The Quest to Slow Ageing through Drug Discovery

Linda Partridge^{1,2}, Matias Fuentealba² and Brian K Kennedy³⁻⁷

4 5 6

7

1

3

1. Max Planck Institute for Biology of Ageing, Department Biological Mechanisms of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany

8910

2. Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.

111213

3. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Dr., Singapore 117596.

141516

4. Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Dr., Singapore 117593.

171819

5. Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore 117609.

202122

6. Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609.

2324

7. Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945 USA.

252627

Corresponding authors: Linda.Partridge@age.mpg.de; bkennedy@nus.edu.sg

ABSTRACT

 Although death is inevitable, individuals have long sought to alter the course of the ageing process. Indeed, ageing has proved to be modifiable; by intervening in biological systems such as nutrient-sensing, cellular senescence, the systemic environment and the gut microbiome, phenotypes of ageing can be slowed sufficiently to mitigate age-related functional decline. These interventions can also delay the onset of many disabling, chronic diseases, including cancer, cardiovascular disease and neurodegeneration in animal models. Here we examine the most promising interventions to slow ageing and group them into two tiers based on the robustness of the preclinical, and some clinical, results, in which the top tier includes rapamycin, senolytics, metformin, acarbose, spermidine, NAD⁺ enhancers and lithium. We then focus on the potential of the interventions and the feasibility of conducting clinical trials with these agents, with the overall aim of maintaining health for longer before the end of life.

[H1] Introduction

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84 85

86

87

88

89

Research into ageing is still a small field relative to mature areas, including those focused on major age-related diseases. Publications on cancer, cardiovascular disease (CVD) and Alzheimer's Disease greatly outstrip those on ageing and gerontology. However, advancing age is the major risk factor for all of these diseases, and recent events have conspired to bring the rapidly expanding field of research into ageing to the forefront. First, global demographic changes are dramatically altering the age-structure of humans. For instance, a combination of longer lives and declining birth rates has resulted in more people over the age of 65 than under 5, and this trend will continue, with many countries facing a deluge of elders (FIG. 1a). Healthspan [G] has not kept up with increasing lifespan and, since ageing is the predominant risk factor for most chronic diseases¹⁻³ (FIG. 1b), the greying population is increasingly threatening economic growth and sustainability, with the healthcare sector particularly vulnerable^{4,5}. Second, the pharmaceutical sector has spent large amounts of time and resource on development of treatments for age-related chronic disease, with only limited success. Some conditions, for instance neurodegenerative diseases^{6,7}, remain largely refractory to treatment and most others can, at best, be delayed. Third, research from animal models, including mammals, has demonstrated that delayed ageing and extended longevity are feasible^{3,8-11} and, more importantly, are often associated with an extension of healthspan¹²⁻¹⁷. Similar success in humans would improve life quality by preserving functional capacity with age and decreasing disease burden across a wide spectrum of age-related conditions, and would result in dramatic savings in healthcare costs^{18,19}.

Strategies for combating mechanisms of ageing to prevent disease, known as 'geroprotection', are far reaching, and currently include recommendations for exercise, diet and other aspects of lifestyle. However, these alone are not sufficient to prevent the ills of old age, and increasing efforts are directed to tackling the underlying processes of ageing³. The results of these processes include damage to the genetic material and its packaging and expression, cellular senescence, and dysregulated proteostasis, mitochondrial function, nutrient-sensing, intercellular communication and stem cell function²⁰. These hallmarks of ageing are casually connected, and they interact with one another to produce ageing-related decline. Currently, the most promising strategies for geroprotection include mildly lowering the activity of the nutrient-sensing network, especially the activity of mechanistic target of rapamycin protein complex 1(mTORC1), removing senescent cells, using natural metabolites from the systemic environment that can rejuvenate stem cells and transferring the microbiome. Increasing autophagy, probably including mitophagy, and reducing age-related inflammation are emerging as key mechanisms by which these interventions exert their effects. The private sector has entered the fray in a large way in recent years, with dozens of companies exploring strategies to target these hallmarks of ageing²¹. An important strategy is the development of small molecules, both drugs and natural products, that have geroprotective effects by combating the mechanisms of ageing (FIG. 2). A major theme here is the prospect for indication expansion, where small molecules and agents that have good safety profiles and were previously identified for other properties are candidates for repurposing as geroprotectors^{22,23}.

Several hundreds of potential geroprotectors have been reported to modulate ageing in one or more species (see recent reviews²⁴⁻³³ for more complete lists). Here, we review a select list of agents grouped as *Tier1* or *Tier 2* that, in our view, are the most developed experimentally and nearest to clinical testing, or intriguing based on information linked to mechanisms of ageing²⁰.

To select these agents, we used a set of geroprotector criteria modified from a recent review²⁶ (**BOX 1**). Tier 1 agents meet the primary and most of the secondary criteria and are generally robust in ageing studies. Meanwhile, Tier 2 compounds are comprised of mature agents that either meet fewer criteria or have generated conflicting data as to their effect on ageing, and emerging compounds that show strong promise, but are immature from the perspective of drug development, at least for targeting ageing. We highlight the mechanisms of ageing that have so far been shown to be targeted by these compounds and the strength of the evidence for their geroprotective effects (**FIG. 2**). Shedding light on these geroprotective mechanisms will likely implicate further agents, including new chemical entities, from chemical screens (**BOX 2**) and *in silico* approaches (**BOX 3**) that outperform the compounds reviewed here.

Human ageing may be modifiable and research into ageing is entering a new and exciting phase where interventions to extend healthspan will be tested in humans and, if validated, potentially approved for use in humans. In addition to making the case for clinical testing of a select set of agents, we also discuss potential routes to testing the effects of candidates on human ageing and, if these are successful, how they could be employed to enhance human healthspan.

[H1] Tier 1

[H2] Rapamycin and mTOR inhibitors

Rapamycin is a macrolide compound, first discovered in 1960 as an antifungal agent isolated from bacteria in an Easter Island (Rapa Nui) soil sample. It was subsequently found to have immunosuppressive and antiproliferative properties in mammalian cells^{34,35}. Rapalogs (Sirolimus and its derivatives) are used as immune modulators to prevent organ transplant rejection, as cancer chemotherapeutics, and to prevent restenosis after cardiac surgery^{36,37}. Rapamycin binds to FK-506 binding protein 12 (FKBP12), creating a trimolecular complex with mTOR. This rapamycin-FKBP12 binding event leads to destabilization, and thus inhibition, of mTORC1, a central regulator of cell and organismal physiology. mTORC1 integrates growth factors, nutrition, stress and other inputs to phosphorylate numerous targets, and modulates cellular processes including autophagy, ribosome biogenesis, protein synthesis and turnover, metabolism of lipids, nucleotides and glucose, as well as cell growth.

Genetic and pharmacological inhibition of mTORC1 activity can increase lifespan in budding yeast³⁸⁻⁴⁰, *Caenorhabditis elegans*⁴¹⁻⁴⁴ and *Drosophila melanogaster*^{42,45}. An ageing research milestone occurred with publications from the NIA Intervention Testing Program (ITP) (**BOX** 4) showing that rapamycin extended both median and maximum lifespan of genetically heterogeneous mice when administered starting at either 9 or 20 months of age^{46,47}. It is striking that rapamycin treatment can affect longevity even when initiated at 20 months, equivalent to about age 65 in humans, and perhaps even more surprising that a three-month treatment between 20 and 23 months is also sufficient to extend lifespan by up to 60%, based on the remaining lifespan of the animals¹⁴. An even shorter six week treatment initiated at the same age can also delay ageing⁴⁸. Notably, and unlike several other interventions, rapamycin has been reported to extend lifespan in multiple mouse strains. Finally, genetic modulation of mTOR signaling can ameliorate ageing in many organisms including mice⁴⁹.

Rapamycin not only extends lifespan, but healthspan as well. As a potent anti-cancer agent⁵⁰⁻⁵³, it was proposed that rapamycin extends lifespan solely through an anti-tumour mechanism, suppressing a major pathology in mouse strains^{54,55}. However, recently, widespread testing of

rapamycin's effects has led to the general conclusion that rapamycin has much broader effects on healthspan. Multiple age-related changes in mice have been reported to be slowed or even reversed by rapamycin treatment, including changes in arterial structure and function⁵⁶, cognitive defects^{57,58}, cardiac hypertrophy and diastolic dysfunction^{59,60}, periodontitis⁶¹, duration of ovarian function⁶², immune senescence⁴⁸, multifocal macrovesicular lipidosis in the liver, abnormalities of nuclear size and chromatin conformation in the myocardium, endometrial cystic hyperplasia, adrenal tumours, decline in spontaneous activity and loss of elasticity in tendons⁵⁵. However, cataract severity and testicular degeneration are increased⁵⁵. It should be noted that one study, in which rapamycin treatment was started in young, middleaged and old mice, concluded that, while rapamycin treatment extended lifespan and was able to rescue age-related decline in learning and memory and exploratory behaviour, many other traits were either unaffected or even worsened⁵⁴. The reasons for the different findings are not clear. In addition to cancer, rapamycin is also protective in a wide range of mouse models of age-related disease, including metabolic diseases such as type 2 diabetes⁶³; neurological diseases^{64,65} including Alzheimer's disease⁶⁶⁻⁶⁹, Parkinson's disease⁷⁰, Huntington's disease^{71,72}, Leigh Syndrome⁷³; lung diseases⁷⁴, cardiovascular syndromes⁷⁵ and many others⁷⁶.

The effects of rapamycin on ageing have also been investigated in two non-standard animal models. The Dog Aging Project⁷⁷ conducted a randomized, double-blind, veterinary clinical trial to assess safety and effects of a 10-week, low-dose, non-immunosuppressive rapamycin treatment in healthy middle aged dogs⁷⁸, which were recruited after an initial screen for factors including existing health conditions. Rapamycin was well tolerated, with no significant adverse effects, and led to an improvement in left ventricular systolic and diastolic function, similar to that previously reported in middle aged mice treated with rapamycin^{54,59,60}. The improvement was particularly marked in the dogs with the lowest cardiac function before rapamycin treatment. Rapamycin will now be tested in dogs on a larger scale, including measures of cognitive and heart function, immunity and incidence of cancer⁷⁷. Common marmosets (*Callithrix jacchus*) have been used to assess the effects of long-term (14 months) rapamycin treatment in a non-human primate that has similar age-related pathologies to those seen in humans⁷⁹⁻⁸¹. There were no significant effects on body weight, activity, blood lipid concentrations or markers of glucose metabolism, and there were indications of tissue-specific up-regulation of components of the proteostasis network.

The mTORC1 complex is a central cellular sensor and regulator with multiple inputs and downstream targets (**FIG. 3a**). Several molecular and cellular mechanisms may therefore contribute to the extension of lifespan by inhibition of mTORC1⁸². Deletion of the mTORC1 target S6K1 can extend the lifespan of female mice⁸³, and inhibition of S6K1 kinase activity is required for rapamycin to extend *Drosophila* lifespan⁴⁵, although in neither animal have the downstream mechanisms been elucidated. Increased macroautophagy (**FIG. 3b**) also plays a role, since blocking its increase in *Drosophila* treated with rapamycin prevents the extension of lifespan⁴⁵. Rapamycin can also reverse the stem cell dysfunction that occurs during ageing in mouse hematopoietic⁴⁸, tracheal and muscle stem cells⁸⁴, as well as the intestine in mice⁸⁵ and *Drosophila*⁸⁶. mTORC1 is also implicated in enhancing the survival and secretory phenotype of senescent cells, phenotypes that can be reversed by rapamycin⁸⁷⁻⁹⁰.

The current clinical uses of rapamycin^{91,92} are limited by its toxic side-effects, which include hyperglycemia, hyperlipidemia, kidney toxicity, impaired wound healing, lowered blood platelet numbers and immunosuppression. As well as acutely inhibiting mTORC1, in some cells and tissues depending on FKBP12 levels⁹³, prolonged treatment with rapamycin can also indirectly inhibit the mTORC2 complex, probably because rapamycin sequesters mTOR,

limiting its availability to form mTORC2 complexes^{94,95}. mTORC2 regulates cytoskeletal function, cell proliferation and survival, and importantly activates AKT, which controls the insulin signalling network. Inhibition of mTORC2 can thus impair glucose homeostasis in mice by blocking insulin-mediated suppression of hepatic gluconeogenesis⁹⁴. Rapamycin is approved as an immunosuppressant for transplant surgery, because it can inhibit lymphocyte proliferation by blocking T cell activation^{96,97}. Other studies indicate that rapamycin is more immunomodulatory in healthy individuals, with complex effects on specific lymphoid populations⁹⁸⁻¹⁰³.

Both the animal studies and recent trials with humans indicate that pharmacological inhibition of mTORC1 can be geroprotective with much weaker and briefer inhibition than is used clinically, and with few if any side-effects. Immunosenescence [G] is a major problem in elderly humans, leading both to increased infections (particularly respiratory)¹⁰⁴ and a reduced response to vaccination, including against influenza¹⁰⁵. This age-related decline in immune function is partly attributable to a decreasing capacity for haematopoetic stem cells (HSCs) to generate naïve lymphocytes. Elderly mice show a similarly lowered response to vaccination against influenza, and a 6-week pre-treatment with rapamycin rejuvenated HSC function, increasing the level of naïve lymphocytes and boosting the response to immunization⁴⁸. Inhibiting age-related immunosenescence in humans is a practical goal in a clinical trial, because any improvement can be assessed on a relatively short timescale. A double-blind clinical trial examined the effects of a 6-week treatment with the mTOR inhibitor RAD001, an analog of rapamycin, on the response to influenza vaccination in elderly volunteers ¹⁰⁶. After a 6-week dosing regimen followed by a 2-week treatment-free interval, volunteers were given a seasonal influenza vaccination. RAD001 was generally well tolerated, particularly at lower doses. These treatments also met the primary endpoint of the study, which was a 1.2-fold increase in the geometric mean titres of antibodies to 2 out of 3 of the influenza strains present in the vaccine, an extent of increase previously associated with a decrease in influenza illness. The increase in titres was greatest in volunteers with low baseline influenza titres, suggesting that RAD001 was especially protective in individuals at greatest risk. Although no change in the percentage of naïve lymphocytes was detected, the pooled post-immunisation RAD001treated cohorts showed a lower percentage of PD-1-positive CD4 and CD8 T cells, which accumulate with age and have an impaired response to antigenic stimulation. A more recent study compared everolimus, another rapalog, with BEZ235, a dual PI3K/mTOR inhibitor, and a combination of the two (which proved most effective), finding that six weeks of dosing was sufficient to substantially reduce infections in the following year¹⁰⁷. However, a Phase 3 clinical trial failed to reach its primary endpoint¹⁰⁸, and it will be important to resolve the reasons for the diverse findings of these clinical trials.

Targeting the mTORC1 pathway currently carries the strongest preclinical and clinical evidence for its usefulness as a strategy to ameliorate ageing. Strategies to reduce risks associated with mTORC1 inhibition include improving dosing regimens for current rapalogs, combining rapalogs with kinase inhibitors and developing novel rapamycin variants with altered mTORC1/mTORC2 specificity. More human studies are also needed, but the balance of data suggests that reducing mTORC1 signalling may be a viable strategy to extend the human healthspan.

[H2] Senolytics

187

188

189

190

191

192

193

194 195

196

197

198

199

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

219

220

224

225

226

227

228

229

233

234

235

236

Cellular senescence is a permanent cell cycle arrest in normally proliferating cells in response to various stresses, including replicative exhaustion and DNA damage. Senescent cells become resistant to apoptosis and secrete an array of pro-inflammatory molecules and proteases, called

the senescence associated secretory phenotype (SASP)¹⁰⁹. Cellular senescence participates in tissue remodelling during development¹¹⁰ and in wound healing¹¹¹, after which the senescent cells are normally removed by macrophages. It is also a potent anti-cancer mechanism because it occurs in response to stresses that make cells vulnerable to malignant transformation¹¹². However, increased NF-kB signalling and expression of the pro-inflammatory cytokines IL-6 and IL-8 are the most conserved and robust features of the SASP, and they can promote cell migration, growth and invasion, angiogenesis and, eventually, metastasis. Senescence can hence promote, as well as prevent, cancer¹¹³⁻¹¹⁵. During ageing in mice, senescent cells persist in multiple tissues, and can cause tissue damage because the SASP recruits inflammatory cells that remodel the extracellular matrix, trigger inappropriate cell death, induce fibrosis and inhibit stem cell function^{109,116,117}. Senescent cells are involved in the aetiology of multiple human age-related diseases, including osteoporosis^{118,119}, atherosclerosis¹²⁰⁻¹²², hepatic steatosis¹²³, fibrotic pulmonary disease¹²⁴ and osteoarthritis^{114,115,125,126}. Characterisation of the SASP proteomes of senescent cells has provided potential plasma markers for human ageing¹²⁷.

Genetic ablation of p16-expressing senescent cells in mouse can rescue features of ageing, including in kidney, heart and fat, with an associated preservation of functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Clearance also increased the median lifespan of the mice^{128,129}. Ablation of senescent cells in obese mice improved metabolic function, reduced circulating inflammatory markers and reduced invasion of white adipose tissue (WAT) by macrophages¹³⁰. Senescent cells are not abundant, even in aged tissues: a maximum of 15% has been reported, and genetic ablation only modestly reduced this number. Senescent cells have autocrine and paracrine effects, and can act at a distance on other cell types¹³¹, which may explain why a mild reduction in their number can be beneficial.

Chemical elimination of senescent cells by senolytics (FIG. 4), or disruption of the SASP by senostatics [G], are potentially attractive strategies for combating a broad range of age-related conditions. Inhibition of the SASP would require continuous treatment, because the senescent cells persist. The composition of the SASP varies, depending upon both the original cell type and the nature of the stress that induced senescence, so specific senescent cell subtypes could potentially be targeted. Because senolysis eliminates senescent cells, a brief treatment could be used, which has the advantage of leaving cell senescence during wound healing unimpaired. Senescent cells express diverse markers and use a variety of mechanisms to resist apoptosis, providing a further basis for the specificity of senolytics.

Senescent cells become resistant to apoptosis. Pro-survival pathways in senescent cells include those mediated by members of the BCL2 family, PI3K/AKT, p53/FOXO4, HSP90 and HIF1α. Pharmacological targeting of BCL2 family members can eliminate senescent cells induced by radiation in mouse lungs and in aged mice¹³² (**FIG. 4a**), since levels of these proteins are elevated in senescent cells to inhibit mitochondrial activation of apoptosis, but induce thrombocytopenia as a side-effect. However, combination of BCL2 inhibition, by the flavonoid quercetin, with dasatinib, which inhibits multiple tyrosine kinases, reduced the number of senescent cells in WAT and the liver, increased the cardiac ejection fraction and vascular endothelial function in old mice, and reduced the senescent cell burden in several tissues, as well as increasing healthspan in progeroid mice¹³². Intermittent administration of the two drugs improved vasomotor function in aged mice¹²², which led to improved cardiovascular function and exercise endurance, and reduced osteoporosis and frailty. A combination of dasatinib and quercetin, administered orally to >24 month mice, led to a 36% increase in the remaining lifespan, and did not cause prolonged late-life morbidity¹³³. Combination treatment with dasatinib and quercetin also ameliorated uterine ageing in mice¹³⁴. Because dasatinib and

quercetin affect the activity of multiple proteins, it will be important to determine their associated *in vivo* effects on non-senescent cells, as well as their senolytic activity.

Expression of the transcription factor FOXO4 increases during radiation-induced senescence in fibroblasts, and preventing this increase leads to apoptosis. Perturbing the interaction of FOXO4 with p53 with a FOXO4 peptide caused nuclear exclusion of p53 and apoptosis of senescent cells¹³⁵(**FIG. 4b**). Doxorubicin induces cellular senescence in mouse and human liver, together with increased expression of FOXO4, and preventing the increase reduced doxorubicin-induced senescence and liver toxicity. Preventing the interaction between p53 and FOXO4 also reduced cellular senescence and several phenotypes of ageing in a mouse model of accelerated ageing, and reduced frailty and loss of renal function in naturally aged mice¹³⁵,

potentially providing another target for senolysis.

A chemical screen in mouse embryonic fibroblasts with reduced DNA repair capacity identified that two HSP90 inhibitors induce apoptosis specifically in senescent cells. Treatment of Ercc1^{-/Δ} mice, a mouse model of a human progeroid syndrome, with the HSP90 inhibitor 17-DMAG extended healthspan, delayed the onset of several age-related symptoms and reduced p16INK4a expression¹³⁶ (**FIG. 4c**). HSP90 plays roles in protein folding, stabilisation and proteasomal degradation, and in cellular stress responses. It has been targeted in cancer, although so far no licensed drugs targeting HSP90 exist. HSP90 has multiple isoforms, and these are targeted by different HSP90 inhibitors, potentially allowing specific targeting of senescent cells¹³⁷.

In addition to quercetin, another natural product, fisetin, has been shown to have senolytic properties. A recent report found that administration of fisetin to mice late in life was sufficient to reduce age-related pathology and extend both median and maximum lifespan¹². This approach offers an attractive alternative to other senolytic compounds that may have greater toxicity. However, and as with other natural products, fisetin has a number of activities¹³⁸, making it hard to attribute its beneficial effects to ablation of senescent cells.

More recently, two studies ^{139,140} report cardiac glycosides as powerful and specific senolytics. These compounds, including digoxin, digitoxin and ouabain, target the Na+/K+ ATPase pump, resulting in disruption of the cellular electrochemical gradient and hence cellular acidification (**FIG. 4d**). Senescent cells already have an acidic pH, which may explain their selective vulnerability to apoptosis when treated by cardiac glycosides. The compounds selectively killed cells in which diverse inducers had led to senescence and, in combination with other chemotherapeutics, they also inhibited tumour xenograft growth, killed senescent preneoplastic cells, and attenuated some features of ageing in mice. Cardiac glycosides are used to treat congestive heart failure and cardiac arrhythmias, and these observed senolytic effects were achieved at clinical doses. These are promising findings that warrant further work with these compounds.

Clinical trials are already underway for the treatment of osteoarthritis with the senolytic UBX0101¹⁴¹ and of idiopathic pulmonary fibrosis with dasatinib and quercetin¹⁴² (**FIG. 4a**). Targeting senescent cells in ageing is also a promising prospect, but there are important outstanding questions^{143,144}. So far, most classified senolytics may also affect non-senescent cells, and any such effects need to be evaluated. Timing of senolytic treatment may also be important, because it could result in exhaustion of stem cells. Finally, failure to clear apoptotic, senescent cells could also be problematic. Therefore, precise targeting of senolytics to specific senescent cell types may help circumvent these potential hurdles.

[H2] Metformin

Metformin is a biguanide drug widely prescribed for type 2 diabetes¹⁴⁵⁻¹⁴⁷. In 2013, it was estimated that 83.6% of individuals in the UK with type 2 diabetes were prescribed metformin, and in 2012¹⁴⁸ there were 61.6 million prescriptions for metformin in the USA^{149,150}. Metformin is derived from a compound isolated from French lilac (goat's rue, *galega officinalis*), which was used for centuries as a herbal remedy for treatment of frequent urination (a symptom of diabetes¹⁵¹). FDA approval came in 1994¹⁴⁵. Metformin reduces diabetic hyperglycemia by suppressing hepatic gluconeogenesis, inducing glycolysis and increasing insulin sensitivity¹⁵²; it also reduces lipolysis, and lowers levels of circulating free fatty acids.

Preclinical studies of metformin suggest a role for the drug in mitigating ageing. Metformin robustly increases lifespan in *C. elegans* by up to 36%¹⁵⁵, and this effect has been attributed to AMP kinase (AMPK) activation¹⁵³, mitohormesis¹⁵⁴, the lysosomal pathway and metabolic alterations of the microbiome¹⁵⁵. Recent studies suggest that alterations of the microbiome may also mediate some of the anti-diabetic effects of metformin in humans¹⁵⁶. In *Drosophila*, metformin did not increase lifespan, though it did activate AMPK and reduce lipid stores¹⁵⁷. Initial studies showed effects on ageing in mice¹⁵⁸, but these studies were performed in short-lived mouse models that, in some cases, are prone to developing cancer. Two recent studies have been performed in the relatively long-lived C57/Bl6 and genetically outbred mice^{159,160} in which slightly increased longevity reached statistical significance in some contexts¹⁵⁹. Metformin did not increase lifespan in the outbred mice in the ITP (BOX 4). The more modest effects seen in long-lived mouse strains is a cause for concern, although another possibility is that metformin may be more effective in more stressful situations that shorten lifespan.

Metformin interacts with several known longevity pathways. Its effects resemble those of dietary restriction [G] (DR), including increased insulin sensitivity, and metformin-treated mice have DR-like mRNA profiles^{160,161}. Mechanistically, the strongest evidence is that metformin inhibits complex I of the electron transport chain, leading to reduced ATP levels and activation of AMPK; however, many but not all phenotypes associated with metformin administration are AMPK-dependent^{162,163}. Consistent with observations in *C. elegans*, metformin also alters mouse and human microbiomes in a manner that appears anti-inflammatory¹⁶⁴⁻¹⁶⁷. More directly, metformin has been reported to repress TNFα-dependent IκB degradation and consequent expression of inflammatory cytokines, in a manner independent of AMPK and mitochondrial action¹⁶⁸⁻¹⁷². This property may underlie its ability to suppress the SASP in senescent cells¹⁷³. Metformin also binds the alarmin HMGB1 and inhibits its proinflammatory activity¹⁷⁴. More recently, the H3K27me3 demethylase KDM6A/UTX has been proposed as a direct target of metformin, suggesting a role in chromatin modification¹⁷⁵.

Retrospective, epidemiological analyses of data from patients prescribed metformin have concluded that its use is associated with reductions in: CVD incidence and mortality¹⁷⁶⁻¹⁷⁹; cancer rates¹⁷⁹⁻¹⁸⁷; overall mortality¹⁸⁸; and depression and frailty-related diseases¹⁷⁹. Meta-analyses of metformin in age-related conditions are also encouraging (but not always positive), with a range of studies showing protection from cancer, CVD, chronic kidney and liver disease, and neurodegeneration. One study detected an 18% increase in median all-cause survival in metformin-treated individuals with diabetes relative to the rest of the population, despite higher levels of morbidity in the former¹⁸⁹, a finding replicated in a more recent study¹⁹⁰ and in a systematic review of clinical studies¹⁹¹, but not in another large meta-analysis¹⁹². However, these studies were all conducted in groups with type 2 diabetes, and metformin could have been

beneficial for these other conditions because it mitigates the effects of diabetes rather than of ageing. It is thus not clear if metformin would have benefits in non-diabetic individuals. Although they are intriguing, these clinical epidemiological studies have other limitations from the standpoint of assessing the use of metformin in ageing: they assess patients with diabetes, who have enhanced mortality rates compared to the unaffected population; some studies compare metformin to other diabetes drugs, which could have adverse effects; and metformin users have had contact with a clinician, and hence may on average have greater health-seeking behaviours than control populations.

The Targeting Aging with Metformin (TAME) initiative was proposed to study effects of metformin on 3,000 non-diabetic people, aged 65-79, at many centres in the U.S. with an estimated cost of US\$50 million^{193,194}. The effects of metformin are to be examined on multiple markers of age-related health, including CVD, cancer, dementia and mortality, under the premise that a drug that extends healthspan would prevent onset of many distinct age-related conditions¹⁹⁵. A small, short-term intervention in healthy adults has also been performed, and showed that metformin triggers both metabolic and non-metabolic pathways linked to ageing in non-diabetic individuals of average age 70¹⁹⁶. Metformin has an excellent safety profile, and the TAME initiative will serve as a benchmark in the development of metformin (and possibly other geroprotectors) for use in humans to offset ageing. However, an experimental study has indicated that metformin can blunt the increases in whole-body insulin sensitivity and skeletal muscle mitochondrial respiration in response to aerobic exercise training in older adults, with marked individual differences in the responses¹⁹⁷. It will therefore be important to understand how metformin affects muscle physiology and function with and without exercise, and how much individual variability exists in responses, and to find predictive biomarkers for positive responders.

[H2] Acarbose

Metabolic dysfunction is commonly observed in human ageing, and type 2 diabetes is a risk factor for several other age-related conditions, including CVD, kidney disease, cancer and dementia¹⁹⁸. Maintenance of glycemic control during ageing could thus induce multiple health benefits. Acarbose is a bacterial product that inhibits α -glucosidases in the intestine, thus slowing the breakdown of starch and disaccharides to glucose. It is used clinically to prevent post-prandial hyperglycemia¹⁹⁹, and generally causes weight loss and improved glycemic control¹⁹⁸. Acarbose can rescue age-related glucose intolerance in rats²⁰⁰ and it has been considered as a potential mimetic of DR²⁰¹.

In the ITP (**BOX 4**), acarbose increased median lifespan in male mice by 22%, with only a small effect in females (5%), but maximum lifespan was significantly increased in both sexes (females 9%, males 11%). Body weight was reduced (more so in females than in males) fasting blood glucose levels and IGF1 levels in plasma were lower in both sexes, and fasting insulin levels were lower only in males. Acarbose increased the healthspan in mice, with reductions in lung tumours in males, liver degeneration in both sexes, glomerulosclerosis in females, and blood glucose response to refeeding in males, and improved rotarod performance in ageing females²⁰². In male mice, acarbose also reduced post-mortem liver degeneration, lipidosis²⁰¹ and hypothalamic inflammation²⁰³, and abolished male-specific insulin insensitivity and glucose intolerance²⁰⁴, all of which potentially contributed to the greater effect of the drug on male lifespan, which, interestingly, was abolished by castration²⁰⁴. Acarbose-treated mice showed alterations in the composition and fermentation products of their microbiome and in the composition of the short chain fatty acids in the gut, although these effects differed between the 3 ITP test sites²⁰⁵. It is likely that acarbose and DR increase lifespan by partly different

mechanisms, because DR reduced levels of circulating FGF21 and increased activity levels, whereas acarbose had opposite effects on these phenotypes²⁰¹. In summary, although acarbose has some undesirable, although not dangerous, digestive side effects²⁰⁶, there are ample reasons to evaluate this small molecule in the clinical as it may be among the most efficacious geroprotectors identified to date.

[H2] Spermidine

Spermidine is a naturally occurring polyamine that plays key roles in control of gene expression, apoptosis and autophagy, and is essential for cell growth and proliferation²⁰⁷. Levels of spermidine decline during ageing in both model organisms and several human organs^{208,209}. Spermidine is classified as a geroprotector because supplementation of spermidine in the diet can extend lifespan in yeast, *C. elegans*, *Drosophila* and mice, and addition to the culture medium can increase survival of human immune cells²⁰⁹⁻²¹¹. In *Drosophila*, increased production of spermidine contributes to extension of lifespan by reducing insulin/IGF signalling²¹². Additionally, a prospective, population-based study in humans found an association between high levels of spermidine in the diet and reduced all-cause mortality²¹³.

Spermidine may exert its geroprotective effects by more than one mechanism: studies have implicated increased autophagy and, in mammals, protection of cardiac and immune function. Feeding spermidine increases the serum levels of free thiols in old mice to levels seen in youth, potentially indicative of reduced oxidative stress²⁰⁹. In yeast and mammalian cells, spermidine supplementation decreases histone H3 acetylation²⁰⁹, with possible functional consequences for gene expression. Spermidine inhibits the acetyl transferase activity of EP300, which in turn inhibits autophagy, as EP300 normally acetylates lysine residues in autophagy-related proteins^{214,215}. Accordingly, in yeast, *C. elegans*, *Drosophila* and in human cells, spermidine increases markers of autophagy, and mutants blocking the increase in autophagy prevent the

increase in survival in response to spermidine, implying a causal connection²⁰⁹.

In mice, the increased lifespan from supplemented dietary spermidine is associated with a delay in the age-related decline in cardiovascular function^{210,211}. Increased dietary spermidine upregulates autophagy, mitophagy and mitochondrial biogenesis and function in the heart²¹⁶, and it also improves the mechanical properties of cardiomyocytes in vivo, benefits that are lost if the increase in autophagy is blocked. Furthermore, high levels of dietary spermidine in humans correlate with reduced blood pressure and a lower incidence of CVD²¹⁰. Spermidine can also enhance immunity. Autophagy declines specifically in B and T cells in aged mice, and a 6-week spermidine treatment attenuated this decline and improved B cell function. Spermidine promotes the hypusination of the translation factor eIF5A, which is required for synthesis of the autophagy transcription factor TFEB, so supplementation with spermidine restored this pathway and reversed the senescence of old human B cells²¹⁷. Because spermidine can reverse the reduction of polyamine synthesis and autophagy observed in aged and osteoarthritic cartilage, it is also a promising candidate for prevention of osteoarthritis²¹⁸. Finally, spermidine can also improve stem cell function in muscle of old mice²¹⁹, and is neuroprotective in *Drosophila*²²⁰ and mice^{221,222}.

Clinical trials with spermidine could thus be considered ²²³, although some caution may be warranted given that targeting polyamine metabolism is being considered for both chemotherapy and chemoprevention in cancer²²⁴. As increased autophagy is a recurring theme for geroprotectors, it will be important to understand the downstream mechanisms of protection and the most effective means of inducing them.

[H2] NAD+ enhancers

NAD+ is a coenzyme that catalyzes a wide range of cellular metabolic functions through cellular redox reactions, in which it becomes converted to NADH. These reactions are scattered throughout the glycolytic pathway, the tricarboxylic acid cycle and β-fatty acid oxidation, among other cellular functions. However, NAD+ also acts as a substrate for sirtuins, Poly-ADP-ribose polymerases and CD38, reactions through which it is consumed²²⁵⁻²²⁷. Levels of the compound decrease with ageing in mammals²²⁸⁻²³⁰, contributing to a reduction in activity of sirtuins. Strategies to supplement NAD+ levels lead to increased healthspan in mice^{231,232}; however, the myriad cellular roles of the small molecule have made it difficult to link phenotypes to its specific biochemical actions.

NAD+ is not taken up by cells, making direct supplementation infeasible. It is possible to exploit NAD+ synthesis pathways through addition of precursors to increase NAD+ levels in vivo: the two most commonly tested in vivo are nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). Both have been tested in invertebrate and murine ageing studies²²⁵⁻²²⁷. NR increases yeast replicative lifespan²³³, and both NR and NMN increase worm lifespan²³⁴. In mice, NR elicits a wide range of beneficial effects, including a modest lifespan extension²³¹. NMN administration in mice also leads to a range of beneficial phenotypes during ageing^{232,235}, including an improvement in oocyte quality²³⁶, although altered lifespan has not been reported. Both NR and NMN are also reported to be protective in a range of age-associated disease models²²⁵⁻²²⁷.

Given that NR and NMN are natural products, both are being tested in humans and there is extensive debate over which of the two molecules is likely to be most efficacious. Differences in bioavailability and stability have been reported. NMN is being tested in clinical studies, but findings have not yet been published. Several studies have been completed with NR, although trial sizes are generally quite small. Common conclusions of the trials are that NR is bioavailable²³⁷, increases NAD+ levels^{238,239}, and can be administered safely²⁴⁰. One recent study showed that NR administration in aged men for three weeks was sufficient to reduce inflammatory cytokine levels²⁴¹. In another study, however, no improvement in metabolism was detectable in obese, insulin-resistant men²⁴². Further work is needed to determine whether NR or NMN have advantageous properties in humans. Given that NAD+ precursors are natural products that are already on the market, it will be critical to better define their effects on healthspan.

[H2] Lithium

By the middle of the 19th century, lithium carbonate was used as a medical treatment for a range of disorders, including cancer, whereas now it is mainly used to treat bipolar disorder. Lithium induces a dose-dependent extension of lifespan in fission yeast²⁶⁶, *C. elegans*²⁶⁷⁻²⁶⁹ and *Drosophila*²⁷⁰, with higher doses highly toxic to survival. In *C. elegans* and *Drosophila*, locomotor performance during ageing is also maintained by lithium treatment^{269,270}. Experimental effects of the drug on mammalian lifespan have not yet been reported. In humans, lithium treatment has been associated with longer leukocyte telomeres²⁷¹, and comparatively high natural levels in the drinking water in parts of Japan have also been linked to lower suicide rates^{272,273} and reduced all-cause mortality²⁶⁸. Mesenchymal stem cells from ageing humans show impaired myogenic differentiation, a defect associated with impaired Wnt/β-catenin signalling, which can be rescued by lithium²⁷⁴. Lithium is neuroprotective^{275,276} and can

ameliorate pathology in several animal models of disease, including Alzheimer's disease, Huntington's disease and stroke²⁷⁷⁻²⁷⁹.

Lithium has multiple targets, and its mode of action as a drug in humans is incompletely understood. It can induce autophagy in mammalian cells in culture, by inhibition of inositol monophosphatase²⁸⁰. Consistently, extension of lifespan in *C. elegans* is accompanied by increased autophagy, as well as increased mitochondrial DNA copy number and enhanced energetics²⁶⁹. In *Drosophila*, lifespan-extension is mediated by suppression of GSK3 and hence activation of the cap-n-collar transcription factor CncC, the fly orthologue of mammalian NRF2, accompanied by a hormetic response to lithium itself and to xenobiotics²⁷⁰.

There is currently no evidence for geroprotective effects of lithium in mammals, and its narrow therapeutic range is a problem for widespread, long-term use. If activation of autophagy mediates its benefits, other auotphagy inducers could be used or lithium could be combined with, for instance, mTORC1 inhibitors, to allow lower doses with fewer side-effects to be used²⁸¹. Clearer identification of the therapeutic targets of lithium, especially in mammals, may also yield more specific drugs.

[H1] Tier 2

[H2] NSAIDs

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat mild-to-moderate pain and, at higher doses, to decrease inflammation. The primary target for this class of drugs, which include aspirin and ibuprofen, are cyclooxygenases (COX1 and COX2)²⁴³, although NSAIDs also have antithrombotic and anti-oxidant activities that probably occur through at least partially different mechanisms²⁴⁴. Aspirin (acetylsalicylic acid) is reported to extend lifespan in *C. elegans*²⁴⁵, *Drosophila*^{246,247} and male mice²⁴⁸; the sex-skewed effects in mice are possibly attributable to a higher ratio, in males, of aspirin to its metabolite, salicylic acid. However, this lifespan extension was not repeatable by the ITP (**BOX 4**). In *C. elegans*, lifespan extension by aspirin requires DAF16/FOXO, AMPK, and LKB1, but not SIR-2.1, and aspirin does not further extend the lifespan of DR animals²⁴⁵. In mammals, both COX-dependent and independent effects of aspirin, which include activation of AMPK and consequent inhibition of mTORC1²⁴⁹, together with inhibition of IKKβ²⁵⁰ and Wnt/β-catenin ²⁵¹, mean that multiple mechanisms could contribute to altered ageing²⁴⁴.

Interestingly, ibuprofen has been reported to extend lifespan in yeast, worms and flies, through a mechanism (at least in yeast) that involves degradation of the tryptophan transporter, which reduces intracellular amino acid pools and consequently inhibits mTOR²⁵². A third NSAID, celecoxib, has also been reported to extend *C. elegans* lifespan through an insulin–IGF-dependent mechanism²⁵³. Ibuprofen, aspirin, and celecoxib have not been directly compared to determine if they function through common mechanisms for lifespan extension. Another NSAID, a nitrosylated variant of flurbiprofen, failed to alter mouse lifespan²⁴⁸.

Epidemiological evidence links NSAIDs to protection from a range of chronic diseases of ageing. For instance, long-term aspirin users are reported to experience a 33% reduction in colorectal cancer incidence and mortality^{254,255}, through mechanisms that remain unclear. In a panel of tumour cell lines, aspirin strongly suppressed cell size and cell growth, with lowered phosphorylation of the mTORC1 targets p70S6K and S6, through both AMPK-dependent and

AMPK-independent mechanisms²⁵⁶. Aspirin may also reduce metastatic spread, possibly through a platelet-mediated mechanism^{257,258}. Multiple epidemiological studies of aspirin in primary prevention of stroke, myocardial infarction/coronary events and cardiovascular death in those without a history of CVD have concluded that aspirin modestly reduces nonfatal myocardial infarction/coronary events and major CVD events, and at daily doses of less than 100 mg reduces the incidence of stroke, with both effects increasing with age²⁵⁹. However, aspirin also increases major gastrointestinal bleeding risk, thus complicating conclusions about net benefit²⁵⁹. Similarly, ibuprofen has been reported to reduce the risk of both Alzheimer's disease and Parkinson's disease^{48,260}, although these findings remain controversial²⁶¹.

Unfortunately, clinical trials with aspirin in primary prevention have largely failed to confirm the promising epidemiological findings. Trials with healthy elders found no evidence of protection against cardiovascular events and there was an observed increase in the incidence of gastrointestinal bleeds^{242,262}. Although there was some protection against cardiovascular events in adults with type 2 diabetes, this protection was counterbalanced by major bleeding events²⁶³. One trial found no effect of aspirin use on disability-free survival²⁶⁴ and a significant increase in all-cause mortality, primarily attributable to an increased incidence of cancer²⁶⁵. Although NSAIDs have some characteristics of geroprotective drugs, the current clinical evidence raises significant doubts regarding ageing studies in humans.

[H2] Reverse Transcriptase Inhibitors

 The human genome is littered with a large number of repeated elements, among which long interspersed nuclear elements (LINEs) are the most prevalent, comprising roughly 20% of the mouse and human genomes^{282,283}. A subset of the 6 kilobase LINEs are fully functional retrotransposable elements, relying on an encoded reverse transcriptase to excise from the genome and reinsert in other locations, and are hence a source of genome instability²⁸⁴⁻²⁸⁶. LINE1 activation has been linked to age-related diseases²⁸⁶⁻²⁸⁸ and is also prevalent in a progeroid model, *Sirt6*-/- mice^{289,290}. Consistently, SIRT6 enzyme activity is one of several mechanisms by which cells suppress LINE1 activation²⁸⁹.

A number of nucleoside reverse transcriptase inhibitors (NRTIs) have been generated and used in the clinic to inhibit HIV reverse transcriptase and, fortuitously, some of these also impair the reverse transcriptase activity associated with ORF2 of LINE1291,292. Two recent studies reported that NRTIs can ameliorate pathologies linked to ageing in mice^{293,294}. In both studies, LINE1 elements, expressed specifically in late-stage senescent cells, were not restricted to the nucleus and accumulated in the cytoplasm and activated the IFN-1 interferon response, which may underlie induction of the SASP and some of the chronic inflammation associated with ageing. In one report, the NRTIs lamivudine and stavudine were found to reduce DNA damage, suppress in vivo pathology and extend the lifespan of Sirt6-/- mice²⁹³. This study also found activation of LINE1 elements with ageing, as previously reported. A contemporaneous report focused on cell senescence, and reported that lamivudine reduced the SASP and inflammation in aged mice²⁹⁴. It is yet to be demonstrated that NRTI treatment results in enhanced mouse longevity, although it is reported to reduce DNA methylation age²⁹³, an emerging biomarker of ageing. These findings make NRTIs interesting new geroprotector candidates. However, any strategy to employ NRTIs as a means to enhance human healthspan will have to account for their associated side effects in the clinic²⁹⁵.

[H2] Systemic Circulating Factors

Dysregulated intercellular communication is a hallmark of ageing, and is characterised *inter alia* by age-related, sterile inflammation, often known as 'inflammaging' 296,297, and a deteriorating systemic environment that impairs the function of multiple tissues 298,299. Therefore, altering the concentration of select blood metabolites to improve health during ageing is receiving increased attention.

Heterochronic parabiosis, in which the circulatory systems of mice of different ages are shared 300 , has shown that stem cell regenerative capacity of muscle 301,302 , liver 301 , spinal cord 303 and brain 304 of old mice is improved by a young systemic environment. Young blood can also reverse these age-related effects: structural deterioration and molecular changes in mouse kidney 305 ; decline in β -cell replication 306 ; and decline in bone repair and regenerative capacity 307 . In an extension of the parabiosis concept, human umbilical cord plasma, administered to immunocompromised mice, induced expression of genes in the hippocampus that suggested increased long-term potentiation and memory, and also increased long-term potentiation in hippocampal brain slices and improved cognitive function in old mice 308 .

Progress has been made in identifying the mechanisms and molecules that impair the ageing systemic environment. For instance, exposure to young blood ameliorates declines in cognitive function, and of dendritic spine density and synaptic plasticity in hippocampal neurons of ageing mice, mediated in part by activation of cyclic AMP response element-binding protein (CREB)³⁰⁹. Levels of β2-microglobulin, a component of major histocompatibility complex class 1 (MHC I) molecules, increase during ageing and negatively regulate cognitive function and regenerative capacity in the hippocampus of ageing mice³¹⁰. In addition to these identified components, methylcytosine dioxygenase TET2 catalyses the production of 5-hydroxymethylcytosine (5hmC), and the levels of both TET2 and 5hmC decline in mouse hippocampus during ageing. TET2 expression levels are restored in the hippocampus of old heterochronic parabionts, and inhibition of TET2 expression in young mice impairs neurogenesis and cognitive function, whereas TET2 overexpression restores these biological functions and 5hmC levels in old mice³¹¹.

The growth differentiation factor 11 (GDF11) levels in mouse blood have been reported to decline with age. Age-related cardiac hypertrophy in old mice is ameliorated by exposure to young blood, and a proteomic screen identified GDF11 as a mediating factor³¹². Furthermore, supplementation of GDF11 by heterochronic parabiosis or direct delivery restored stem cell function and structure, increased strength and endurance exercise capacity in ageing mice³¹³, and increased cerebral blood flow, neural stem cell proliferation and olfactory neurogenesis and function³¹⁴. Other studies have reported that GDF11 levels in rat and human sera instead increase with age, and that administration of GDF11 inhibits muscle regeneration and stem cell division in mice³¹⁵. To this end, the specificity of detection of GDF11 may have played a role in these discrepant findings³¹⁶.

In addition to the components described above, young blood reverses the declines in fracture repair and osteoblastic differentiation capacity of old mice by modulating signalling through β-catenin³⁰⁷. Combined proteomic analysis of human umbilical cord plasma and of changes in mouse plasma during ageing produced a list of candidate proteins for rejuvenation of the ageing mouse hippocampus. One of these, metalloproteinase inhibitor 2 (TIMP2), improved learning and memory in aged mice when directly administered, whereas depletion of TIMP2 in cord plasma abolished its rejuvenating effects³⁰⁸. The protein vascular cell adhesion protein 1 (VCAM1), a member of the immunoglobulin superfamily, increases in expression in mouse

and human plasma during ageing. It is induced in endothelial cells in response to inflammation and facilitates leucocyte tethering. Anti-VCAM1 antibody administration, or genetic ablation of VCAM1 specifically in brain endothelial cells, counteracted the adverse effects of plasma from aged mice on microglial activation, neural progenitor cell activity and cognition in young mice³¹⁷.

Identification of blood factors that improve the youthful, or impair the ageing, systemic environment is opening translational opportunities. A preclinical study showed that parabiosis with a young mouse or direct administration of plasma from young mice could ameliorate molecular defects in hippocampus and impaired working memory in a mouse model of Alzheimer's disease³¹⁸, and a recent, randomised clinical trial concluded that administration of young plasma to patients with mild to moderate Alzheimer's disease-associated dementia was safe, tolerable and feasible³¹⁹. Given the ready accessibility of the human circulatory system, modulation of its molecular composition is an approach of considerable promise.

[H2] The microbiome

The vast assemblage of microorganisms associated with animals is increasingly recognised to play a significant biological role. Both the population size and composition of the gut microbiome change with age in *C. elegans*, *Drosophila*, mice and humans³²⁰⁻³²³. A broad spectrum improvement in health in diverse organisms is induced with DR. In mice, transfer of gut microbiome from subjects following DR to a sterile recipient resulted in reduced weight gain and increased glucose tolerance, insulin sensitivity, and glucose uptake into WAT, which also resulted in WAT browning ³²⁴. These results suggest that some of the health benefits of DR may be caused by changes in the composition of the microbiome. Transfers of gut microbiome of young turquoise killifish to older recipients delayed the age-related changes in microbiome composition and improved swimming performance and extended the lifespan of older recipients³²⁵. It is not yet understood how these health improvements from microbiome transfer are mediated, but they likely involve changes to the overall composition of metabolites produced either by or in response to microbiome constituents. Therefore, it will be important to identify these metabolite changes to understand the downstream biological effects and determine if this can offer a more standardised intervention to improve health during ageing.

[H2] Glucosamine

Glucosamine is an essential amino-monosaccharide component of glycoproteins, proteoglycans and glycosoaminoglycans. It is widely used as a supplement for individuals with osteoarthritis, but recent literature suggests that it has potential benefits for a wide range of chronic diseases, including cancer, skin disorders, and CVD³²⁶. Glucosamine extends lifespan in *C. elegans* and confers modest lifespan extension when administered to old mice³²⁷. In worms, glucosamine was found to extend lifespan in a manner independent of the hexosamine pathway, through a mechanism that may mimic a low carbohydrate diet. Consistent with this hypothesis, AMPK was activated and mitochondrial biogenesis was enhanced. Interestingly, glucosamine stimulated reactive oxygen species (ROS) production, a finding consistent with reports that under some circumstances increased ROS production in worms can enhance longevity³²⁸ and trigger AMPK activation³²⁹. Studies in mice correlated with these findings, as mitochondrial biogenesis was also found to be enhanced.

Glucosamine has a wide range of other effects in mammals that could be linked to ageing³²⁶, including acting as an anti-inflammatory agent, inhibiting mTOR and stimulating autophagy, paradoxically acting as an anti-oxidant and, through its conversion to uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc), as a substrate for O-GlcNAc modification of proteins, which itself is linked to many protective effects against chronic disease³³⁰. Glucosamine and related molecules need to be evaluated further to determine the mechanisms by which they act and to validate them as geroprotective agents.

[H2] Glycine

A recent study by the ITP (**BOX 4**) showed that glycine supplementation leads to both median and maximum lifespan extension in mice of both sexes³³¹. This finding supports an earlier report of enhanced longevity in rats³³² and recent studies in *C. elegans*^{333,334}. In both of the rodent studies, glycine administration was also associated with weight loss, but only in females. Glycine has also been reported to have anti-cancer and anti-inflammatory effects in rodents³³⁵⁻³³⁷. In limited human clinical studies, glycine supplementation may be protective in the context of metabolic diseases^{336,338}, although larger studies are needed.

In a number of nutritional studies, reduced amino acids are associated with longer lifespan, making the results with glycine potentially paradoxical³³⁹⁻³⁴². However, glycine has a unique property in that it is an acceptor of methyl groups in the catabolism of methionine by glycine *N*-methyl transferase, and thus serves an important role in hepatic methionine clearance³³⁸. Methionine restriction is known to enhance longevity in several model organisms of ageing³⁴³, but this restriction is difficult to implement practically, so glycine supplementation could be a preferable alternative.

The mechanisms by which glycine extends lifespan may, however, be more complex, because glycine supplementation in *C. elegans* may influence one carbon metabolism and the production of *S*-adenosyl methionine, resulting in transcriptional changes through epigenetic mechanisms³³³. Serine, which also acts in one carbon metabolism, was also found to extend lifespan through a similar mechanism³³³. *C. elegans* may have key differences from mammals regarding amino acid supplementation, as a prior report found that a supplementation of a wide range of amino acids led to lifespan extension³³⁴. In summary, there is significant promise for glycine in modulating ageing, so efforts to understand its modes of action are essential.

[H2] 17- α estradiol

17- α estradiol (17 α -E2) is a nonfeminizing estrogen with reduced affinity for the estrogen receptor. The ITP demonstrated that 17 α -E2 extends lifespan preferentially in male mice²⁰¹, and a later study replicated this sex difference even at higher doses³⁴⁴ (**BOX 4**). The malespecific benefits extend to metabolic phenotypes, including increased insulin sensitivity and glucose tolerance ²⁰⁴, and require gonadal hormones, as castrated males were refractory to 17 α -E2, whereas ovariectomized females showed a metabolic response. The metabolic benefits were linked to increased hepatic mTORC2 and AKT signalling, accompanied by FOXO1A phosphorylation. In young mice, 17 α -E2 reduced overall body mass and increased the lean-to-fat mass ratio³⁴⁵. In older mice, however, the hormone preserved body weight and muscle strength in males³⁴⁶.

Several findings link the beneficial effects of 17α -E2 to effects on brain function. First, 17α -E2 is the predominant form of estradiol expressed in the rodent brain, and has been postulated to have neuroprotective roles in humans. It has also been reported to confer protection from oxidative stress, as well as amyloid toxicity associated with Alzheimer's disease and Parkinson's disease in animal models³⁴⁷⁻³⁵⁰. Also, the metabolic and longevity benefits of 17α -E2 may be attributable to effects on the hypothalamus, as treated mice have reduced food intake, probably due to activation of hypothalamic anorexogenic pathways^{345,351}. 17α -E2 is also

highly anti-inflammatory, both in adipose tissue and in the hypothalamus 203,345 . In summary, 17α -E2 reduces food intake, possibly mimicking DR, leading to improved metabolic function and reduced age-associated inflammation, but the mechanisms by which 17α -E2 confers these effects requires further studies.

[H1] The Path to Human Intervention

Animal models have been highly successful in generating candidate healthspan interventions, many of which work in mammals, which raises a question in many researchers' minds. How do we test these interventions in humans and accelerate their widespread use to extend our healthspan? The long lifespan of humans makes direct testing barely feasible. Instead, three major approaches have been implemented, of which two have been illustrated in prior sections.

A first approach, used most widely, has been to test longevity interventions in the context of disease indications, including the evaluation of sirtuin-activating compounds in clinical studies of psoriasis and ulcerative colitis³⁵². Interestingly, these diseases are not naturally linked to ageing and sirtuin-activating compounds have yet to be clinically approved. Although this is perhaps the most direct approach, ameliorating ageing is not the same as treating a disease process, and geropotective drugs will likely act preventatively, rather than as treatments for age-related conditions. More recent approaches have chosen diseases or processes more closely linked to ageing, including senolytic approaches to treat osteoarthritis and idiopathic pulmonary fibrosis, as well as evaluating the use of rapalogs to reverse immunosenescence. These studies show more promise as they progress toward clinical use. However, whether this approach is an effective avenue to move interventions toward primary prevention in healthy people to keep them disease-free and functional for longer has yet to be determined.

A second approach is embodied by the TAME trial with metformin and more directly addresses the promise of interventions that slow ageing: to prevent multiple chronic diseases simultaneously. Clinical testing based on ageing itself as an indication is now permitted by the FDA, and the 2018 version of the World Health Organization's International Classification of Diseases (ICD-11) for the first time included an extension code "Ageing-Related" (XT9T) for ageing-related diseases, thus recognising aging as a major risk factor. The upside of this approach is that, if successful, a path toward widespread use in at-risk populations can be readily imagined. The downside is the cost and duration of the study, which will follow over 3000 people for up to three years. Therefore, the approach is cost prohibitive for studies of a large number of interventions and, given that it is only conjecture to know which will work best at this stage, other approaches are warranted. The TAME trial is potentially groundbreaking in ageing research; however, multiple types of interventions should be used at the beginning of human intervention studies as we learn the best paths forward.

A third, and promising, approach is only now becoming feasible. Until recently, measurements of ageing have been limited largely to physiological or functional measures, including walking speed, pulse wave velocity, VO₂ max, and measures of organ function. However, using artificial intelligence strategies to analyze deep datasets, several molecular biomarkers that can be generated using non-invasive or minimally invasive strategies have been proposed to measure biological age. Among these is the epigenetic clock^{353,354}, which integrates DNA methylation data from over 300 sites in the genome and can be assessed in multiple tissues, including peripheral blood mononuclear cells. In mice, where a similar clock has also been

elucidated, anti-ageing interventions can delay clock progression³⁵⁵. Other biomarkers have been proposed, including transcriptomic and metabolomic profiles of blood, complete blood counts, accelerometry data on iPhones and even facial pattern recognition³⁵⁶. None of these biomarkers have been fully validated, but they offer great promise. However, there are major questions: How will these biomarkers respond to longevity interventions? Are they dynamic? Will interventions slow the rate of clock progression or reverse the clock? How do the different clocks relate to each other? Do different biomarkers inform on different aspects of the ageing process? Will it be possible to detect individual differences in the progress of the different mechanisms of ageing and thus tailor geroprotective interventions? Despite the many unanswered questions, the discovery of biomarkers and clocks is a major breakthrough that opens the possibility of using them as primary endpoints in the clinic, if they can be tied to changes in clinical outcomes. These discoveries may open the way to relatively short-term, smaller studies that determine which interventions alter which clocks. Human studies using these biomarkers are only just beginning in earnest. Given that none of them may be validated by regulatory agencies in the near future, these studies may only be an entry point to identify interventions with the largest possible impact on ageing, leading to studies like the TAME trial as a step to clinical approval.

 A final approach is to avoid drugs altogether and develop natural products as supplements to slow ageing. These compounds are less tightly regulated than are drugs, and many are already legally marketed as treatments for a wide range of conditions, often without clear clinical evidence to support their use. In the context of geroprotection, a combination of two compounds to modulate NAD(+) and sirtuin activity is being marketed and has undergone limited human testing. Other reagents to enhance NAD(+) levels are also available. This approach has the advantage of rapidly reaching a large population, but raises important questions about how marketed products can be safety-tested and experimentally validated. The natural product market is thus a double-edged sword – quicker to market but less regulated. These compounds should be tested in scientifically rigorous, placebo-controlled trials, to demonstrate that the benefits of supplements outweigh any risks and the costs to the consumer. Can public studies be performed using non-invasive biomarkers? Again, although many unvalidated products are sold as "anti-ageing," we are at an early stage in terms of generated, validated products.

Ageing is a complex process, and no geroprotective intervention has ameliorated all of its features, although DR has so far come the closest. Genetic studies in model organisms have indicated that combinatorial interventions targeting different pathways can be the most effective in ameliorating ageing³⁵⁷⁻³⁵⁹. The same is likely to be true of pharmacological interventions, and indeed combinatorial treatments in yeast³⁶⁰, *C. elegans*³⁶¹ and *Drosophila*³⁶² have been more effective than administration of single agents. The evidence from animal studies, and our understanding of human ageing, indicate that multiple approaches to ameliorating the effects of ageing should be pursued in parallel.

Although human translational studies in ageing are at an early stage, they represent a major step forward in ageing research. We have yet to understand how achievable or difficult it will be to lessen the effects of human ageing and what will be the best methods to validate success. Nevertheless, it is now possible to envision geroprotective strategies to delay the onset of many debilitating diseases and maintain function later in life.

[H1] Conclusions

After long and laborious studies on the fundamental drivers of the ageing process, numerous small molecules have emerged as candidates to delay human ageing, prevent disease onset and/or progression and maintain human functional capacity later in life. While individual scientists certainly have their favorite candidates, there is an emerging consensus on what the best approaches will be. Mild inhibition of the activity of the nutrient-sensing network, particularly of mTORC1, is a promising strategy and is currently furthest down the road to clinical validation and delivery. A major challenge will be to identify the most effective targets for health improvement, which may be tissue-specific and hence require further drug development, combined with the fewest side-effects, which will require fine-tuning of dose and timing of drug administration. Senostasis and senolysis are also promising strategies, and further experimental work in animals and clinical trials are needed to determine the safety and efficacy of these approaches in humans, and also any potential negative side-effects, especially in the longer term. Localised, compartment-specific treatment, for instance of arthritic knees, may be safer and more effective than systemic administration. Although our understanding of potential geroprotective effects of systemically circulating molecules is in its infancy, the experimental results with mice strongly encourage further research to understand the rejuvenating effects. Experimental work on ageing with the microbiome is also in its infancy, but holds great promise. It is also highly likely that new interventions, better than the ones we know about today, will emerge. Nevertheless, excitement is rising as interventions begin to be tested in the clinic, and there is a general expectation that at least some are likely to prove efficacious in the reasonably short term.

Although a number of challenges remain, including regulatory hurdles, clinical design questions, incompletely validated biomarkers of human ageing, and commercial challenges to bring the new interventions to market, it is likely that strong evidence will emerge in the near future for feasible strategies to delay human ageing. Administering these interventions in a safe manner that is inclusive of everyone regardless of financial capacity is incumbent, but this approach could tilt medical treatment away from "sick" care and towards broad spectrum prevention, a major advance that can revolutionize medicine, maximizing improvement of life quality and mitigating the soaring costs of age-associated chronic diseases.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

Box 1. Geroprotector inclusion criteria

A number of agents have been reported to affect ageing in animal models, and in a few cases, some data exists in humans. Rather than provide a complete list, we have chosen to focus on a smaller subset, classified as Tier 1 or Tier 2 based on published geroprotector inclusion criteria, which we have modified as described.

907

901 902

903

904

905

906

908

911

912

913

914

915

916

917

Primary Inclusion Criteria:

- Increased lifespan in animal models
- Amelioration of Human Biomarkers of Ageing
- Minimal side effects at therapeutic dose
- Reproducibility in multiple species and/or different strains of a mammalian species
- Acceptable toxicity

Secondary Inclusion Criteria

- Evidence for target pathway in ageing, ideally in humans
- Increased stress resistance
- Protection from multiple age-related diseases

Box 2. In vivo screening to identify geroprotectors

Given that ageing studies are long in duration and costly, direct screening for geroprotectors has been of limited feasibility. Nevertheless, several approaches have led to interesting candidates. A relatively direct approach performed screens of over 80,000 small molecules for extension of lifespan in *C. elegans* when administered in early adulthood^{363,364}. A range of molecules was identified, including those that resemble serotonin or dopamine, increasing oxidative stress resistance, or affect several signalling pathways.

In *C. elegans*, a separate approach screened for molecules that induce multiple forms of stress resistance and then tested their effects on lifespan³⁶⁵. Using surrogate phenotypes, such as stress resistance, can make the screening technique easier, but restricts the classes of molecules identified. A similar approach was used in yeast, in which a correlation was found between properties of G1 cell cycle progression and replicative lifespan. FDA-approved compounds were identified first for the cell cycle effect and then tested for longevity, leading to the identification of ibuprofen and other molecules^{252,366}. The labour-intensive nature of the yeast replicative ageing assay has precluded large compound screens, but high-throughput ageing analysis has recently been developed, opening the way for more comprehensive screens^{367,368}.

Screens in mammalian cell culture have also been performed in a recent approach identifying compounds that reduce senescence markers³⁶⁹. Interestingly, the two most potent compounds identified also robustly extended *C. elegans* lifespan, pointing once again to the conserved nature of longevity pathways across species. Despite the difficulty of chemical screens to identify geroprotectors, this approach has proven fruitful and, with more high throughput analysis and better surrogate phenotypes to assess, the approach become more widely utilized in the near future.

Box 3. In silico approaches to identify geroprotectors

In silico approaches have, in general, used structural and genetic information, or a combination of both, to identify candidate geroprotectors³⁷⁰. Databases such as Digital Aging Atlas^{371,372}, Human Aging Genomic Resources (HAGR)^{373,374} and Aging Clusters³⁷⁵, are powerful repositories of diverse ageing-relevant data.

Structural approaches

Structural information can be used to find chemical similarities between compounds and hence candidate geroprotectors.

Compounds that increase lifespan in *C. elegans* were identified from DrugAge in HAGR and in an experimental screen³⁶⁴. Their structures were found using PubChem^{376,377}, ChemSpider^{377,378} and the literature. Resulting molecular descriptors were combined with drug–protein interactions from STITCH³⁷⁹ to identify other candidates for increasing worm lifespan, one of which, 2-bromo-4'-nitroacetophenone, was experimentally validated³⁸⁰.

In a different structural approach, 2054 putative ageing genes from 9 model organisms were identified in GenAge, and 94 were prioritized based on their effect on lifespan. These were screened against all DrugBank compounds for similarities in ligand-binding structures, yielding 31 candidates. Several of these were validated as extending lifespan or healthspan in a rotifer³⁸¹. A related study associated the gene ontology terms and chemical descriptors for the protein targets of compounds in DrugAge that extended worm lifespan, to identify related drugs as candidate geroprotectors, but these were not further validated³⁸².

Genetic approaches

Changes in gene expression with age, in response to genetic and environmental interventions that ameliorate ageing, and in response to treatment with drugs or small molecules, have been used to identify candidate geroprotectors.

Transcriptional profiles of bone marrow cells from young and old humans were compared with the profiles from 70 drugs that extended lifespan in *C. elegans*. Candidates from the overlap were analysed for their effects on phenotypes of late passage human embryonic lung fibroblasts, and were enriched for compounds that restored their phenotypes to a younger state and increased their long-term survival³⁸³.

Several studies have been based upon age-related changes in gene expression in human tissues, from the GTEx database. Age-related changes in gene expression in ageing human brain were combined with data from the Connectivity Map to identify 24 small molecule candidates, a group that was significantly enriched for compounds that had already been shown to extend lifespan in worms or fruit flies³⁸⁴. In a closely related approach, changes in gene expression with age in multiple tissues were combined and used to identify small molecules in the Connectivity Map that shifted the transcriptional profile towards a 'young' one, and identified 31 candidates that were significantly enriched for known geroprotectors and for novel compounds that extended lifespan in *C. elegans*³⁸⁵. Similarly, expression profiles from young and old human adipose tissue were used to calculate gene co-expression networks, and the Connectivity Map was then interrogated for small molecules that reversed the age-associated changes³⁸⁶.

In a broader use of genetic information, ageing-related gene products in humans from Aging Clusters were combined with their interactions with compounds in STITCH and DrugBank. 19 compounds were enriched for ageing-related targets, 6 of which were already shown to have pro-longevity properties in animal models, a significant enrichment. Tanespimycin, an inhibitor of HSP90, was the top-ranked novel candidate, and was shown to increase lifespan in *C. elegans* through its HSP90 target³⁸⁷ (**FIG. 4c**).

 Gene expression profiles from rat cells exposed to sera from dietarily restricted rats or rhesus monkeys were used to identify 39 genes that had human orthologs, and these were compared to gene expression changes in Connectivity Map³⁸⁸, a database of expression profiles from a panel of human cell lines responding to treatment by drugs and unlicensed small molecules^{389,390}. Profiles from 11 of the 39 candidate drugs mimicked those of dietary restriction, and three of these—rapamycin, LY-294002 and trichostatin A — had already been shown to increase lifespan in *C. elegans* (see section on rapamycin and mTOR inhibition). These three candidates and allantoin increased normal worm lifespan and rescued the age-related decline in pharyngeal pumping³⁹¹.

Box 4. The National Institute on Aging Interventions Testing Program (ITP)

The ITP³⁹² tests the potential of interventions delivered in the diet to promote healthy ageing. Both sexes of a genetically variable population of mice, the result of a 4-way cross among inbred strains, are evaluated in 3 different centres (Jackson Laboratory, University of Texas Health Science Center, and University of Michigan), at numbers sufficient to detect a 10% increase in lifespan with 80% power. The three testing sites use standardized operating procedures, including diets, caging, bedding and mouse handling. Interventions for testing are proposed by the research community through an annual call for proposals, and tested compounds have ranged from drugs and dietary supplements to micronutrients and metabolic intermediates⁴⁷.

Positive Findings from the ITP

Acarbose (see main text) – Increased lifespan in both males and females (the effects were greater in males) when initiated at 4 months of age²⁰¹. When initiated at 16 months of age, overall lifespan was extended only in males, but maximum lifespan was extended in both sexes³⁴⁴.

- **Aspirin (see main text)** Increased lifespan in males but not females²⁴⁸. A later study failed to replicate lifespan extension with higher doses³³¹.
- Glycine (see main text) Increased median and maximum lifespan in males and females³³¹.
- Nordihydroguaiaretic acid Increased mean lifespan in males but not females²⁴⁸, even at doses that gave equivalent blood levels in males and females²⁰¹.
- Protandim® Increased lifespan in males but not females³⁴⁴.
- Rapamycin (see main text) Increased mean and maximum lifespan in both males and females when initiated at 20 months of age⁴⁶ or at 9 months of age⁴⁷. Females responded more robustly than males at equivalent doses and blood levels of rapamycin were greater in females; when ~equal blood levels were achieved, the response of lifespan was about equivalent in females and males⁴⁷.
- 1043 **17\alpha-Estradiol (see main text)** Increased lifespan in males but not females, at 4.8 ppm dose²⁰¹ and 14.4 ppm dose³⁴⁴.

Negative findings from the ITP

- 1047 Curcumin
- 1048 Fish oil

1014 1015

1016

1017

1018

1019

1020

1021

1022

1023

1024 1025

1026 1027

1028

1029

1030

1031

1032

1033

1045

- Green tea extract
- HBX (2-(2-hydroxyphenyl) benzothiazole)
- 1051 INT-767 (an FXR and TGR5 agonist)
- 1052 Inulin
- Medium-chain triglyceride oil
- 1054 Metformin
- 1055 Methylene blue
- Nitroflurbiprofen
- 1057 Oxaloacetic acid
- 1058 Resveratrol
- 1059 Simvastatin
- 1060 TM441, a pan-inhibitor of PAI-1
- 1061 Ursodeoxycholic acid
- 1062 Ursolic acid
- 4-OH-α-phenyl-N-tert-butyl nitrone

Figure 1. Age composition of the population and incidence of major age-related diseases. Changes in the age composition of the global human population over time, showing the decline in 0-15-year-olds and the increase in 65+year-olds. Plotted from data in https://population.un.org/wpp/DataQuery (panel a). The incidence of three major age-related diseases, dementias, cardiovascular disease and neoplasms, in two low (Afghanistan and Ethiopia), two middle (India and Brazil) and two high (Japan and Switzerland) income countries. Rates are normalized to incidence at age 20 (cardiovascular disease and neoplasms) or age 40 (dementias) for each country because of the strong relationship between overall incidence rate and average income, indicating variation in rates of diagnosis. Plotted from data in the Global burden of Disease Study 2017 http://ghdx.healthdata.org/gbd-2017. (panel b).

- Figure 2. Agents and their influence on different hallmarks of ageing. Geroprotective agents, small molecules and metabolites ameliorate one or more of the hallmarks of ageing to prevent ageing-related decline in function and ageing-related diseases. *Impaired protein homeostasis also includes autophagy.
- **Figure 3. Effects of rapamycin and inhibition of mTORC1.** Inputs to and outputs from mTORC1 (panel a). In the process of macroautophagy, damaged organelles and other cellular components are accumulated in a double-membrane-enclosed autophagosome, which fuses with a lysosome and releases its contents for degradation and recycling (panel b).
- **Figure 4. Some of the modes of action for senolytics.** BCL2 proteins, which inhibit mitochondrial activation of apopotosis, are elevated in senescent cells and their inhibition selectively induces apoptosis in these cells (panel a). A FOXO4 peptide disrupts the association of FOXO4 with p53 leading to p53 nuclear exclusion and cellular apoptosis (panel b). The molecular chaperone HSP90 stabilizes phosphorylated AKT (pAKT), which is elevated in senescent cells and protects them against apoptosis. Inhibition of HSP90 destabilizes pAKT resulting in selective apoptosis of the senescent cells (panel c). Cardiac glycosides disrupt the Na+/K+ ATPase pumps in the plasma membrane, leading to lowering of pH in senescent cells, which already have a low pH, thus rendering them vulnerable to apoptosis (panel d).

Glossary	terms
----------	-------

1094

- 1095 Healthspan: the time in a person's life when they are in general good health.
- *Immunosenescence*: Decline in function of the immune system with age.
- Senostatics: Chemicals that prevent senescent cells from producing the senescence associated
- secretory phenotype (SASP), which can damage surrounding tissue and cause systemic
- inflammation.
- Dietary Restriction (DR): Reduced food intake from its voluntary level while avoiding
- malnutrition.

REFERENCES

- 1. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. *Curr Biol* **22**, R741-752 (2012).
- Niccoli, T., Partridge, L. & Isaacs, A. M. Ageing as a risk factor for ALS/FTD. *Hum Mol Genet* **26**, R105-R113 (2017).
- 1107 3. Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. *Nature* 1108 **561**, 45-56 (2018).
- Hurst, J. R. *et al.* Global Alliance for Chronic Disease researchers' statement on multimorbidity. *Lancet Glob Health* **6**, e1270-e1271 (2018).
- 5. Evangelista, L., Steinhubl, S. R. & Topol, E. J. Digital health care for older adults. *Lancet* **393**, 1493 (2019).
- Hardy, J. & De Strooper, B. Alzheimer's disease: where next for anti-amyloid therapies? *Brain* **140**, 853-855 (2017).
- Tarakad, A. & Jankovic, J. Diagnosis and Management of Parkinson's Disease. *Semin Neurol* **37**, 1116 118-126 (2017).
- 8. Kenyon, C. J. The genetics of ageing. *Nature* **464**, 504-512 (2010).
- 9. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span--from yeast to humans. Science **328**, 321-326 (2010).
- 10. Fontana, L. & Partridge, L. Promoting Health and Longevity through Diet: From Model Organisms to Humans. *Cell* **161**, 106-118 (2015).
- 11. Longo, V. D. *et al.* Interventions to Slow Aging in Humans: Are We Ready? *Aging Cell* **14**, 497-1123 510 (2015).
- 12. Yousefzadeh, M. J. *et al.* Fisetin is a senotherapeutic that extends health and lifespan. *EBioMedicine* **36**, 18-28 (2018).
- 13. Roberts, M. N. *et al.* A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. *Cell*1127 *Metab* **26**, 539-546 e535 (2017).
- 14. Bitto, A. *et al.* Transient rapamycin treatment can increase lifespan and healthspan in middleaged mice. *Elife* **5** (2016).
- 130 15. Mattison, J. A. *et al.* Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. *Nature* **489**, 318-321 (2012).
- 16. Colman, R. J. *et al.* Caloric restriction delays disease onset and mortality in rhesus monkeys. *Science* **325**, 201-204 (2009).
- 17. Mattison, J. A. *et al.* Caloric restriction improves health and survival of rhesus monkeys. *Nat Commun* **8**, 14063 (2017).
- 18. Goldman, D. The Economic Promise of Delayed Aging. *Cold Spring Harb Perspect Med* **6**, a025072 (2015).
- 19. Olshansky, S. J. Articulating the Case for the Longevity Dividend. *Cold Spring Harb Perspect*1139 *Med* **6**, a025940 (2016).
- Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging.
 Cell 153, 1194-1217 (2013).
- de Magalhaes, J. P., Stevens, M. & Thornton, D. The Business of Anti-Aging Science. *Trends Biotechnol* **35**, 1062-1073 (2017).
- Brown, A. S. & Patel, C. J. A standard database for drug repositioning. *Sci Data* 4, 170029 (2017).
- Himmelstein, D. S. *et al.* Systematic integration of biomedical knowledge prioritizes drugs for repurposing. *Elife* **6** (2017).
- 24. Schubert, D. *et al.* Geroneuroprotectors: Effective Geroprotectors for the Brain. *Trends Pharmacol Sci* **39**, 1004-1007 (2018).
- Figueira, I. *et al.* Interventions for age-related diseases: Shifting the paradigm. *Mech Ageing Dev* **160**, 69-92 (2016).
- 1151 26. Moskalev, A. *et al.* Developing criteria for evaluation of geroprotectors as a key stage toward 1152 translation to the clinic. *Aging Cell* **15**, 407-415 (2016).

- 1153 27. Moskalev, A., Chernyagina, E., Kudryavtseva, A. & Shaposhnikov, M. Geroprotectors: A Unified
- 1154 Concept and Screening Approaches. *Aging Dis* **8**, 354-363 (2017).
- Trendelenburg, A. U., Scheuren, A. C., Potter, P., Muller, R. & Bellantuono, I. Geroprotectors:
- A role in the treatment of frailty. *Mech Ageing Dev* **180**, 11-20 (2019).
- 1157 29. Moskalev, A. et al. Geroprotectors.org: a new, structured and curated database of current
- therapeutic interventions in aging and age-related disease. *Aging (Albany NY)* **7**, 616-628 (2015).

 30. Kumar, S. & Lombard, D. B. Finding Ponce de Leon's Pill: Challenges in Screening for Anti-Aging
- Molecules. *F1000Res* **5** (2016).
- Vaiserman, A. M., Lushchak, O. V. & Koliada, A. K. Anti-aging pharmacology: Promises and pitfalls. *Ageing Res Rev* **31**, 9-35 (2016).
- de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. *Cell* **157**, 1515-1526 (2014).
- Mallikarjun, V. & Swift, J. Therapeutic Manipulation of Ageing: Repurposing Old Dogs and Discovering New Tricks. *EBioMedicine* **14**, 24-31 (2016).
- 1167 34. Arriola Apelo, S. I. & Lamming, D. W. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island. *J Gerontol A Biol Sci Med Sci* **71**, 841-849 (2016).
- 35. Saxton, R. A. & Sabatini, D. M. mTOR Signaling in Growth, Metabolism, and Disease. *Cell* **168**, 960-976 (2017).
- Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. *Cell* **149**, 274-293 (2012).
- 1173 37. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. *Cell Metab* **19**, 373-379 (2014).
- 1174 38. Kaeberlein, M. *et al.* Regulation of yeast replicative life span by TOR and Sch9 in response to 1175 nutrients. *Science* **310**, 1193-1196 (2005).
- 1176 39. Powers, R. W., 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. *Genes Dev* **20**, 174-184 (2006).
- Ha, C. W. & Huh, W. K. Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. *Nucleic Acids Res* **39**, 1336-1350 (2011).
- 41. Jia, K., Chen, D. & Riddle, D. L. The TOR pathway interacts with the insulin signaling pathway
- to regulate C. elegans larval development, metabolism and life span. *Development* **131**, 3897-3906 (2004).
- 42. Kapahi, P. *et al.* Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. *Curr Biol* **14**, 885-890 (2004).
- 1185 43. Vellai, T. *et al.* Genetics: influence of TOR kinase on lifespan in C. elegans. *Nature* **426**, 620 (2003).
- 1187 44. Robida-Stubbs, S. *et al.* TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. *Cell Metab* **15**, 713-724 (2012).
- 45. Bjedov, I. *et al.* Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. *Cell Metab* **11**, 35-46 (2010).
- Harrison, D. E. *et al.* Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. *Nature* **460**, 392-395 (2009).
- 47. Miller, R. A. *et al.* Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. *J Gerontol A Biol Sci Med Sci* **66**, 191-201 (2011).
- 1195 48. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. *Sci Signal* **2**, ra75 (2009).
- 49. Wu, J. J. *et al.* Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. *Cell Rep* **4**, 913-920 (2013).
- 1199 50. Anisimov, V. N. *et al.* Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in 1200 inbred female mice. *Cell Cycle* **10**, 4230-4236 (2011).
- 1201 51. Popovich, I. G. *et al.* Lifespan extension and cancer prevention in HER-2/neu transgenic mice 1202 treated with low intermittent doses of rapamycin. *Cancer Biol Ther* **15**, 586-592 (2014).

- 1203 52. Grabiner, B. C. *et al.* A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. *Cancer Discov* **4**, 554-563 (2014).
- 53. Xu, J. *et al.* Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. *J Clin Invest* **126**, 3526-3540 (2016).
- 1207 54. Neff, F. *et al.* Rapamycin extends murine lifespan but has limited effects on aging. *J Clin Invest* 1208 **123**, 3272-3291 (2013).
- 55. Wilkinson, J. E. *et al.* Rapamycin slows aging in mice. *Aging Cell* **11**, 675-682 (2012).
- 1210 56. Lesniewski, L. A. et al. Dietary rapamycin supplementation reverses age-related vascular
- dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. *Aging Cell* **16**, 17-26 (2017).
- 1213 57. Halloran, J. et al. Chronic inhibition of mammalian target of rapamycin by rapamycin
- modulates cognitive and non-cognitive components of behavior throughout lifespan in mice.
- 1215 *Neuroscience* **223**, 102-113 (2012).
- 58. Majumder, S. *et al.* Lifelong rapamycin administration ameliorates age-dependent cognitive
- deficits by reducing IL-1beta and enhancing NMDA signaling. *Aging Cell* **11**, 326-335 (2012).
- Flynn, J. M. *et al.* Late-life rapamycin treatment reverses age-related heart dysfunction. *Aging Cell* **12**, 851-862 (2013).
- 1220 60. Dai, D. F. *et al.* Altered proteome turnover and remodeling by short-term caloric restriction or 1221 rapamycin rejuvenate the aging heart. *Aging Cell* **13**, 529-539 (2014).
- 61. An, J. Y. *et al.* Rapamycin treatment attenuates age-associated periodontitis in mice.
- 1223 *Geroscience* **39**, 457-463 (2017).
- Dou, X. et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-
- aged female mice. *Aging Cell* **16**, 825-836 (2017).
- 1226 63. Reifsnyder, P. C., Flurkey, K., Te, A. & Harrison, D. E. Rapamycin treatment benefits glucose
- metabolism in mouse models of type 2 diabetes. Aging (Albany NY) 8, 3120-3130 (2016).
- 1228 64. Menzies, F. M. & Rubinsztein, D. C. Broadening the therapeutic scope for rapamycin treatment.
- 1229 Autophagy **6**, 286-287 (2010).
- 1230 65. Bove, J., Martinez-Vicente, M. & Vila, M. Fighting neurodegeneration with rapamycin:
- mechanistic insights. *Nat Rev Neurosci* **12**, 437-452 (2011).
- Spilman, P. et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces
- amyloid-beta levels in a mouse model of Alzheimer's disease. *PLoS One* **5**, e9979 (2010).
- 1234 67. Ozcelik, S. et al. Rapamycin attenuates the progression of tau pathology in P301S tau
- transgenic mice. *PLoS One* **8**, e62459 (2013).
- 68. Lin, A. L. et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein
- E4 transgenic mice with pre-symptomatic Alzheimer's disease. *J Cereb Blood Flow Metab* **37**, 217-226 (2017).
- 1239 69. Richardson, A., Galvan, V., Lin, A. L. & Oddo, S. How longevity research can lead to therapies for Alzheimer's disease: The rapamycin story. *Exp Gerontol* **68**, 51-58 (2015).
- 70. Bai, X. et al. Rapamycin improves motor function, reduces 4-hydroxynonenal adducted
- protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy. *Pathobiol Aging*
- 1243 Age Relat Dis **5**, 28743 (2015).
- 71. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of
- polyglutamine expansions in fly and mouse models of Huntington disease. *Nat Genet* **36**, 585-595
- 1246 (2004).
- 1247 72. Sarkar, S. et al. A rational mechanism for combination treatment of Huntington's disease using
- lithium and rapamycin. *Hum Mol Genet* **17**, 170-178 (2008).
- 73. Johnson, S. C. et al. Dose-dependent effects of mTOR inhibition on weight and mitochondrial
- disease in mice. *Front Genet* **6**, 247 (2015).
- 74. Kennedy, B. K. & Pennypacker, J. K. Mammalian Target of Rapamycin: A Target for (Lung)
- Diseases and Aging. *Ann Am Thorac Soc* **13 Suppl 5**, S398-S401 (2016).

- 1253 75. Sciarretta, S., Forte, M., Frati, G. & Sadoshima, J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. *Circ Res* **122**, 489-505 (2018).
- 76. Walters, H. E. & Cox, L. S. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. *Int J Mol Sci* **19** (2018).
- 77. University of Washington. *Dog Aging Project* https://dogagingproject.org/ (2019).
- 1258 78. Urfer, S. R. *et al.* A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. *Geroscience* **39**, 117-127 (2017).
- 79. Tardif, S. *et al.* Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. *J Gerontol A Biol Sci Med Sci* **70**, 577-587 (2015).
- 80. Ross, C. *et al.* Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). *Aging (Albany NY)* **7**, 964-973 (2015).
- Lelegren, M., Liu, Y., Ross, C., Tardif, S. & Salmon, A. B. Pharmaceutical inhibition of mTOR in the common marmoset: effect of rapamycin on regulators of proteostasis in a non-human primate.
- 1266 *Pathobiol Aging Age Relat Dis* **6**, 31793 (2016).
- 82. Kennedy, B. K. & Lamming, D. W. The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. *Cell Metab* **23**, 990-1003 (2016).
- 83. Selman, C. *et al.* Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. *Science* **326**, 140-144 (2009).
- Haller, S. *et al.* mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance. *Cell Stem Cell* **21**, 806-818 e805 (2017).
- 85. Yilmaz, O. H. *et al.* mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. *Nature* **486**, 490-495 (2012).
- 86. Fan, X. *et al.* Rapamycin preserves gut homeostasis during Drosophila aging. *Oncotarget* **6**, 35274-35283 (2015).
- Sung, J. Y., Lee, K. Y., Kim, J. R. & Choi, H. C. Interaction between mTOR pathway inhibition and autophagy induction attenuates adriamycin-induced vascular smooth muscle cell senescence through
- decreased expressions of p53/p21/p16. Exp Gerontol (2017).
- Wang, R., Sunchu, B. & Perez, V. I. Rapamycin and the inhibition of the secretory phenotype. Exp Gerontol **94**, 89-92 (2017).
- 4282 89. Hine, C. Rapamycin keeps the reproductive clock ticking. Sci Transl Med 9 (2017).
- 90. Wang, R. *et al.* Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. *Aging Cell* **16**, 564-574 (2017).
- 91. Augustine, J. J., Bodziak, K. A. & Hricik, D. E. Use of sirolimus in solid organ transplantation. Drugs 67, 369-391 (2007).
- de Oliveira, M. A. *et al.* Clinical presentation and management of mTOR inhibitor-associated stomatitis. *Oral Oncol* **47**, 998-1003 (2011).
- 93. Schreiber, K. H. *et al.* Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. *Aging Cell* **14**, 265-273 (2015).
- 1291 94. Lamming, D. W. *et al.* Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. *Science* **335**, 1638-1643 (2012).
- 95. Sarbassov, D. D. *et al.* Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. *Mol Cell* **22**, 159-168 (2006).
- 295 96. Zheng, Y. *et al.* A role for mammalian target of rapamycin in regulating T cell activation versus anergy. *J Immunol* **178**, 2163-2170 (2007).
- 97. Powell, J. D., Pollizzi, K. N., Heikamp, E. B. & Horton, M. R. Regulation of immune responses by mTOR. *Annu Rev Immunol* **30**, 39-68 (2012).
- 98. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108-112 (2009).
- 1300 99. Delgoffe, G. M. *et al.* The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. *Immunity* **30**, 832-844 (2009).
- 1302 100. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. *J Exp Med* **205**, 565-574 (2008).

- 101. Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known
- unknowns. *Trends Immunol* **36**, 13-20 (2015).
- 102. Pollizzi, K. N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates
- 1307 CD8(+) T cell differentiation. *Nat Immunol* **17**, 704-711 (2016).
- 1308 103. Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T
- lymphocytes. *Nature* **532**, 389-393 (2016).
- 104. Murphy, S. L., Jiaquan, X. & Kochnanek, K. D. Deaths: Final Data for 2010 (National Vital
- 1311 Statistics Report). (2013).
- 105. Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in the
- elderly: a quantitative review. *Vaccine* **24**, 1159-1169 (2006).
- 1314 106. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med
- 1315 **6**, 268ra179 (2014).
- 107. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the
- elderly. *Sci Transl Med* **10** (2018).
- 1318 108. resTORbio Announces That the Phase 3 PROTECTOR 1 Trial of RTB101 in Clinically Symptomatic
- Respiratory Illness Did Not Meet the Primary Endpoint https://ir.restorbio.com/news-releases/news-
- release-details/restorbio-announces-phase-3-protector-1-trial-rtb101-clinically (2019).
- 1321 109. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat Rev
- 1322 *Mol Cell Biol* **15**, 482-496 (2014).
- 110. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic
- development. Cell 155, 1104-1118 (2013).
- 111. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through
- secretion of PDGF-AA. *Dev Cell* **31**, 722-733 (2014).
- 1327 112. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. *Nat Rev*
- 1328 *Cancer* **10**, 51-57 (2010).
- 113. Anestakis, D. et al. Mechanisms and applications of interleukins in cancer immunotherapy. Int
- 1330 *J Mol Sci* **16**, 1691-1710 (2015).
- 1331 114. Campisi, J. Aging, cellular senescence, and cancer. *Annu Rev Physiol* **75**, 685-705 (2013).
- 115. Demaria, M. et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer
- 1333 Relapse. *Cancer Discov* **7**, 165-176 (2017).
- 1334 116. van Deursen, J. M. The role of senescent cells in ageing. *Nature* **509**, 439-446 (2014).
- 1335 117. Yanai, H. & Fraifeld, V. E. The role of cellular senescence in aging through the prism of Koch-
- like criteria. *Ageing Res Rev* **41**, 18-33 (2018).
- 1337 118. Khosla, S., Farr, J. N. & Kirkland, J. L. Inhibiting Cellular Senescence: A New Therapeutic
- Paradigm for Age-Related Osteoporosis. J Clin Endocrinol Metab 103, 1282-1290 (2018).
- 119. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med
- **23**, 1072-1079 (2017).
- 120. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug
- 1342 Discov **16**, 718-735 (2017).
- 121. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis.
- 1344 Science **354**, 472-477 (2016).
- 1345 122. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in
- aged or atherosclerotic mice. Aging Cell 15, 973-977 (2016).
- 123. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun
- 1348 **8**, 15691 (2017).
- 124. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8,
- 1350 14532 (2017).
- 125. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-
- traumatic osteoarthritis and creates a pro-regenerative environment. *Nat Med* **23**, 775-781 (2017).
- 126. Jeon, O. H., David, N., Campisi, J. & Elisseeff, J. H. Senescent cells and osteoarthritis: a painful
- connection. J Clin Invest **128**, 1229-1237 (2018).

- Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker
- development. *PLoS Biol* **18**, e3000599 (2020).
- 1357 128. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated
- disorders. *Nature* **479**, 232-236 (2011).
- 1359 129. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature
- **530**, 184-189 (2016).
- 130. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction.
- 1362 Aging Cell **18**, e12950 (2019).
- 131. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous
- functions of oncogenic RAS and the p53 tumor suppressor. *PLoS Biol* **6**, 2853-2868 (2008).
- 1365 132. Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging
- 1366 *Cell* **14**, 644-658 (2015).
- 133. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat Med
- 1368 **24**, 1246-1256 (2018).
- 134. Cavalcante, M. B. et al. Dasatinib plus quercetin prevents uterine age-related dysfunction and
- fibrosis in mice. *Aging (Albany NY)* **12**, 2711-2722 (2020).
- 135. Baar, M. P. et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in
- 1372 Response to Chemotoxicity and Aging. *Cell* **169**, 132-147 e116 (2017).
- 136. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics.
- 1374 Nat Commun 8, 422 (2017).
- 137. Fuhrmann-Stroissnigg, H., Niedernhofer, L. J. & Robbins, P. D. Hsp90 inhibitors as senolytic
- drugs to extend healthy aging. *Cell Cycle* **17**, 1048-1055 (2018).
- 138. Kashyap, D. et al. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive
- Potential. *Biomolecules* **9** (2019).
- 139. Triana-Martinez, F. et al. Identification and characterization of Cardiac Glycosides as senolytic
- compounds. *Nat Commun* **10**, 4731 (2019).
- 140. Guerrero, A. et al. Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism
- 1382 (2019).
- 1383 141. NIH U.S. National Library of Medicine. ClinicalTrials.gov
- https://clinicaltrials.gov/ct2/show/NCT03513016 (2018).
- 1385 142. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human,
- open-label, pilot study. *EBioMedicine* **40**, 554-563 (2019).
- 1387 143. Kirkland, J. L. & Tchkonia, T. Cellular Senescence: A Translational Perspective. EBioMedicine
- 1388 **21**, 21-28 (2017).
- 144. Herranz, N. & Gil, J. Mechanisms and functions of cellular senescence. *J Clin Invest* **128**, 1238-
- 1390 1246 (2018).
- 1391 145. Marshall, S. M. 60 years of metformin use: a glance at the past and a look to the future.
- 1392 *Diabetologia* **60**, 1561-1565 (2017).
- 146. Adak, T., Samadi, A., Unal, A. Z. & Sabuncuoglu, S. A reappraisal on metformin. *Regul Toxicol*
- 1394 *Pharmacol* **92**, 324-332 (2018).
- 1395 147. Nathan, D. M. et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm
- for the initiation and adjustment of therapy: a consensus statement from the American Diabetes
- Association and the European Association for the Study of Diabetes. Diabetes Care 29, 1963-1972
- 1398 (2006).
- 148. Sharma, M., Nazareth, I. & Petersen, I. Trends in incidence, prevalence and prescribing in type
- 2 diabetes mellitus between 2000 and 2013 in primary care: a retrospective cohort study. BMJ Open
- 1401 **6**, e010210 (2016).
- 149. National Prescription Audit December 2012. (IMS Institute for Healthcare Informatics, 2012).
- 150. Le, S. & Lee, G. C. Emerging Trends in Metformin Prescribing in the United States from 2000
- to 2015. Clin Drug Investig **39**, 757-763 (2019).
- 151. Witters, L. A. The blooming of the French lilac. J Clin Invest 108, 1105-1107 (2001).

- 1406 152. He, L. *et al.* Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. *Cell* **137**, 635-646 (2009).
- 153. Onken, B. & Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative
- stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. *PLoS One* **5**, e8758 (2010).
- 1410 154. De Haes, W. et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin
- PRDX-2. *Proc Natl Acad Sci U S A* **111**, E2501-E2509 (2014).
- 155. Cabreiro, F. et al. Metformin retards aging by microbiota-mediated methionine restriction.
- 1413 *Cell* **153**, 228-239 (2013).
- 156. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2
- diabetes, contributing to the therapeutic effects of the drug. *Nat Med* **23**, 850-858 (2017).
- 157. Slack, C., Foley, A. & Partridge, L. Activation of AMPK by the putative dietary restriction
- mimetic metformin is insufficient to extend lifespan in Drosophila. *PLoS One* **7**, e47699 (2012).
- 158. Anisimov, V. N. Metformin: do we finally have an anti-aging drug? *Cell Cycle* **12**, 3483-3489
- 1419 (2013).
- 1420 159. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an
- antioxidant, an α -glucosidase inhibitor or a Nrf2-inducer. Aging Cell **15**, 872-884 (2016).
- 160. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice Nat Commun.
- **4** 2192 (2013).
- 161. Dhahbi, J. M., Mote, P. L., Fahy, G. M. & Spindler, S. R. Identification of potential caloric
- restriction mimetics by microarray profiling. *Physiol Genomics* **23**, 343-350 (2005).
- 162. Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. *Diabetologia*
- **60**, 1577-1585 (2017).
- 1428 163. Stein, B. D. *et al.* Quantitative In Vivo Proteomics of Metformin Response in Liver Reveals
- AMPK-Dependent and -Independent Signaling Networks. Cell Rep 29, 3331-3348 e3337 (2019).
- 1430 164. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin
- treatment improves glucose homeostasis in diet-induced obese mice. *Gut* **63**, 727-735 (2014).
- 165. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the
- human gut microbiota. *Nature* **528**, 262-266 (2015).
- 166. Zhou, Z. Y. et al. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating
- endotoxemia and enhancing insulin signaling. *Acta Pharmacol Sin* **37**, 1063-1075 (2016).
- 1436 167. Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the
- treatment of high-fat diet-induced obesity in rats. Sci Rep 5, 14405 (2015).
- 1438 168. Cameron, A. R. et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status.
- 1439 *Circ Res* **119**, 652-665 (2016).
- 169. Cacicedo, J. M., Yagihashi, N., Keaney, J. F., Jr., Ruderman, N. B. & Ido, Y. AMPK inhibits fatty
- acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells.
- 1442 Biochem Biophys Res Commun **324**, 1204-1209 (2004).
- 170. Ibanez, L., Valls, C. & de Zegher, F. Discontinuous low-dose flutamide-metformin plus an oral
- or a transdermal contraceptive in patients with hyperinsulinaemic hyperandrogenism: normalizing
- effects on CRP, TNF-alpha and the neutrophil/lymphocyte ratio. Hum Reprod 21, 451-456 (2006).
- 171. Hattori, Y., Suzuki, K., Hattori, S. & Kasai, K. Metformin inhibits cytokine-induced nuclear factor
- kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells.
- 1448 *Hypertension* **47**, 1183-1188 (2006).
- 172. Ren, T. et al. Metformin reduces lipolysis in primary rat adipocytes stimulated by tumor
- necrosis factor-alpha or isoproterenol. *J Mol Endocrinol* **37**, 175-183 (2006).
- 1451 173. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by
- interfering with IKK/NF-kappaB activation. *Aging Cell* **12**, 489-498 (2013).
- 174. Horiuchi, T. et al. Metformin directly binds the alarmin HMGB1 and inhibits its
- proinflammatory activity. *J Biol Chem* **292**, 8436-8446 (2017).
- 175. Cuyas, E. et al. Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging
- 1456 *Cell*, e12772 (2018).

- 176. Kirpichnikov, D., McFarlane, S. & Sowers, J. Metformin: an update. *Ann Intern Med* **137**, 25-33 (2002).
- 1459 177. Beisswenger, P., Howell, S., Touchette, A., Lal, S. & Szwergold, B. Metformin reduces systemic 1460 methylglyoxal levels in type 2 diabetes. *Diabetes* **48**, 198-202 (1999).
- 178. Kooy, A. *et al.* Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. *Arch Intern Med* **169**, 616-625 (2009).
- 1463 179. Wang, C. P., Lorenzo, C., Habib, S. L., Jo, B. & Espinoza, S. E. Differential effects of metformin
- on age related comorbidities in older men with type 2 diabetes. *J Diabetes Complications* **31**, 679-686 (2017).
- 180. Currie, C., Poole, C. & Gale, E. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. *Diabetologia* **52**, 1766-1777 (2009).
- 181. Franciosi, M. *et al.* Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. *PLoS One* **8**, e71583 (2013).
- 182. Qiu, H., Rhoads, G., Berlin, J., Marcella, S. & Demissie, K. Initial metformin or sulphonylurea exposure and cancer occurrence among patients with type 2 diabetes mellitus. *Diabetes Obes Metab* 1472 **15**, 349-357 (2013).
- 183. Hsieh, M. *et al.* The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. *Exp Diabetes Res* **2012**, 413782 (2012).
- 184. Bowker, S., Yasui, Y., Veugelers, P. & Johnson, J. Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. *Diabetologia* **53**, 1631-1637 (2010).
- 185. Ruiter, R. *et al.* Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up study. *Diabetes Care* **35**, 119-

1479 **124 (2012)**.

- 186. Libby, G. *et al.* New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. *Diabetes Care* **32**, 1620-1625 (2009).
- 187. Gandini, S. *et al.* Metformin and cancer risk and mortality: a systematic review and metaanalysis taking into account biases and confounders. *Cancer Prev Res* **7**, 867-885 (2014).
- 188. Group, U. P. D. S. U. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). *Lancet* **352**, 854-865 (1998).
- 1486 189. Bannister, C. *et al.* Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. *Diabetes Obes Metab.* **16**, 1165-1173 (2014).
- 1489 190. Claesen, M. *et al.* Mortality in Individuals Treated With Glucose-Lowering Agents: A Large, Controlled Cohort Study. *J Clin Endocrinol Metab* **101**, 461-469 (2016).
- 1491 191. Campbell, J. M., Bellman, S. M., Stephenson, M. D. & Lisy, K. Metformin reduces all-cause 1492 mortality and diseases of ageing independent of its effect on diabetes control: A systematic review 1493 and meta-analysis. *Ageing Res Rev* **40**, 31-44 (2017).
- 192. Palmer, S. C. *et al.* Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis. *JAMA* **316**, 313-324 (2016).
- 193. Hayden, E. Anti-ageing pill pushed as bona fide drug. *Nature* **522**, 265-266 (2015).
- 194. Justice, J. N. *et al.* Development of Clinical Trials to Extend Healthy Lifespan. *Cardiovasc* Endocrinol Metab **7**, 80-83 (2018).
- 1499 195. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a Tool to Target Aging. *Cell Metab* **23**, 1060-1065 (2016).
- 1501 196. Kulkarni, A. S. *et al.* Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. *Aging Cell* **17** (2018).
- 1503 197. Konopka, A. R. *et al.* Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. *Aging Cell* **18**, e12880 (2019).
- 198. Brewer, R. A., Gibbs, V. K. & Smith, D. L., Jr. Targeting glucose metabolism for healthy aging.

 Nutr Healthy Aging 4, 31-46 (2016).

- 199. Balfour, J. A. & McTavish, D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. *Drugs* **46**, 1025-1054 (1993).
- Yamamoto, M. & Otsuki, M. Effect of inhibition of alpha-glucosidase on age-related glucose intolerance and pancreatic atrophy in rats. *Metabolism* **55**, 533-540 (2006).
- Harrison, D. E. *et al.* Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. *Aging Cell* **13**, 273-282 (2014).
- Harrison, D. E. *et al.* Acarbose improves health and lifespan in aging HET3 mice. *Aging Cell* **18**, e12898 (2019).
- Sadagurski, M., Cady, G. & Miller, R. A. Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. *Aging Cell* **16**, 652-660 (2017).
- 204. Garratt, M., Bower, B., Garcia, G. G. & Miller, R. A. Sex differences in lifespan extension with
- acarbose and 17-alpha estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. *Aging Cell* **16**, 1256-1266 (2017).
- Smith, B. J. *et al.* Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. *BMC Microbiol* **19**, 130 (2019).
- 206. Rosak, C. & Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. *Diabetes Metab Syndr Obes* **5**, 357-367 (2012).
- 207. Pegg, A. E. Functions of Polyamines in Mammals. *J Biol Chem* **291**, 14904-14912 (2016).
- 1525 208. Scalabrino, G. & Ferioli, M. E. Polyamines in mammalian ageing: an oncological problem, too?
 1526 A review. *Mech Ageing Dev* **26**, 149-164 (1984).
- 209. Eisenberg, T. *et al.* Induction of autophagy by spermidine promotes longevity. *Nat Cell Biol* **11**, 1528 1305-1314 (2009).
- 1529 210. Eisenberg, T. *et al.* Cardioprotection and lifespan extension by the natural polyamine spermidine. *Nat Med* **22**, 1428-1438 (2016).
- 1531 Yue, F. *et al.* Spermidine Prolongs Lifespan and Prevents Liver Fibrosis and Hepatocellular Carcinoma by Activating MAP1S-Mediated Autophagy. *Cancer Res* **77**, 2938-2951 (2017).
- Tain, L. S. *et al.* Longevity in response to lowered insulin signaling requires glycine N-methyltransferase-dependent spermidine production. *Aging Cell* **19**, e13043 (2020).
- 1535 213. Kiechl, S. *et al.* Higher spermidine intake is linked to lower mortality: a prospective population-1536 based study. *Am J Clin Nutr* **108**, 371-380 (2018).
- 214. Pietrocola, F. *et al.* Spermidine induces autophagy by inhibiting the acetyltransferase EP300. *Cell Death Differ* **22**, 509-516 (2015).
- 1539 215. Marino, G. *et al.* Regulation of autophagy by cytosolic acetyl-coenzyme A. *Mol Cell* **53**, 710-1540 725 (2014).
- Wang, J. *et al.* Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function. *Aging (Albany NY)* **12**, 650-671 (2020).
- 217. Zhang, H. *et al.* Polyamines Control eIF5A Hypusination, TFEB Translation, and Autophagy to Reverse B Cell Senescence. *Mol Cell* **76**, 110-125 e119 (2019).
- 1545 218. Sacitharan, P. K., Gharios, G. B. & Edwards, J. R. Spermidine restores dysregulated autophagy

and polyamine synthesis in aged and osteoarthritic chondrocytes via EP300: response to

correspondence by Borzi et al. Exp Mol Med **51**, 26 (2019).

- 1548 219. Garcia-Prat, L., Munoz-Canoves, P. & Martinez-Vicente, M. Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. *Autophagy* **12**, 612-613 (2016).
- Bhukel, A., Madeo, F. & Sigrist, S. J. Spermidine boosts autophagy to protect from synapse aging. *Autophagy* **13**, 444-445 (2017).
- Noro, T. *et al.* Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. *Cell Death Dis* **6**, e1720 (2015).
- 1554 222. Maglione, M. *et al.* Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. *Sci Rep* **9**, 19616 (2019).
- 1556 223. Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease.
 1557 *Science* **359** (2018).

- 224. Murray-Stewart, T. R., Woster, P. M. & Casero, R. A., Jr. Targeting polyamine metabolism for 1558 cancer therapy and prevention. Biochem J 473, 2937-2953 (2016). 1559
- Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic Potential of NAD-Boosting Molecules: The 225. 1560 In Vivo Evidence. Cell Metab 27, 529-547 (2018). 1561
- Hikosaka, K., Yaku, K., Okabe, K. & Nakagawa, T. Implications of NAD metabolism in 226. 1562 pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci, 1-13 (2019). 1563
- 227. Yoshino, J., Baur, J. A. & Imai, S. I. NAD(+) Intermediates: The Biology and Therapeutic 1564 Potential of NMN and NR. Cell Metab 27, 513-528 (2018). 1565
- 228. Ramsey, K. M., Mills, K. F., Satoh, A. & Imai, S. Age-associated loss of Sirt1-mediated 1566 enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) 1567 mice. Aging Cell 7, 78-88 (2008). 1568
- Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human 229. 1569 tissue. PLoS One 7, e42357 (2012). 1570
- Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular 230. 1571 NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci 1572 1573 USA 112, 2876-2881 (2015).
- Zhang, H. et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances 231. 1574 life span in mice. Science **352**, 1436-1443 (2016). 1575
- 232. Mills, K. F. et al. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-1576 Associated Physiological Decline in Mice. Cell Metab 24, 795-806 (2016). 1577
- 233. Belenky, P. et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk 1578 and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129, 473-484 (2007). 1579
- 234. Mouchiroud, L. et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of 1580 Mitochondrial UPR and FOXO Signaling. Cell 154, 430-441 (2013). 1581
- de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular 1582 dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522-530 (2016). 1583
- 236. Bertoldo, M. J. et al. NAD(+) Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep 30, 1670-1681 e1677 (2020). 1585
- 237. Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and 1586 humans. Nat Commun 7, 12948 (2016). 1587
- Airhart, S. E. et al. An open-label, non-randomized study of the pharmacokinetics of the 1588 238. nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy 1589 volunteers. PLoS One 12, e0186459 (2017). 1590
- Dellinger, R. W. et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases 239. 1591 NAD(+) levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. *NPJ Aging Mech Dis* **3**, 17 (2017).
- 240. Conze, D. B., Crespo-Barreto, J. & Kruger, C. L. Safety assessment of nicotinamide riboside, a 1594 form of vitamin B3. Hum Exp Toxicol 35, 1149-1160 (2016).
- Elhassan, Y. S. et al. Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD(+) 1596 Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures. Cell Rep 28, 1717-1728 1597

e1716 (2019). 1598

- 242. Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in 1599 obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr 108, 343-353 (2018). 1600
- Rome, L. H. & Lands, W. E. Structural requirements for time-dependent inhibition of 243. 1601 1602 prostaglandin biosynthesis by anti-inflammatory drugs. *Proc Natl Acad Sci U S A* **72**, 4863-4865 (1975).
- Vane, S. J. Aspirin and other anti-inflammatory drugs. Thorax 55 Suppl 2, S3-9 (2000). 244. 1603
- 245. Wan, Q. L., Zheng, S. Q., Wu, G. S. & Luo, H. R. Aspirin extends the lifespan of Caenorhabditis 1604
- elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol 48, 499-506 (2013). Danilov, A. et al. Influence of non-steroidal anti-inflammatory drugs on Drosophila 1606 melanogaster longevity. Oncotarget 6, 19428-19444 (2015). 1607

- Song, C. et al. Metabolome analysis of effect of aspirin on Drosophila lifespan extension. Exp
- 1609 Gerontol **95**, 54-62 (2017).
- 248. Strong, R. et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically
- heterogeneous male mice. *Aging Cell* **7**, 641-650 (2008).
- 1612 249. Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase.
- 1613 Science **336**, 918-922 (2012).
- 1614 250. Yin, M. J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate
- inhibit the activity of I(kappa)B kinase-beta. *Nature* **396**, 77-80 (1998).
- 251. Bos, C. L. et al. Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein
- phosphatase 2A. *Oncogene* **25**, 6447-6456 (2006).
- 1618 252. He, C. et al. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast
- through inhibition of tryptophan import. PLoS Genet 10, e1004860 (2014).
- 253. Ching, T. T., Chiang, W. C., Chen, C. S. & Hsu, A. L. Celecoxib extends C. elegans lifespan via
- inhibition of insulin-like signaling but not cyclooxygenase-2 activity. *Aging Cell* **10**, 506-519 (2011).
- 1622 254. Cao, Y. et al. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer.
- 1623 JAMA Oncol 2, 762-769 (2016).
- 1624 255. Cuzick, J. Preventive therapy for cancer. Lancet Oncol 18, e472-e482 (2017).
- 256. Sun, D. et al. Aspirin disrupts the mTOR-Raptor complex and potentiates the anti-cancer
- activities of sorafenib via mTORC1 inhibition. Cancer Lett 406, 105-115 (2017).
- 1627 257. Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality:
- 20-year follow-up of five randomised trials. *Lancet* **376**, 1741-1750 (2010).
- 258. Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident
- cancers during randomised controlled trials. *Lancet* **379**, 1591-1601 (2012).
- 1631 259. Guirguis-Blake, J. M. et al. in Aspirin for the Primary Prevention of Cardiovascular Events: A
- Systematic Evidence Review for the U.S. Preventive Services Task Force U.S. Preventive Services Task
- 1633 Force Evidence Syntheses, formerly Systematic Evidence Reviews (2015).
- 260. Vlad, S. C., Miller, D. R., Kowall, N. W. & Felson, D. T. Protective effects of NSAIDs on the
- development of Alzheimer disease. *Neurology* **70**, 1672-1677 (2008).
- 1636 261. Poly, T. N., Islam, M. M. R., Yang, H. C. & Li, Y. J. Non-steroidal anti-inflammatory drugs and
- risk of Parkinson's disease in the elderly population: a meta-analysis. *Eur J Clin Pharmacol* **75**, 99-108
- 1638 (2019).
- 1639 262. McNeil, J. J. et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly.
- 1640 N Engl J Med **379**, 1509-1518 (2018).
- 1641 263. Group, A. S. C. *et al.* Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus.
- 1642 N Engl J Med **379**, 1529-1539 (2018).
- 264. McNeil, J. J. et al. Effect of Aspirin on Disability-free Survival in the Healthy Elderly. N Engl J
- 1644 *Med* **379**, 1499-1508 (2018).
- 265. McNeil, J. J. et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N Engl J Med
- **379**, 1519-1528 (2018).
- 266. Sofola-Adesakin, O. et al. Lithium suppresses Abeta pathology by inhibiting translation in an
- adult Drosophila model of Alzheimer's disease. Front Aging Neurosci 6, 190 (2014).
- 1649 267. McColl, G. et al. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis
- elegans. J Biol Chem 283, 350-357 (2008).
- 268. Zarse, K. et al. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur J
- 1652 *Nutr* **50**, 387-389 (2011).
- 1653 269. Tam, Z. Y., Gruber, J., Ng, L. F., Halliwell, B. & Gunawan, R. Effects of lithium on age-related
- decline in mitochondrial turnover and function in Caenorhabditis elegans. J Gerontol A Biol Sci Med
- 1655 *Sci* **69**, 810-820 (2014).
- 270. Castillo-Quan, J. I. et al. Lithium Promotes Longevity through GSK3/NRF2-Dependent
- Hormesis. *Cell Rep* **15**, 638-650 (2016).

- 1658 271. Martinsson, L. *et al.* Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. *Transl Psychiatry* **3**, e261 (2013).
- 272. Schrauzer, G. N. & Shrestha, K. P. Lithium in drinking water. *Br J Psychiatry* **196**, 159-160; author reply 160 (2010).
- Ohgami, H., Terao, T., Shiotsuki, I., Ishii, N. & Iwata, N. Lithium levels in drinking water and risk of suicide. *Br J Psychiatry* **194**, 464-465; discussion 446 (2009).
- Brunt, K. R. *et al.* Role of WNT/beta-catenin signaling in rejuvenating myogenic differentiation of aged mesenchymal stem cells from cardiac patients. *Am J Pathol* **181**, 2067-2078 (2012).
- 275. Quiroz, J. A., Machado-Vieira, R., Zarate, C. A., Jr. & Manji, H. K. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. *Neuropsychobiology* **62**, 50-60 (2010).
- 276. Forlenza, O. V., De-Paula, V. J. & Diniz, B. S. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. *ACS Chem Neurosci* 5, 443-450 (2014).
- 1671 277. Chiu, C. T. & Chuang, D. M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. *Pharmacol Ther* **128**, 281-304 (2010).
- Farina, F. *et al.* The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington's disease. *Sci Rep* **7**, 4014 (2017).
- 279. Zhang, X. *et al.* Long-term treatment with lithium alleviates memory deficits and reduces amyloid-beta production in an aged Alzheimer's disease transgenic mouse model. *J Alzheimers Dis* **24**, 739-749 (2011).
- 280. Sarkar, S. *et al.* Lithium induces autophagy by inhibiting inositol monophosphatase. *J Cell Biol* **170**, 1101-1111 (2005).
- 281. Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. *J Biol Chem* **285**, 11061-11067 (2010).
- Lander, E. S. *et al.* Initial sequencing and analysis of the human genome. *Nature* **409**, 860-921 (2001).
- 1685 283. Mouse Genome Sequencing, C. *et al.* Initial sequencing and comparative analysis of the mouse genome. *Nature* **420**, 520-562 (2002).
- 1687 284. Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. *Cell* **110**, 315-325 (2002).
- 1689 285. Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. *J Mol Biol* **357**, 1383-1393 (2006).
- 1691 286. Iskow, R. C. *et al.* Natural mutagenesis of human genomes by endogenous retrotransposons. 1692 *Cell* **141**, 1253-1261 (2010).
- Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I. & Gage, F. H. The role of transposable elements in health and diseases of the central nervous system. *J Neurosci* **33**, 17577-17586 (2013).
- 288. Hancks, D. C. & Kazazian, H. H., Jr. Active human retrotransposons: variation and disease. *Curr Opin Genet Dev* **22**, 191-203 (2012).
- 1697 289. Van Meter, M. *et al.* SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. *Nat Commun* **5**, 5011 (2014).
- 1699 290. Mostoslavsky, R. *et al.* Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. *Cell* **124**, 315-329 (2006).
- Dai, L., Huang, Q. & Boeke, J. D. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. *BMC Biochem* **12**, 18 (2011).
- Jones, R. B. *et al.* Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. *PLoS One* **3**, e1547 (2008).
- 293. Simon, M. *et al.* LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. *Cell Metab* **29**, 871-885 e875 (2019).
- 1707 294. De Cecco, M. *et al.* L1 drives IFN in senescent cells and promotes age-associated inflammation.
 1708 *Nature* **566**, 73-78 (2019).

- 295. Margolis, A. M., Heverling, H., Pham, P. A. & Stolbach, A. A review of the toxicity of HIV 1709 medications. J Med Toxicol 10, 26-39 (2014). 1710
- Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new 296. 1711 immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14, 576-590 (2018). 1712
- Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 297. 1713 **542**, 177-185 (2017). 1714
- 298. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180-186 1715 (2016).1716
- 299. Horowitz, A. M. & Villeda, S. A. Therapeutic potential of systemic brain rejuvenation strategies 1717 for neurodegenerative disease. F1000Res 6, 1291 (2017). 1718
- Conboy, M. J., Conboy, I. M. & Rando, T. A. Heterochronic parabiosis: historical perspective 1719
- and methodological considerations for studies of aging and longevity. Aging Cell 12, 525-530 (2013). 1720
- 301. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic 1721 environment. Nature 433, 760-764 (2005). 1722
- 302. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and 1723 increases fibrosis. Science 317, 807-810 (2007). 1724
- Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem 303. 1725 Cell **10**, 96-103 (2012). 1726
- 304. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive 1727 function. Nature 477, 90-94 (2011). 1728
- 305. Huang, Q. et al. A Young Blood Environment Decreases Aging of Senile Mice Kidneys. J 1729 Gerontol A Biol Sci Med Sci 73, 421-428 (2018). 1730
- 306. Salpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic beta-cell 1731 replication. Diabetes 62, 2843-2848 (2013). 1732
- Baht, G. S. et al. Exposure to a youthful circulaton rejuvenates bone repair through modulation 1733 307. 1734 of beta-catenin. Nat Commun 6, 7131 (2015).
- Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function 308. 1735 in aged mice. Nature 544, 488-492 (2017). 1736
- 309. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and 1737 synaptic plasticity in mice. Nat Med 20, 659-663 (2014). 1738
- Smith, L. K. et al. beta2-microglobulin is a systemic pro-aging factor that impairs cognitive 1739 310. function and neurogenesis. Nat Med 21, 932-937 (2015). 1740
- Gontier, G. et al. Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive 311. 1741 Function in the Adult Mouse Brain. Cell Rep 22, 1974-1981 (2018). 1742
- Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-1743 related cardiac hypertrophy. Cell 153, 828-839 (2013). 1744
- Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse 313. 1745 skeletal muscle. Science 344, 649-652 (2014). 1746
- Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young 314. 1747 systemic factors. *Science* **344**, 630-634 (2014). 1748
- 315. Hinken, A. C. et al. Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite 1749 cells. Aging Cell 15, 582-584 (2016). 1750
- Egerman, M. A. et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. 316. 1751 Cell Metab 22, 164-174 (2015). 1752
- 1753 317. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med 25, 988-1000 (2019). 1754
- 318. Middeldorp, J. et al. Preclinical Assessment of Young Blood Plasma for Alzheimer Disease. 1755 JAMA Neurol 73, 1325-1333 (2016).

- Sha, S. J. et al. Safety, Tolerability, and Feasibility of Young Plasma Infusion in the Plasma for 319. 1757
- Alzheimer Symptom Amelioration Study: A Randomized Clinical Trial. JAMA Neurol 76, 35-40 (2019). 1758

- 320. Clark, R. I. *et al.* Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. *Cell Rep* **12**, 1656-1667 (2015).
- 321. Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).
- 322. O'Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. *Science* **350**, 1214-1215 (2015).
- 323. Biagi, E. *et al.* Gut Microbiota and Extreme Longevity. *Curr Biol* **26**, 1480-1485 (2016).
- 324. Fabbiano, S. *et al.* Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. *Cell Metab* **28**, 907-921 e907 (2018).
- 1766 325. Hara, T. & Miyajima, A. Two distinct functional high affinity receptors for mouse interleukin-3
- (IL-3). *EMBO J* **11**, 1875-1884 (1992).

 326. Dalirfardouei, R., Karimi, G. & Jamialahmadi, K. Molecular mechanisms and biomedical
- applications of glucosamine as a potential multifunctional therapeutic agent. *Life Sci* **152**, 21-29 (2016).
- Weimer, S. *et al.* D-Glucosamine supplementation extends life span of nematodes and of ageing mice. *Nat Commun* **5**, 3563 (2014).
- 328. Yang, W. & Hekimi, S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. *PLoS Biol* **8**, e1000556 (2010).
- Hwang, A. B. *et al.* Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. *Proc Natl Acad Sci U S A* **111**, E4458-4467 (2014).
- 330. Banerjee, P. S., Lagerlof, O. & Hart, G. W. Roles of O-GlcNAc in chronic diseases of aging. *Mol Aspects Med* **51**, 1-15 (2016).
- 331. Miller, R. A. *et al.* Glycine supplementation extends lifespan of male and female mice. *Aging Cell* **18**, e12953 (2019).
- 332. Brind, J. *et al.* Dietary glycine supplementation mimics lifespan extension by dietary methionine restriction in Fisher 344 rats. *The FASEB Journal* **25**, 528.522-528.522 (2011).
- 1782 333. Liu, Y. J. *et al.* Glycine promotes longevity in Caenorhabditis elegans in a methionine cycledependent fashion. *PLoS Genet* **15**, e1007633 (2019).
- 1784 334. Edwards, C. *et al.* Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. *BMC Genet* **16**, 8 (2015).
- Alarcon-Aguilar, F. J. *et al.* Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. *Eur J Pharmacol* **599**, 152-158 (2008).
- 1788 336. Wang, W. *et al.* Glycine metabolism in animals and humans: implications for nutrition and health. *Amino Acids* **45**, 463-477 (2013).
- 337. Zhong, Z. *et al.* L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. *Curr Opin Clin Nutr Metab Care* **6**, 229-240 (2003).
- 1792 338. Alves, A., Bassot, A., Bulteau, A. L., Pirola, L. & Morio, B. Glycine Metabolism and Its Alterations 1793 in Obesity and Metabolic Diseases. *Nutrients* **11** (2019).
- 339. Stekovic, S. *et al.* Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. *Cell Metab* **30**, 462-476 e465 (2019).
- 1796 340. Kitada, M., Ogura, Y., Monno, I. & Koya, D. The impact of dietary protein intake on longevity and metabolic health. *EBioMedicine* **43**, 632-640 (2019).
- 1798 341. Simpson, S. J. *et al.* Dietary protein, aging and nutritional geometry. *Ageing Res Rev* **39**, 78-86 (2017).
- 1800 342. Piper, M. D. W. *et al.* Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. *Cell Metab* **25**, 1206 (2017).
- 343. Parkhitko, A. A., Jouandin, P., Mohr, S. E. & Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. *Aging Cell*, e13034 (2019).
- 344. Strong, R. *et al.* Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. *Aging Cell* **15**, 872-884 (2016).
- 345. Stout, M. B. et al. 17alpha-Estradiol Alleviates Age-related Metabolic and Inflammatory
- Dysfunction in Male Mice Without Inducing Feminization. *J Gerontol A Biol Sci Med Sci* **72**, 3-15 (2017).

- 346. Garratt, M. et al. 17-alpha estradiol ameliorates age-associated sarcopenia and improves late-
- life physical function in male mice but not in females or castrated males. Aging Cell 18, e12920 (2019).
- 347. Green, P. S., Bishop, J. & Simpkins, J. W. 17 alpha-estradiol exerts neuroprotective effects on
- 1812 SK-N-SH cells. *J Neurosci* **17**, 511-515 (1997).
- 348. Green, P. S., Gridley, K. E. & Simpkins, J. W. Estradiol protects against beta-amyloid (25-35)-
- induced toxicity in SK-N-SH human neuroblastoma cells. *Neurosci Lett* **218**, 165-168 (1996).
- 349. Cordey, M., Gundimeda, U., Gopalakrishna, R. & Pike, C. J. The synthetic estrogen 4-estren-3
- alpha,17 beta-diol (estren) induces estrogen-like neuroprotection. *Neurobiol Dis* **19**, 331-339 (2005).
- 350. Gelinas, S. et al. Alpha and beta estradiol protect neuronal but not native PC12 cells from
- paraquat-induced oxidative stress. *Neurotox Res* **6**, 141-148 (2004).
- 351. Steyn, F. J. et al. 17alpha-estradiol acts through hypothalamic pro-opiomelanocortin
- expressing neurons to reduce feeding behavior. *Aging Cell* **17** (2018).
- 352. Dai, H., Sinclair, D. A., Ellis, J. L. & Steegborn, C. Sirtuin activators and inhibitors: Promises,
- achievements, and challenges. *Pharmacol Ther* **188**, 140-154 (2018).
- 1823 353. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of
- ageing. *Nat Rev Genet* **19**, 371-384 (2018).
- 1825 354. Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E. & Ryan, J. The epigenetic clock
- as a predictor of disease and mortality risk: a systematic review and meta-analysis. *Clin Epigenetics* **11**,
- 1827 62 (2019).
- 1828 355. Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie
- restriction and rapamycin treatment. *Genome Biol* **18**, 57 (2017).
- 356. Chen, W. et al. Three-dimensional human facial morphologies as robust aging markers. Cell
- 1831 Res **25**, 574-587 (2015).
- 1832 357. Chen, D. et al. Germline signaling mediates the synergistically prolonged longevity produced
- by double mutations in daf-2 and rsks-1 in C. elegans. *Cell Rep* **5**, 1600-1610 (2013).
- 358. Sagi, D. & Kim, S. K. An engineering approach to extending lifespan in C. elegans. *PLoS Genet*
- 1835 **8**, e1002780 (2012).
- 1836 359. Hou, L. et al. A Systems Approach to Reverse Engineer Lifespan Extension by Dietary
- 1837 Restriction. *Cell Metab* **23**, 529-540 (2016).
- 1838 360. Dakik, P. et al. Pairwise combinations of chemical compounds that delay yeast chronological
- aging through different signaling pathways display synergistic effects on the extent of aging delay.
- 1840 *Oncotarget* **10**, 313-338 (2019).
- 361. Admasu, T. D. et al. Drug Synergy Slows Aging and Improves Healthspan through IGF and
- srebp Lipid Signaling. *Dev Cell* **47**, 67-79 e65 (2018).
- 362. Castillo-Quan, J. I. et al. A triple drug combination targeting components of the nutrient-
- sensing network maximizes longevity. *Proc Natl Acad Sci U S A* **116**, 20817-20819 (2019).
- 1845 363. Petrascheck, M., Ye, X. & Buck, L. B. An antidepressant that extends lifespan in adult
- 1846 Caenorhabditis elegans. *Nature* **450**, 553-556 (2007).
- 364. Ye, X., Linton, J. M., Schork, N. J., Buck, L. B. & Petrascheck, M. A pharmacological network for
- lifespan extension in Caenorhabditis elegans. Aging Cell 13, 206-215 (2014).
- 365. Benedetti, M. G. et al. Compounds that confer thermal stress resistance and extended lifespan.
- 1850 Exp Gerontol **43**, 882-891 (2008).
- 1851 366. Hoose, S. A. et al. Systematic analysis of cell cycle effects of common drugs leads to the
- discovery of a suppressive interaction between gemfibrozil and fluoxetine. *PLoS One* **7**, e36503 (2012).
- 367. Sarnoski, E. A., Liu, P. & Acar, M. A High-Throughput Screen for Yeast Replicative Lifespan
- Identifies Lifespan-Extending Compounds. Cell Rep 21, 2639-2646 (2017).
- 368. Zimmermann, A. et al. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res 18
- 1856 (2018).
- 369. Vatolin, S., Radivoyevitch, T. & Maciejewski, J. P. New drugs for pharmacological extension of
- replicative life span in normal and progeroid cells. NPJ Aging Mech Dis 5, 2 (2019).

- 370. Donertas, H. M., Fuentealba, M., Partridge, L. & Thornton, J. M. Identifying Potential Ageing-
- Modulating Drugs In Silico. *Trends Endocrinol Metab* **30**, 118-131 (2019).
- 371. Craig, T. et al. The Digital Ageing Atlas: integrating the diversity of age-related changes into a
- unified resource. *Nucleic Acids Res* **43**, D873-878 (2015).
- 1863 372. Digital Aging Atlas http://ageing-map.org (2015).
- 1864 373. Tacutu, R. *et al.* Human Ageing Genomic Resources: new and updated databases. *Nucleic Acids*
- 1865 Res **46**, D1083-D1090 (2018).
- 374. senescence.info. *Human Aging Genomic Resources (HAGR)* http://genomics.senescence.info
- 1867 (2018).
- Blankenburg, H., Pramstaller, P. P. & Domingues, F. S. A network-based meta-analysis for
- characterizing the genetic landscape of human aging. *Biogerontology* **19**, 81-94 (2018).
- 376. Kim, S. et al. PubChem Substance and Compound databases. *Nucleic Acids Res* **44**, D1202-1213
- 1871 (2016).
- 377. National Center for Biotechnology Information. *PubChem* https://pubchem.ncbi.nlm.nih.gov/
- 1873 (2016).
- 378. Royal Society of Chemistry. *ChemSpider* http://www.chemspider.com (2015).
- 379. STITCH CONSORTIUM. STITCH http://stitch.embl.de (2016).
- 1876 380. Liu, H. et al. Screening lifespan-extending drugs in Caenorhabditis elegans via label
- propagation on drug-protein networks. *BMC Syst Biol* **10**, 131 (2016).
- 381. Snell, T. W. et al. Repurposed FDA-approved drugs targeting genes influencing aging can
- extend lifespan and healthspan in rotifers. Biogerontology 19, 145-157 (2018).
- 382. Barardo, D. G. et al. Machine learning for predicting lifespan-extending chemical compounds.
- 1881 Aging (Albany NY) **9**, 1721-1737 (2017).
- 383. Aliper, A. et al. In search for geroprotectors: in silico screening and in vitro validation of
- signalome-level mimetics of young healthy state. Aging (Albany NY) 8, 2127-2152 (2016).
- 384. Donertas, H. M., Fuentealba Valenzuela, M., Partridge, L. & Thornton, J. M. Gene expression-
- based drug repurposing to target aging. *Aging Cell* **17**, e12819 (2018).
- 385. Janssens, G. E. et al. Transcriptomics-Based Screening Identifies Pharmacological Inhibition of
- Hsp90 as a Means to Defer Aging. *Cell Rep* **27**, 467-480 e466 (2019).
- 1888 386. Cold Spring Harbor Laboratory. bioRxiv The preprint server for biology
- https://www.biorxiv.org/search/houten%252Bs (2018).
- 1890 387. Fuentealba, M. et al. Using the drug-protein interactome to identify anti-ageing compounds
- for humans. *PLoS Comput Biol* **15**, e1006639 (2019).
- 388. Broad Institute. Connectivity Map (CMap) https://www.broadinstitute.org/connectivity-map-
- 1893 <u>cmap</u> (2018).
- 1894 389. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small
- molecules, genes, and disease. *Science* **313**, 1929-1935 (2006).
- 390. Subramanian, A. et al. A Next Generation Connectivity Map: L1000 Platform and the First
- 1,000,000 Profiles. *Cell* **171**, 1437-1452 e1417 (2017).
- 1898 391. Calvert, S. et al. A network pharmacology approach reveals new candidate caloric restriction
- mimetics in C. elegans. Aging Cell 15, 256-266 (2016).
- 1900 392. National Institute on Aging. Interventions Testing Program (ITP)
- https://www.nia.nih.gov/research/dab/interventions-testing-program-itp (2019).
- 393. Chen, J. et al. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 6, e31268
- 1903 (2017).

Author Contributions

LP and BK discussed content and wrote the article, LP and MF revised the manuscript before submission, MF developed Figure 1.

Acknowledgements

LP has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 741989). MF has received funding from the Comisión Nacional de Investigación Científica y Tecnológica - Government of Chile (CONICYT scholarship).

Competing Interests

B.K.K. is board chair of Torcept Therapeutics, a board member and scientific adviser for PDL Pharma, a scientific adviser for Affirmativ Health, and a board member of L-Nutra. B.K.K. is named on patents held by PDL Pharma related to aging interventions. B.K.K. performs corporate-sponsored research for Gero LLC.

TOC blurb

Several biological phenomena alter the ageing process. This Review discusses the most promising agents to slow ageing, separating them into two tiers based on their efficacy and evidence. The potential use of some interventions in clinical trials to expand overall healthspan, as well as how those interventions could be assessed, are also discussed.