confirmed by another series of studies which focused

on simple phrasal processing, consisting of the composition of a wide range of phrasal and

syntactic compositional types and cross-language and modality (Baron et al., 2010; Baron &

Osherson, 2011; Bemis & Pylkkänen, 2011, 2013; Westerlund et al., 2015). As for its latency,

integration is supposed to take place between 300 and 500 ms after stimulus onset (Berkum et

al., 1999; Hagoort & van Berkum, 2007; Hagoort et al., 2009; Kutas & Federmeier, 2011).

1.2 Computational modelling

Computational
Modelling

Stochastic
Language
Models

phonemes word
forms

Part
of

speech

Syntactic
Grammars

dependency
grammar

phrase-stricture
grammar

DL Word Embeddings

non-contextualized contextualized

Figure 1.2: The different types of computational linguistic models used in this dissertation. The
structure of this conceptual map reflects that of Figure 1.1.

Computational models are used in order to derive word, sub-word, or sentential quanti-

tative descriptors of the stimuli presented to the participants of the experiment. The models

fall under several different typologies and are all staples of the contemporary computational

linguistic practice. The measures derived from such models are then employed as predictors or
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correlates of neural or behavioral activity elicited by the processing of the naturalistic stimuli

described above (see Figure 1.2).

Figure 1.3: Schematics of the approach combining computational modeling and naturalistic stimuli to
the answering of questions about natural language processing in the brain.

Figure 1.3 represents schematically the rationale behind using computational modeling

to study language processing in the brain. Starting from a question concerning the type of

properties or representations involved in language processing in the brain, a computational

model is selected under the assumption that it might be a suitable approximation of those

properties or representations. A computational model, therefore, acts as a computational

hypothesis regarding an aspect of the neuro-cognitive phenomenon under analysis. Measures

derived from computational modeling of the stimuli (introduced in this section) are mapped

onto brain activity collected during the presentation of the same stimuli. This mapping can

be achieved through several different functions that can consist in predicting brain activity

given the computational measures (for instance using linear regression, like in a GLM) or

by measuring the level of correlation between the way the brain and the model represent the

stimulus space (using, for instance, representational similarity analysis, RSA presented by

Kriegeskorte et al., 2008). The hypothesis that the model is a good approximation of the

neural processes of language can then be quantified in several ways. For instance, in the

case of an RSA, Pearson’s correlation or other geometrical measures are used. In the case of

predictive approaches, the prediction error or the analysis of the β-coefficients relative to the

computational predictors are generally adopted.

1.2 Computational modelling 11



The models presented here consist of stochastic language models, syntactic parsers, and

word embeddings. Stochastic language models are used to model the sequential properties

of the stimulus. Syntactic parsers are used instead to address questions about the structural

analysis of the sentence that the brain is supposed to carry out. Word embeddings instead are

adopted in order to study the types of operations and representations the brain employs during

language processing. The following paragraphs will provide a schematic introduction of these

models. More extensive descriptions will also be provided in further chapters.

1.2.1 Stochastic language models
In this dissertation, language models are implemented as n-order Markov models, also known

as n-gram models, trained on a large collection of text. They are based on the simplifying

assumption that the probability of word wt depends on the previous two words only, that is,

P(wt|w1, ..., wt−1) is reduced to P(wt|wt−2, wt−1).

For instance, in Sentence 1 the probability of encountering the word saw in the context

provided by the sentence itself is given by P(saw|the, man), which is the conditional prob-

ability of saw given the bi-gram the, man. In other words, a stochastic language model of

Sentence 1 describes how likely it is to read (or listen to) the word form saw following words

the and man. Similarly, indefinite article a is assigned conditional probability P(a|man, saw).

The probability of sentence initial tokens, such as the in this case, can be expressed in this

framework by assuming the existence of place-holder symbols. Therefore the conditional

probability of The is P(The|START, START).

Descriptors of the sequential properties of the stimulus in accordance with a language

model are then computed using stochastic measures such as surprisal, perplexity and entropy.

Surprisal is computed as the negative logarithm of the conditional probability of wt given

wt−2, wt−1:

surprisal(wt) = − log P(wt|wt−2, wt−1)

If observing a word w has probability equals 1 (meaning that it is the only word that

can be observed in that given moment), its surprisal will be 0. Conversely, the occurrence of a

word that was considered almost impossible (i.e., with a probability close to 0) corresponds

to a value of surprisal approximating infinite. In other words, surprisal can be thought of

as the degree to which the perceived word wt deviates from expectation: the less expected

a word, the higher its surprisal. For the purpose of this dissertation, I will rely mainly on
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perplexity, consisting of an exponential transformation of the surprisal of encountering wt

given wt−2, wt−1.

1.2.2 Syntactic parsers
I distinguish between two main approaches to characterize the syntactic structure of a sentence:

phrase-structure grammars (PSG), and dependency grammars (DG). Given a sentence,

both grammars produce a hierarchical structure linking or grouping the words in a structure

rooted in a governing node (the root node).

PSG defines parse structures of sentences as trees composed by terminal and non-

terminal nodes. Non-terminal nodes correspond, usually, to phrasal categories as defined

by the grammar in use, while terminal nodes – the leaf nodes of the tree – are assigned to

the surface forms of the parsed sentence, i.e., its words. Phrase nodes are assigned labels

corresponding to syntactic phrasal categories such as Noun phrase (NP), Verb phrase (VP),

Adverbial phrase (AP), and Determiner phrase (DP).

ROOT

S

NP

Det

The

N

man

VP

VBD

saw

NP

NP

Det

a

NP

Adj

brown

N

dog

PP

P

in

NP

Det

the

N

park

Figure 1.4: Phrase-structure parse of Sentence 1.
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Figure 1.4 displays the parse of Sentence 1. The structure contains eight labeled phrase

structures, including S, and constitutes a nested binary-branching tree. The words of the

sentence (the, man, saw, a, brown, dog, in, the, and park) correspond to the terminal nodes.

Following the structure of the parse tree in a top-down fashion: S branches into a NP and VP

(noun and verb phrase, respectively). The left-hand child (NP) is composed of a determiner

leaf node the and a noun man; whereas the right-hand child of S (VP) has in turn as left-hand

child a terminal node (the finite verb saw) and as its right-hand side child another noun phrase

(NP). This last NP branches off in another NP and in a prepositional phrase (PP). These two

last phrases both split in a left-hand terminal child (respectively a and in) and in a NP as

right-hand child. The latter two are both composed of terminal nodes (brown, dog, the, and

park).

DG describes a sentence as a set of relations between pairs of words – a head and

a dependent – composing it. The relations can be called dependencies and correspond to

grammatical functions. The relations, and the words they link, are the only elements composing

the structure (Tesnière et al., 2015; Mel’čuk, 1988; Nivre & Kübler, 2009). In a dependency

structure, the finite verb is often taken to be the structural hub of the sentence. All other words

are either directly or indirectly connected to the verb by dependencies.

The man saw a brown dog in the park

ROOT

det

det

detnsubj

nmod

nobj

amod
amod

Figure 1.5: Dependency parse of Sentence 1.

Take for instance Sentence 1, the dependency graph in Figure 1.5 displays head-

dependent relations holding the sentence together according to DG. As a way of example, the

main verb (saw) acts as head for man and dog. It is worth noting how a dependent of one

dependency relation can in turn be the head of another. For instance dog, one of the dependents

of saw, is in turn head of brown, and of article a. Dependencies can be instantiated between

words far apart in the sequential structure of the sentence.

It derives that relations holding between words are captured in structurally different

manners by dependency parses and phrase-structure parses of the same sentence. A dependency
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structure directly captures the binary argument relations by means of a simple directed edge,

whereas a phrase-structure relies on intervening higher order phrases.

1.2.3 Word embeddings
Linguistic units, such as words, can be represented by vectors of real numbers populating a

high-dimensional space. This is achieved by distributional semantic models that leverage prop-

erties of the words and the contexts they appear in. For the purpose of this dissertation, I use

two broad typologies of computational models developed for word representation generation:

non-contextualized models and contextualized models.

Non-contextualized models generate representations that are independent from the

context (sentence, paragraph, etc.) in which the represented word w is located. In this disser-

tation, I use word2vec (Mikolov et al., 2013) as model to generate non-contextualized word

embeddings. It consists of a shallow, two-layer neural network. Once trained, it creates a

high-dimensional vector space populated by word vectors, which are positioned in the space

in such a way that words that share similar semantic and syntactic properties lay close to one

another. Given Sentences 2 and 3 above, the model will return 27 embeddings (13 for each

word in Sentence 2 and 14 for each word in Sentence 3). Of these 27 embeddings, the embed-

ding of the word bank in Sentence 2 ( ~bank
w2v
@s1 ) and of bank in Sentence 3 ( ~bank

w2v
@s2 ) will be

exactly the same, and the same would be the case for the four occurrences of the determiner the.

A contextualized model instead (Peters et al., 2018; Devlin et al., 2018; Melamud et

al., 2016; McCann et al., 2017; Peters et al., 2017) assigns representations ~w that depend

on the textual context in which the represented word w is located. The model used in this

dissertation – ELMo (Peters et al., 2018) – is a recurrent bi-directional language model (biLM).

The representation ELMo generates for a word consists of a concatenation of the activation

of its two recurrent layers, and since the recurrent layer are designed to receives information

about both the word w and the context it appears in, the representation (embedding) of word w

is contextualized. For this reason, the embeddings that ELMo generates for bank in Sentence

2 ( ~bank
ELMo
@s1 ) will be different from the embedding of bank in Sentence 3 ( ~bank

ELMo
@s2 ), given

the different contexts in which the two tokens of the same word are found.
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1.3 Methodological notes
This dissertation aims to investigate the multiple levels that compose language processing

from a sequential point of view, as well as from the point of view of the syntactic structures

and of the types of operations involved. In order to do so, I have decided to adopt two innova-

tive and complementary methodological paradigms: naturalistic stimuli and computational

linguistic modeling. The naturalistic stimulus paradigm consists of the collection of data

from participants that where presented with stimuli and conditions that resemble as much

as possible real-life situations, such as narrative listening or reading, and with little or no

experimental task forced onto them. This is in stark contrast with other approaches that rely

on carefully constructed conditions and stimuli. Computational modeling – at least in the way

it is meant here – refers to a series of tools adopted from computational linguistics and natural

language processing (NLP), which are used to provide a detailed quantitative description of

the stimulus.

Baggio & Hagoort, 2011 argue that the hypotheses underpinning theoretical models

of the neuro-cognitive architecture of language processing are based on a design stance

regarding how the brain must be organized and the dynamics that allow for it. They point

out that it is difficult to test this hypothesis-derived architecture by using only task-based

experiments such as vowel discrimination or lexical decision because such artificial tasks

cannot be directly related to components of the cognitive architecture of the language system.

In this dissertation, I put forward the idea that computational linguistic modeling applied to

naturalistic stimuli allows making hypotheses about the architecture of the language system

more testable. The main methodological contribution of computational modeling relies on the

fact that it allows avoiding the limitations of task-oriented studies by exploiting the richness

of naturally occurring sentences and by relying on a flashed out model of the process I want

to investigate. In other words, computational linguistic modeling provides a more direct

implementation of the process and not on the assumption that the process can be decomposed

in orthogonal sub-processes that can be controlled by specific experimental tasks.

1.3.1 Limits of task-oriented paradigms
The limits of a traditional task-oriented approach to the study of language processing in the

brain might be better understood through an example. Let us suppose that someone wants to

answer the question of whether a particular region of interest in the brain (ROI) is sensitive

to the phonemic structure characteristic of human languages. Traditional non-naturalistic

paradigms might approach the question by presenting subjects with carefully constructed
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batteries of stimuli falling under different a priori defined conditions. In one condition, subjects

might be presented with sequences of phonemes having properties matching those of their

native language. Then they might also be presented with baseline or control conditions

consisting in the presentation of random sequences of phonemes explicitly violating these

properties and with white or pink noise sounds. Then the question is answered by comparing

the ROI activity between these conditions. For instance, if the activity recorded during the

structured phonemic sequences condition significantly diverges from activity recorded during

the baseline conditions (e.g., noise or unstructured sequences), then the experimenter would

tend to give a positive answer to the research question.

Such an approach has evident limitations. For instance, given the unfamiliarity with the

tasks (few of us are expected, for instance, to listen to random lists of phonemes or to noise

daily) subjects in this sort of experiment are often asked to attend to an ancillary task whose

sole purpose is to ensure their attention.

Moreover, the problem with this kind of approach is that it is grounded on the assumption

that language processing can be decomposed into isolated sub-processes and the entailed

assumption that decomposing is possible at the level of the task or stimulation. This requires

the assumption that the task and stimuli, carefully constructed to tap into a specific process, do

not influence other processes, and that other processes do not indirectly influence the target

process under examination. Similarly, it requires the assumption that the observed activity

or behavior is the result of the linguistic conditions or task intended to elicit them, and not a

by-product of the ancillary task adopted to ensure attention to such unfamiliar stimuli.

Moreover, this type of paradigm requires a leap of faith consisting of believing that

language use (processing and production) under normal circumstances and language use under

these restrictive experimental conditions involves the same processes supported by the same

cognitive machinery and implemented by the same neural substrate.

1.3.2 Naturalistic stimuli
The rationale behind the use of naturalistic stimuli is the intuition that different sub-processes,

types of information, and structures may be more directly studied by presenting the participants

with a linguistic task as close as possible to their everyday experience, and by modelling the

aspects of language processing one is interested in using current computational linguistic

formalisms.

Unlike a task-oriented paradigm, naturalistic stimulus paradigms are not designed to

elicit neural responses of a particular sub-process (and suppress or control for others) of

language processing. On the contrary, the goal, or at least the accepted outcome, is the

engagement of the whole neural machinery presumably responsible for language processing.
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To put it in another way, since the stimuli are selected to be as close as possible to a real-life

processing situation (reading, listening to a narrative), the elicited activity of the language

processing system in the brain should be as similar as possible to the activity during the

real-life homolog of the naturalistic stimulus itself. If the target is to collect and observe brain

activity correlated to processing of language, naturalistic stimuli should provide a type of

data that, although less controlled, is more ecologically valid than the one collected using

task-oriented experimental paradigms.

The approach is in stark contrast to the task-oriented paradigm. The burden of the

distinction between target processes in the task-oriented approach is carried by the tasks,

stimuli, and stimulation paradigm in general. On the other hand, the task of distinguishing the

effects of the subprocess(es) in the naturalistic-paradigm cannot be called upon the task, since,

as I mentioned above, the task, or rather the lack of one, is meant to elicit all sub-processes

involved in language understanding. In order, therefore, to tackle a specific process, naturalistic

paradigms have to rely on the modeling of the stimulus itself. In the studies presented in this

dissertation, modeling takes the form of several computational linguistics instruments, and it

is used to generate quantitative descriptors of the stimulus, quantitative descriptors, which are

then used as predictors or correlate of brain activity.

The descriptive powers of the measures compensate for the apparent uncontrolled nature

of the naturalistic data. In other words, the burden of disentangling different components of a

processing phenomenon is not posed on tasks or conditions forced onto the participants, but

on the descriptors modeling the stimulus.

1.4 Research question(s)
Language processing is a complex phenomenon that requires the involvement of distinct
sub-processes implemented by the human brain. In this dissertation I investigate the
nature of these sub-processes, and, more specifically, whether they are implemented by
distinct brain areas and signals. I analyse sequential, syntactic and operational sub-
processes, using naturalistic language stimuli and computational modeling.

More specifically, with regard to the sequential properties of the stimulus, I intend

to address the questions of whether the brain is sensitive to the stochastic properties of the

stimuli captured by perplexity estimated by stochastic language models. Moreover, in line

with the sub-processes question above, I am interested in assessing whether the sequential

stochastic properties of the phonemes, words, and grammatical categories making up the

stimulus are processed by distinct areas within the brain language network. The alternative
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hypothesis is that there is a single brain system responsible for processing the sequential

stochastic properties of the stimuli.

As for the question regarding syntax, the present dissertation aims to assess the set of

cortical areas sensitive to structural processing. Moreover, the focus will also be on what type

of grammar better describes these structures (e.g., DG vs. PSG), and whether different areas

are sensitive to different types of grammars.

Finally, concerning the sub-operations supporting language processing, the question

is whether lexical retrieval and integration can be formalized in terms of contextualization

of linguistic representations (i.e., word embeddings). I want to asses whether contextualized

word embeddings model integration processing, and conversely, whether non-contextualized

word embeddings model lexical retrieval in the brain.

1.5 Structure of the dissertation
Central to this dissertation are both theoretical questions and methodological considerations

exposed in the previous sections of these introductory notes. The remainder of the dissertation

is composed of chapters derived from a series of independent studies, each of which centered

around one of the theoretical questions concerning sequential processing, hierarchical analysis,

and basic operations.

Chapter 2 introduces the naturalistic stimulus datasets that will be used in the subsequent

chapters. These datasets include an fMRI, an eyetracking and an MEG dataset. The fMRI and

eyetracking data consist of naturalistic stimulus paradigm data, whereas the MEG data were

collected during sentence reading.

Chapter 3 deals with the sequential properties of the stimulus and how the brain processes

different levels of information. The analysis is conducted using measures derived from

stochastic language models as predictors of BOLD activity at the whole-brain level.

Moving on, Chapters 4 and 5 present studies aimed at investigating the structural analysis

of the incoming stimulus. After focusing on the sequential nature of the stimulus in Chapter 3,

these chapters answer the question of whether the brain computes syntactic representations

of the sentences that go beyond the mere sequential nature of the stimulus. Chapter 4 uses

the same fMRI data as Chapter 3 and adopts measures derived from two types of syntactic

structures as predictors of brain activity, both at the whole-brain level and at the level of single

regions of interest. This chapter aims to elucidate the difference between argument structure

– approximated by dependency grammar – and phrase structure – approximated by phrase-

structure grammar – as hypotheses regarding the nature of the structural analysis performed by

the brain. Chapter 5 instead investigates the hypothesis that patterns of eye movements during
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reading reflect, to a certain extent, the structure of the sentences as described by dependency

structure of the sentences composing the stimulus.

Chapter 6 tackles an aspect of language processing that is somehow orthogonal to the

ones addressed in the previous chapters. Starting from the assumption that the processing of

the stimulus proceeds from the lexical to the sentential level, the chapter focuses on two basic

operations supposed to bridge these two aspects: lexical retrieval and contextual integration.

In order to do so, I use MEG data and compare them, both over anatomical regions and time,

with the computational representations of the incoming stimulus, both at the lexical and at the

contextual level.

Chapter 7 concludes the dissertation with some consideration on both the theoretical

and methodological relevance of the studies presented in this dissertation.
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This chapter contains the description of the datasets used in the studies included

in the present dissertation. They consist of a functional magnetic resonance imaging, a

magnetoencephalography, and an eyetracking dataset. Both the fMRI and eyetracking datasets

were collected while subjects were presented with narrative texts. The MEG data were instead

collected while participants were asked to read complex sentences. These datasets were

used following the methodological choice of adopting a combination of naturalistic stimuli

paradigm and computational linguistic modeling, as explained in the previous chapter.

This chapter is partially based on:

Lopopolo, Alessandro, Stefan L. Frank, Antal van den Bosch, Anabel Nijhof and Roel M. Willems. 2018. The

Narrative Brain Dataset (NBD), an fMRI Dataset for the Study of Natural Language Processing in the Brain.

Proceedings of the Eleventh International Conference on Language Resources and Evaluation 2018. LREC, Miyazaki,

2018.
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The methodological stance – expressed in Chapter 1 – calls for the adoption of data

collected during naturalistic language stimulation, i.e., during listening or reading complex,

close to real life, sentences or, when possible, long articulated narrative texts. The rationale

behind this choice is the intuition that the various processes involved in language comprehen-

sion might be directly investigated by modelling their neural or behavioral correlates under

conditions as close as possible to the ones they are likely to encounter in their everyday life. In

other words, as mentioned in Chapter 1, instead of controlling for these processes by imposing

artificial tasks to the subjects, this paradigm lets them process language as they might do in

their everyday life, and then instead controls for variability and confound factors by carefully

modelling them introducing computational predictors.

In this chapter, I introduce and describe the three different datasets I used in the course

of the studies included in the present dissertation. They consist of three different sources of

data (functional magnetic resonance imaging, eyetracking, and magnetoencephalography),

and all but one were collected during the presentation of narrative texts. The fMRI dataset was

collected while subjects were asked to passively listen to three Dutch narrative texts, while

the eyetracking dataset was collected while a different pool of participants was asked to read

a different set of Dutch narrative texts. Finally, the MEG data were acquired while Dutch

complex sentences were visually presented to the participants.

2.1 fMRI narrative brain dataset

2.1.1 Introduction
The present fMRI dataset was created by recording the brain activity of 24 native speakers of

Dutch during passive listening to three Dutch narrative texts: excerpts from audiobooks. This

task and these stimuli are intended to be as naturalistic as possible. This dataset has already

been used in several neuroscientific studies combining computational linguistic models and

brain imaging analysis techniques, as exemplified in Section 2.1.4.

2.1.2 Data collection and pre-processing

Participants

Twenty-four healthy, native speakers of Dutch (8 males; mean age 22.9 years, range 18-31)

without psychiatric or neurological problems, with normal or corrected-to-normal vision,

and without hearing problems took part in the experiment. All participants except one were
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right-handed. Ethical approval was obtained from the CMO Committee on Research Involving

Human Subjects, Arnhem-Nijmegen, The Netherlands (protocol number 2001/095), in line

with the Declaration of Helsinki.

Procedure

The experimental paradigm consisted of passively listening to the three narratives (see Section

2.1.3) and their reversed versions (for a total of six sessions) inside the MRI scanner. That

amounted to six experimental runs, all collected in one single fMRI session on the same day.

Each story and its reversed speech counterpart were presented following each other. Reversed

speech versions of the stories were created with Audacity 2.031. Half the participants started

with a non-reversed stimulus and half with a reversed speech stimulus. Participants were

instructed to listen to the materials attentively, which in practice is only possible for three

narratives, and not for the reversed speech counterparts. There was a short break after each

fragment.

Stimuli were presented with Presentation 16.22. Auditory stimuli were presented

through MR-compatible earphones. After the scanning session, participants were tested for

their memory and comprehension of the stories.

Scanner Parameter

Images of blood-oxygenation level-dependent (BOLD) changes were acquired on a 3-T

Siemens Magnetom Trio scanner (Erlangen, Germany) with a 32-channel head coil. Pillows

and tape were used to minimize participants’ head movement, and the earphones that were

used for presenting the stories reduced scanner noise. Functional images were acquired using

a fast T2-weighted 3D echo-planar imaging sequence (Poser et al., 2010), with high temporal

resolution (time to repetition: 880 ms, time to echo: 28 ms, flip angle: 14, voxel size: 3.5 ×
3.5 × 3.5 mm, 36 slices). High resolution (1 × 1 × 1.25 mm) structural (anatomical) images

were acquired using a T1 sequence.

Pre-processing

Preprocessing was performed using SPM83 and Matlab 2010b4. The first four volumes

were removed to control for T1 equilibration effects. Rigid body registration was used to

realign images. Images were realigned to the first image within each run. The mean of the

motion-corrected images was then brought into the same space as the individual participant’s
1http://www.audacityteam.org
2https://www.neurobs.com
3http://www.fil.ion.ucl.ac.uk/spm
4http://www.mathworks.nl
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anatomical scan. The anatomical and functional scans were spatially normalized to the

standard MNI template, and functional images were re-sampled to 2 × 2 × 2 mm voxel sizes.

Finally, an isotropic 8-mm full-width at half-maximum Gaussian kernel was used to spatially

smooth the motion-corrected and normalized data.

2.1.3 Linguistic Data
Narrative text used as stimuli presented to the human subjects consisted of three excerpts from

three distinct literary novels extracted from the Spoken Dutch Corpus, Corpus Gesproken

Nederlands (CGN) (Oostdijk, 2000).5

The excerpts were spoken at a normal rate, in a quiet room, by female speakers (one

speaker per story). Stimulus durations were: Narrative 1 (CGN file fn1005) 3:49 min, Narrative

2 (CGN file fn1100) 7:50 min, and Narrative 3 (CGN file fn1090) 7:48 min.

The text below is an excerpt of the third narrative text used in this dataset (from Alan

Jakobsen’s novel De Stalker). Commas had already been removed in the file. Note the nat-

uralistic nature of the linguistic material, composed by sentences of various length and rich

vocabulary.

[...]

De donkerblauwe auto gleed als een slang door de bocht.

Zijn felle koplampen sneden als scheermessen door de stille

lucht. Hij reed door de buurt op zoek naar eten zijn prooi

opsnuivend. Na een trap op het gaspedaal klom de snelheidsmeter

van de krachtige motor in minder dan drie seconden van zestig

naar negentig kilometer per uur. Zijn honger naar snelheid was

groot. Gezond verstand werd vermorzeld door angst boosheid en

woede op zoek naar de dood.

[...]

Table 2.1 contains summary information about the three narratives, including number of

words, mean, and range of word duration in milliseconds.

5Narrative 1: from Peper, R., Dooi, L.J. Veen, 1999; Narrative 2: from Van der Meer, V., Eilandgasten, Contact,
1999; Narrative 3: from Jakobsen, A., De Stalker, De Boekerij, 1999
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# Words Mean (s.d.) Range
Narrative 1 622 273 (181) 4-1174
Narrative 2 1291 252 (160) 31-949
Narrative 3 1131 274 (183) 40-1221

Table 2.1: Summary information of the three narrative texts used as stimuli.

2.1.4 Published analyses of the current dataset
The present fMRI data have already been analyzed in several studies, demonstrating that

naturalistic linguistic tasks and fMRI can yield interesting and meaningful results. Willems

et al., 2016 have shown that entropy and surprisal predict brain activity in different brain

areas. Frank & Willems, 2017 demonstrated that predictive measures (surprisal) and semantic

association measures can be distinguished with regard to brain area sensitivity. Similarly,

PoS, lexical, and phonological stochastic measures divide the cortical language network into

non-overlapping sub-networks (Lopopolo et al., 2017). Part of the data was used by Nijhof &

Willems, 2015 to investigate how individuals differently employ neural networks important for

understanding others’ beliefs and intentions, and for sensorimotor simulation while processing

narrative language.

2.2 Eye tracker narrative dataset
The eye tracker data used in this dissertation was originally collected for a study on mental

stimulation during literary reading by Mak & Willems, 2018 at Radboud University, Nijmegen,

the Netherlands. For more details on data acquisition and preprocessing, we refer to the

original publication.

2.2.1 Participants and stimuli
Data were collected from 102 participants (82 females, mean age 23.27, range 18–40), all

of whom were native speakers of Dutch, with normal or corrected-to-normal vision. All

participants gave written informed consent in accordance with the Declaration of Helsinki.

Stimuli consisted of three published short stories in Dutch. Stories 1 and 2 were written

by contemporary Dutch writers, and Story 3 was translated from American English to Dutch.

Their lengths were 2143, 2659, and 2988 words, respectively, and they required around 10-15

minutes each to be read. Similarly for the example text in Section 2.1.3, the text below is a
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portion of one of the 3 narratives presented to the participants during the acquisition of this

narrative eye tracker dataset (from Rob van Hessen’s short story De mensen die alles lieten

bezorgen, contained in the collection Hier wonen ook mensen, van Essen, 2014).

[...]

‘Dat is goed,’ zei ik, en ik liep achter ze aan. Ze waren jong,

ergens achter in de twintig. ‘Komen ze niet terug, dan?’ vroeg

ik. ‘Nee, dat kan niet met de trappen,’ zei de agente. ‘Hoe is

het met haar?’ vroeg ik. ‘Dat kunnen we niet zeggen.’ Het was

onduidelijk hoe ze dat bedoelde: dat ze het niet wisten, of dat

het informatie was die onder een of ander beroepsgeheim viel.

[...]

2.2.2 Data acquisition and pre-processing
For eye-movement data collection, a monocular desktop-mounted EyeLink1000+ eyetracking

system was used (500 Hz sampling rate). Head movements were minimized using a head

stabilizer, ensuring that all participants were seated at 108 cm from the screen.

The stimuli were presented using SR Research Experiment Builder software (SR Re-

search, Ottawa, Canada). The stories were divided into 30 sections each. The stories were

presented in counterbalanced order. After data collection, participants were presented with a

comprehension questionnaire.

All fixations were checked to make sure that they did not drift off and enter a different

interest area. If correction of the drifts was not possible, individual sections were excluded.

Data for at least one section was removed for 40 participants. For four participants, the

number of excluded sections exceeded six, resulting in the exclusion of one story for these

participants.

Eight participants answered more than one comprehension question incorrectly for one

of the three stories (four times for Story 2 and four times for Story 3), resulting in the exclusion

of the data for one story reading for eight participants.

The dataset contains a total of 582,807 words across all participants and narratives.

2.2.3 Published analyses of the current dataset
As mentioned above, this dataset was originally collected for a study on mental stimulation

during literary reading by Mak & Willems, 2018. de Vries et al., 2018 used this data to test

assumption regarding the Deliberate Metaphor Theory (Steen, 2008) More recently, Faber et
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al., 2020 used this dataset to investigate individual reading style during literary reading as a

function of the rate and type of word skipped.

2.3 MEG: MOUS dataset
The magnetoencephalographic data used in the context of this dissertation belong to the MOUS

dataset (Schoffelen et al., 2019) collected at the Donders Centre for Cognitive Neuroimaging

in Nijmegen, The Netherlands. For more details on the acquisition procedure, stimuli, prepro-

cessing, and source reconstruction techniques, we refer to the original paper and to Schoffelen

et al., 2017.

2.3.1 MEG data acquisition and pre-processing
The data were collected with a 275 axial gradiometer system (CTF). The signals were digitized

at a sampling frequency of 1200 Hz (the cutoff frequency of the analog anti-aliasing low

pass filter was 300 Hz). Head position with regards to the sensors was determined by 3

coils attached to the participant’s head. Electro-cardiogram and the horizontal and vertical

electro-oculogram were measured by 3 bipolar Ag/AgCl electrode pairs.

Electrocardiogram artifacts were identified based on their topography and subtracted

from the data. The data was segmented into trials corresponding to activity recorded from

-183ms before word presentation to a variable time after word presentation, depending on

word length. Trials that contained artifacts (Eye movements and muscle contractions and

jump artifacts in the SQUIDs) were excluded from further analysis. Next, the power line

interference was estimated and subtracted from the data. The data were down-sampled to a

sampling frequency of 300 Hz.

Source reconstruction was obtained using a linearly constrained minimum variance

beamformer (LCMV) (Van Veen et al., 1997), estimating a spatial filter at 8,196 locations of

the subject-specific reconstructed midcortical surface. The dimensionality of the data was

reduced by applying an atlas-based parcellation scheme based on the Conte69 atlas (191

parcels per hemisphere). After that spatial filters were concatenated across vertices comprising

a parcel, the first two spatial components were selected for each parcel. For more details on

this procedure we refer to Schoffelen et al., 2017.
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2.3.2 Subjects
We used the data of 74 subjects belonging to the MEG section of the MOUS dataset (Schoffelen

et al., 2019). All subjects were Dutch native speakers, who were asked to silently read 120

Dutch sentences presented on a screen word by word, containing a total of 1377 words. All

sentences varied between 9 and 15 words in length.

+ Gisteren had de brede bodyguard die de filmster beschermde

een vrije dag.

+ De sportarts die de hockeyer met de gescheurde pezen adviseert

heeft er veel verstand van.

+ De journalist die de beroemde bondscoach interviewt wil

veel weten.

+ De goochelaar die de vrijwilliger uit het enthousiaste publiek

instrueert is onduidelijk.

+ De detective die criminelen opspoort krijgt een vette beloning

van de staat.

+ Het derde getal dat de oplettende toehoorder signaleert is zes.

+ Onlangs gaf de jongeman die de populaire portier inhuurde

een groot feest.

+ Het elfje dat de sterke beren betoverde was erg vriendelijk.

+ De schilder die de knappe prinses tekent zit onder de verf.

+ Nora die warme dekens voor arme mensen weeft is gelukkig.

Examples of sentences using during the acquisition of these data are presented in the

text above, punctuation, except from the final full stop, was not presented.

2.3.3 Stimulation paradigm
The sentences were presented visually with an LCD projector, with a vertical refresh rate of

60Hz situated outside the MEG scanning room, and projected via mirrors onto the screen

inside the measurement room. All stimuli were presented in a black mono-spaced font on

a gray background at the center of the screen within a visual angle of 4 degrees. Sentences

were presented word-by-word with a mean duration of 351ms for each word (minimum of

300ms and maximum of 1400ms, depending on word length). The duration of the stimuli

was determined taking into account both the word length, the number of words in the whole

sentence, and the number of letters within each word. Each word was separated by an empty

screen for 300ms before the onset of the next word.
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Linguistic stimuli consist of sequences of speech sounds or graphemes. In this chapter, I

will model how they are processed in the brain by using stochastic language models. Previous

studies (Frank et al., 2015) have already shown that such models can be useful tools for

studying how language is processed as a sequence of symbols unfolding in time. Nonetheless,

most of these studies have focused only on sequences of words, not addressing the fact that

language processing involves the simultaneous processing of information at the phonological,

syntactic, and lexical levels. In this chapter, I will track these three distinct levels of information

in the brain by using stochastic measures derived from stochastic language models to detect

neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment.

Brain activity time-locked to each word is predicted by the probabilistic perplexity derived

from these three models. The results show that the brain keeps track of the statistical structure

of lexical, syntactic, and phonological information in distinct areas.

This chapter is based on:

Lopopolo, Alessandro, Stefan L. Frank, Antal van den Bosch, and Roel M. Willems. 2017.Using stochastic language

models (SLM) to map lexical, syntactic, and phonological information processing in the brain. PLOS ONE 12 :

1–18.
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In Chapter 1, I have introduced the hypothesis that sequences of words making up

the surface form of a sentence can also be analyzed as sequences of phonemes composing

them and sequences of grammatical categories describing their combinatorial properties in the

context of the sentence itself. These correspond to different levels of information at the phrasal,

word, and sub-word level, and are traditionally referred to as: syntax, lexico-semantics, and

phonology (Jackendoff, 2003, 2007). Models describing how the brain processes language

typically take these levels into consideration (Hagoort, 2013a), and a common assumption is

that they are probably processed by separate sub-components of the language faculty (Hagoort,

2005; Vigneau et al., 2006; Kemmerer, 2014).

This chapter investigates the neural bases of these three types of sequential information

by using one fMRI dataset and predictors derived from stochastic language models trained

on words, grammatical categories, and phonemes. The goal is to show that the processing of

words, phonemes and grammatical categories sequences elicit distinct neural signatures within

the language network in the brain.

3.1 Language processing as a sequential stochastic
process
A number of studies (Bar, 2011; Bubic et al., 2010; K. Friston & Kiebel, 2009; Summerfield

& Egner, 2009; Clark, 2013) have advanced the hypothesis that the brain employs predictive

coding strategies in perception. The hypothesis is that after processing the first t− 1 elements

of a sequence of stimuli (i.e., x1, ..., xt−1), the human brain assigns a conditional probability

P(xt|x1, ..., xt−1) to each potential element x that can follow at time t. These expectations

influence the way the actual observed xt is processed eventually. Deviations from expectations

are usually quantified in terms of surprisal or perplexity, which have been shown to explain

both behavioral and neural correlates of perceptual and higher cognitive processing.

In the domain of language processing, word surprisal has been used to predict a wide

range of behavioral correlates. It has been found to predict the duration of spoken words,

with shorter words being used in less surprising situations (Piantadosi et al., 2011; Mahowald

et al., 2013). Following Hale, 2001 and Levy, 2008, surprisal has been hypothesized to be

proportional to the cognitive effort required to integrate a word into the current context. This

has been confirmed by observing that it correlates with reading times (Frank & Thompson,

2012; Monsalve et al., 2012; Frank, 2013; Smith & Levy, 2013). Reading time has also

been shown to be correlated to surprisal of the syntactic category (part-of-speech; PoS) of
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the word being read (Boston et al., 2008; Frank & Bod, 2011). Moreover, Monsalve et al.,

2012 showed that PoS and word surprisal have independent effects on reading times. This

behavioral result suggests that the PoS of words in sentential context is a valid representation

of linguistic information relevant for processing and that computing probabilistic measures on

them returns a model that has significant predictive power. These measures have also been

successfully applied to the prediction of brain activity. It was found that the amplitude of

the N400 event-related potential (ERP) component elicited by words in sentences correlates

with word surprisal values (Frank et al., 2015; Parviz et al., 2011). The fact that surprisal

correlates with the amplitude of a classical ERP component related to language comprehension

(Kutas & Federmeier, 2000) is another source of evidence that stochastic language modeling

is a neuro-cognitively valid approximation of sentence comprehension. In a recent paper,

Willems et al., 2016 applied surprisal and entropy to an fMRI dataset to predict brain activity

in different cortical and subcortical areas during naturalistic language comprehension. They

observed that different areas differentially code for statistical stimulus properties by selectively

correlating with one or the other measure.

3.2 Probabilistic streams
My starting point is twofold. On the one hand, my hypothesis is that different types of

information correspond to different streams of processing implemented in separable networks

in the brain. Several linguistic models, for instance, separate phonological, semantic, and

syntactic processing in different neural loci or processing streams (Kemmerer, 2014). One way

to operationalize this search for parallel streams is to model the processed linguistic input as

composed by three parallel levels of representation corresponding to its phonological, lexical,

and syntactic profile. On the other hand, following the findings exposed in section 3.1, the

processing in these separate streams is modeled as sequential and incremental, and sensitive to

the stochastic properties of the information it is applied to. The difference between different

streams is that the probabilistic relations are computed not only on surface forms (bare words,

so to speak) but on the phonemic transcription and the grammatical categories of the words in

order to disentangle the different levels of representation.

The fact that language can be studied as a stochastic process does not necessarily mean

that subcomponents of language correspond to distinct stochastic processes that are detectable

in the brain. One scenario could be that the areas sensitive to stochastic properties of the

input are the same, independently from the level of annotation on which such measures

have been computed. Nastase et al., 2013 investigated whether there exist areas in the brain

that are sensitive to probabilistic properties of the incoming signal, independently from its
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sensory modality, or if, conversely, sensitivity to such properties is an intrinsic characteristic

of domain-specific areas. Their approach consisted of looking for areas coding for the degree

of disorder - quantified by Markov entropy - in a temporally unfolding sensory input of two

distinct modalities: auditory and visual. Their results show a modality-specific sensitivity

to input entropy, implemented in modality-specific systems of sensory cortices (for visual

stimuli: the early visual cortex, the anterior cingulate, and the intraparietal sulcus; for acoustic

stimuli: inferior frontal, lateral temporal, and supplementary motor regions). Ventral premotor

and central cingulate cortices were identified as possible candidates for modality-general

uncertainty processing, exhibiting sensitivity to disorder in both modalities.

I have decided to approach the problem of disentangling phonology, lexical, and syntax

by using language stimuli that are not explicitly designed to study one of these levels in

isolation (Frank et al., 2015; Willems et al., 2016). Using one stochastic measure computed

on three distinct levels of annotations of the same linguistic stimulus, I want to investigate

first of all level-specific processing, what it may be referred to as streams of information. On

the other hand, I am interested in investigating the issue of whether there exists a central

supramodal stochastic processor of the brain (what is called modality-independent in Nastase

et al., 2013) by finding areas that are sensitive to stochastic measures independently from the

level of information they have been computed on.

3.3 Materials and methods

3.3.1 fMRI data
For the purpose of this study, I have used the fMRI narrative brain dataset described in Chapter

2 Section 2.1. The dataset consists of data of 24 native Dutch speakers collected while the

participants were asked to listen to the spoken presentation of three Dutch narrative texts.

3.3.2 Estimation of stream-wise stochastic properties
The three levels of information – phonological, syntactic, and lexical – are distinguished by

applying three different levels of annotation to the stimulus narratives. At the phonological

level, the words in the running text are transformed into a sequence of phonemes. The syntactic

level is approximated by the sequence of fine-grained syntactic categories corresponding to

the words of the texts, also known as parts of speech (PoS). The lexical level consists of the

sequence of surface lexical forms composing the texts. In the sections below, I describe the

characteristics of each stream and their common computational properties.
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The lexical level is the sequence of words constituting the sentences of the book

fragments. At this level, a sentence can be rewritten as a sequence w1, . . . , wn of symbols wi

belonging to the vocabulary V containing all the word forms, as illustrated in Table 3.1 for the

Dutch sentence ze staat stil en kijkt een poosje naar een punt in de verte (taken from one of

the stimulus narratives used in the present study).

Ze staat stil en kijkt een poosje naar een punt in de verte
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13

Table 3.1: The lexical stream is obtained from the simple sequence of word forms in the stimulus
presented to the subjects.

The phonological stream can be defined as the sequence of phonemes composing each

single word in the sentence. Therefore, the sentence in Table 3.1 can be rewritten as a

sequence p1
1, p2

1, ..., pm
1 , ..., p1

13, ..., po
13 where pi

j refers to the ith phoneme of the jth word in

the sentence. Table 3.2 contains the phonetic transcription of the example sentence already

presented in Table 3.1.

Ze staat stil en kijkt een poosje naar een punt in de verte
[z@] [stat] [stIl] [En] [kEIkt] [@n] [poS@] [nar] [@n] [pynt] [In] [d@] [vErt@]

Table 3.2: The phonological stream is obtained from the phonetic transcription of the words of the
stimulus.

Finally, the words in the stimuli are assigned with their syntactic categories or part

of speech tags (PoS). Parts of speech are a basic ingredient of most language technology

systems and act as shallow (i.e., non-hierarchical) syntactic starting point for many other tasks,

including semantic role assignment and dependency and constituent syntactic parsing. They

usually consist of a basic set of grammatical categories such as nouns (N), verbs (WW, in the

Dutch tags used here), modifiers and determiners. They capture, when considered in context,

shallow, yet robust, combinatorial constraints that abstract away from the lexical information

within the surface forms. The tagset employed here was the one employed by CGN (the corpus

from which the stimuli for my experiments were taken) and comprises 320 tags (see Table 3.3).

Besides 13 base tags, this method explicitly assigns morpho-syntactic sub-category features to

the base tags containing information such as gender, number, form, and so on.

This tagset closely follows the practices of the Dutch Grammar ’Algemene Nederlandse

Spraakkunst’ (ANS, Haeseryn et al., 1997). Table 3.4 contains an example of PoS annotation

of the example sentence presented in Table 3.1 above.
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Dutch POS tag # English equivalent Example
substantieven N 18 Nouns het kind
adjectieven ADJ 30 Adjectives de mooie huizen

werkwoorden WW 21 Verbs ik kom
telwoorden TW 11 Quantifiers vier cijfers

voornaamwoorden VNW 188 Pronouns ik
lidwoorden LID 9 Articles de hond
voorzetsels VZ 3 Prepositions in het hospitaal

voegwoorden VG 2 Conjunctions Jan en Peter
bijwoorden BW 1 Adverbs gisteren

tussenwerpsels TSW 1 Interjections hoera!
speciale tokens SPEC 35 special forms

leestekens LET 1 Punctuation .
TOTAL 320

Table 3.3: Summary of the types of grammatical categories (POS) and the number of sub-categories
used to approximate sequential syntactic information processing.

Ze staat stil en kijkt een poosje naar een punt in de verte
VNW WW ADJ VG WW LID N VZ LID N VZ LID N

Table 3.4: The same sentence from Tables 3.1 and 3.2 annotated with fine-grained grammatical
information using the POS tags described above.

3.3.3 Computing stochastic measures
The conditional probabilities required for obtaining perplexity values for the lexical and PoS

streams are estimated by a second-order Markov model, also known as trigram model, trained

on a large collection of text. It is based on the simplifying assumption that the probability

of word wt depends on the previous two words only, that is, P(wt|w1, ..., wt−1) is reduced

to P(wt|wt−2, wt−1). Surprisal is computed as the negative logarithm of the conditional

probability of wt given wt−2, wt−1:

surprisal(wt) = − log P(wt|wt−2, wt−1)

If the observed word’s probability equals 1, observing it yields a surprisal of 0. Con-

versely, the occurrence of a word that was not among the words considered possible (i.e.,

has zero probability) corresponds to infinite surprisal. Surprisal can be thought of as the
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degree to which the actually perceived word wt deviates from expectation. Perplexity, as

adopted here, consists in an exponential transformation of the surprisal of encountering wt

given wt−2, wt−1.

ppl(wt) = 2surprisal(wt) = 2− log P(wt |wt−1)

The dataset from which probabilities P(wt|w1, ..., wt−1) are estimated is a random

selection of 10 million sentences (comprising 197 million word tokens; 2.1 million types)

from the Dutch Corpus of Web (NLCOW2012 Schäfer & Bildhauer, 2012). For lexical

perplexity, each word of the experimental texts is assigned a value computed by SRILM

(Stolcke, 2002).

The PoS perplexity is computed analogously. Instead of using the surface forms of the

training and stimulus set, the trigram model was trained on the PoS-tagged version of the

same 10 million sentences subset of NLCOW2012. The tagging was performed using the Frog

toolbox for natural language processing of Dutch text (Daelemans & van Den Bosch, 2005).

The phonological information was extracted from the phonemic transcription of each

word in the stimulus set. I used a memory-based grapheme-phoneme converter (Busser et

al., 1999) trained on CELEX 2 (Baayen et al., 1995). Once every word is transcribed as a

sequence of phonemes, trigrams were extracted and conditional probabilities P(pt|pt−1, pt−2)

were computed using WOPR1 trained on CELEX 2 (Baayen et al., 1995). Once phoneme-wise

perplexity is computed, the phonetic perplexity of each word of the stimulus is computed as

the average value across the phonemes of that word.

3.4 Data analysis
At the single-subject level, the observed BOLD time course in each voxel is subjected to a

regression analysis, testing for voxels in which the covariates of interest (word, PoS, and

phonological perplexity) explain a significant proportion of variance of that voxel’s time

course (K. Friston, 1995). Before the actual analysis, one regressor modeling the duration

of every single word was created for each story. This regressor was convolved with the

hemodynamic response function to account for the delay in BOLD activation respective to

stimulus presentation. The word duration regressor and the covariates for a story were also

fitted to the data of the reversed speech version of that story. This served as a control condition

since the regressors and covariates are essentially meaningless for the reversed speech data.
1https://ilk.uvt.nl/wopr/
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Figure 3.1: Example of annotation of the passage "... komt aan schaatsen ..." from one of the 3 narrative
texts used during stimulation. The top row describes the PoS-level, the middle row the lexical level, and
the bottom row the phonological one. The graph shows how the perplexity measures are computed for
the last word (schaatsen), and of its PoS-tag (N) as a function of the probability of encountering it in
that particular context. The phonological measures is instead the average perplexity of the phonemes
composing a word (/sxa:ts@/).

Three covariates were computed containing each word’s word, PoS, and phonemic perplexity

measures, constituting the regressors of interest modeling the three information streams

introduced above. Besides these, log2-transformed lexical frequency per word was computed

using the Subtlex NL corpus (Keuleers et al., 2010), log2-transformed PoS frequency per

word was computed using the CGN corpus (Oostdijk, 2000), and log2-transformed phoneme

frequency average per word was computed using CELEX 2 (Baayen et al., 1995). They were

used as regressors of no interest to statistically factor out effects of word, PoS, and phoneme

frequency. The estimates from the motion correction algorithm (three rotations and three

translations per run) were additionally added as regressors of no interest.

The modeled time courses from all six runs (three stories and three reversed speech

stimuli) were combined in one regression model, with separate constant terms per run, but the

same regressors for real and reversed speech. The analyses were conducted at the whole-brain

level. The difference in the effect of the regressor of interest between the real and reversed

speech sessions was used as input to the group-level statistics. Statistical differences were

assessed by computing the t-statistic over participants of this difference score (real vs. reversed

speech) for each voxel in the brain. The resulting multiple comparisons problem was solved by

means of combining a P < 0.005 voxel threshold with a cluster extent threshold determined

by means of 1,000 Monte Carlo simulations, after estimation of the smoothness of the data

applied for each separate contrast. The combination of a voxel-level threshold with a cluster

extend threshold is a good compromise between statistical sensitivity on the one hand and
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false positive error control, on the other hand (Bennett et al., 2009; Woo et al., 2014). The

simulations took the amount of autocorrelation in the data into account, as suggested in

the literature (Bennett et al., 2009; Woo et al., 2014). The scripts used were taken from2.

All clusters of size display results significant at the P < 0.05 level, corrected for multiple

comparisons.

3.4.1 Relation between the regressors
The aim of this study is to assess whether different types of linguistic information can be

traced in the brain and if this can be achieved by using stochastic measures of perplexity in

line with the predictive brain hypothesis. In order to assess whether word, PoS, and phoneme

perplexity capture different kinds of information, I conducted a preliminary analysis consisting

in computing their pairwise correlations. Table 3.5 reports these correlations (Pearson’s r).

Both 3-gram perplexity (ppl) and 1-gram frequency (freq) computed at lexical, PoS, and

phonological levels are included.

Lex_ppl PoS_ppl Pho_ppl Lex_freq PoS_freq Pho_freq
Lex_ppl 1 0.046 0.011 −0.466 −0.092 0.080
PoS_ppl 1 −0.012 −0.015 −0.491 0.000
Pho_ppl 1 −0.016 −0.000 −0.017
Lex_freq 1 0.070 −0.060
PoS_freq 1 0.105
Pho_freq 1

Table 3.5: Correlation between the stochastic measures used in the analyses.

The correlations between perplexity measures reported in Table 3.5 are fairly low, even

between lexical and PoS perplexity (0.046). These results indicate that there is no strong

relation between the regressors I have employed in these fMRI analyses and that they may

capture different types of information. Correlation between lexical perplexity and frequency

is −0.466, and correlation between PoS perplexity and frequency is −0.491. These negative

correlations between perplexity and frequency measures are predictable: the less frequent an

item is, the higher is the overall perplexity of encountering it.

2https://www2.bc.edu/~slotnics/scripts.html
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3.5 Results
In this section, I present the results of the analyses conducted using the three perplexity

measures as regressors of interest.

3.5.1 Lexical stream
Table 3.6 lists the areas that show significant activity with regard to the word-based perplexity

regressor. This network is displayed in Fig 3.2 and it encompasses large portions of the

left inferior temporal gyrus (l-ITG), including the fusiform gyrus (l-FG). Both left and right

posterior banks of the superior temporal gyrus (rl-STG) are part of this network, together with

parts of the left anterior superior temporal gyrus.

Figure 3.2: Lexical stream. Left, right and ventral view of inflated cortex plot of the lexical stream.
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Region MNI size t-value max
left inferior temporal gyrus - fusiform gyrus −44 −48 −14 924 5.92
left posterior superior temporal gyrus −56 −26 8 1876 6.29
left middle temporal gyrus −58 −22 2 4.59
left anterior superior temporal gyrus (TP) −40 2 −16 121 5.72
right posterior superior temporal gyrus & sulcus 64 −10 −2 1436 4.72

Table 3.6: Significant effects of lexical stream perplexity.

3.5.2 Syntactic stream
Fig 3.3 shows the cortical network corresponding to PoS-based perplexity. These include

the left middle temporal gyrus and sulcus (l-MTG and l-MTS) and right middle temporal

sulcus (r-MTS). The bilateral precentral sulcus is also activated. Large portions of the superior

frontal gyrus are also sensitive to this regressor. The list of areas with the coordinates of their

activation peaks can be found in Table 3.7.

Figure 3.3: Syntactic stream. Left, right and ventral view of inflated cortex plot of the syntactic stream.
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Region MNI size t-value max
left middle superior frontal gyrus −6 34 56 1549 6.50
left precentral sulcus −42 6 54 267 6.19
left middle temporal gyrus & sulcus −64 −50 14 1715 5.64
left and right cerebellum 9 −20 −46 −36 662 5.07
right middle temporal sulcus 48 −32 −2 983 5.51
right angular gyrus 64 −50 24 5.49
right superior temporal sulcus 54 −22 −6 4.71
right putamen 24 −2 6 649 6.04
right amygdala 22 2 −8 4.46
right precentral sulcus 52 −2 46 119 4.31

Table 3.7: Significant effects of syntactic stream perplexity.

3.5.3 Phonological stream
Fig 3.4 and Table 3.8 refer to the network of the phonological stream. This stream involves

the right Heschl’s gyrus (r-HG), and right superior frontal gyrus (r-SFG) together with the

supplementary motor area (r-SMA). Other areas activated to this contrast are the left insula,

the left angular gyrus (l-AG), the left inferior parietal lobule (l-IPL), and bilateral portions

of the middle temporal gyrus (rl-MTG). The phonological stream was the only level where

perplexity and surprisal did not give comparable results.

Region MNI size t-value max
left insula −36 8 −18 123 4.75
left angular gyrus −40 −56 40 1507 4.78
left inferior parietal lobule −42 −44 44 4.35
left posterior mid temporal gyrus −42 −64 16 137 3.71
right Heschl’s gyrus 50 −12 4 443 4.63
right Heschl’s gyrus 40 −24 12 4.46
right posterior mid temporal gyrus 42 −64 16 950 4.14
right angular gyrus 56 −56 24 4.09
right superior frontal gyrus - SMA 20 16 62 202 4.49

Table 3.8: Significant effects of phonological stream perplexity.
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Figure 3.4: Phonological stream. Left, right and ventral view of inflated cortex plot of the phonological
stream.

3.5.4 Overlap
The results obtained from lexical, syntactic, and phonological perplexity allowed me to analyze

possible overlap at the cortical level for all three regressor streams. Table 3.9 contains the name

of regions whose activity is significantly explained by more than one regressor. I computed

the overlap between the activation maps relative to the lexical and the syntactic stream, the

lexical and phonological streams, and the syntactic and phonological stream by taking only

those voxels that are significantly activated for both regressors as described in the sections

above. This is equivalent to performing a conjunction analysis, more specifically a test of

the ’conjunction null’, effectively looking for statistical significance in both contrast maps

as testing a logical AND (Nichols et al., 2005). I also looked for voxels shared by all three

streams.

It is interesting to note that although some degree of anatomical overlap exists among

all possible pairs of regressors, there is no area that is significantly activated for all three

streams together. What is also worth noting is that the lexical and syntactic regressors are
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Streams regions ∼MNI coordinates
Syntax ∩ Lexical right STS 54 −25 0

left posterior MTG −58 −51 11
Syntax ∩ Phonology right AG 59 −56 29

left AG −53 −64 31
Lexical ∩ Phonology right middle STG 44 −29 13
Syntax ∩ Lexical ∩ Phonology ∅ ∅

Table 3.9: Areas of overlap between the streams regressors.

both processed in the posterior portions of the bilateral middle temporal gyrus, bordering the

posterior superior temporal gyrus. Moreover, lexical information and phonology seem to share

activity in the central banks of the superior temporal gyrus, but not directly in Heschl’s gyrus,

which confirms its selectivity for the phonological stream only. The overlap regions are shown

in cyan (lexical and syntactical streams) and in violet (syntactic and phonological streams) in

Figures 3.5 and 3.6.

Figure 3.5: Streams comparison and overlap. Inflated cortex view of the maps of the lexical (green),
syntactic (blue), and phonological (red) streams. In this view, the overlap between lexical and syntactic
streams is particularly evident in the right Middle Temporal Lobe and in the left posterior Superior
Temporal Gyrus (cyan). Overlap between syntactic and phonological streams is also evident in the
bilateral Angular Gyrus (violet).
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Figure 3.6: Streams comparison and overlap. Sagittal, axial, and coronal view of the maps of the
lexical (green), syntactic (blue), and phonological (red) streams.

3.6 Discussion
The results reported above outline a set of cortical networks that are separately activated for

each of the three types of information under investigation – lexical, syntactic, and phonological

-– confirming the hypothesis that language processing can indeed be decomposed into different

streams corresponding to different subdivisions of the language network. No area shows

selectivity for all three streams, and only limited sets of voxels show overlap between pairs of

streams.

3.6.1 Division of labor in the temporal cortex
The temporal lobe shows a distribution between the three streams that sees the lexical infor-

mation primarily concerning the infero-lateral regions, syntactic information the mid-lateral

regions, and phonological information finding its hub in the middle superior temporal plane.

Areas posterior to the perisylvian cortex, between AG, SMG, and IPL, display a similar

gradient, with more rostral voxels selective to lexical information and more caudal ones

phonological information, with selectivity to PoS-related information in the middle.
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3.6.2 Phonological stream
The phonological stream seems to involve activity in the temporal cortex only in regions close

to the transverse gyrus (Heschl’s gyrus), especially in the right hemisphere. This area is the

central hub of auditory processing (Mendoza, 2011). Although the phonological regressor is

built on a level of annotation that is close to the actual perceptual structure of the words, it

is not directly built on the auditory properties of the stimulus, making these observed results

both surprising and interesting. In addition to this, the phonological stream activates the

supplementary motor area (SMA), which has been suggested to be involved not only in speech

production (Alario et al., 2006) but also in speech processing (Willems & Hagoort, 2007;

Hertrich et al., 2016). Phoneme perplexity did not return activation in the premotor cortex, an

area that has been associated with speech production and perception. Nonetheless, activation

of the premotor cortex in response to phonological load is not a general finding in the literature.

Tremblay & Small, 2011; Tremblay et al., 2016 have suggested that premotor cortex activation

during speech processing may only be observed under tasks presenting particularly difficult

conditions. In line with this position, Sato et al., 2009 have shown that stimulating the premotor

cortex only has an effect on a complex speech perception task. Similarly, premotor activity has

been found to be modulated by syllable complexity during speech production but not during

speech perception (Tremblay & Small, 2011).

3.6.3 Lexical and syntactic streams

Middle temporal gyrus

Dronkers et al., 2004 have suggested that the posterior MTG plays a role in retrieving lexical

and syntactic properties of incoming words from long-term memory. Hagoort, 2013a suggests

that MTG might be important for the retrieval of the syntactic frames (as well as other lexical

information) from the mental lexicon, which are then combined in the left inferior frontal cortex

(Indefrey & Cutler, 2004). This intuition is corroborated by the present results, which show

that activity in this area, although mainly explained by the syntactic regressors employed in

these analyses, displays an overlap between the syntactic regressor and the lexical stream. The

work of Snijders et al., 2008 showed that Dutch noun-verb homonyms (grammatical category

ambiguity) increased activity in the posterior MTG. This study also reports that grammatically

ambiguous sentences activated not only the posterior MTG but also the precentral gyrus, an

area that is also observed in the present analyses.

Although PoS perplexity intends to model syntactic processing and appears to be a

reasonable correlate of the syntactic stream, my analysis shows only a marginal correlation

between this regressor and the activity observed in the anterior temporal cortex. Studies from
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Pallier et al., 2011, Obleser et al., 2011 and Brennan et al., 2012 suggest that this region is

sensitive to the syntactic complexity of the input sentence. Brennan and colleagues used a

similar experimental paradigm to the one adopted in this chapter. They had participants listen

to a segment of a novel (Lewis Carroll’s Alice in Wonderland) and looked for areas of which the

activity correlates with the number of so-called syntactic building operations at each time point,

representing the number of non-terminal phrases that are completed by the presentation of

each word. This measure is based on a hierarchical treatment of syntax, whereas I intended to

model syntactic processing in a purely sequential manner. These two results can be reconciled

by considering syntactic processing as underpinned by both sequential probabilistic machinery

(captured by PoS-perplexity) and hierarchical structure building.

Inferior temporal cortex

Activity in the inferior and lateral portions of the left temporal cortex is better explained by the

lexical regressor, which is likely to be a central hub of the lexical stream. Willems et al., 2016

observed the same result using the same dataset, nonetheless interpreting it as activity in the

visual word form area (VWFA, Cohen, 2002). Their explanation is that word prediction can

account for the pre-activation of the upcoming word form in the sequential sentence processing.

This explanation is not the only possible one. For instance, Price & Devlin, 2003 points out

that the cortical region corresponding to VWFA is active in normal subjects also during tasks

that do not engage in visual word form processing. On the other hand, if activity in the left

Inferior Temporal cortex and specifically in VWFA truly reflects word form prediction, I would

have also expected phonological perplexity to show selectivity in this region. Phonological

perplexity, computed on the phonemic structure of every single word, seems intuitively a

closer proxy for the form of a word. Although computed on the phonemic transcription of

the words, the relation between phoneme and grapheme in Dutch is at least somewhat regular,

making visual and phonemic structure intuitively close. Nonetheless, as explained above, this

model does not predict activity in ITC better than word-based perplexity. This suggests indeed

that the coupling between the later regressor and activity in this region reflects lexico-semantic

rather than word form information.

That the lexical regressor, computed in terms of trigram statistics in the co-occurrences

of words, is a correlate of lexical semantic processing is strengthened by the outcome of a

meta-analysis of 120 functional neuroimaging studies (Binder et al., 2009; Binder & Desai,

2011). The meta-analysis showed that the lateral and ventral temporal cortex is among the

main nodes of the semantic processing network. This interpretation is supported by studies

that reported consistent correlation between lexical semantic models and brain activity in

ventro-temporal cortex (Anderson et al., 2013, 2015).
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3.6.4 Left inferior frontal gyrus
None of the perplexity-based regressors returned significant activation in the left inferior

frontal gyrus (l-IFG). While l-IFG is an important node in the neural language network,

its involvement and potential role during language comprehension has been the subject of

considerable debate.

One line of work starting with Thompson-Schill et al., 2009 has argued that the role

of this area is better characterized as a general, not language-specific one, and involved

in ’selection’ or – more generally – ’cognitive control’. Another approach has stressed

the role of the area in structural processing, both in a hierarchical and sequential fashion

(Grodzinsky & Santi, 2008; Bornkessel-Schlesewsky & Schlesewsky, 2012). Nonetheless,

not all results seem to support this view. Brennan et al., 2012 and Brennan et al., 2016,

for instance, found that syntactic complexity did not correlate with l-IFG activity, which

seems at odds with some previous findings that did observe l-IFG activation in response to

syntactically hard to parse sentences. The fact that l-IFG was not detected in Brennan’s work

and in the work presented in the present chapter might be due to methodological reasons.

Both Brennan and I used naturalistic stimuli and correlation between brain imaging data and

stimuli properties (stochastic in my case, hierarchically structural in the case of Brennan and

colleagues). The literature advocating the role of l-IFG in processing is dominated instead by

paradigms comparing carefully constructed sentences, for instance, syntactically ambiguous

vs. unambiguous (Snijders et al., 2008), or grammatical vs. ungrammatical (Friederici et al.,

2003; Herrmann et al., 2012).

In the scope of the present chapter, I cannot draw any strong conclusion regarding l-IFG

on the basis of its ’non-activation’.

3.7 Conclusions
The analyses presented in this chapter have shown that the stochastic sequential processing

paradigm is indeed a powerful formalism able to predict neurobiological correlates in areas

belonging to the language processing network, also when applied to sub-lexical (phonemic)

and syntactic (part of speech) levels. Previous work has demonstrated that language processing

can be characterized as a stochastic process computed on sequences of words and that measures

of stochastic perplexity are good predictors of brain activity in language-sensitive cortical

areas.
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Word-based (lexical), part of speech-based, and phoneme-based perplexity distinctively

predict activity in largely separated cortical networks in the temporal, inferior parietal, and

perisylvian cortex of subjects listening to naturalistic linguistic input.

These results appear to confirm the intuition that language is processed in parallel by

distinct networks sensitive to different sources of information, including at least the ones tested

here: phonological, lexical, and syntactic.
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The language system in the brain is not involved merely in the processing of the sequen-

tial properties of the stimulus. Other structural analyses are required in order to interpret

language. Finding the structure of a sentence — the way its words hold together — is a

fundamental step in language comprehension. Several brain regions, including the left infe-

rior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal

pole, are supposed to support this operation. The exact role of these areas is nonetheless

still debated. In this paper, I investigate the hypothesis that different brain regions could be

sensitive to different kinds of syntactic computations. I compare the fit of phrase-structure and

dependency-structure descriptors to activity in brain areas using fMRI. The results show a

division between areas with regard to the type of structure computed, with the left ATP and

left IFG favoring dependency structures and left pSTG favoring phrase structures.

This chapter is based on:

Lopopolo, Alessandro, Antal van den Bosch, Karl-Magnus Petersson and Roel M. Willems. 2020. Distinguishing

syntactic operations in the brain: Dependency and phrase-structure parsing. [under review].
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The previous chapter began with the observation that a sentence is first and foremost, a

sequence of symbols. I also hypothesized, and then demonstrated, that sequential properties

of the stimulus drive part of the neural activity involved in language processing and that they

can be decomposed in several distinct levels of information treating the stimulus as a sequence

of phonemes (the stimulus was spoken), word forms and grammatical classes.

In this section, I move away from the sequential properties of the stimulus, and its

putative levels of analysis, and instead I focus on the type of structure the brain is supposed to

construct on top of the received stimulus. As I will argue in the first sections of this chapter,

understanding a linguistic signal – let us say, a sentence – cannot rely solely on a list of words

or grammatical categories, but requires the discovery of relations between words, even distant

in space, describing the argument structure of the sentence. The argument is that the brain

computes a hierarchical structure – syntactic if you will – that groups words together according

to some structural criterion.

The fact that there are pieces of evidence for both sequential and hierarchical processing

in the brain is a known fact (Brennan et al., 2016; Nelson et al., 2017). In this chapter, I address

a couple of related questions instead. By adopting two distinct forms of syntactic structures,

one that directly captures thematic relations between the components of the sentence and

another that emphasizes phrasal structure instead, I investigate whether syntactic analysis in

the brain can be in turn decomposed in sub-networks sensitive to different types of structural

relations.

4.1 Brain areas underpinning syntactic analysis
Sentence processing involves at least two operations: the retrieval of the meaning of single

linguistic units from semantic memory and the computation of the meaning of the structures

derived from the combination of these – more basic – units. This second sub-process likely

requires the contribution of some sort of structural analysis, i.e., the analysis of the syntactic

configuration of the words making up the sentence. In this section, I will review and motivate a

selection of cortical areas that – not uncontroversially – seem to support structural analysis.

The literature reports the involvement of a network of mostly left-lateralized cortical

regions, including the left inferior frontal gyrus (IFG), the left posterior superior temporal

gyrus (pSTG), and the left anterior temporal pole (ATP). There is, however, controversy

concerning which brain areas are crucially involved in syntactic processing. The effective

involvement and the division of labor of these cortical areas, is still a matter of ample debate.

Not all studies on sentential processing arrive at the conclusion that IFG and pSTG are in
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fact involved in syntactic processing. Although there is a larger consensus regarding the

involvement of the left ATP in sentence processing, the left ATP has been equally linked to

two types of sub-processes: syntactic composition – i.e., the ability to derive larger units by

combining smaller ones – and lexical semantic memory representation.

A considerable body of literature does report left IFG and left pSTG activation during

syntactic processing as opposed to a baseline, usually consisting of random sequences of

words (Caramazza & Zurif, 1976; Friederici et al., 2005; Tyler et al., 2008; Pallier et al., 2011;

Zaccarella & Friederici, 2015; Zaccarella et al., 2015). These findings are contradicted by a

set of studies that do not report activity in left IFG and left pSTG (Humphries et al., 2006;

Rogalsky & Hickok, 2008; Bemis & Pylkkänen, 2011), although using similar paradigms to

the above-mentioned studies. Moreover, doubts about the effective involvement of these areas

in syntactic processing are cast by neuropsychological observations. For instance, lesions to

the IFG lead to what is clinically known as Broca’s aphasia. These aphasic patients do not

perform significantly different from healthy controls on grammaticality judgment (Linebarger

et al., 1983; Wulfeck & Bates, 1991). Similarly, lesion analyses seem to point towards a lack of

effect of lesions located in IFG and pSTG to the performance in basic sentence comprehension

(Dronkers et al., 2004; Thothathiri et al., 2012). These studies do not target specific syntactic

structures or syntactic structure processing directly. Nonetheless, both tasks – grammaticality

judgment and sentence comprehension – are likely to require the computation and the analysis

of the syntactic structure of the presented stimuli.

Acknowledging this inconsistency in the literature regarding the involvement of frontal

and posterior temporal regions, Matchin et al., 2017 proposed the hypothesis that the left IFG

and pSTG may not play a necessary role in syntactic processing. Instead, they claim that these

areas are involved only in top-down syntactic prediction supporting compositional syntactic

operations in left ATP and left AG.

Previously, Pallier et al., 2011 analyzed the activity recorded during natural language

sentence and jabberwocky sentence reading. Searching for brain regions where activation

positively correlated with the size of linguistic constituents, their results isolated a network of

left-hemispheric regions that could be dissociated into two major subsets. Inferior frontal and

posterior temporal regions showed constituent size effects regardless of whether actual content

words were present or were replaced by pseudowords (jabberwocky stimuli). On the other

hand, regions in the temporal pole, anterior superior temporal sulcus, and temporo-parietal

junction showed constituent size effect only in the presence of lexico-semantic information,

suggesting that they may encode sentence-level semantic compositionality.

The left ATP plays a central role in linguistic processing and has been reported as a

central hub for lexical, semantic, and syntactic compositionality. A large literature has pointed
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to the involvement of the left ATP in the processing of sentence and phrasal structure. By

contrasting the activity recorded during the reading of sentences and of word lists, works such

as Mazoyer et al., 1993, Stowe et al., 1998, Friederici et al., 2000, Humphries et al., 2006, and

Humphries et al., 2007 reported an increase in activity in ATP for sentence comprehension as

compared to word lists. The role of ATP in processing composition is confirmed by another

series of studies that focused on more specific types of syntactic structures. Rather than looking

at sentences as a whole, these analyses focused on simple phrasal processing, consisting of the

composition of adjectives and nouns (e.g. red apple) (Baron et al., 2010; Baron & Osherson,

2011; Bemis & Pylkkänen, 2011, 2013). These results are also confirmed for a wider range of

phrasal and syntactic compositional types and cross-language by Westerlund et al., 2015, and

across visual and auditory modality by Bemis & Pylkkänen, 2013.

Next to its involvement in syntactic processing, the left ATP is also considered central in

semantic memory, a putative subcomponent of long-term memory storing information about

the meaning of linguistic units. The first and most compelling proof of this role of ATP is

given by the studies on semantic dementia (SD), in which patients showing atrophy of ATP

show a significant impairment in their ability to retrieve and recognize concepts (Hodges et al.,

1992, 1995; Mummery et al., 2000; Rogers et al., 2004). This is confirmed also by a large

neuroimaging literature (Gauthier et al., 1997; Tyler et al., 2004; Bright et al., 2005; Moss et

al., 2004; Rogers et al., 2006). These findings were summarised by Patterson et al., 2007 and

led to the formulation of the hub and spokes model, which posits that concepts are represented

by a network of sensorimotor representations converging in the left ATP which acts as a

hub collecting and controlling modality-specific features in order to produce supra-modal

representations.

Following the studies on sentential and phrasal processing, and Patterson’s hub and

spoke model of semantic memory, it appears that ATP could play a role in two distinct kinds

of composition: one merging word into larger structures (phrases and sentences), and one

composing words out of more basic semantic features, possibly grounded in sensory-motor

representations. This led Westerlund & Pylkkänen, 2014 to compare the involvement of ATP

between tasks requiring syntactic and lexical semantic processing, concluding that the two

processes might indeed be substantiated by the same cortical mechanism.

4.2 What form of syntax?
In the previous section, we saw how the debate on the cortical involvement during structural

sentence analysis generally points to areas in the left inferior frontal (IFG), left superior
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temporal and left anterotemporal (pSTG and ATP) regions. The question I address in this

study is whether they are differently involved in specific syntactic computations.

Recent studies such as Brennan et al., 2016 and Nelson et al., 2017 report phrase-

structure correlating with activity in the left ATP. Since other studies showed instead sensitivity

to more basic structures such as adjective-noun, adverb-verb, adverb-adjective, and argument-

predicate (Westerlund et al., 2015), I question whether phase-structure is the only formalism

that can characterize structural processing, especially in the left ATP.

In this chapter, I compare phrase-structure grammars (PSG) (Chomsky, 1957, 1965;

Borsley, 1998) and dependency grammars (DG) (Tesnière et al., 2015; Mel’čuk, 1988; Nivre

& Kübler, 2009) as two different hypotheses regarding the type of structure the brain computes

as part of sentence comprehension. The two grammars differ in a number of aspects. DG builds

structures solely on the words and on binary relations holding between them, whereas PSG

rely on grouping words in phrases that can, in turn, be grouped in larger phrases introducing

a hierarchical structure composed by both surface forms (the words of the sentence) and

non-observable abstract nodes that are assumed to be computed by the human brain.

In order to test the different contribution of phrase and dependency structure, and

ultimately assess the role of syntactic analysis in language processing in the brain, I introduce

syntactic descriptors that can be derived from these two types of parses. These descriptors

relate to the structure-building processes that allegedly take place if the brain is involved

in syntactic processing. These consist in the number of non-terminal (non-surface) nodes

attached to each word in a sentence in case of phrase-structure grammar, and the number of

terminal (surface) nodes attached to it as dependents in case of the dependency grammar. It is

important to keep in mind, that my aim is not to prove that one grammar is a better formalism

than the other. I intend to investigate whether and how the language network in the brain is

sensitive to measures derived from them.

Inspired by the previous literature, I conducted a region of interest (ROI) analysis

focusing on the left IFG (pars opercularis, triangularis, and orbitalis separately), the left

ATP, and left STG. I fitted separate linear mixed-effect (lme) models predicting the activity

recorded in these areas during naturalistic language listening, using as regressors of interest the

structural measures mentioned above. Note that the regressors specify the amount of syntactic

processing at each word in the stimuli. These analyses allowed me to identify which area

is more sensitive to which type of structural description (PSG or DG). I then conducted a

psychophysiological interaction (PPI) analysis investigating how the interaction between each

of the ROI’s and the rest of the brain is modulated by its preferred structural description as

from the previous lme-analysis.
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In a nutshell, the results indicate that PSG significantly predicts activity in the left STG,

but not, as reported in other studies (Brennan et al., 2016; Nelson et al., 2017), in the left

IFG and in the ATP. Activity in these areas is better explained by DG predictors. Moreover, I

observed how the activity in left STG, modulated by PSG measures, might drive the activity

in the left ATP. These observations suggest a division of labor in the cortical areas processing

syntax among areas involved in phrase structure analysis and others possibly involved in

dependency analysis. More importantly, the results show that the left ATP is sensitive to DG

measures, rather than PSG measures.

4.3 Syntactic structures
The assumption introduced earlier is that in order to interpret a sentence, the human brain

has to to establish relations between the words that compose it. For instance, words alone,

in isolation, cannot convey the full description of a situation or a state. The following list of

words – chapter, you, this, and read – becomes a suitable description of the action you are

performing now only if the relations that the predicate read entertains with the subject you and

object this chapter – in turn substantiated by the relation between determiner this and noun

chapter – are established by the brain. In other words, the interpretation of a sentence does not

only depend on the meaning and the grammatical category of the words that compose it, but

also on their syntactic relations. The set of relations that hold between the words constitutes

the syntactic structure of the sentence. The way we can describe these relations and structures

can formalized in terms of grammars. In the remainder of this section I will describe the two

types of grammar studies in this chapter: phrase structure (PSG) and dependency grammar

(DG).

Given a sentence, both PSG and DG produce a hierarchical structure linking or grouping

the words in a structure rooted in a governing node (the root node). The main difference

between the two is that PSG assumes the existence of phrase structures grouping and governing

pairs (if the parse tree is binary) of words, whereas DG relies only on word pairings linked

by syntactic relations. At a high level of abstraction, what sets a DG structure apart from

one derived according to PSG is the fact that DG structures are flatter than PSG structures

because they lack phrasal constituents. The structure only consists of the words in a sentence

and an associated set of directed binary grammatical relations that hold among them. The

only nodes in the DG structure are terminal nodes corresponding to surface lexical items as

they are encountered by the human reader; no non-terminal, non-observed abstract nodes are

introduced.
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In the following section, I expand on the fundamental differences between PSG and DG

both from a structural and theoretical point of view.

4.3.1 Phrase structure
The PSG parse of a sentence is a tree structure composed by nodes: terminal and non-

terminal. Non-terminal nodes correspond, usually, to phrases and therefore are assigned labels

corresponding to syntactic phrasal categories such as Noun phrase (NP), Verb phrase (VP),

Adverbial phrase (AP), and Determiner phrase (DP). Terminal nodes, instead, are the leafs of

the tree and correspond to the surface forms of the parsed sentence, i.e., its words.

If the tree is binary – in the definition of phrase-structure parse, I adopt only binarized

trees – phrasal nodes can have a maximum of two child nodes that can be either other phrasal

nodes or leaf nodes (words). A parent node can only consist of a phrasal node; it is also

referred to as non-terminal. Words can only be children of non-terminal phrasal nodes and are

referred to as terminal or leaf nodes because they are not hierarchically higher than any other

node. Besides phrasal and leaf nodes, the phrase-structure parse also contains a root node. A

root node is a node that is not a child of any other node.

There is only one one root node in the parse, and it corresponds to the category S,

governing the sentence as a whole.

(4) The man saw a brown dog in the park.

As an example, as displayed in Figure 4.1, the parse of sentence 4 contains eight labeled

phrase structures, including S, and constitutes a nested binary-branching tree. The words of

the sentence (the, man, saw, a, brown, dog, in, the, and park) correspond to the terminal nodes.

Following the structure of the parse tree in a top-down fashion: S branches into a NP and VP

(noun and verb phrase, respectively). The left-hand child (NP) is composed of a determiner

leaf node the and a noun man; whereas the right-hand child of S (VP) has in turn as left-hand

child a terminal node (the finite verb saw) and as its right-hand side child another noun phrase

(NP). This last NP branches of in a another NP and in a prepositional phrase (PP). These

two last phrases both split in a left-hand terminal child (respectively a and in) and in a NP as

right-hand child. The latter two are both composed of terminal nodes (brown, dog, the, and

park).
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Figure 4.1: Phrase-structure parse of Sentence 4, taken from Chapter 1.2.2.

4.3.2 Dependency structure
When computing DG parses, sentences are described solely by binary relations between the

pairs of words composing them. These relations, or dependencies, correspond to grammatical

functions (Tesnière et al., 2015; Mel’čuk, 1988; Nivre & Kübler, 2009). A DG parse is also

anchored to a root node that directly governs the main finite verb of the sentence, which, in

turn, can be considered the structural hub of the sentence itself.

The man saw a brown dog in the park

ROOT

det

det

detnsubj

nmod

nobj

amod
amod

Figure 4.2: Dependency parse of Sentence 7, taken from Chapter 1.2.2.
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Figure 4.2 display the DG parse of Sentence 7 in terms of typified head-dependent

relations: the main verb (saw) acts as head for man and dog, with which the verb is in a

subject and object relation respectively. A dependent of one dependency relation can in turn

be the head of another. For instance dog is both dependent of saw and head of both brown (via

a modifier relation) and a (via a determiner relation). As it is evident for these examples,

dependencies can be instantiated between words far apart in the sequential structure of the

sentence.

Relations that hold between words are captured in structurally different manners by

dependency structure, and phrase structure parses of the same sentence. Take for instance the

relation between saw and dog, respectively the main verb and the direct object in Sentence

4. As it is apparent by simply looking at the graph path between these two items in Figure

4.3.a and 4.3.b, the dependency structure directly captures their predicate-object relation by

mean of a simple directed edge, whereas PS relies on three intervening noun phrases and a

governing verb phrase.

VP

VBD

saw

NP

NP

Det

...

NP

Adj

...

NP

dog

PP

...

a

... saw a brown dog ...

ROOT

nobj

b

Figure 4.3: Comparison between the structures mediating the relation between the sentence’s main
verb (saw) and its object (dog) in the phrase-structure (a) and dependency structure (b) parses of Sentence
7.

4.4 Materials and methods
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4.4.1 fMRI data
For the purpose of this study, I have used the fMRI narrative brain dataset described in Chapter

2 Section 2.1. The dataset consists of data of 24 native Dutch speakers collected while the

participants were asked to listen to the spoken presentation of three Dutch narrative texts.

4.4.2 Syntactic measures
Both dependency and phrase-structure parses of the sentences composing the stimulus texts

are derived using a computational parser developed and trained for Dutch (ALPINO, Noord,

2006). Alpino is considered the state of the art standard parser for Dutch, and it is consistently

being used for natural language processing applications requiring syntactic analyses of Dutch

texts. The output of Alpino is able to return sentence parses consistent with the principle of

phrase-structure and dependency grammars as delineated in Section 4.3. Moreover it is able to

generate both these two types of parses within the same framework, making it convenient and

allowing us to avoid inconsistencies derived from using different parsers built and trained on

different data. From these parse structures, I derive measures approximating the operations

performed in order to integrate each word in the syntactic structure computed at the point of

its presentation. The next sections will describe these measures in detail.

Dependency parse

In order to describe the dependency structure of a sentence, the ALPINO parser creates a

structure composed by dependency triplets consisting of: a head word, the type of dependency

relation, and its dependent word. A parse is produced for each sentence independently; there-

fore, no relation can be assigned between words belonging to different sentences.

In order to describe the operation required to integrate a word at a time in the incre-

mentally built dependency structure of the sentence, I adopted the number of left-hand side

relations entertained by each word. As described in Section 4.3.2, every word in a sentence

entertains at least one relation with another word in the same sentence. Every non-final and

non-initial word can have relations with a variable number of other words on its right and its

left. Logically, a sentence-initial word can only have relations with words to its right, and a

sentence-final word can only be linked to words on its left. In order to quantify the operations

required to integrate a word w in the structure constructed up to its presentation, only relations

with a head and possible dependents on the left hand-side of w are counted. In other words,

from the Dependency Structure of a sentence, I count the number of left hand-side edges for

each word w in the sentence (dependency structure left relations or DSlrels, see Table 4.1).
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The man saw a brown dog in the park
DSlrels 0 1 1 0 0 3 1 0 1

Table 4.1: Number of left-hand dependency relations (DSlrels) per word w in the example Sentence 4.

For example, the word dog in the sentence has two dependent relations with two words

to its left (a and brown), no dependents to its right, but one head to its left (saw). The word

park, being sentence-final, does not have any links on its right, but it has one head (in) and

one dependent (the) to its left.

Phrase-structure parse

As for the dependency parse, the texts of the three stories presented to the participants were

fed to ALPINO toolbox for Dutch natural language processing in order to generate this time a

phrase-structure parse for each sentence (Noord, 2006).

In order to quantify the number of syntactic operations per word required to construct a

phrase-structure parse of the input sentence, I measure the number of closed phrase structures

allowed after the introduction of each novel word (PSxps). Such a measure is computed by

considering whether a word or phrase is a right-hand or left-hand side child of its parent

phrasal node. In case the word in question is the right-hand side child, the parent phrasal node

is considered complete and therefore closed. This proceeds recursively, evaluating whether a

closed phrasal node is in its turn the right-hand side child of a higher-order parent phrasal node,

allowing it to be closed. For instance, according to the phrase-structure parse of Sentence 4

(Figure 4.1), the first instance of the word The is the left-hand-side child of an NP structure;

for this reason, this NP is not complete and cannot be closed. Therefore, the value of PSxps

for The is 0. On the other hand, man is the right-hand-side child of the same NP, and therefore

this phrase structure can be closed at this word position, allowing the assignment of value 1 to

man. Following the same reasoning, dog is the left-hand side child of another NP, allowing for

its closure. This last NP is, in turn, the left-hand side of a higher NP structure. Therefore the

word dog is assigned value 2 because its presentation allows for the completion of two nested

phrase structures. Table 4.2 contains the PSxps values for the whole Sentence 4.

This measure is computed under the following simplifying assumptions: that phrase-

structure trees are binary (i.e., as explained above, that they can have only 2 children), and that

parsing proceeds incrementally left-to-right.
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The man saw a brown dog in the park
PSxps 0 1 0 0 0 2 0 0 5

Table 4.2: Number of closed phrase structures (PSxps) per each word w in the example Sentence 4.

4.4.3 Controlling for lexical frequency and word surprisal
To control for other factors known to influence brain activation during language comprehension,

I added log-transformed lexical frequency and surprisal as covariates to the analysis (Willems

et al., 2016; Lopopolo et al., 2017).

Log2-transformed lexical frequency per word was computed using the Subtlex NL

corpus (Keuleers et al., 2010). Surprisal was computed from a second-order Markov model,

also known as trigram model, trained on a random selection of 10 million sentences (compris-

ing 197 million word tokens; 2.1 million types) from the Dutch Corpus of Web (Schäfer &

Bildhauer, 2012). Surprisal of word wt is the negative logarithm of the conditional probability

of encountering wt after having read sequence wt−2, wt−1, or: − log P(wt|wt−2, ...wt−1).

The computation was performed by the SRILM toolbox (Stolcke, 2002).

4.5 Analyses
The main analysis consists of a region of interest-wise linear model fitting using as predictors

the syntactic structure measures described in the previous sections, together with lexical

frequency and surprisal as regressors of no interest.

Besides the ROI-analyses, I also conducted a whole-brain psychophysiological inter-

action (PPI) analysis. The former was performed in order to test the interaction between the

regions of the language network and the rest of the brain with regard to the type of syntactic

structure considered in this study. The later was instead performed in order to have a wider –

less biased – view of the possible division of labor between dependency and phrase-structure

structure parsing in the brain.

4.5.1 ROI analysis
I chose six separate left-hemisphere anatomical regions of interest (ROIs) to selectively test the

contribution of the two syntactic measures as predictors of BOLD activity. These regions were:

superior temporal gyrus (STG, including Wernicke’s area), middle temporal pole (mATP),
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superior temporal pole (sATP), inferior frontal gyrus pars opercularis (IFG_oper), inferior

frontal gyrus pars triangularis (IFG_tri), and inferior frontal gyrus pars orbitalis (IFG_orb).

Regions are defined following the Automated Anatomical Labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) as implemented in SPM12. I then computed the average BOLD signal

for each of the 24 participants and six ROIs.

For each of the six ROIs, I fitted three linear mixed-effect models predicting the average

BOLD signal. The first model (Base, 5 below) contains as predictors only probabilistic

information (lexical frequency and surprisal) relative to each word. Estimates from the motion-

correction algorithm (three rotations and three translations per run) were additionally added

as regressors of no interest. In order to assess the effect of dependency and phrase structure

measures to ROI’s BOLD signal, models 6 and 7 were fitted with one of the syntactic measures

(DSlrels, PSxps) each in addition to the same covariates of the Base model. In addition, I

included by-subject random intercepts, as well as the by-subject random slopes for surprisal

and log-transformed word frequency.

(5) Base model : BOLD 1 + lex f req + surprisal + m1 + m2 + m3 + m4 + m5 + m6 +

(1|subject) + (1 + surprisal|subject) + (1 + lex f req|subject)

(6) DSlrels model : BOLD 1 + lex f req + surprisal + DSlrels + m1 + m2 + m3 + m4 +

m5 + m6 + (1|subject) + (1 + surprisal|subject) + (1 + lex f req|subject)

(7) PSxps model : BOLD 1 + lex f req + surprisal + PSxps + m1 + m2 + m3 + m4 + m5 +

m6 + (1|subject) + (1 + surprisal|subject) + (1 + lex f req|subject)

I compare the syntactic models (DSrels and PSxps model) against the Base model in

order to test whether the introduction of the syntactic measure significantly improves the fit to

the data. I also directly compare the DSrels and the PSxps models in order to test for specific

syntactic structure selectivity in the six ROIs. Model comparisons are performed using the

likelihood-ratio test. The models are fit by maximum likelihood.

4.5.2 PPI analysis
The ROI analysis introduced above is aimed at determining the contribution of the structural

measures to the activity of left inferior frontal, superior temporal, and antero-temporal regions

of the brain: areas that are claimed to be responsible for structural analysis of linguistic stimuli.

In order to investigate the interplay between these (and other) brain regions, I additionally

64 Chapter 4 Dependency and Phrase-Structure Processing in the Brain



introduced a PPI analysis. PPI is a brain connectivity analysis method, developed to estimate

context-dependent changes in functional connectivity cortical areas (K. J. Friston et al.,

1997; K. J. Friston, 2011). It models the way brain activity is determined by the activity of a

preselected seed region when modulated by experimental conditions or parameters (modulator).

The analysis takes the activity of the seed region (physiological component) and a modulator

(psychological component) and fits a voxel-wise linear model using as predictor of interest

the product of these two components (psychophysiological interaction). In this way, the

PPI identifies brain regions whose activity depends on an interaction between psychological

context (the task) and physiological state (the time course of brain activity) of the seed region

(O’Reilly et al., 2012).

The activity of each seed region was computed by fitting a general linear model con-

taining as predictors the structural measures and as covariates lexical frequency and surprisal

and parametric head movement. The eigenvalue of the voxels inside the ROI showing supra-

threshold activation for the regressor of interest was used to compute the physiological
component of the PPI. This was conducted at single subject-level with a significance level of

p < 0.05. The regressor of interest used for ROI-wise voxel selection also acted as psycho-
logical modulator for the subsequent PPI analysis proper, which consisted of fitting another

subject-level whole-brain general linear model using as regressor of interest the product of the

seed activity and the modulator measures, and as covariates the seed activity and modulator

themselves. The goal is then to identify those voxels (both at single subject and group level)

that respond significantly to the interaction between seed activity and modulator.

4.5.3 Whole brain analysis
At the single-subject level, the observed BOLD time course in each voxel is subjected to a

regression analysis, testing for voxels in which the covariates of interest (DSlrels, PSxps)

explain a significant proportion of variance of that voxel’s time course (K. Friston, 1995).

Before the actual analysis, one regressor modeling the duration of each single word was

created for each story. This regressor was convolved with the hemodynamic response function

to account for the delay in BOLD activation respective to stimulus presentation. Besides

the covariates of interest, log-transformed lexical frequency per-word – computed using the

SubtlexNL corpus (Keuleers et al., 2010) – and per-word surprisal were introduced. They

were used as regressor of no interest to statistically factor out effects of stochastic properties

of the words. The estimates from the motion correction algorithm (three rotations and three

translations per run) were additionally added as regressors of no interest.

I am interested in assessing which voxels are more sensitive to DPlrels as compared

to CPxps and vice-versa. In order to do so, I contrasted these two regressors of interest
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in order to identify voxels that are selective for each one of the regressors over and above

the contribution of the other (DSlrels >PSxps, PSxps >DSlrels). The significance of these

contrasts was assessed by computing the t-statistic over participants of this difference score for

each voxel in the brain. The resulting multiple comparison problem was solved by means of

combining a P < 0.05 voxel threshold with a cluster extent threshold determined by means of

1,000 Monte Carlo simulations, after the estimation of the smoothness of the data ((Slotnick et

al., 2003)) applied for each separate contrast both for the single and the total models. Clusters

of size exceeding the number of voxel threshold corresponded to statistically significant effects

(P < 0.05 level, corrected for multiple comparisons).

4.6 Results

4.6.1 ROI analysis

Comparison against the Base model

I computed the likelihood-ratio test for the difference in fit between the Base model and

each of the two Full models above across the 6 ROI’s. This allowed me to test whether the

introduction of syntactic measures significantly improves the fit of the linear mixed effect

model to the BOLD signal. Table 4.3 reports the results of these analyses.

a: Dependency structure b: Phrase structure

Figure 4.4: Cortical illustration of the likelihood ratio test between the base model and DSlrels model
(a), and between the base model and PSxps model (b). Green indicates ROIs where the likelihood ratio
test returns significant results (*** p <0.001, ** p <0.01, * p <0.05). Red instead indicates ROIs for
which the syntactic measure does not significantly improve fit. Note the different selectivity between
anterior and posterior temporal areas of the network with regard to the type of syntactic structure.
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The results indicate that there is a strong effect of PSxps in left STG (41.84, p <0.001).

On the other hand, the DG structure building measure – DSlrels – has a strong effect in left

middle TP (12.75, p <0.001) and a weaker effect on left IFG pars opercularis (3.83, p <0.05).

Comparison between models

Table 4.4 contains the results of the log-likelihood test between the DSlrels and PSxps

models. Syntactic operation measures DSlrels and PSxps were directly compared to assess the

prominence of one or the other as predictor of activity inside the ROI pool.

Left STG confirms a strong preference for phrase-structure parse measure with the model

fitted with PSxps significantly outperforming a model fitted with DSlrels. DSlrels instead

outperforms its PSG counterpart in middle ATP and in the pars opercularis and triangularis of

the IFG.

ROI DSlrels PSxps
STG 1.10 (0.29) 41.84 (0.00)***

mATP 12.75 (0.00)*** 0.77 (0.37)
sATP 2.04 (0.15) 0.25 (0.61)

IFG_oper 3.83 (0.05)* 0.89 (0.34)
IFG_tri 2.90 (0.08) 0.30 (0.58)
IFG_orb 0.79 (0.37) 0.36 (0.54)

Table 4.3: Likelihood Ratio Test between Base model and each of the 2 models fitted with one of 2
syntactic measures derived either from dependency and phrase-structure parses.

Mod. comparison ROIs
PSxps >DSlrels STG 40.71 0.00***
DSlrels >PSxps mATP 11.97 0.009**

IFG_oper 2.93 0.05*
IFG_tri 2.59 0.05*

Table 4.4: Likelihood Ratio Test between Dependency relations and phrase-structure phrase structures.
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4.6.2 PPI analysis
The results presented in the previous section highlight a preferential selectivity for dependency

structure in the left ATP and IFG, and a selectivity for phrase structure in the left superior

temporal gyrus.

In this section, I present the results of a PPI analysis aimed at assessing the relation

between activity in the ROIs as modulated by the processing of either phrase-structure or

dependency structure. Since STG showed selectivity for phrase structures, and IFG and ATP

for dependency structures, I conducted three separate whole-brain PPI analyses. I first checked

for brain areas whose activity is driven by STG activity (physiological seed) modulated by

PSxps structural measure (psychological modulator). I then used the activity of either the left

IFG or the left ATP as physiological seeds, and DSlrels as modulator in order to assess the

contribution of these areas and structure to the activity of the rest of the brain during language

processing.

a b

Figure 4.5: Results of the PPI analysis using as seed the left STG and as modulator PSxps.

Table 4.5 and Figure 4.5 reports the results of the PPI analysis using STG as phys-

iological seed and PSxps as activity modulator. The results highlight large clusters in the

bilateral central sulci (CS) and precentral gyri (PCG) encompassing both bilateral primary

motor and premotor cortices. Activation is also observed for the bilateral posterior temporal

and perisylvian cortices. Interestingly, activity in the left IFG is also driven by the interaction

between the activity in the left STG and the PSxps measure.

Tables 4.6 and 4.7, and Figures 4.6 and 4.7 instead report the results of using DPlrels

as modulator and ATP and IFG as physiological seeds respectively. These results indicate
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Area MNI coord. T p cluster size
left IFG (triangularis) -50 22 0 3.08 0.003 94
left PCG (Premotor) -58 -4 28 3.16 0.002 2922
left MTG (Auditory) -34 -30 10 3.12 0.003
left CS (Primary motor) -54 -12 36 3.00 0.003
right CS (Primary motor) 36 -14 38 4.20 0.000 10896
right PCG (Premotor) 36 -12 45 3.62 0.001

Table 4.5: Results of the PPI analysis using as seed the left STG and as modulator PSxps.

a b

Figure 4.6: Results of the PPI analysis using as seed the left ATP and as modulator DPlrels

Area MNI coord. T p cluster size
left dorsolateral PFC -24 0 20 3.27 0.002 3640
left Caudate -28 36 16 2.70 0.007 224

-30 42 6 2.69 0.007
rigth dorsolateral PFC 44 26 40 3.34 0.002 142

Table 4.6: Results of the PPI analysis using as seed the left ATP and as modulator DPlrels

that the activity of the left ATP, modulated by DSlrels, explain the activity in a limited set of

clusters located in the bilateral prefrontal cortex.

Instead, activity in the left IFG modulated by DSlrels explains the activity in the left

supramarginal (SMG) and angular (AG) gyri in the posterior perisylvian cortex. Activity in

the bilateral anterior prefrontal cortex (PFC) is also driven by this interaction, as is part of the

middle banks of the right STG.
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a b

Figure 4.7: Results of the PPI analysis using as seed the left IFG and as modulator DPlrels

Area MNI coord. T p cluster size
left IFG (Triangularis) -58 16 6 3.64 0.001 100
left SMG -54 -40 34 3.71 0.001 625
left AG -64 -42 26 3.18 0.002
left anterior PFC -44 44 20 3.36 0.001 484
right anterior PFC 44 44 22 3.72 0.001 1014
right SPG 30 -66 62 3.29 0.002 512

Table 4.7: Results of the PPI analysis using as seed the left IFG and as modulator DPlrels

4.6.3 Whole brain analysis
Tables 4.8 and 4.9 contain the results of the whole brain analysis contrasting PSG and DG

measures.

The contrast between PSxps and DSlrels (PSxps >DSlrels, 4.8) highlights the role of

IFG (orbitalis), AG, Fusiform gyrus and Hippocampus on the left hemisphere, and of the

bilateral occipital cortex.

On the other hand, the comparison between DSlrels and PSxps (DSlrels >PSxps, 4.9)

points to an involvement of the left superior frontal regions (SFG) and the right Caudate.
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Area MNI coord. T p cluster size
left Hippocampus -32 -14 -18 5.32 0.000 701
left MTG -34 8 -22 3.36 0.001
left Fusiform -52 -42 -14 4.14 0.000 83
left Occipital -12 -90 -10 3.88 0.000 1637
left AG -30 -72 38 3.78 0.001
left IFG (Orbitalis) -20 30 -10 3.58 0.001 198
right Occipital 42 -80 8 3.48 0.001 2046

Table 4.8: Whole-brain results areas more sensitive to PSxps as compared to DSlrels (PSxps >DSlrels).

Area MNI coord. T p cluster size
left AG -40 -58 22 5.00 0.000 9207
right Caudate 6 14 8 4.56 0.000
left SFG -12 52 26 3.12 0.002 216
right posterior CC 12 -22 38 3.32 0.001 139

Table 4.9: Whole-brain results areas more sensitive to DSlrels as compared to PSxps (DSlrels >PSxps).

4.7 Discussion
The goal of the experiment was to investigate whether parts of the brain, which have previously

been implicated in syntax, are sensitive to different kinds of syntactic operations necessary

to parse sentences. I have investigated if the brain activity of 6 left-hemispheric regions was

better explained by dependency or by phrase structures (Section 4.6.1). The two grammars

were not meant to represent contrasting hypotheses, and my aim was not to prove that one is a

better formalism than the others. The present results suggests that both grammars can explain

variance in cortical areas supposedly involved in syntactic processing, and that they appear to

do so for different areas of the brain.

4.7.1 A syntactic division of labor
The results of a series of ROI analyses (Section 4.6.1) show that dependency structure measures

significantly explain activity in left ATP and left IFG (opercularis), and that phrase-structure

measures seem instead to explain activity in the left STG. These results overall seem to point
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towards a general division of labor between anterior temporal and inferior frontal areas –

responsible for the computation of dependency representations of the sentence – and more

posterior temporal areas involved, instead, in phrase-structure analysis.

These results partially differ from previous studies adopting phrase-structures as their

formalism of choice to describe natural language syntax (Brennan et al., 2016; Nelson et al.,

2017). Nonetheless these observations are more in line with studies such as Westerlund et al.,

2015 that show ATP sensitivity to a wide range of compositional structures, including verb-

argument and preposition-argument pairs. These results corroborate the idea that ATP – among

the other regions studied here – works as a hub for sentential-level semantic composition

where words are combined according to the argument structure of the sentences as captured

by its dependency parse.

4.7.2 The role of the anterior temporal lobe in syntactic
processing
The results indicate a relation between ATP activity and the number of left-hand side de-

pendency relations at word level, which was adopted as a quantification of the operation the

human brain is supposed to carry out in order to integrate each word in the dependency parse

of the sentence it is embedded in (Section 4.6.1). This, therefore, seems to indicate that the

ATP (together with parts of the IFG) acts as a combinatorial hub that binds together words

according to relations similar to the ones characterized by a dependency grammar. These

results are in line with previous studies that describe this area as a hub for composition during

sentence comprehension (Mazoyer et al., 1993; Stowe et al., 1998; Friederici et al., 2000;

Humphries et al., 2006, 2007).

Binary relations making up dependency structures resemble the 2-word stimuli that

were found eliciting activation in the ATP by Baron et al., 2010 and by Westerlund et al.,

2015. Baron et al., 2010 observed a modulation of activity in this region when adjective–noun

pairs where presented. The relations holding between nouns are directly captured by the

modification relations in the type of dependency parses I adopted in this study. Similarly,

an interesting parallelism between the typified relations that constitute DG and the types of

2-word stimuli that were presented in Westerlund et al., 2015 might help understand why

dependency structures might be a correct way of characterizing the type of job performed

by the ATL. Dependency relations directly link pairs of words according to the type of role

they play in a syntacto-semantic relationship. They can be grouped – broadly speaking – in

verb-argument, i.e., the relation that is established between a predicate and its subject, object,

or complement, or modifier typologies (other types exist, but for the sake of brevity I will

72 Chapter 4 Dependency and Phrase-Structure Processing in the Brain



not discuss them here). Modifier-type dependency relations can be exemplified by the link

between an adjective and a noun, an adverb and a verb, a determiner and a noun, and so

on. Westerlund et al., 2015 demonstrated that a wide range of "composition modes" affect

the activity of the left ATP. These "modes" consist of 2-word sequences classified either

as modification (Adjective-Noun Adverb-Verb, Adverb-Adjective) or argument saturation

(Verb-Noun Preposition-Noun Determiner-Noun). These "modes" resemble the different types

in which the dependency relations are classified. Therefore it seems natural to suggest that, on

the basis of the results and the results found in the literature, dependency grammar offers a

reasonable formalization of the type of structure employed (or constructed) in the left ATP.

4.7.3 The role of the left inferior frontal gyrus
The ROI analyses (Section 4.6.1) show that dependency-structure measures can explain activity

also in left IFG (pars opercularis). This area plays center stage in several studies on language

and syntactic processing and it is often associated with the activity in the left pSTG (Caramazza

& Zurif, 1976; Friederici et al., 2005; Tyler et al., 2008; Snijders et al., 2008; Pallier et al.,

2011; Zaccarella & Friederici, 2015; Zaccarella et al., 2015). The present results seem to

indicate that this area might work in concert with the left ATP (Section 4.7.2) in building

sentence-level representations that follow the structure described by word-word dependency

relations. This is potentially compatible with the Memory, Unification and Control framework

Hagoort, 2013b which predicates a role for IFG in integrating words into their sentential and

discourse context.

Besides the ROI analyses, the PPI (Section 4.6.2) and whole-brain analyses (Section

4.6.3) provide a somewhat more complex picture. Activity in part of the left pars triangularis is

explained by the activity of the left STG modulated by the phrase-structure, whereas activity in

another portion of the same sub-region is linked to the activity in the pars opercularis modulated

by the dependency structure. The whole-brain analyses instead indicate an involvement of the

left pars orbitalis in phrase-structure processing.

In light of these observations, it is possible that different sub-regions of left IFG support

the analysis of different syntactic structures, in concert with either the left ATP and the left STG.

In particular, the pars opercularis might work in concert with the left ATP in building sentence-

level dependency representations, whereas the pars orbitalis performs operations related to the

ones carried on in the left STG and having to do with hierarchical phrasal representations of

the sentence. The pars triangularis, in different ways linked to the computation of dependency

structure in the ATP and the phrasal analysis in the STG, might – it is very tentative to say –

act as a buffer between these two areas and their syntactic operations.
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These explanations are still at the level of speculation, and I defer to further investigations

before drawing any stronger conclusion.

4.7.4 Additional areas involved in dependency parsing
Whole-brain analyses highlighted an additional set of regions that are more sensitive to

dependency structure as compared to phrase-structure measures. In addition to the ROI results,

I observed the involvement of other brain structures: left AG, right posterior cingulate cortex,

and left superior frontal gyrus.

These patterns of activation might indicate that dependency structures correlate with

working memory mechanisms subserving syntactic parsing. PFC has been flagged out as a

central player in working memory studies, including in the domain of language processing

and sentence comprehension (D’Esposito & Postle, 2007; Nee & D’Esposito, 2016). In

addition, Bonhage et al., 2014 reported the involvement of also the inferior parietal cortex

(including AG) and areas bordering the cingulate cortex and the precuneus during the encoding

in working memory of short sentence fragments (4 or 6 words).

One can conclude that the number of left-hand side relations (DSlrels) governing each

word in the stimulus is simply modeling the load on working memory resources required for

word-by-word sentence processing. In other words, given a sentence, the brain has to store

in memory each word incrementally until the recipient of a dependency relation with those

words is presented, and eventually integrated. In this sense, DSlrels only capture the number

of words to keep in mind until a suitable dependent or head is read or heard.

Nonetheless, this interpretation does not seem to explain the whole picture with regard

to dependency structure processing. As pointed out in Sections 4.6.1 and 4.7.2 above, there

is a significant relation between DSlrels and the left ATP, an area that is not traditionally

considered part of the working memory network. Therefore, rather than interpreting these

results as suggesting that dependency measures simply capture working memory loads imposed

by the number of words to integrate in the parse, it might be more accurate to claim that,

while dependency-related activity in the left ATP indeed computes sentence-level structural

analyses, activity in areas such as the cingulate, frontal and inferior parietal cortex might be

well explained in terms of working memory support to the activity in anterior temporal and

inferior frontal regions. Further work is required to shed light on this possibility.
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4.7.5 Interaction between areas
The PPI analyses (Sections 4.6.2) were conducted in order to see what type of interaction

exists between these syntax processing areas (left ATP, IFG, and STG) and the rest of the

brain.

The fact that activity in the left STG, modulated by PSxps, seems to drive the activation

in a small portion of the left IFG, besides a large network of bilateral central and precentral

regions, might indicate that there is an interaction between phrase structure and dependency

structure processing areas. This might also be supported by the almost reversed observation

that IFG activity, modulated by DSlrels, explains activity in the left posterior perisylvian cortex

(AG), and in a small portion of the right middle STG. Nonetheless, these results cannot allow

me to strongly claim a causal interaction between these sets of areas.

4.8 Conclusions
In this paper, I investigated whether different brain regions are sensitive to different kinds

of syntactic operations. In order to do so, I assessed dependency and phrase-structure de-

scriptors of sentences as predictors of brain activity in the left anterior temporal pole, the left

inferior frontal gyrus, and the left superior temporal gyrus – areas engaged during language

processing.

I found that activity in the left ATP is better explained by DG measures as compared

to PSG ones. These results differ from those reported in neuroimaging studies using only

phrase-structures to describe syntax (Nelson et al., 2017). My results are related to the ones

presented by Brennan et al., 2016. They predicted fMRI data in both the left ATP and left

pSTG during narrative listening using syntactic metrics derived from Minimalist Grammars

(MG) (Stabler, 1997), which derive syntactic descriptions combining both phrase-structure

and dependency information. In a more recent study Li & Hale, 2019 showed that Brennan

and colleague’s observed effect of using MG are still present in the left pSTG even after

controlling for memory-based metric “structural distance" and a distributional-semantic metric

indicating “conceptual combination". Nonetheless, two aspects distinguish my study with the

ones by Brennan et al., 2016 and Li & Hale, 2019. First, in the present study I deliberately

decided to keep phrase-structure and dependency measures apart under the assumption that

their structural differences might explain activity in different areas composing the language

network in the brain. As a matter of fact, our results showed how the left ATP and the left STG

are selective for one or the other. Second, our results, obtained on Dutch instead of English,
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may be taken to support the cross-linguistic validity of these observations, keeping in mind

that Dutch and English are closely related.

The present observations regarding the role of the left ATP are also in line with studies

such as Westerlund et al., 2015 that show how this area is sensitive to a wide range of

compositional structures, including verb-argument and preposition-argument pairs. This

seems to corroborate the role in sentential-level semantic composition for the ATP, and the

validity of dependency grammar as a formalism describing sentential structures.

Moreover, a series of PPI analyses investigating the interaction between each of the

ROI’s and the rest of the brain show that the activity in the left ATP might be driven by the

activity in the left STG. These results, while confirming a division of labor between brain

regions, seem to point to an ancillary role of STG and phrase-structure building, subserving

the dependency-style analysis that an area such as the ATP seems to perform.
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After having shown in Chapter 4 that dependency and phrase-structure grammar might

be processed in distinct areas in the brain, in this chapter, I focus only on the former, and

show that further proofs of its validity as an approximation of syntactic processing during

natural language comprehension can be obtained by analyzing the patterns of eye movements

observed during reading. Backward saccades during reading have been hypothesized to be

involved in structural reanalysis, or to be related to the level of difficulty posed by a sentence.

In this chapter, I test the hypothesis that they are instead involved in online syntactic analysis.

If this is the case, I expect that saccades will coincide, at least partially, with the edges of the

relations computed by a dependency parser. In order to test this, I analyzed a large eyetracking

dataset collected while 102 participants read three short narrative texts. My results show a

relation between backward saccades and the syntactic structure of sentences.

This chapter is based on:

Lopopolo, Alessandro, Stefan L. Frank, Antal van den Bosch and Roel M. Willems. 2020. Dependency Parsing

with your Eyes: Depend-ency Structure Predicts Eye Regressions During Reading. Proceedings of the Workshop on

Cognitive Modeling and Computational Linguistics 2019. NAACL, Minneapolis (MN) 2019.
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In Chapter 4, I have shown that the cortical network responsible for the syntactic

analysis of the linguistic input can be partitioned in sub-networks sensitive to two different

types of grammars: phrase-structure (PSG), and dependency grammar (DG). These grammars

therefore prove to be valid approximations of the syntactic analyses carried out by the brain.

In this chapter, I will focus only on DG, and show that further proofs of its validity as an

approximation of syntactic processing during natural language comprehension can be obtained

by analyzing the patterns of eye movements observed during reading.

5.1 Theoretical background

5.1.1 The role of regressions in text comprehension
Regressions (backward saccades) are relatively rare, usually occurring only with 15 to 25% of

the words (Rayner & Pollatsek, 1995). They do not seem to be random, however. Regressions

typically aim at specific word locations, moving fixation from the current word back to one

of the previously encountered words (Vitu, 2005). Nonetheless, their function in language

comprehension is still debated. Here I will review two proposed explanations: the first links

regressions to the difficulty of text processing; the second instead sees them as tools for

language processing, not necessarily linked to processing difficulties or errors. According

to the first proposal, regressions only start to play a role in reading once difficulties are

encountered; according to the second proposal, they are part and parcel of regular reading.

Regression as a response to comprehension difficulty

The first hypothesis interprets regressions as part of the reanalysis of textual input due to

encountered comprehension problems. In a milestone study, Altmann et al., 1992 introduced

the notion of regression-contingent analysis, based on the assumption that regressive eye

movements are a necessary consequence of subjects being garden-pathed. A garden-path

effect occurs when readers incrementally construct an incorrect interpretation of a sentence as

a consequence of its locally ambiguous syntactic structure. This does not necessarily mean

that the presence of a difficult structure, leading for instance to the reader being garden-pathed,

triggers a regression. Rayner and colleagues reported data showing that strong garden path

effects can sometimes occur without triggering any regressions (Rayner & Sereno, 1994;

Castelhano & Rayner, 2008). Nonetheless, other studies have given support to the idea that

regressions are linked to textual ambiguity and contextual difficulties. Readers make more

regressions when the text is complex (Rayner & Pollatsek, 1995), when the topic changes

(Hyönä, 1995), when the text contains grammatical errors or ambiguities (Reichle et al.,
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2013), or when they encounter information that disambiguates the preceding text (Blanchard &

Iran-Nejad, 1987; Frazier & Rayner, 1982). The general hypothesis holds that the probability

of regressions and their span might depend on the difficulty of the text. Therefore these

regressions might allow the reader to reread information that has been missed, forgotten, or

wrongly interpreted (Rayner, 1998).

Regression as a tool for comprehension

The alternative explanation focuses instead on the role of eye movements as a tool in language

processing, used independently from the structural difficulty of the input. The idea is that

regressions help the reader reactivate cognitive information that is associated with the regressed-

to location. Kennedy, 1992 refers to this as the Spatial Code Hypothesis. The hypothesis is

that readers use the position of words on the page as a support to their working memory by

reactivating previously read words associated with information relevant for the processing of

the word from which the regression originated (O’Regan, 1992; Spivey et al., 2004). This

hypothesis has been criticized by Booth & Weger, 2013. They presented three experiments

showing that readers’ comprehension is not hindered when reading conditions inhibit or

discourage visual access to already read material. In their Experiment 1, readers knew

that candidate targets for regression were no longer available for rereading. Experiment 2

discouraged regressions by forcing readers to follow a visual placeholder on the stimulus

while it was also presented in auditory form. Finally, in Experiment 3, candidate targets for

regression were manipulated after reading. In all these three experiments, readers showed

no hindered comprehension of the presented stimulus sentences. As an entailment of these

results, Booth and Weger suggested that readers do not use regressions to cue their memory

for previously read words.

My hypothesis is that readers might make use of regressions to reactivate previously read

information in the context of naturalistic language comprehension, in order to help compute

linguistic information.

I want to examine whether there is an alignment between patterns of regressions and

word-to-word syntactic relations, as described by the dependency structure of the stimulus. I

hypothesize that regressions play a role in syntactic parsing that may go beyond the reanalysis

of ambiguous material. I do not deny their role in reanalysis and repair, but I rather stand with

the hypothesis that they allow rereading and cueing of previous words, as an aid to memory,

when this is required for a successful construction of a syntactic representation of the text.

In order to test this hypothesis, I rely on an eyetracking dataset that was collected during

normal text reading of unmodified literary narratives. I assess whether there is a relation

between the number of eye regressions from the words and the number of syntactic relations
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that those words entertain with their preceding text. These syntactic relations are derived from

the dependency structures (described in Section 5.3) of the sentences composing the stimuli of

the eyetracking dataset.

5.1.2 Regressions and sequence processing
The hypothesized relation between dependency structure and eye movement taps into a broader

debate on whether language processing relies mainly on the sequential structure of the input

or whether it involves the computation of non-sequential syntactic parses (Jackendoff &

Wittenberg, 2014). Undeniably, the linguistic stimulus is presented as a string of symbols;

nonetheless, regressions seem to counter the notion that it is processed strictly in a sequential

order. If these eye movements are involved only in reanalysis, then their existence does not

necessarily contradict sequential processing accounts. They can be explained as an ”emergency

recovery” operation that takes place only in cases of processing difficulties. On the other

hand, if I find evidence of a relation between saccades and syntactic dependency structures

independent from processing difficulty, then I might conclude that saccades offer behavioral

evidence that processing involves the computation of non-sequential structures.

This question is related to the line of research in psycholinguistics and neuroscience

investigating the computation of syntactic structures during language processing. In this

context, sequential structures are usually contrasted with hierarchical ones, where input items

are grouped into larger units, which in turn are (possibly recursively) grouped in even larger

units. These larger units are commonly referred to as syntactic constituents or phrases and

have a central position in theoretical linguistics (Chomsky, 1965; Jackendoff, 2003, 2007).

An increasing amount of evidence against a strictly hierarchical processing of language has

emerged over the past decades. Psycholinguistic studies have supplied evidence suggesting

that the mere sequential properties of the stimulus are sufficient to explain aspects of human

behavior during reading and listening. Frank et al., 2012 provide a review of evidence from

cognitive neuroscience, psycholinguistics, and computational modeling studies supporting

the hypothesis that hierarchical structure may not play a central role in language processing

and acquisition and that sequential structure instead has significant explanatory power. They

argue that hierarchical structure is rarely needed to explain behavioral and neural correlates

of language processing in vivo. In contrast with these findings, recent neuroimaging studies

have delineated a slightly more complex landscape in which both hierarchical and sequential

processing may be carried out simultaneously by the human brain during language processing

(Brennan et al., 2016; Nelson et al., 2017).

Dependency parses are different from constituency parses as they lack the non-terminal

nodes characteristic of constituency parses. Nonetheless, they still constitute a non-sequential
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type of structure. Demonstrating a relationship between eye movement and such structure will

provide evidence for the non-sequentiality of language processing, at least in the context of

text reading.

5.2 Related work
The present work studies the relation between eye movements during reading and the de-

pendency structure as produced by a dependency parser (see Section 5.4.1 for more details).

Several other studies tested language processing hypotheses by using computational models

as predictors of eye movements during sentence reading.

Boston et al., 2008 demonstrates the importance of including parsing costs implemented

as surprisal as a predictor of comprehension difficulty in models of reading. They showed

that surprisal of grammatical structures has an effect on fixation durations and regression

probabilities.

Demberg & Keller, 2008 compared linguistic integration cost computed as a function

of dependency relations distances and word surprisal as predictors of gaze duration. They

showed that distance is not a significant predictor of reading times except for nouns. On the

other hand, they demonstrate that surprisal can predict reading times for arbitrary words in the

corpus, concluding that the two predictors may capture distinct aspects of naturalistic language

processing.

In the context of Natural Language Processing, Klerke et al., 2015 used eyetracking

data as a metric for the quality of automatic text simplification and compression, which

are operations used in machine translation and automatic summarization. Their proposal is

grounded in the hypothesis that eye movements are related to perceived text difficulty (Rayner

& Pollatsek, 1995), one of the two hypotheses I have introduced in Section 5.1 above.

5.3 Dependency structure
As already explained in Section 4.3.2, dependency grammar describes a sentence as a set of

relations between words (heads) and their dependents. These relations are called dependencies

and correspond to grammatical functions and – together with the words they link – are the

only descriptive elements composing the structure, which has the form and properties of a

directed graph (Tesnière et al., 2015; Mel’čuk, 1988; Nivre & Kübler, 2009).

This type of structure lacks phrasal non-terminal constituents. In addition, it is not

strictly sequential, or put differently, it is not isomorphic to the sequence of items that makes
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up the stimulus. This is based on the fact that the dependency relations can hold between

words that are non-consecutive or possibly even far apart in the sentence.

The assumption is that during reading, these links are created once a suitable candidate

for the second term of the dependency is introduced. Therefore, online dependency parsing

proceeds by introducing one word at a time, and by looking back at the prefix in order to

assess whether this novel input is a suitable candidate for a dependency link with a preceding

word that has not yet been matched.

5.4 Materials and methods
For the purpose of this study, I have used the eyetracking narrative dataset described in Chapter

2, Section 2.2. The dataset consists of data of 102 native Dutch speakers collected while the

participants were asked to read three Dutch narrative texts. The eyetracker data used in this

study was originally collected for a study on mental stimulation during literary reading by

Mak & Willems, 2018 at Radboud University, Nijmegen, the Netherlands.

Eyetracker measures

For the present study, I focus on the number of eye regressions. A regression consists of a fast

eye movement from a word back to a previous word.

5.4.1 Dependency parsing
The texts of the three stories presented to the participants were fed to the ALPINO toolbox for

Dutch natural language processing (Noord, 2006) to generate a dependency parse for each of

their sentences. The parser creates a structure composed of dependency triples consisting of a

head word, the type of dependency relation, and its dependent word. A parse is produced for

each sentence independently; therefore, no relation can be assigned between words belonging

to different sentences. The output of the parser was manually checked in order to prevent

tokenization and sentence segmentation errors.

Number of dependency relations

As described in Section 5.3, every word in a sentence entertains at least one relationship with

another word in the same sentence. Every non-final and non-initial word can have relations

with a variable number of other words on its right and its left. Because I are interested in

eye regressions, I decided to focus my attention only on relations between a word w and its

5.4 Materials and methods 83



the man saw a brown dog in the park
N_head 0 0 0 0 0 1 1 0 1
N_dependents 0 1 1 0 0 2 0 0 1

Table 5.1: Number of dependency relations per word w that correspond to words in w’s own preceding
context.

preceding context. Therefore only relations with a head and possible dependents on the words

preceding w are counted.

From the dependency structure of a sentence, I derived the following count measures:

• N_head indicates the presence of a syntactic relation between wi and a word in w1:i−1

that is head of wi;

• N_dependents counts the number of syntactic relations between wi and words in w1:i−1

that are dependents of wi.1

Measure N_head is a binary variable indicating whether word w has a head in its left

context w1:t−1. This is because every word has one and only one head.

For example, the word dog in Sentence 1 from Chapter 1 (The man saw a brown dog in

the park) has one head relation with a word on its left (saw), two dependents on its left (a and

brown), and none on its right. On the other hand, the word park, being sentence-final, does not

have any links on its right, but it has one head (in) and one dependent (the) on its left. Table

5.1 contains the count measures (N_head and N_dependents) for this sentence.

5.4.2 Descriptors not related to dependencies
I am interested in the effect of syntactic structure, implemented as dependency relations, on the

pattern of regressions. For this reason, it is necessary to control for other possible quantifiable

factors affecting these eye movements. I chose to use log-transformed lexical frequency and

surprisal.

Base-2 log-transformed lexical frequency per word was computed using the Subtlex

NL corpus (Keuleers et al., 2010). Surprisal was computed from a second-order Markov

model, also known as trigram model, trained on a random selection of 10 million sentences

(comprising 197 million word tokens; 2.1 million types) from the Dutch section of Corpora

from the Web (Schäfer & Bildhauer, 2012). Surprisal of word wt is the negative logarithm

of the conditional probability of encountering wt after having read sequence wt−2, wt−1, or:

1Note the similarity with the DSlrels measures of Chapter 4.
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− log P(wt|wt−2, wt−1). The computation was performed by the SRILM toolbox (Stolcke,

2002).

Frequency and surprisal are computed in order to control for processing difficulties.

Intuitively, infrequent words and words with high surprisal are more difficult to retrieve (and

possibly to integrate) with their preceding context. Controlling for processing difficulty is

motivated by the alternative hypothesis regarding the role of regressions as depending on the

level of complexity posed by a linguistic input.

In addition to frequency and surprisal, I also use word position in the sentence. Intu-

itively, the probability of regressing from a word to its previous context increases linearly with

the position of the word in a sequence. By controlling for it, I ensure that the eye movements

are not due simply to the opportunity given by the larger target pool to regress to.

5.4.3 Analyses
I fitted two logistic mixed-effect models predicting eye regressions. The first model (null,
Eq. (5.1a) below) contains as predictors only the position of the words in their sentences (word_-

order), and probabilistic information consisting of the above-mentioned log-transformed

frequency (freq) and surprisal (surp). The second model (full, Eq. (5.1b) below) contains as

predictors of interest also the number of left-hand side dependency relations (i.e. N_head

and N_dependents) of each word. In addition, I included by-participant and by-word random

intercepts, as well as by-participant random slopes for word_order in the null model and for

word_order, N_head and N_dependents in the full models.

I expect the model’s fit to improve significantly after the inclusion of the measures

derived from the dependency parse as regressors. The increase in model fit is quantified by

the χ2-statistic of a likelihood-ratio test for significance between the null and full models and

is taken as the measure of the fit of N_head and N_dependents measures at each word to the

probability of a regression being generated at each word.

(5.1a)null : eye_regressions

∼ word_order + surp + freq + (1|word) + (1 + word_order|participant)

(5.1b)
full : eye_regressions

∼ word_order + surp + freq + N_head + N_dependents

+ (1|word) + (1 + word_order + N_head + N_dependents|participant)

The models are fit by maximum likelihood (Laplace Approximation) and with a binomial

distribution.
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5.5 Results

5.5.1 Regression model analysis
In the results below I first describe the fit of each of the two models (null and full) separately,

then I report the results of the model comparison analysis using the χ2-statistic.

Table 5.2 presents the fitted null model. Table 5.3 shows the fitted full model. The

head and dependent regressors have significant effects on the number of regressions (eye_-

regressions) - (N_head: β = 0.242, p < .0001; N_dependents: β = 0.046, p < .0005).

In addition, both word frequency (freq) and surprisal (surp) have a significant negative

effect. The negative effect of frequency might be due to less frequent words being more

difficult to retrieve from memory, therefore triggering a regression to gather more contextual

information to help word processing. The negative effect of surprisal indicates that the larger

the surprisal of a word – therefore more difficult its integration into the context – the less

probable the reader is to regress to the word’s previous context. Mak & Willems, 2018 reported

a positive effect of surprisal on the number of incoming saccades, that is, eye movements into

a word back from subsequent parts of the text.

Estimate Std. Error z value Pr(> |z|)
(Intercept) −1.616 0.049 −32.9 < .0001
word_order 0.035 0.007 5.2 < .0001
surp −0.140 0.013 −11.1 < .0001
freq −0.165 0.028 −6.0 < .0001

Table 5.2: Fixed effects for the null model

Estimate Std. Error z value Pr(> |z|)
(Intercept) −1.798 0.049 −36.6 < .0001
word_order 0.019 0.006 3.0 < .003
surp −0.102 0.012 −8.0 < .0001
freq −0.125 0.027 −4.6 < .0001
N_head 0.242 0.016 14.8 < .0001
N_dependents 0.046 0.013 3.6 < .0005

Table 5.3: Fixed effects for the full model
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model df AIC BIC deviance χ2 χ2df Pr
null 8 401023 401111 401007
full 17 400302 400489 400268 738.87 9 < .0001

Table 5.4: Results of log-likelihood comparison between null and full model.

In order to test whether the introduction of head and dependent measures improves

the fit of the logistic mixed effect model to eye regressions, I computed the χ2-statistic of

a likelihood-ratio test for the difference between the null and full models above. The χ2 is

taken as the measure of the fit of the dependency measures to the probability of a regression

being initiated at each word. Table 5.4 reports the results of the test, showing the difference in

model fit to be significant (χ2 = 738.87, p < .0001).

5.5.2 Analysis of regression counts
The results of the regression model comparison indicate that regressions are partially driven by

the presence of left-hand side dependency relations. In order to corroborate these observations,

I counted the number of times regressions generated from each word do actually land on

preceding words that are heads or dependents of that word. As reported in Table 5.5, it turns

out that of the 110,336 regressions, about 40% do actually land on a head or dependent of the

words they originate from. These are referred to as matches. The analyses were limited only to

regressions landing within sentence boundaries. In the table, "misses" refers to the regressions

that land on targets that are neither head nor dependent of the word they originated from.

tot nr of regressions: 110336
tot nr of matches: 46378
tot nr of misses: 63958

Table 5.5: Total numbers of regressions, matches (i.e. regressions that land on heads or dependents),
and misses (i.e. regressions do not land on heads or dependents of the word they originated from).

A χ2-test of independence was performed to assess the relation between having a

dependency relation with a word and generating a regression to that word. The test was

computed independently for 10 separate left-hand side distances d = [−10 : −1]. In other

words, for d = −1, I want to assess whether there is a relation between having a dependency

relation with the preceding word and looking back at that word; for d = −2, I want to assess
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whether there is a relation between having a dependency relation with the preceding word at

position −2 and looking back at that word, and so on for the other considered distances.

Table 5.6 contains the per-distance results of the χ2 analyses. An association between

presence of a dependency relation at position d and the generation of a regression to that

position is significant for distances −1 (χ2 = 132.52, p < 0.001), −2 (χ2 = 678.14, p <

0.001), −3 (χ2 = 8.05, p < 0.005), and −4 (χ2 = 13.68, p < 0.001). For all other tested

distances (between −5 and −10) the association was not significant (see Figure 5.1). For

d = {−1,−2,−3,−4}:

• The fraction of words wi in a dependency relation with wi−d that originate a regression

of length −d is significantly higher than the fraction of wi not in a dependency relation

with wi−d originating a regression of length −d;

• The fraction of words wi with a regression of length−d that are in a dependency relation

with wi−d is significantly higher than the fraction of wi without a regression of length

−d that are in a dependency relation with wi−d.

dist +dp+reg -dp+reg +dp-reg -dp-reg χ2

-1 29245 19520 305931 228111 132.52**
-2 5711 14798 113028 449270 678.14**
-3 937 6239 68785 506846 8.05*
-4 309 2641 49324 530533 13.68**
-5 76 1370 33153 548208 0.55
-6 35 850 29823 552099 2.69
-7 17 530 23728 558532 1.42
-8 13 355 17687 564752 0.29
-9 5 261 16774 565767 1.08

-10 3 263 13785 568756 2.18

Table 5.6: χ2 analyses for distances −10 : −1. +dp+reg indicates the number of words in the corpus
having a relation and a regression at −d; +dp-reg the number of words having a relation but not a
regression at −d; -dp+reg number of words not having a relation but having a regression at −d; -dp-reg
not having nor relation nor regression at −d (∗∗ = p < 0.001, ∗ = p < 0.01).

This seems to indicate that the effect of the dependency structure of a sentence on the

pattern of outgoing eye-movements from a word is present only for short-distance relations

(between a word and its four preceding words).
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wi−n ... wi−4 wi−3 wi−2 wi−1 wi

**

**

*

**

Figure 5.1: The effect of dependency relations on regressions from wi is significant only for the
preceding four words - further away saccades might not be influenced by a possible relation with wi
(∗∗ = p < 0.001, ∗ = p < 0.01).

It is important to keep in mind however, that the number of dependency relations found

by the parser is much higher than the actual number of matches. This is simply because the

parser does assign at least a head to each and every word in the text (even words in isolation are

assigned a ‘root’ head), whereas a regression is a relatively rare event (under normal conditions,

using naturalistic language). The present work aims at demonstrating that regressions are

related (also) to the structure of the dependency graph. The results I have produced so far

point in that direction. In other words, it is possible to affirm that if a regression takes place, it

might be triggered by the presence of a dependency relation between the word it is generated

from and the word it lands on.

5.6 Conclusion
In this chapter, I have presented an analysis investigating whether the eye movements of

readers may be influenced directly by the syntactic structure of the sentence. I tested this using

shallow non-hierarchical structures computed by a dependency parser. The hypothesis was

that the path of regressions from a word to an earlier word coincide, at least partially, with the

edges of dependency relations between these words. I used a substantially large eyetracking

dataset collected, while 102 participants were engaged in reading three short narrative texts.

The results of a mixed-effect regression analysis indicate that there is a significant effect

of the number of left-hand side dependency relations on the number of backward saccades.

This effect is well above chance even after correcting for word position in the sentence and

word frequency and surprisal – measures held to explain a large part of natural language
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processing behavioral and neural correlates. These results are corroborated by the observation

that about 40% of backward saccades do indeed land on target words engaged in dependency

relations according to the syntactic structure of the sentences composing my stimuli.

The length of the regressions seems to be relatively short: the vast majority being shorter

than three words, with a predominance of regressions one position backward. The results

of a series of χ2 tests for independence shows that there is a significant association between

the presence of a dependency link and backward saccading between two words holds only

for pairs, which are not further apart than four positions. This might indicate that the eye

regressions are involved predominantly in dependency parsing at the local level, rather than at

long distance.

Altogether these results converge on the idea that eye movements reflect, among other

things, the shallow syntactic structure of language, corroborating the idea that humans do

engage in online syntactic analysis of the input – at least in the form of local dependency

parsing.

The evidence that eye gazes partially land onto previous words in a syntactic relation

with the word they started from, even after controlling for complexity, seems to point towards

an active role of regressions during syntactic parsing. In other words, the cognitive role of

eye regressions emerging from this study seems to be in line with Kennedy’s Spatial Code

Hypothesis which posits that regressions help the reader reactivate cognitive information that

is associated with the regressed-to location (Kennedy, 1992; O’Regan, 1992; Spivey et al.,

2004).
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The meaning of a word depends on its lexical semantics and on the context in which it

is embedded. Different brain networks carry out these different aspects of determining word

meaning during comprehension, lexical retrieval and context integration, at different latencies.

In this chapter, I investigate how lexical retrieval and integration are implemented in the brain

by comparing MEG activity to word representations generated by computational language

models. I test both non-contextualised embeddings, representing words independently from

their context, and contextualised embeddings, which instead integrate contextual information in

their representations. Using representational similarity analysis over cortical regions and over

time, I observed that brain activity in the anterior temporal pole and inferior frontal regions

between 300 and 500 ms after word presentation shows higher similarity with contextualised

word embeddings compared to non-contextualized embeddings. Non-contextualised word

embeddings, compared to contextualized embeddings, show higher similarity mainly in earlier

latencies in the lateral and anterior temporal lobe – areas and latencies related to lexical

retrieval. My results highlight how lexical retrieval and context integration can be tracked

in the brain by using computational word embeddings. These results also suggest that the

distinction between lexical retrieval and integration might be framed in terms of context-

independent and contextualised representations.

This chapter is based on:

Lopopolo, Alessandro, Antal van den Bosch, Jan-Mathijs Schoffelen and Roel M. Willems. 2020. Words in context:

tracking context-processing during language comprehension using computational language models and MEG.
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In order to comprehend a sentence, before even computing its syntactic structure, it is

necessary to retrieve the meaning of its composing elements – for instance the words that

make it up – from the mental lexicon. Lexical retrieval is therefore one of the main basic

operations underpinning language comprehension, the other is integration (Damasio et al.,

1996; Caramazza, 1996; Jackendoff, 2003; Hagoort & Levelt, 2009; Friederici, 2011; Ullman,

2012).

In accordance with the discussion presented in Baggio & Hagoort, 2011, it is difficult to

directly test the nature of the distinction between retrieval and integration using traditional

task-based experimental paradigms, since it might be impossible to devise a task tackling only

one operation while leaving the other untouched. Therefore, in the study presented here, I

instead propose to use computational semantic models to further investigate the neural basis

of these two basic operations. The models adopted in the present study are able to represent

linguistic units as either independent or dependent from their context of occurrence. They

are usually referred to in the computational linguistic literature as non-contextualized and

contextualized embeddings (Mikolov et al., 2013; Peters et al., 2018). By comparing them

to neural data collected during sentence comprehension, I aim to show that integration is

approximated by contextualized embeddings and that it is a separate process (both functionally

and physiologically) from lexical retrieval from memory.

Brain activity related to language comprehension is composed of processes that involve

different areas of the brain at different moments in time following the onset of the stimulus

(Friederici et al., 2000; Friederici, 2002; Hagoort, 2005). It is therefore capital to show that the

putative similarity between a model and a brain process concerns not only areas associated with

such process, but also that it does so in a time frame that is compatible with the time course

of language processing. For this reason, I use a magnetoencephalographic (MEG) dataset

collected during sentence reading. MEG records brain activity at the level of milliseconds,

and with a reasonable anatomical resolution, making it ideal for a study interested in the when,

and not only, the where of a specific neural process (Schoffelen et al., 2019).

6.1 Lexical processing in the brain

6.1.1 Neural loci
Semantic memory, a component of long-term memory, acts as the storage of knowledge and

representations of basic linguistic units, such as words. In a simplified manner, memory can be

defined as the mental lexicon, or the equivalent of a vocabulary in which the representations of
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words are stored and wait to be retrieved during production or comprehension (Hagoort, 2013a;

Binder et al., 2009; Binder & Desai, 2011). The left temporal cortex, the middle temporal and

inferior temporal gyri in particular, are considered central for the cortical implementation of

semantic memory. In addition, also the anterior temporal pole (ATP) has been singled out as

playing an important role. This has been confirmed by both studies on semantic dementia

(Hodges et al., 1992; Rogers et al., 2004), and by a large neuroimaging literature (Tyler et al.,

2004; Bright et al., 2005; Moss et al., 2004; Rogers et al., 2006). According to the hub and

spoke model by Patterson et al., 2007, the ATP is supposed to produce supra-modal concept

representations by collecting and controlling modality-specific features from sensorimotor

areas.

Integration is a process that operates on representations retrieved from semantic mem-

ory and combines them in larger constructs. As explained in Chapter 1, I adopt a definition of

integration based on the concept of context. In this light, a retrieved representation is integrated

by embedding it in the linguistic context in which it happens to be uttered. Cortical areas

responsible for this operation seem to belong to the inferior frontal gyrus and the perisylvian

and temporal cortex (Hagoort, 2005, 2013a).

Integration also involves anterior temporal areas. A series of studies reported an increase

in activity in these areas, in particular the ATP, during when the subjects were presented

with sentences as compared to when they were presented with lists of words (Mazoyer et

al., 1993; Stowe et al., 1998; Friederici et al., 2000; Humphries et al., 2006, 2007). The

rationale behind this claim is that a structured linguistic input, such as a sentence, requires the

integration of its constituent words, whereas a list of unconnected words does not. This claim

is furthermore confirmed by the observation that the activity recorded in the ATP correlates

with the presentation of word pairs in specific syntactic relations, such as subject-predicate,

or adjective-noun (Baron et al., 2010; Baron & Osherson, 2011; Bemis & Pylkkänen, 2011,

2013; Westerlund et al., 2015).

6.1.2 Timing of processes
Besides the cortical loci of processing, sentence processing is characterized by a specific

temporal profile that describes the timing of each of its sub-processes (Friederici, 2002;

Humphries et al., 2007). The earlier stages mainly concern the recognition of the word from

its auditory (for spoken words) or graphic (for written words) image and involve primary

auditory or visual areas between the onset of a word and 150-200 ms. The phases that interest

this analysis are the so-called Phase 1 and Phase 2, as described by Friederici, 2002.
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Phase 1 takes places after the word form has been identified, and can be broken down

in sub-phases. First, around 200 ms after the onset of a word, its category is identified (i.e.,

whether it is likely to be a verb, a noun, an article, etc.). Subsequently, information of its

lexical meaning is retrieved from semantic memory implemented in the middle temporal gyrus.

This process takes place approximately between 150 and 300 ms after the onset of a word.

Phase 2 corresponds to a time frame between 300 and 500 ms after stimulus onset. It

roughly corresponds to integration, as introduced in the previous section. In this phase, the

lexical representation of a word retrieved in Phase 1 is embedded in the contextual representa-

tion consisting of the retrieved and unified representation of the other words composing the

sentence that is processed (Berkum et al., 1999; Hagoort & van Berkum, 2007; Hagoort et al.,

2009; Kutas & Federmeier, 2011).

6.2 Computational models
For the purpose of this study, I use two broad families of computational models developed

for word representation generation: non-contextualized models and contextualized models.

All these models create so-called word embeddings which consist of vectors of real numbers

populating a high-dimensional space. In other words, a model M takes a word w and returns a

real vector ~w representing w in an high-dimensional semantic space SS.

The first type of model generates representations ~w that are independent from the context

(sentence, paragraph etc.) in which the represented word w is located. I call these types of

models non-contextualized, and they are represented by the popular word2vec model, see

Section 6.2.1 and Mikolov et al., 2013.

(1) In order to open a new account, you should go to a bank.

(2) A fisherman is sitting with his rod on the bank of the river Thames.

(3) The domestic dog is a member of the genus Canis, which forms part of the wolf-like

canids.

(4) I took my dog out for a walk in the park.

Besides non-contextualized models, we also consider a contextualized model: ELMo

(Section 6.2.2, Peters et al., 2018). This model, contrary to word2vec, assigns representations

~w that depend on the textual context in which the represented word w is located. So, for
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instance, if the word dog appearing in Sentences 3 and 4 always obtains the same embedding
~dog

w2v
from word2vec, it will obtain two different vectors ( ~dog

ELMo
3 and ~dog

ELMo
@s4 ), one for

each of the two contexts in which it is found.

Figure 6.1: Word2vec (blue) return identical representations for words independently from the sen-
tences they are presented in. This is evident from the 1.0 cosine similarity between bank in Sentences
1 and 2 – on the one hand – and between dog in Sentences 3 and 4. Conversely ELMo (red) instead
produces different contextualized representations of the same words depending on the context they are
used, note the lower similarities (0.92 and 0.87).

As shown in Figure 6.1, this becomes evident when we compute the similarity be-

tween the embeddings. The cosine similarity between the word2vec generated ~dog
w2v
@s3 vector

(Sentence 3) and ~dog
w2v
@s4 (Sentence 4) is 1.0, indicating a total identity between the two

representations. Instead the cosine similarity between the ELMo generated ~dog
ELMo
@s3 vector

(Sentence 3) and ~dog
ELMo
@s4 (Sentence 4) is 0.92. Similarly the similarity between the word2vec

representations of bank (Sentences 1 and 2) is 1.0, whereas the similarity between the ELMo

representation of the same words is 0.87.

6.2.1 Non-contextualized embeddings (Word2vec)
Word2vec is an artificial neural network-based model used to produce word embeddings. It

has been proposed as a more advanced alternative to earlier distributional semantic vector

spaces such as latent semantic analysis. From an architectural point of view, word2vec consists

of a shallow, two-layer neural network. The model can be trained either to predict the current

word from a window of surrounding context words (continuous bag-of-words, CBOW), or –
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conversely – predict the surrounding window of context words given a target word (continuous

skip-gram, CSG).

xj

hj

y2

y1

...

yC

W

W ′

W ′

W ′

Figure 6.2: Word2vec skip-gram architecture

Training creates a high-dimensional vector space populated by word vectors, which

are positioned in the space in such a way that words that share similar semantic and syn-

tactic properties lay in close proximity to one another. Figures 6.2 and 6.3 exemplify the

architectural alternatives for word2vec training (CBOW and CSG) (adapted from Hassan &

Mahmood, 2017). Note the symmetrical structure of the two architectures. In the case of the

CBOW variant, which is used in the present chapter, inputs x1, x2, and xC refers to the 1st,

2nd and Cth words in the window surrounding target word yj that the model has to predict

during training, and hj is the hidden layer. In both cases the trained embeddings correspond

to the weights stored in matrix W, whose dimensions [v× d] correspond to the size of the

modelled vocabulary (v) and the chosen number of dimensions (d) of the vector space itself.

Once the model is trained, the way word2vec assigns embeddings to word w can be seen as a

sort of dictionary “look-up” where the embedding of word wi corresponds to row i of matrix W.

For the purpose of the study presented in this chapter, it is important to point out the role

of context with regard to the way word2vec is trained and used to assign word embeddings.
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Figure 6.3: Word2vec bag-of-word architecture

Context indeed plays a capital role during the training of the model, both in the case of the

CBOW and of the CFG variants. In both cases the context of a word is present in the pipeline,

either as the input or as the target of the training function. Nonetheless, once the model is

trained, its application is blind to the context and relations that the words have.

6.2.2 Contextualized word embeddings (ELMo)
The contextualized word embedding model ELMo (Peters et al., 2018) relies on the properties

of recurrent neural networks. Contrary to word2vec, ELMo is a deep contextualized model for

the generation of word representation. It models complex characteristics of word use that vary

across linguistic contexts.

From an architectural point of view, ELMo is a recurrent bi-directional language model

(biLM) composed of 2 layers of bi-directional recurrent units (implemented as LSTM layers)

feeding to an output softmax layer. A language model refers to a system (e.g., stochastic

or neural) trained on predicting a word given its preceding context. In its most common

formulation, a language model is an approximation of the function P(wi|w1:i−1), i.e. a

function that assigned a probability to a word wi given its prefix w1:i−1.
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A recurrent layer is a layer that creates a representation of the input sequence (sentence)

at word wi as a combination of the representation of the ith word and the representation of its

preceding (if the recurrent neural network proceeds left to right) or following (if it proceeds

right to left) context.

Figure 6.4 illustrates the structure of the ELMo model consisting of a 2-layer biLM.

ELMo’s bi-directionality refers to the fact that its hidden layers receive information about

both the preceding and following words of wi. The representation ELMo generates for a word

consists of a concatenation of the activations of its two recurrent layers.

wt−1 wt wt+1 ... wt+n

ŵt ŵt+1 ŵt+2 ... ŵt+n+1

f ~wELMo
t+n

U U U U U

U’ U’ U’ U’ U’

V V V V V

Figure 6.4: ELMo architecture consisting of a 2-layer biLM, where the layers are implemented as
LSTMs. The contextualized embedding is produced as a linear combination of its components.

Contrary to how word2vec assigns embeddings to words, given word wi in a sentence

S = [w1, w2, ...wn], ELMo instead creates the embedding ~wi by passing the whole S text

through the biLM. Embedding ~wi will depend on context w1:i−1 and wi+1:n as the combination

of the activation of the LSTM layers corresponding to the presentation of wi to the model.

For these reasons, if wi appears in a different sentential context S′, its embedding ~wi
′ will be

different.

6.2.3 Training
Since the MEG data (described in Section 6.4) was collected from Dutch native speakers

reading Dutch sentences, I used models trained on Dutch texts. Word2Vec was trained on

the CBOW task on the Corpus of Spoken Dutch (CGN2). For ELMoI used the pretrained
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Dutch model provided by the ELMoForManyLangs collection1 (Che et al., 2018; Fares et

al., 2017) with the same hyperparameter settings as Peters et al., 2017 and trained on a set of

20-million-words Dutch corpus randomly sampled from the raw text released by the CoNLL

2018 shared task on Universal Dependencies Parsing.

6.3 Hypotheses
This study aims at investigating the neurobiological underpinnings of the distinction between

non-contextualized and contextual representation as derived from recent developments in

word embedding modeling techniques. More specifically, for the non-contextual model, I

hypothesize a similarity between this model and the lexical retrieval operation of human

language processing. I expect that a model with such characteristics should most closely

resemble the activity in lateral temporal regions during processing, around 200 ms after word

onset.

Conversely, contextual model representations of words are expected to resemble more

the activity related to integration in inferior frontal and antero-temporal regions between 300

and 500 ms after the onset of the word.

6.4 MEG Data
For the purpose of this study, I have used the MEG described in Chapter 2, Section 2.3. The

data belongs to the MOUS dataset (Schoffelen et al., 2019) collected at the Donders Centre for

Cognitive Neuroimaging in Nijmegen, The Netherlands. For more details on the acquisition

procedure, stimuli, preprocessing and source reconstruction techniques, I refer to the original

chapter and to Lam et al., 2016.

6.5 Analysis
The computational models introduced in Section 6.2 are used to generate vectorial represen-

tations of the same stimulus sentences presented during the acquisition of the magnetoen-

cephalographic data described in Section 6.4. These representations are generated at word

level, meaning that these models assign a set of real number vectors for each word of the

stimulus sentences. The non-contextualized word embedding (word2vec) assigns only one

1https://github.com/HIT-SCIR/ELMoForManyLangs
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vector per word, whereas the contextualized models (ELMo) each represent every word with a

set of vectors, each corresponding with one component (layer) of their internal architecture.

In these analyses, a word represented by ELMo is assigned one vectorial representation

corresponding to the average of the activation of the two bi-directional layers composing the

ELMo network ( ~ELMo).

This section describes the analysis methodologies employed to map the two vectorial

representations ( ~W2V, ~ELMo) to the corresponding brain activity recorded with MEG. The

goal is to both map the overlap between model representations and brain activity at the

anatomical level, and to track the temporal evolution of such similarity. For this reason, I

adopted a version of representational similarity analysis (RSA) implemented in such a way to

return both spatially (anatomical) and temporally situated similarity scores.

6.5.1 Representational similarity analysis through time
Given a set of linguistic units, for instance, words w1, ...wn, a vectorial representation for

each of them can be generated using the embedding models described in Section 6.2. Words

w1, ...wn are assigned vectors ~w1
M , ... ~wn

M from the computational model M. These are

drawn from a representational space RSM populated by the vectorial embeddings. At the same

time, it is possible to derive a brain representation of the same words. This representation is

the word-wise trial activation recorded in the MEG dataset described in Section 6.4. Note

that the signal for each word was not average over time per trial, but that it was kept as is.

These activation samples also create a representational space RSB populated by the same

words w1, ...wn. At this point, the aim of the analysis is simply to measure how similar RSM

and RSB are. In order to do so, representational similarity analysis (RSA) was used. Instead

of directly mapping the two spaces, RSA compares pairwise similarities across different

spaces.

RSA was conducted at the level of anatomical regions and using a sliding, partially

overlapping temporal window (width 30 ms, step 16 ms). In this way, a neural representation

is obtained for each word for each brain region and it is paired with a specific model-derived

vectorial representation of the same word. This allows to plot the similarity score between

model and windowed time-course of each anatomical region of the MEG dataset.

Given a model RSM, a representational similarity structure ssM consists of a [n× n]

matrix where element ssM
ij denotes the dissimilarity (computed as Euclidean distance) between

embeddings ~wi
M and ~wj

M from RSM of words wi and wj. Similarly it is possible to derive

a series of representational structures ssBrt for each anatomical region r and time window
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t. Element ssBrt
ij quantifies the similarity between the brain activity in r and time t for word

stimuli wi and wj. Figure 6.5 displays the representational similarity structure for brain activity

in region r and time i 6.5a, and for model M 6.5b.

a b

Figure 6.5: Similarity matrix for brain activity in region a and time i (a), and for model M (b). The
matrices have been zoomed in to show their fine-grained structure and the labels of their rows and
columns.

The similarity score is estimated by taking Pearson’s correlation coefficient between

the upper off-diagonal triangle of the [n× n] symmetric paired similarity matrices (ssM and

ssBai ) (Figure 6.6). These scores quantify the extent to which the similarity across stimuli is

similarly represented by the model M and by brain activity in anatomical region a and time i.

These measures are repeated across time t and anatomical regions r (Figure 6.7).

Therefore for each anatomical region, I obtained a representation of similarity between

model and brain activity as a function of time from 0 to 500 ms after word onset (in windows

of 30 ms, every 16 ms).

The analyses are conducted at the single-subject level up to this stage. The result of the

temporal RSA for model M thus consists of 74 matrices, one for each subject, of size [s× u]

where s is the number of anatomical regions and u the number of temporal windows.

6.5.2 Group-level analysis
Given 74 per-subject [s× u] matrices, I want to obtain a single group-level matrix describing

the similarity between model M and brain activity across anatomical regions and over time.

Typically, group-level RSA results are obtained by averaging similarity matrices across

subjects before computing the similarity score with the model similarity matrix. Cross-subject

averaging requires that all matrices have the same size and that the row and columns correspond

to the same words across matrices. This is not the case for this dataset. First, the subjects are
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Figure 6.6: RSA is conducted by computing the similarity score between the brain space similarity
matrices (left) and model similarity matrix (right). Here, the brain similarity matrix consists of the
pairwise similarity scores among trials at anatomical region a and time window i.

grouped in cohorts of about 20, each of which was presented with a different subset of the

360 stimulus sentences. This means that not all ssBrt have rows and columns corresponding

to the same words. Moreover, the trial selection procedure in the per-subject pre-processing

consisted of discarding trials with irreparable artifacts. Therefore, even if two subjects are

presented with the same set of sentences, there is a chance that they would have a different set

of corresponding MEG trials due to the different occurrence of signal artifacts.

In this analysis, I computed t-statistics over subjects for each region/time combination

independently. I computed a one-sided t-score for each of the present computational models

( ~W2V, ~ELMo). I also computed a one-side t-score between the scores obtained by the aggre-

gate models and word2vec ( ~ELMo > ~W2V). The results of these t-statistics are thresholded

at p < 0.05. Given the exploratory nature of this study, no statistic correction was applied in

order not to obliterate the possible small effects detected by the RSA.

6.6 Results
The results of the analyses are split in two main parts. In the first part, I report the results of

each of the two embedding models (word2vec and ELMo) separately. In the second part of

the analyses, the similarity scores of word2vec and ELMo are contrasted.
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Figure 6.7: RSA is conducted over time, meaning that a brain space similarity matrix is computed for
each separate time windows slicing the MEG trials.
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Results are provided at the whole-brain level, displaying the model–brain similarities at

5 distinct time points: 150, 250, 350, 450, and 550 milliseconds after word onset.

6.6.1 Models
The RSA analyses of the two computational models are reported separately in Figure 6.8 and

6.9.

Figure 6.8: Whole brain similarity over 6 time frames for word2vec.

The embedding model (Figure 6.8), which does not include contextual information,

word2vec, returns lower similarities overall over time when correlated with brain activity, but

more so from about 300 ms post word onset. For earlier latencies, word2vec shows significant

activity in the left middle and inferior temporal gyri. Significant similarity with brain activity

is also observed around 400 ms in the left posterior superior temporal gyrus.

Figure 6.9: Whole brain similarity over 6 time frames for ELMo.

The contextualized model (Figure 6.9), ELMo, instead exhibits an overall significant

similarity with brain activity between 300 and 500 ms in the left frontal, prefrontal, and

anterior temporal regions. In particular, ELMo shows significant similarity with the left

inferior temporal gyrus and the left anterior temporal cortex around 400 ms.
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6.6.2 Comparison
In Figure 6.10, I show the results of a direct comparison between ELMo and word2vec ( ~ELMo

> ~W2V).

Figure 6.10: Comparison between contextualized model (ELMo) with word2vec (ELMo > word2vec)

ELMo shows significantly higher similarity to brain activity as compared to word2vec

in the left anterior temporal lobe and in the left inferior frontal gyrus around 400 ms post word

onset. The higher scores are also observed for the left middle frontal and prefrontal regions

around 500 ms.

6.7 Discussion
In Section 6.6, I observed that contextual and non-contextualized models yield qualitatively

different results with regard to the timing and location of their similarity to MEG-recorded

brain activity. In this section, I discuss the implications of these findings in light of the nature

of the models and of the brain processing of natural language, as introduced in Sections 6.1.1

and 6.1.2.

I believe that computational word embedding models help in probing the nature of the

neural representations correlated to memory retrieval and to integration. This is because they

make the distinction between these two phenomena more computationally specific. When dis-

cussing the nature of retrieval and integration, Baggio & Hagoort, 2011 argue that approaches

based on formal semantics might not be realistic models of how the brain implements. In

agreement with Seuren, 2009, they state that formal semantics disregards natural language

as a psychological phenomenon. They continue stating their desire to develop an account

“that adheres to cognitive realism, in that it explains how language users derive meaning and

how the human brain instantiates the neural architecture necessary to achieve this feat". I

believe that distributional semantic models, of which contextualized embeddings are the most

advanced version, have already been proven their cognitive realism by being good models of

human behavioral – e.g. semantic similarity judgment (Baroni & Lenci, 2011) – and neural
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(Mitchell et al., 2008; Anderson et al., 2015) data. Moreover, at the dawn of the field, distribu-

tional models – e.g., Latent Semantic Analysis (Landauer & Dumais, 1997) – were actually

developed as cognitive models to answer questions on how infants acquire word meaning, and

humans react to semantic similarity and relatedness. In light of the above considerations, I

think that the models presented in the study might offer a cognitively realistic approximation

of what is going on in the brain during memory retrieval and integration.

In the remainder of this section, I will discuss the effect of contextualization on the

similarities between computational representations and brain activity (Section 6.7.1). I will

specifically focus on the implications of these findings regarding the role of the anterior

temporal lobe 6.7.2 and of activity peaking around 400 ms after stimulus onset(Section 6.7.3).

I will also discuss the plausibility of the models chosen for the present study (Section 6.7.4).

6.7.1 The effect of contextualization on model-brain similarity
ELMo creates vectorial representation of words (embeddings) dependent on the context in

which those words occur (Section 6.2.2). This contrasts with the nature of embeddings

generated by a model such as word2vec (Section 6.2.1) that, once trained, always generates

the same embeddings for a word regardless of its context.

Contextualized word embeddings generated by ELMo display higher similarity with

brain activity in the frontal and anterior temporal regions of the brain around 300 and 400

ms post word onset; in other words, in areas and in a time frame compatible with integration

processes. Integration refers to the integration of a linguistic unit (a word for instance) in the

context provided by the other linguistic input in which it happens to be contained.

Non-contextualized word embeddings generated by word2vec exhibit a somewhat

opposite behavior, showing higher similarity with earlier (100-200 ms) activity in lateral

temporal regions. These regions are supposed to implement long-term memory (semantic

memory) retrieval.

The fact that ELMo and word2vec embeddings display such different behaviors with

regard to brain activity can be reconciled with the division of labor predicated by models such

as the MUC (Hagoort, 2013a), especially for what concerns the distinction between semantic

memory and contextual integration.

6.7.2 The role of the anterior temporal lobe in integration
The fact that contextualized embeddings show higher similarity in the left anterior temporal

lobe might indicate that this region plays a role in integration. This is in line with several

6.7.1 The effect of contextualization on model-brain similarity 107



experimental studies reporting the involvement of this area in lexical, semantic, and syntactic

integration. Works such as Mazoyer et al., 1993, Stowe et al., 1998, Friederici et al., 2000,

Humphries et al., 2006, and Humphries et al., 2007 arrived at the conclusion that the anterior

temporal lobe is somehow involved in sentence-level integration, after observing an increase in

activity in this area during the presentation of sentences as compared to word lists. In addition,

a series of other studies have confirmed the role of ATP in processing composition by showing

that its activity is modulated by the type of syntactic relation holding between two words being

integrated (Baron et al., 2010; Baron & Osherson, 2011; Bemis & Pylkkänen, 2011, 2013;

Westerlund et al., 2015; Bemis & Pylkkänen, 2013).

The left ATP is also considered central in semantic memory. This was confirmed by

studies on patients suffering from semantic dementia (Hodges et al., 1992, 1995; Mummery

et al., 2000; Rogers et al., 2004), and several functional neuroimaging studies (Gauthier et

al., 1997; Tyler et al., 2004; Bright et al., 2005; Moss et al., 2004; Rogers et al., 2006).

These findings are summarised by Patterson et al., 2007, which hypothesizes that concepts are

represented by a network of sensorimotor representations converging in the left ATP, which

integrates modality-specific features in order to produce supra-modal representations.

Contextualized models do not show high correlations in the ATP at latencies that are

associated with memory-related processing: 100-200 ms after word presentation. The results,

therefore, seem to indicate that contextualized embeddings approximate representations that

have to do with the integration into context and not with lexical retrieval from memory per se.

If this were the case, I would have expected similar correlations in the ATP both at memory

retrieval (100-200 ms) and integration latencies (400 ms). Conversely, a tentative interpretation

with regard to the role of ATP could be that activity in this region is different when semantic

memory operations and contextual integration processes are carried out.

6.7.3 The role of N400 in integration
The results presented in Section 6.6 do confirm not only the anatomical loci of memory and

integration, but also provide indirect suggestions on the role of the N400 (Kutas & Federmeier,

2011). It has been debated in the literature whether the N400 is best characterized as playing a

role in combinatorial (integration) or non-combinatorial (retrieval from memory) processes.

Baggio & Hagoort, 2011 and Hagoort et al., 2009 refrain from providing a stance on the matter

because of the difficulty of devising convincing task-dependent experimental designs that

are able to disentangle combinatorial and non-combinatorial semantic processes. Here again,

I believe that the present computational modeling approach may provide an answer to the

question. The results seem to point more towards a combinatorial process for the N400, given

that the contextualized model, which represents the result of contextual integration to predict
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the word in focus, maps to brain activity corresponding to its latencies. It is an indirect proof,

but a proof pointing in this direction nonetheless. These results are in line with studies that

link the role of the N400 to context processing (Berkum et al., 1999; Hagoort & van Berkum,

2007).

6.7.4 The plausibility of bi-directional RNNs
ELMo is essentially a bi-directional recurrent neural network-based language model that

integrates a word with its preceding and following context. Bi-directional recurrent language

models seem to violate the assumption that human language processing proceeds left-to-right

and word-by-word. Although this is trivially true for listening, it is worth noting that studies

of reading behavior tend to describe a more nuanced situation. It is consistently reported in the

eye-tracking of reading literature that between 15 and 20 % of eye movements proceed right-

to-left (eye regressions) for left-to-right languages such as English or Dutch, and the opposite

occurs for right-to-left languages such as Arabic (Rayner & Pollatsek, 1995). Moreover, a

number of “jump-ahead” eye movements are also commonly observed, indicating that humans

either skip information that is deemed irrelevant for the processing of a linguistic item or that

they look ahead in order to collect contextual information to the right of a word. This indicates

that the preceding linguistic sequence is not always the only contextual material employed in

the processing and interpretation of a word or of a sentence as a whole.

6.8 Conclusions
Recent developments in computational linguistics have created a new family of models

that generate word embeddings that compute their representations with information derived

from the context in which words are used. In this chapter, I have adopted one particular

contextualized model, ELMo, as an approximation of the result of integration processes in the

human brain during natural language comprehension. I contrasted ELMo with word2vec, a

non-contextual embeddings model. Starting from the distinction between semantic memory

retrieval (implemented in temporal regions and activated around 200 ms after the onset

of an incoming word) and word integration into context (carried out in inferior frontal,

perisylvian and anterior temporal regions around 400 ms after word onset), I observed that

non-contextualized models correlate with activity only in regions and latencies associated

with semantic memory. In contrast, contextualized models correlate with activity in areas and

latencies associated with word integration in context. These results confirm the functional

and physiological distinction between memory and integration. Moreover, they provide some
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insight into the role of the IFG, an area involved in integration and whose activity might

temporarily store contextualized lexical representations. The results also point towards an

involvement of the anterior temporal lobe in integration, an area that was already linked to

semantic combinatorial processes and which nonetheless received less attention in the theories

of the architecture of the language system adopted in this chapter.

By highlighting a parallelism between models and brain activity, my results offer a

contribution to the understanding of the division of labor at the cortical level between areas

encoding lexical items in isolation and areas sensitive to the use of those items in context.
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I began this dissertation with the assumption that language processing in the brain can

be partitioned into several sub-components that can be modelled by different computational

linguistics models fitted on human data collected using a naturalistic stimulus paradigm.

In this final chapter, I summarize the main results with regards to the sequential properties

of the stimulus, syntactic analysis, and basic sub-operations, I also provide some insights

derived from the application of computational tools and brain imaging data collected using

naturalistic stimuli.
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In this dissertation, I set out to investigate the distinct sub-processes constituting lan-

guage processing in the brain using naturalistic language stimuli and computational modeling.

In this chapter, I summarize the results exposed in the previous chapters, and I draw con-

clusions with regard to the methodological choices that were adopted throughout the whole

research presented herein.

I investigated whether different sequential properties of language, types syntactic struc-

ture, and sub-operations can be distinguished using computational modeling applied to natu-

ralistic stimuli.

The first question dealt with the sequential properties of the stimulus. In Chapter

3, I addressed the questions of whether the brain is sensitive to the sequential properties

of the stimuli defined in terms of stochastic language models, and whether the sequences

of phonemes, words and grammatical categories constituting the stimulus are processed by

distinct areas within the brain language network.

Subsequently, in Chapters 4 and 5, I investigate the type of syntactic formalisms that

might describe the structural analyses conducted during language processing. In particular,

in Chapter 4, I investigated the type of grammars that better describe the activity in a set of

cortical areas hypothesised to be involved in syntactic analyses. In Chapter 5, instead, my

results showed that it is possible to find evidences for syntactic parsing by looking at patterns

of eye movements during reading.

Finally, concerning the basic operations supporting language processing and in partic-

ular the role of contextualization, in Chapter 6, I addressed the question of whether lexical

retrieval and integration can be formalized in terms of contextualization of linguistic repre-

sentations (i.e., word embeddings). I used contextualized word embeddings as models of

integration processing, and conversely, non-contextualized word embeddings as models of

lexical retrieval in the brain.

7.1 Overview of the results
Before discussing the theoretical and methodological implications of the studies described in

the previous chapters, the present section offers an overview of the results contained in this

dissertation. The central motif of this work is the mapping between computational linguistic

model-derived measures and brain activity in several cortical areas. Therefore, in this section,

I present two tables: Table 7.1 lists for each brain area all the computational models that map

or explain its activity; Table 7.2 contains the same information but, instead, lists for each

model its corresponding brain areas.

7.1 Overview of the results 113



Table 7.1: Area-wise summary: list of brain areas mentioned in this dissertation and their corre-
spondent computational models.

Area Model(s) Function Section(s)
left angular
gyrus

SLM-phoneme phonemic sequence 3.3.3

left anterior
temporal pole

SLM-word lexical sequence 3.3.1

DG shallow structure 4.6.2

Contextualized lexical integration 6.5.1
left fusiform
gyrus

SLM-word lexical sequence 3.3.1

left inferior
frontal gyrus

DG shallow structure 4.6.2

Contextualized lexical integration 6.5.1
left inferior
parietal lobule

SLM-phoneme phonemic sequence 3.3.3

left inferior
temporal gyrus

SLM-word lexical sequence 3.3.1

left insula SLM-phoneme phonemic sequence 3.3.3
left middle
superior frontal
gyrus

SLM-PoS grammatical sequence 3.3.2

left middle
temporal gyrus

SLM-PoS grammatical sequence 3.3.2

SLM-phoneme phonemic sequence 3.3.3

Non-contextualized lexical retrieval 6.5.1
left posterior
superior temporal
gyrus

SLM-word lexical sequence 3.3.1

PSG phrase structure 4.6.2
left precentral
sulcus

SLM-PoS grammatical sequence 3.3.2

right amygdala SLM-PoS grammatical sequence 3.3.2
right angular
gyrus

SLM-PoS grammatical sequence 3.3.2

SLM-phoneme phonemic sequence 3.3.3
right Heschl’s
gyrus

SLM-phoneme phonemic sequence 3.3.3

right middle
temporal gyrus

SLM-PoS grammatical sequence 3.3.2
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right posterior
middle temporal
gyrus

SLM-phoneme phonemic sequence 3.3.3

SLM-word lexical sequence 3.3.1
right precentral
sulcus

SLM-PoS grammatical sequence 3.3.2

right putamen SLM-PoS grammatical sequence 3.3.2
right superior
frontal gyrus

SLM-phoneme phonemic sequence 3.3.3

Table 7.2: Model-wise summary: list of computational models adopted in this dissertation and
their correspondent brain areas.

Type Model(s) Area Section(s)
Word
Embeddings

Contextualized left anterior temporal pole 6.5.1

left inferior frontal gyrus 6.5.1

Non-contextualized left middle temporal gyrus 6.5.1
Stochastic
Language
Model

SLM-phoneme left angular gyrus 3.3.3

left inferior parietal lobule 3.3.3

left insula 3.3.3

left middle temporal gyrus 3.3.3

right angular gyrus 3.3.3

right Heschl’s gyrus 3.3.3

right posterior middle temporal

gyrus

3.3.3

right superior frontal gyrus 3.3.3

SLM-PoS left middle superior frontal gyrus 3.3.2

left middle temporal gyrus 3.3.2

left precentral sulcus 3.3.2

right amygdala 3.3.2

right angular gyrus 3.3.2

right middle temporal gyrus 3.3.2

right precentral sulcus 3.3.2

right putamen 3.3.2

SLM-word left anterior temporal pole 3.3.1

left fusiform gyrus 3.3.1

left inferior temporal gyrus 3.3.1
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left stuperior temporal gyrus 3.3.1

right posterior middle temporal

gyrus

3.3.1

Syntactic
Parser

DG left anterior temporal pole 4.6.2

left inferior frontal gyrus 4.6.2

PSG left stuperior temporal gyrus 4.6.2

7.1.1 Sequential processing of language at different information
levels
In Chapter 3, I demonstrated that areas sensitive to the sequential properties of language could

be partitioned in sub-networks, each of which is sensitive to different types of information.

These analyses showed that the stochastic sequential processing paradigm is indeed a powerful

formalism able to predict neurobiological correlates in areas belonging to the language pro-

cessing network, also when applied to sub-lexical (phonemic) and syntactic (part of speech)

levels.

Three distinct sets of cortical areas are sensitive to the three types of sequential infor-

mation – lexical, syntactic, and phonological – examined in this dissertation. This confirmed

the hypothesis that language processing could indeed be decomposed into different levels

of information corresponding to different subdivisions of the language network. No area

was activated by all three types of information, and only limited sets of voxels show overlap

between pairs of types of information. Activity in the inferior and lateral portions of the left

temporal cortex is likely involved by lexical sequential information and is likely to be a central

hub of lexical information processing (Binder et al., 2009; Binder & Desai, 2011). Phono-
logical information instead concerns activity in the temporal cortex only in regions close to

the transverse gyrus (Heschl’s gyrus) (Mendoza, 2011), and the supplementary motor area

(SMA) (Alario et al., 2006; Willems & Hagoort, 2007; Hertrich et al., 2016). The syntactic
sequential information explains activity centered in the middle temporal gyrus (MTG).

In conclusion, these results appear to confirm the intuition that language is processed in

parallel by distinct networks sensitive to different sources of information, including at least

those tested here: phonological, lexical, and syntactic.
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7.1.2 Syntactic analysis: dependency and phrase-structure
processing in the brain
In Chapter 4, I investigated whether different brain regions are sensitive to different kinds of

syntactic structures. In order to do so, I assessed dependency (DG) and phrase-structure (PSG)

descriptors of sentences as predictors of brain activity in the left anterior temporal pole (ATP),

the left inferior frontal gyrus (IFG), and the left superior temporal gyrus (STG).

The results indicate a general division of labour between areas sensitive to PSG in the

posterior perisylvisn cortex (left pSTG), and areas sensitive to DG measures in more anterior

cortical regions (left IFG and ATP). As I will discuss in Section 7.2, the fact that activity in the

left ATP is better explained by DG measures as compared to PSG ones is in accordance with

Westerlund et al., 2015, and corroborates the idea that ATP works as a hub for sentential-level

semantic composition where words are combined according to the argument structure of the

sentences as captured by their dependency parses.

7.1.3 Dependency structures and eye movements
Syntactic analysis was also investigated using data other than brain imaging. In Chapter 5, I

have presented a study investigating whether eye movements of readers may be influenced

directly by the syntactic structure of the sentence. I tested this using structures computed

by a dependency parser. The hypothesis was that the path of regressions from a word to an

earlier word coincide, at least partially, with the edges of dependency relations between these

words. The results indicate that there is a significant effect of the number of left-hand side

dependency relations on the number of backward saccades. These results are corroborated by

the observation that about 40% of backward saccades do indeed land on target words engaged

in dependency relations according to the syntactic structure of the sentences composing the

stimuli.

Altogether these results converge on the idea that eye movements reflect, among other

things, the shallow syntactic structure of language. Moreover these results also seem to

corroborate the idea that humans do engage in online syntactic analysis of the input – at least

in the form of dependency parsing.

7.1.4 Tracing operations underpinning language processing
In Chapter 6, I investigated the difference between lexical retrieval and integration using

contextualized (e.g., ELMo – Peters et al., 2018) and non-contextualized (e.g., word2vec

– Mikolov et al., 2013) word embeddings, models that create numerical representations of
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linguistic units on the basis of their use in large corpora of texts. Contextualized embeddings

create representation that depends on the actual context a specific token is uttered and are

used in this study as an approximation of the result of integration processes in the human

brain during natural language comprehension. On the other hand, non-contextualized models

represent tokens independently of the context of utterance and are used as approximation of

lexical retrieval.

The results show a correspondence between non-contextualized embeddings and activity

related to lexical retrieval, and between contextualized embeddings and activity associated

instead with lexical integration. In more details, non-contextualized embeddings correlate

with activity around 200 ms post word onset in the temporal cortex, whereas contextualized

embeddings correlate mostly with activity after 400 ms post word onset in anterior temporal

and frontal regions. These results confirm the functional and physiological distinction between

memory and integration. Moreover, they provide some insight into the role of the IFG and the

involvement of the ATP in integration. This latter area that was already linked to semantic

combinatorial processes and which nonetheless received less attention in the theories of the

architecture of the language system that have been considered in this dissertation.

7.2 Remarks on the left anterior temporal lobe
The left anterior temporal lobe appears to be involved in at least two of the three sub-

components of language processing in the brain probed in this dissertation: syntactic analysis

and lexical integration in context.

The results presented in Chapter 4 seem to indicate that the ATP (together with parts

of the IFG) plays a role in the construction of sentence-level representations following a

dependency grammar. In fact, in that chapter, we saw how the number of left-hand side

dependency relations for each word has a significant effect in the prediction of activity in the

left ATP and part of the left IFG (Section 4.6.1). These results are in line with studies such

as Mazoyer et al., 1993, Stowe et al., 1998, Friederici et al., 2000, Humphries et al., 2006,

and Humphries et al., 2007. Moreover, it is worth noticing how dependency relations are

comparable to the 2-word stimuli that were found eliciting activation in the ATP by Baron et

al., 2010 and by Westerlund et al., 2015 (adjective–noun, subject–predicate, object–predicate,

etc.). In fact, dependency relations making up the structure of a dependency parse can be

broadly classified as predicate–argument (e.g., subject–predicate and object–predicate) or

modifier (e.g., adjective–noun, adverb–verb, etc.) relations.

In lights of these observations, it seems natural to conclude that the role played by the

left ATP in sentence processing is related to the computation of binary relations as captured by

118 Chapter 7 Conclusions



a dependency grammar.

Chapter 6 demonstrated that the activity in the left ATP is correlated to the representa-

tions obtained from contextualized word embeddings. This was interpreted as an indication

that this region plays a role also in sentence-level lexical integration into context.

In conclusion, both the results of Chapter 4 and of Chapter 6 converge on the idea that

the left ATP might be the locus where sentence-level semantic representations are computed.

These larger representations might be produced by combining the lexical representations of

the words composing the sentence following the structure specified in a fashion comparable to

a dependency parse, or by integrating lexical information with the information provided by

the context of utterance of the stimulus.

7.3 Remarks on naturalistic stimuli and
computational modeling
In this dissertation, I have investigated the multiple levels that compose language processing

from a sequential point of view, as well as from the point of view of the syntactic structures and

of the types of operations involved. In order to do so, I have decided to adopt two innovative and

complementary methodological paradigms: naturalistic stimuli and computational linguistic

modeling.

The naturalistic stimulus paradigm consists of the collection of data from participants

that were presented with stimuli and conditions that resemble as much as possible real-life

situations, such as listening to or reading narratives, and with little or no experimental task

forced onto them. This is in stark contrast with other approaches that rely on carefully con-

structed conditions and stimuli. Computational modeling – at least in the way it is meant

here – refers to a series of tools adopted from computational linguistics and natural language

processing (NLP), which are used to provide a detailed quantitative description of the stimulus.

Data collected using naturalistic stimuli can be a goldmine of information that can be

probed by modelling the stimulus. In Chapter 2, I described three distinct datasets, two of

which were collected using naturalistic stimuli.

Besides the consideration already expressed in Chapter 1 regarding the advantages of a

naturalistic paradigm over more traditional task-oriented approaches, at the end of this disser-

tation, it would be in order to discuss one of its most recurrent criticisms: the lack of control
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compared to task-oriented paradigms. As I mentioned in Chapter 1, naturalistic paradigms

are expressly distinct from task-oriented paradigms, which are deliberately controlled and

decontextualized. The use of naturalistic stimuli does not necessarily entail a complete loss of

the experimental control. The potential lack of control from the point of view of the stimulus

is instead compensated by modeling the stimulus using computational linguistic tools. This

approach leverages computational models in order to account for as much variance as possible

in the data by providing descriptors for as many factors concerning the stimulus as possible

(i.e. word frequency, position, length, and predictors of interests such as surprisal and syntactic

structure).

The naturalistic stimuli datasets presented in Chapter 2 have been used for several

different studies ranging from engagement during narrative comprehension, mental imagery,

and computations underlying processing (Willems et al., 2016; Frank & Willems, 2017;

Lopopolo et al., 2017; Mak & Willems, 2018), showing that the richness of the material

presented to the subjects allows for the study of several – even quite different – aspects of

language processing with a single dataset. Therefore, another benefit is the fact that this

approach encourages the re-use of data, which is expensive and time-consuming to collect.

7.4 Final remarks
In this dissertation, I have investigated the hypothesis that language processing in the brain can

be partitioned into several sub-components using different computational linguistics models

and human data collected under a naturalistic stimulus paradigm.

Different types of sequential information derived from the stimuli can be traced in

distinct cortical areas belonging to the language network in the brain. At the same time,

different types of syntactic operations seem to be performed by distinct areas in the brain

sensitive to syntax. Finally, contextualization of lexical information can be modelled using

state of the art computational word embeddings, which can help to understand the distinction

between lexical retrieval and integration, both from an anatomical and temporal point of

view.

This dissertation offers a contribution to the potential derived from combining un-

constrained naturalistic stimulus paradigms with the modeling of the stimulus derived from

computational linguistics tools. The full potential of this approach remains to be fully tested,

since the rapid evolution and innovation in computational linguistics offers new models ev-

ery day that could potentially be used for further testing hypotheses about human language

processing.
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Samenvatting

In dit proefschrift heb ik onderzocht of taalverwerking in de hersenen kan worden on-

derverdeeld in verschillende subcomponenten. Hiervoor heb ik computationele taalmodellen

en neurale gegevens die zijn verzameld tijdens een naturalistisch stimulusparadigma gebruikt.

Tijdens taalverwerking ontvangen de hersenen een in wezen sequentieel signaal. De input

ontvouwt zich immers lineair in tijd of ruimte. Niettemin zijn slechts van spraakgeluiden of

grafemen niet voldoende voor taalverwerking. Het primaire doel van dit proefschrift is de

diversiteit aan informatietypen, structuren, en bewerkingen die deel uitmaken van natuurlijke

taalverwerking, te onderzoeken. De eerste intuïtie is dat de hersenen geen eenvoudigweg

opeenvolgende verwerking gebruiken waarin het ene type representatie na het andere wordt

berekend. Verwerking bestaat daarentegen uit een veelvoud van naast elkaar bestaande

en mogelijk synchrone en bovenop elkaar werkende processen. In dit proefschrift zal ik

me concentreren op de sequentiële eigenschappen van de stimulus, het type syntactische

structuren dat door de hersenen wordt berekend, en de basishandelingen die de verwerking

ondersteunen.

De sequentiële eigenschappen van de stimulus bestaan uit de informatie die de hersenen uit

de stimulus zelf halen. In dit proefschrift worden deze eigenschappen geanalyseerd op het

niveau van fonemen, woorden en grammaticale klassen. De volgende zin: de jongen leest

een boek in bed, kan worden opgevat als een reeks woorden (de, jongen, enz.), Maar ook als

een reeks grammaticale categorieën (artikel, naamwoord, werkwoord, artikel, naamwoord,

voorzetsel, naamwoord), of als een reeks fonemen. Het is de vraag of het menselijk brein de

zin verwerkt als een reeks woorden, als een reeks grammaticale categorieën, en als een reeks

fonemen op dezelfde manier en in dezelfde hersenstructuren. Deze verschillende niveaus

van sequentiële informatie worden gemodelleerd met behulp van stochastische taalmodellen,

die de sequenties beschrijven in termen van voorwaardelijke waarschijnlijkheden. Dat zijn

modellen die de kans berekenen dat het woord boek volgt na ...leest een, of dat een naamwoord

volgt op een werkwoord.
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Naast deze sequentiële eigenschappen zullen de hersenen waarschijnlijk ook de syntactische
structuren van de taalinvoer berekenen. Met andere woorden, de hersenen bouwen een

netwerk op van relaties tussen de lexicale eenheden die de inkomende stimulus vormen.

Het brein herkent bijvoorbeeld een subject-predikaatrelatie tussen de woorden ‘jongen’ en

‘leest’. In dit proefschrift beschouw ik twee soorten syntaxis: één gebaseerd op dependency
grammars en één gebaseerd op phrase-structure grammars. De vraag is of het brein

syntactische structuren opbouwt volgens principes die meer in lijn zijn met de ene of de andere

grammatica.

Ten slotte bedoel ik met basisbewerkingen het ophalen van lexicale informatie uit het mentale

lexicon en hun integratie in grotere representaties, zoals een zin. De intuïtie is dat tijdens het

begrijpen van een zin ons brein de betekenis van elk woord toewijst door te putten uit zijn

eigen mentale lexicon en dat deze vervolgens worden gecombineerd tot geleidelijk grotere

structuren. Om dit te bestuderen, gebruik ik computationele representaties van de betekenis

van woorden verkregen uit kunstmatige neurale netwerken (deep learning word embeddings).

De resultaten tonen aan dat verschillende soorten sequentiële informatie een rol spelen in ver-

schillende hersengebieden die tot het taalnetwerk van de hersenen behoren. Bovendien lijken

verschillende soorten syntactische grammatica’s te worden verwerkt door verschillende hersen-

gebieden die gevoelig zijn voor syntaxis. Ten slotte kan de integratie van lexicale informatie

worden gemodelleerd met behulp van state-of-the-art computational word embeddings.
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Summary

In this thesis, I have explored the hypothesis that language processing in the brain can be

divided into different sub-components using different computational linguistic models and

neural data collected during a naturalistic stimulus paradigm.

During language processing, the brain receives a signal that is essentially sequential. The input

unfolds linearly in time or space. Nevertheless, arrays of speech sounds or graphemes are not

all there is to support language processing. The primary aim of this thesis is to investigate

the diversity of information types, structures and operations that are part of natural language

processing. The first intuition is that the brain does not support a simple sequential pipeline in

which one type of information is processed at the same time and one type of representation

is calculated after another. Processing consists of a multitude of coexisting and possibly

synchronous and superimposed processes. I will focus on the sequential properties of the

stimulus, the type of syntactic structures computed by the brain, and the basic operations

underpinning processing.

The sequential properties of the stimulus consist of the information that the brain extracts

directly from the stimulus. In this thesis, these properties are analyzed at the level of phonemes,

words and grammatical categories. The following sentence: the boy is reading a book in bed,

can be understood as a series of words (the, boy, etc.), but also as a series of grammatical

categories (article, noun, verb, article, noun, preposition, noun), or as a sequence of phonemes.

The question is whether the human brain processes the sentence as a series of words, as a

series of grammatical categories, and as a series of phonemes in the same way and in the same

brain structures. These different levels of sequential information are modeled using stochastic

language models, which describe the sequences in terms of conditional probabilities. Such

models calculate the probability of hearing the word book after having heard ... reads a, or

encountering a noun after a verb.

In addition to these sequential features, the brain is also likely to analyze the syntactic struc-
tures of the linguistic input. In other words, the brain builds a network of relationships between
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the lexical units that make up the incoming stimulus. For example, the brain recognizes the

existence of a subject-predicate relationship between the words boy and reads. In this thesis, I

consider two types of syntactic formalisms: one based on dependency grammars and one

based on phrase-structure grammars. The question is whether the brain builds syntactic

structures according to principles that are more in line with one or the other grammar.

Finally, by basic operations I mean the recovery of lexical information from the mental

lexicon and its integration into larger representations. The intuition is that while understanding

a sentence, our brain assigns the meaning of each word by drawing on its own mental lexicon

and then combines these into gradually larger structures. To study this, I use computational

representations of the meaning of words obtained from artificial neural networks (deep learning

word embeddings).

The results show that different types of sequential information can be detected in different

areas of the brain that belong to the brain’s language network. In addition, different types of

syntactic grammars seem to be processed by different areas of the brain that are sensitive to

syntax. Finally, the integration of lexical information can be modeled using state-of-the-art

computational word embeddings.
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