Effects of Age Differences in Memory Formation on Neural Mechanisms of Consolidation and Retrieval

Myriam C. Sander, Yana Fandakova, and Markus Werkle-Bergner

Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

Correspondence concerning this article should be addressed to Myriam C. Sander (sander@mpib-berlin.mpg.de) at the Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.

Declarations of interest: none
Abstract

Episodic memory decline is a hallmark of cognitive aging and a multifaceted phenomenon. We review studies that target age differences across different memory processing stages, i.e., from encoding to retrieval. The available evidence cumulates in the proposition that older adults form memories of lower quality than younger adults, which has negative downstream consequences for later processing stages. We argue that low memory quality in combination with age-related neural decline of key regions of the episodic memory network puts older adults in a double jeopardy situation that finally results in broader memory impairments in older compared to younger adults.

Introduction

Our ability to vividly re-experience past events is one of the most fundamental human abilities. However, during the course of aging, episodic memory, the ability to remember episodes with their spatial and temporal details (Tulving, 2002), steadily declines (Koen & Yonelinas, 2014; Shing et al., 2010; Spencer & Raz, 1995) whereas the probability to remember episodes that are (partially) false increases (Fandakova et al., 2020). To pinpoint the neural mechanisms underlying the decline in episodic memory in old adulthood while delineating precisely their contribution to cognitive component processes is therefore a major endeavour of the cognitive neuroscience of aging (Cabeza et al., 2018; Lindenberger, 2014). The goal of this review is to discuss age-related changes in neural processes within the episodic memory network that give rise to age-related changes in the ability to recall events from the past.

Episodic memory relies on a widely distributed network of brain regions, with the central parts being the mediotemporal lobe (MTL) including the hippocampus, perirhinal cortex,
entorhinal cortex, and parahippocampal cortex (Eichenbaum et al., 2007; Moscovitch et al., 2016), and the prefrontal cortex (PFC) (Eichenbaum, 2017; Simons & Spiers, 2003) as well as regions such as the posterior cingulate, lateral temporal and parietal cortices (Benoit & Schacter, 2015; Cabeza et al., 2008). Among the core episodic memory network, the most prominent role is certainly taken by the hippocampus which is involved in the rapid formation and recall of associations between stimuli, or between stimuli and their context (Davachi, 2006; Eichenbaum et al., 2007; Moscovitch et al., 2016). A complementary role is taken by the PFC that subserves rather domain-general executive functions (Miller & Cohen, 2001) and supports in particular monitoring and control processes during encoding and retrieval (Cabeza & Nyberg, 2000; Simons & Spiers, 2003). Importantly, these key players of the episodic memory network undergo strong senescent changes during aging. With regard to the PFC, marked gray matter reductions (Fjell et al., 2009; Raz et al., 2005) and changes in prefrontal white matter (Raz et al., 2008; Sexton et al., 2014) have been reported in cross-sectional and longitudinal studies (for recent reviews see Nyberg et al., 2017; Naftali Raz, 2020). Similarly, gray matter reductions occur within the MTL (Fjell et al., 2014), with particularly strong decline observed for the hippocampus and the entorhinal cortex (Kennedy & Raz, 2015; Raz et al., 2005). Together with changes in functional (Grady, 2017) and structural (Madden & Parks, 2017) connectivity and declines in central neurotransmitter systems (Bäckman et al., 2006; Mather, 2020; Mather & Harley, 2016; Nyberg et al., 2016), age-related structural changes in are thought to impact the functionality of brain regions that have been shown to involved in successful memory in young adults, with detrimental consequences for memory performance (Becker et al., 2015; Anders M Fjell & Walhovd, 2010; U. Lindenberger, 2014; Persson et al., 2012; Yuan & Raz, 2014).
Traditional cognitive theories (Atkinson & Shiffrin, 1968; Craik & Lockhart, 1972; Tulving & Pearlstone, 1966) conceive memory as a product of three sequential processing stages: Encoding, Consolidation, and Retrieval. Encoding can be defined as the process of memory formation by which incoming inputs from the external world are transformed into an internal representation of that information. Consolidation refers to processes (mostly during sleep) that result in the persistence of information over time (often in a more generalized form including a loss of details of the information, Dudai, 2012; Rasch & Born, 2013). Retrieval is the (attempt) to access information that was acquired previously. Thus, episodic memory performance relies on the ability to successfully form detailed, bound representations of content and contextual information, transform these representation into a lasting format, and later access, evaluate, and use these memory representations to guide behavior (Bellmund et al., 2018; Schacter et al., 2007).

Here, we argue that among these stages, encoding may play a particularly important role for memory abilities and their age-related changes. Any differences at encoding can produce downstream consequences for later processing stages. In the extreme case, this notion is intuitively obvious: An event that was not (sufficiently) encoded in the first place cannot result in an internal representation that could be consolidated or even retrieved. By contrast, attentively studying personally relevant information will most likely result in a detailed mnemonic representation with a high likelihood for consolidation and later retrieval. In any natural situation, we can safely assume that any level of encoding, from not at all to highly detailed, with associated consequences for ensuing processing stages occurs, producing mnemonic representations with a wide range of quality (Craik & Lockhart, 1972; Fenn & Hambrick, 2013; Habib & Nyberg, 2008; Tulving & Pearlstone, 1966), even in younger
adults. Age-related changes affecting encoding processes may thus explain a large fraction of age differences in episodic memory performance as they may result in a large amount of memories of low quality.

In the following we provide a focused review of how age-related alterations in memory encoding (see Craik & Rose, 2012) produce differences in memory quality that affect later stages of memory processing such as consolidation and retrieval. Illustratively, we will focus on a series of studies conducted by our lab (the so-called MERLIN studies = Memory Encoding and Retrieval across the Lifespan studies) that aimed at comprehensively describing age differences at all stages of memory processing (Fandakova et al., 2018, 2020; Muehlroth et al., 2019; Muehlroth, Sander, et al., 2020; Sander et al., 2020; Sommer et al., 2019), see also (Joechner et al., 2020) for an extension of this approach to childhood). At the core of the MERLIN studies was an age-adapted associative picture-word memory task (Figure 1).

Figure 1. Experimental Paradigm. A. In the study phase, participants were asked to associate 440 (young adults) or 280 (older adults) scenes and words using an imagery strategy. Cued recall was used to test memory performance. B. During the cued recall and feedback phase,
the scene was presented as cue to verbally recall the associated word. Subsequently, the original pair was presented again for restudy. The cued recall and feedback phase was performed once for younger and twice for older adults. C. During final recall, no feedback was provided. Scene-word pairs were sorted into high and low memory quality based on recall performance in phase C (Fandakova et al., 2018). In Muehlroth et al., 2020 and Sommer et al., 2019 high quality pairs were further distinguished into high and intermediate quality dependent on whether they were successfully recalled in phase B or not. Memory performance was tested approximately 24 hours later either with a delayed cued recall task (D) or with a recognition task (E). D. During delayed cued recall, participants were presented with the scenes only and had to indicate if they still remembered the associated word. Afterwards, they had to select the corresponding second letter of the word to verify their true memory of the associate. E. In the recognition task, participants were presented with intact, rearranged, and new pairs were instructed to decide if the corresponding pair was old (i.e., studied on Day 1) or new (not studied on Day 1). Intact and rearranged pairs varied in memory quality to test effects of memory quality on recognition.

Specifically, on their first visit to our lab, younger and older adults were instructed to intentionally encode memories by associating scene pictures with words using an imagery strategy (Baltes & Kliegl, 1992; Bower & Winzenz, 1970; Verhaeghen et al., 1992). Given well-known age differences in the speed and limits of learning between younger and older adults, we adapted the task difficulty between age groups. Specifically, older adults studied fewer picture-word pairs than younger adults. While both age groups performed several rounds of learning and retrieval of the picture-word pairs, older adults were provided with an additional learning round. Together, this procedure allowed us to trace the mnemonic fate of single items within a given individual. We later capitalized on the item level information from the learning phase to determine the memory quality for single picture-word pairs for each individual participant: We reasoned that pairs that were successfully acquired during learning, such that, when cued with a scene picture, participants were able to verbally recall the associated words, are items of high quality. In contrast, low quality items are pairs to which participants were exposed to several time, but did not succeed in forming and retrieving a bound memory representation. Thus, low-quality items included pairs that were not recalled until the end of the learning session of day one. In some
analyses, we further distinguished within the high quality items between those that were learned early during the procedure and those that were only acquired after repeated learning, the latter representing *intermediate quality* items. Defining memory quality based on the learning history allowed us to exploit person-specific item-level information for investigating effects on later stages of cognitive and neural processes. Note that from an experimental perspective, also other procedures have been used in order to vary memory quality, e.g. by comparing deep versus shallow encoding instructions (Craik & Lockhart, 1972), situations with full versus divided attention (Craik & Byrd, 1982), varying numbers of repetitions during learning (Buchler et al., 2011; Light et al., 2004) and many more. However, these previously used procedures require aggregation across items of a given condition. By contrast, determining memory quality based on the learning history provided person-specific information about single mnemonic items.

During the learning phase of day one of our MERLIN studies, we measured electroencephalographic (EEG) responses from our participants, allowing us to observe differences and commonalities between age groups in the neurophysiological mechanisms underlying this initial acquisition phase of information. We will elaborate on these findings in the section “age-differences in memory encoding”. To investigate age differences in consolidation, we monitored our participants’ sleep with ambulatory polysomnography (PSG) on the night before and immediately following the learning phase. We will elaborate on this in the section “age-differences in memory consolidation”. Finally, to investigate neural age differences during retrieval, we probed younger and older adult’s memory with a recognition and a cued recall task on the picture-word pairs learned 24 hours earlier on day two using functional magnetic resonance imaging (fMRI). We will elaborate on this in the section “age-differences in memory retrieval”. In the conclusion part, two main findings that
emerged across studies will be discussed: The role of age-related changes in neural structures for the functioning of memory processes as well as the contribution of age differences in memory quality to memory performance.

Section 1: Age differences during encoding

Without any doubt, younger and older adults’ memory differs already at encoding, i.e., during the processing of incoming information (see Craik & Rose, 2012 for a review). Neural mechanisms of memory formation can be studied with so-called subsequent memory paradigms (Paller & Wagner, 2002; Werkle-Bergner et al., 2006). Here, neural activity during encoding of those trials that are later remember is contrasted with neural activity of trials that are later not remembered (maybe even forgotten), thereby revealing the neural mechanisms of successful versus unsuccessful memory formation.

Using this approach, functional magnetic resonance imaging (fMRI) has revealed reliable subsequent memory effects (SMEs) in key regions of the episodic memory network, in particular, in the MTL and PFC (Kim, 2011; Maillet & Rajah, 2014; Otten, 2001). Electroencephalographic studies have complemented these findings demonstrating SMEs in event-related potentials (e.g. Kamp et al., 2017; Paller et al., 1987; Sanquist et al., 1980), intra-cranial recordings (Fernandez et al., 1999), and oscillatory activity, in particular within the alpha/beta (~ 8-30 Hz), theta (~ 4-8 Hz) and gamma (> 40 Hz) frequency ranges (for a review see Simon Hanslmayr & Staudigl, 2014). Thus, SMEs can be leveraged to investigate whether aging already affects mnemonic processing at encoding.

Adopting a subsequent memory approach, we studied oscillatory mechanisms of memory formation in the associative memory paradigm described above (Sander et al., 2020). Specifically, we asked whether age-differences in structural integrity of core memory regions, notably inferior frontal gyrus (IFG) and hippocampus, could account for between
person differences in the strength of oscillatory SMEs. Neural oscillations reflect the coordinated firing patterns of neurons in local and global networks (Buzsáki & Draguhn, 2004; Fries, 2005, 2015; Klimesch et al., 2007; Varela et al., 2001). Precisely timed neural interactions turned out crucial for accurate memory formation, stabilization, and reactivation (Fell & Axmacher, 2011; Hanslmayr et al., 2012; Klimesch, 1999; Lisman & Jensen, 2013). Using the MERLIN procedure as described above, younger and older adults were asked to intentionally encode picture-word pairs repeatedly using an imagery strategy. Despite our age-adaptive procedure, age group differences in performance were present even in terms of proportion of recalled pairs, with younger adults outperforming older adults. Oscillatory power of the trials of the last learning round were then analyzed with regard to whether they were later successfully remembered or not. We observed highly similar mechanisms of successful memory formation in older and younger adults (Figure 2). In both age-groups power increases in the theta band were accompanied by power decreases in the alpha/beta range (Figure 2a). These effects have been shown to indicate associative binding and elaboration mechanisms in young adults, respectively (Hanslmayr et al., 2011; Hanslmayr et al., 2012; Hanslmayr & Staudigl, 2014; Nyhus & Curran, 2010; Staudigl & Hanslmayr, 2013). However, we also found that the strength of the oscillatory subsequent memory effect was modulated by the structural integrity of brain regions that are part of the core episodic network. More specifically, lower structural integrity in the IFG, a region that has been shown to be involved in the elaboration of the incoming information during encoding (Becker et al., 2017; Blumenfeld & Ranganath, 2007), was accompanied by smaller SMEs in the alpha/beta frequency bands (Figure 2c). While this structure–function relationship did not generally differ between age groups, it is important to note that those participants with low IFG integrity were mostly older adults (Figure 2b). These results
suggest that older adults, in particular those with low IFG integrity and reduced SMEs in the alpha/beta band, tend to form memory representations that have undergone less deep elaboration during encoding and may as a consequence contain fewer details. In other words, while the general mechanisms that underlie successful memory formation appear not to change across adulthood, the probability to successfully engage memory formation operations does seem to deteriorate as well as the level of detailedness or specificity of memories (see also Sommer et al., 2020).

Recent advances in neuroimaging analysis techniques allow characterizing memories with regard to their informational content, ultimately improving investigations of the detailedness of memories. Representational pattern analysis (RSA) is a multivariate analysis technique that describes neural activation patterns between stimuli in terms of their similarity or distance in geometric space (Kriegeskorte & Diedrichsen, 2019; Kriegeskorte & Kievit, 2013). Perceptually or semantically similar stimuli are generally represented closer in geometric space. Thus, RSA can be used to ask whether informational content of specific memories is represented in the same way in younger and older adults (Koen & Rugg, 2019), and allow to investigate the neural underpinnings of age differences in memory specificity. Relying on RSA of spatio-temporal EEG frequency patterns that reflect the neural representation of information in rhythmic neural activity across time, we therefore asked whether the similarity of these patterns differed during encoding between younger and older adults (Sommer et al., 2019). In particular, we hypothesized that older adults form less detailed representations than younger adults. Indeed, we observed age differences in representational similarity during the encoding of picture–word pairs. Older adults generally showed more similar, thus less distinct activation patterns than younger adults, in line with the assumption that memories become more similar and less specific as we age (Koen &
Rugg, 2019; Li et al., 2001; Wilson et al., 2006). Interestingly, also the relation to memory performance showed an age-differential effect: For older adults, higher similarity between early stages of processing was related to successful subsequent memory, whereas in younger adults, lower similarity during later stages of encoding was related to a higher recall probability. These results are in line with the assumption that older adults are less able to form precise and detailed memory representations compared to younger adults (Korkki et al., 2020; Trelle et al., 2017, 2019). As a consequence, they rely more on encoding of the general gist of stimuli (Kensinger & Schacter, 1999; Koen & Yonelinas, 2014) as reflected in the positive relation between increased similarity and memory performance. In contrast, young adults form memory representations that entail more details and are distinct from each other as reflected in increased dissimilarity during later phases of encoding.
In sum, the available evidence suggests that age differences between younger and older adults express already during encoding, and these age differences may result in memories of different quality: Older adults’ memories are less specific and detailed and individual representations may be more similar to each other. At the same time, also older adults are
able to form high quality memories, depending on external factors such as the encoding conditions (e.g. the number of repetitions) and individual factors such as neural integrity of brain regions within the core memory network (Lindenberger, 2014; Nyberg et al., 2012; Nyberg & Lindenberger, 2020). Thus, the quality of encoded memories differs between age groups, but also varies from trial to trial within a person. Consequently, it becomes an important question how inter- and intra-individual differences in memory quality resulting from encoding impact memory consolidation (section 2) and memory retrieval (section 3).

Section 2: Age differences during memory consolidation

Consolidation refers to the transformation of transient memory representations, initially strongly supported by the hippocampus, into long-lasting representations in neocortical regions (Buzsáki, 1989; McClelland et al., 1995; Nadel et al., 2000; Rasch & Born, 2013). This so-called system-level consolidation is dependent on rhythmic neural events during sleep. Specifically, slow oscillations (SO) and sleep spindles (SP) (Axmacher et al., 2008; Gais et al., 2002; Ngo et al., 2013; Steriade, 2006) as well as their precise coupling (Mölle et al., 2002; Staresina et al., 2015; Steriade, 2006) are supposed to drive consolidation.

With increasing age, sleep changes with regard to its architecture (i.e., the stability and succession of sleep phases) and physiology. Typically, sleep in older adults becomes lighter and more fragile. At the same time, fatigue and daytime napping become more prevalent (for a review see Muehlroth, Rasch, et al., 2020). Most crucially, cardinal neural sleep rhythms, specifically slow oscillations and spindles, decrease in amplitude and frequency of occurrence with increasing age (Mander et al., 2017; Muehlroth, Rasch, et al., 2020). While daytime fatigue may have detrimental effects on acquiring new memories, altered sleep physiology may distort the necessary neural processes for memory stabilization.
Importantly, sleep-dependent memory consolidation does not affect all encoded memories similarly (Conte & Ficca, 2013; Ellenbogen et al., 2006; Schoch et al., 2017; Stickgold & Walker, 2013) and the reliance on consolidation processes for successful memory stabilization may be differential for memories of varying quality. On the one hand, sleep may stabilize previously successfully encoded memories. On the other hand, it may also enhance the availability of initially poor memories above a pre-sleep learning level (Ellenbogen et al., 2006; Nettersheim et al., 2015). The available evidence so far leans towards a role of sleep mainly in memory maintenance. Behaviorally observed memory gains, by contrast, appear less reliant on sleep (Dumay, 2016; Fenn & Hambrick, 2013; Schreiner & Rasch, 2018).

If sleep-dependent consolidation mainly serves the stabilization of mnemonic contents, it may be particularly relevant for the maintenance of memories of intermediate quality, i.e., when encoding was successful, but not very detailed. Accordingly, it has been shown that these memories are prioritized during sleep-dependent consolidation over mnemonic contents of high quality for which subsequent consolidation processes are redundant (Diekelmann et al., 2009; Schapiro et al., 2018; Schoch et al., 2017).

As discussed above, aging differentially affects encoding. Accordingly, also the distribution of memory quality across items is likely shifted in older compared to younger adults. Hence, proper assessment of age differences in sleep-dependent memory consolidation requires consideration of the quality of encoded memories. By tracing the fate of individual memory contents (Dumay, 2016; Fenn & Hambrick, 2013) in the MERLIN studies, (Muehlroth, Sander, et al., 2020) found that the effects of aging on memory maintenance were indeed most pronounced when the acquired memory representations were of lower quality.

Besides age differences in memory quality, changes in brain structure can also impair sleep-dependent consolidation in older adults. For example, Muehlroth et al. (2019) investigated
age-related changes in the coupling of slow oscillations with slow and fast sleep spindles. They tested whether differences in structural integrity of source regions of SO and SP generation were related to the loss of precision in SO-SP coupling and memory consolidation. To that end, they monitored the sleep of the participants taking part in the MERLIN study using ambulatory polysomnography (PSG) and assessed structural brain integrity by voxel-based morphometry (VBM) of structural magnetic resonance images (MRI). By comparing the PSG recordings of younger and older adults, Muehlroth et al. (2019) identified age-related differences in the coordination of SOs and SPs. Specifically, the characteristic SO-SP coupling in young adults was marked by a strong increase in SP coupled to the SO peak, predominantly for fast spindles. By contrast, in older adults, the coupling was shifted towards lower SP frequencies with a wider spread around the SO peak, indicating a reduced precision in SO-SP coupling in older adults (Helfrich et al., 2018).

Figure 3. Age differences during sleep-dependent consolidation. A. Overnight memory retention indicates the percentage of correctly recalled items during delayed recall (on Day2) relative to all items that were correctly retrieved during immediate recall (on Day1) before sleep. Overnight memory retention is significantly reduced in older adults. B. Voxel-based morphometry was used to determine the individual level of structural integrity of brain-regions of interest (ROI masks overlaid in color). C. Higher structural integrity of source regions of slow oscillations (SO) and sleep spindles (SP) is related to increased spindle activity at the peak of the SO. Positive correlations are outlined by solid (mPFC) and dashed black lines (thalamus). For illustration purposes, a SO is overlaid on time-frequency profiles (in t-score units). The reference window for the correlation analysis is outlined with the dashed black
Higher structural integrity in core regions of the episodic memory network (hippocampus, entorhinal cortex) is positively correlated with global power increases during the SO up-state. Adapted from Muehlroth et al., 2019.

Crucially, the precision of SO-SP coupling was related to overnight memory retention. Interestingly, older adults with higher structural integrity (i.e. larger brain volume) in source regions of SOs and SPs (i.e. medial prefrontal cortex and thalamus) showed a more youth-like pattern of SO-SP coupling, indicating that structural integrity of these brain regions plays an important role in the coordination of SO and SPs (Steriade, 2006).

Thus, similar to what we have observed with regard to age differences during encoding, these results suggest that age-related impairments in the processes supporting memory consolidation display large interindividual differences that are related to the structural integrity of core memory regions. Accordingly, older adults with little signs of structural decline also seem to show less changes in functional memory processes (Nyberg et al., 2012; Nyberg & Lindenberger, 2020).

Together, these findings suggest that a combination of age differences in memory quality as a result of altered encoding together with person-specific factors like brain integrity influence the success or failure of memory consolidation processes in older adults.

Section 3: Age differences during memory retrieval

In this final section we elaborate on the effects of age differences in memory quality on memory retrieval processes. Explicit memory retrieval refers to the successful recovery of a previously acquired memory trace and can be tested with a recognition task or a cued recall task. In a cued recall task, participants are presented with one part of the learned stimulus, typically a pair, and are asked to retrieve the associated part. In the case of the MERLIN studies, participants saw the picture and were asked to recall the associated word. This task
is usually more difficult and reveals larger age group differences than recognition tasks (Craik, 1983). In old/new recognition tasks, participants’ memory is probed via the presentation of “old” stimuli from the encoding phase intermixed with “new”, unseen stimuli. A particular variation of old/new recognition tasks is often used when testing associative memory: Since in associative tasks, stimuli are pairs, during test they can either be presented in the identical pairing as during encoding or in a “rearranged” pairing which means that although both elements of the pair have been seen during encoding, they were part of separate pairs. In the latter case, the exact combination is “new” and has not been encountered before. Therefore, participants would have to judge such a pair as “new”, and not as “old”, thus, correctly reject this pair. This kind of paradigm aims particularly at the specificity and detailedness of memories as reliance on familiarity, the feeling to have seen parts of the pair before, is not sufficient for successful performance due to the high familiarity of each item in the rearranged pair. Correct rejection of rearranged information is particularly difficult for older adults and is behaviorally reflected in higher false alarm rates (Devitt & Schacter, 2016; Shing et al., 2009), thus, a greater propensity to endorse rearranged pairs as old compared to younger adults.

Higher levels of false alarms in older adults may result from the interaction of lower quality memory representations and age-related deficits in the ability to monitor retrieval outcomes for rejecting misleading information (Fandakova et al., 2013; Trelle et al., 2017). Monitoring processes are engaged to evaluate in retrieved memories in the context of current goals and task demands (Mitchell & Johnson, 2009). They are particularly important to avoid errors when retrieved memories are very similar to each other or highly familiar, as it is the case for rearranged pairs (Cohn et al., 2008; Gallo, 2004; Rotello & Heit, 2000). On the neural level, close interactions between fronto-parietal and cingulo-opercular regions
support retrieval monitoring processes. The cingulo-opercular network plays an important role in the monitoring of ongoing performance (Bastin et al., 2019; Ullsperger et al., 2010) and in the initiation of control and evaluation processes supported by fronto-parietal regions (Dosenbach et al., 2008; Menon & Uddin, 2010; Shenhav et al., 2017). Thus, these brain networks are crucial for successful memory retrieval by ensuring that the right memory is recovered in sufficient detail when needed. While the demand on monitoring processes is lower when a high-quality distinct memory is retrieved, fronto-parietal and cingulo-opercular activity is expected to increase when the quality of the retrieved memory is relatively low. Thus, the selective recruitment of fronto-parietal and cingulo-opercular regions with varying memory quality represents a hallmark of efficient retrieval monitoring.

At the same time, advancing age is associated with declines in the structural integrity of regions in the cingulo-opercular network (Sun et al., 2016) as well as in the lateral PFC and the parietal lobes (Raz et al., 2005). Additionally, major tracts connecting those regions, such as the superior longitudinal fasciculus are also compromised in older adults (Bennett & Madden, 2014). In parallel to these structural changes, older adults display reduced activity in fronto-parietal and cingulo-opercular regions when correctly rejecting highly familiar information such as rearranged pairs (Dulas & Duarte, 2016; Fandakova et al., 2014). Based on these age-related deficits in retrieval monitoring we sought to examine how they are modulated by the quality of newly established mnemonic representations.

We thus probed younger and older adults memory with a recognition task on picture-word pairs learned 24 hours earlier in the scanner using functional magnet resonance tomography (Fandakova et al., 2018). Participants saw new picture-words pairs that were intermixed with intact pairs, i.e. pairs that were identical to those presented during the learning phase, or rearranged, i.e. pairs for which both the picture and the word were
familiar to the participants, but not their combination. Importantly, based on the participant-specific recall history of day one, we were able to construct individualized recognition tasks that included balanced numbers of high and low quality pairs. Thus, by referring to successful versus unsuccessful retrieval on the previous day as an indicator of memory quality, we were able to test how memories of different quality modulate activity in brain regions that have been found to be involved in successful recall-to-reject and monitoring processes in young and older adults. On the behavioral level, memory quality influenced overall recognition performance in both younger and older adults with lower probability of correct recognition for low compared to high quality memories. However, regarding rearranged pairs, older adults committed more false alarms than younger adults, and this age group difference was even larger for high quality memories (see Fandakova et al., 2020).

On the neural level, we again observed commonalities and differences between age groups (Figure 4): Mnemonic quality modulated brain activity in the anterior hippocampus as well as medial and lateral PFC similarly in younger and older adults. Higher activation in these regions for correct rejection of high-quality rearranged pairs than of low-quality information rearranged pairs seems to reflect the more detailed and successful reinstatement of mnemonic information in the case of high quality memories (Wais, 2011). At the same time, young adults recruited brain regions that are associated with post-retrieval monitoring, including cingulo-opercular regions, more when mnemonic quality was low and errors were likely, and less when they were able to rely on high quality representations. However, older adults did not show such a memory-quality-dependent activation in these regions. Importantly, the modulation of activation on these regions was
negatively related to the proportion of false alarms, suggesting that quality-dependent recruitment of these regions was highly relevant for memory performance.

In sum, our results provide evidence for the modulatory effect of memory quality on retrieval processes. Similar to the effect of memory quality on consolidation, older adults may thus also be in a double jeopardy situation during retrieval when memory quality is low due to additional deficits in the recruitment of monitoring and control processes.

Figure 4. Age differences during retrieval. A. Example of age-invariant effects of memory quality on the engagement of core regions of the episodic memory network. Both younger and older adults show higher %signal change in the left hippocampus during the correct rejection of high quality versus low quality pairs, indicating the retrieval of relevant mnemonic details to reject rearranged pairs. B. In contrast, age differences were observed in monitoring and control regions, with larger effects of memory quality on the recruitment of dACC and insula in younger than older adults. C. Greater activity differences between correct rejections for low and high quality pairs were related to fewer false alarms. Adapted from Fandakova et al., 2018.

Discussion

Reviewing evidence across several studies, we show that episodic memory decline during aging is a multifaceted phenomenon that results from impaired processing during different cognitive stages, spanning the full range from encoding to retrieval. We find that differences in memory quality play an important role for memory consolidation and retrieval such that memories of low quality pose a bigger challenge to the episodic memory network. In consequence, the structural and functional integrity of the regions that are recruited during a specific cognitive stage determine whether this challenge is successfully dealt with or not, and predict interindividual differences in memory performance.

With regard to memory formation, while we observed generally similar mechanisms of memory encoding in older and younger adults in case of successful memory (see also
(Sommer et al., 2020; Strunk & Duarte, 2019), older adults more often form memories that are of lower quality than those of younger adults. For example, we found that both age groups showed reliable oscillatory subsequent memory effects. At the same time, the size of alpha/beta desynchronization was related to the cortical thickness of the IFG, an important region for elaboration processes (Becker et al., 2017; Blumenfeld & Ranganath, 2007; Kim, 2011), which was significantly lower in older adults (Sander et al., 2020). Thus, it seems that impaired structural integrity of key regions of the core episodic memory network alters the precise recruitment and efficiency of memory formation processes. As a consequence, despite similar encoding mechanisms, the quality of encoded memory representations may differ between younger and older adults and impact later cognitive stages such as consolidation and retrieval.

Differences in the quality of memory representations between younger and older adults are implicated as a key source for age group differences in behavior. Influential theories of cognitive aging have suggested that neural dedifferentiation, i.e., a loss of representational specificity (Koen et al., 2020; Koen & Rugg, 2019), underlies cognitive decline in old adulthood (Li et al., 2001; Li & Sikström, 2002). For example, univariate fMRI studies focusing on content-specific activation in category-selective regions of the ventral visual cortex have consistently shown that these are less selective, with less differentiated activation patterns for stimuli of different categories such as faces and houses, in older compared to younger adults (D. C. Park et al., 2004) see also (J. Park et al., 2012; Voss et al., 2008). Importantly, interindividual differences in neural dedifferentiation are related to memory performance (Kobelt et al., 2020; Koen et al., 2019), such that participants with higher levels of neural dedifferentiation showed lower memory performance (for a recent review see Koen & Rugg, 2019). Complementary evidence is accumulating from studies using multivariate approaches
such as neural pattern analysis (Carp et al., 2011; Zheng et al., 2018). Accordingly, in a recent study (Kobelt et al., 2020) we observed age group differences in neural specificity during encoding not only on the level of category information, but even on the item-level, providing further evidence for the crucial contribution of specific, high-quality memories for memory performance. Strikingly, age differences on the item level were located in occipital regions, thus early in the visual processing hierarchy, in line with early observation of a close connection between age-differences in perception and cognition (Baltes & Lindenberger, 1997; Lindenberger & Baltes, 1994).

Computational models suggest that the cause of neural dedifferentiation are age-related changes in neurotransmitter availability, in particular to deficient dopaminergic modulation (Li et al., 2001; Li & Rieckmann, 2014; Li & Sikström, 2002). They conceptualized the age-related attenuation of dopaminergic modulation as an alteration of the activation function of units in a neural network, leading a reduced fidelity of neural information processing and reductions in the distinctiveness of representations. Evidence of reliable individual differences in D2/D3 dopamine receptors in occipital cortex (Papenberg et al., 2019) supports the idea that their availability in early sensory regions could play an important role in neural dedifferentiation. Interestingly, recent studies also demonstrated a relationship between a decline of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and neural distinctiveness. Combining magnetic resonance spectroscopy (MRS) to measure GABA with functional MRI, Chamberlain et al. (2019) found that older adults had lower GABA levels (see also Simmonite et al., 2019) and less distinct activation patterns in the ventral visual cortex. Furthermore, individual differences in GABA predicted individual differences in distinctiveness (see for similar results with regard to the discrimination of auditory stimuli and GABA levels in the auditory cortex (see Lalwani et al., 2019, for similar results with
regard to the discrimination of auditory stimuli and GABA levels in the auditory cortex).

Reduced inhibition by GABAergic interneurons might impair the resolution of conflict between neural representations and result in less distinct representations (Chamberlain et al., 2019; Lalwani et al., 2019).

In sum, accumulating evidence supports the proposition that age differences in structural integrity, functionality and neurotransmitter availability alter neural mechanisms of memory encoding already at early stages of the processing hierarchy with downstream consequences for ensuing consolidation and retrieval of memory representations. Age differences in memory encoding may thus explain a large fraction of episodic memory decline (Craik & Rose, 2012; de Chastelaine et al., 2016). Having to deal with more gist-like (Kensinger & Schacter, 1999; Koutstaal et al., 2001; Sommer et al., 2019) and less specific (Kobelt et al., 2020; Koen et al., 2019) memory representations increases the challenge for the episodic memory network of older adults that can hardly be counteracted during later stages of processing (Velanova et al., 2006). In line with this assumption, our results that highlight that age difference in prefrontally mediated monitoring and control processes contribute to age-related memory decline (Fandakova et al., 2013; Shing et al., 2010), in particular, in case of low memory quality.

With standard paradigms it is difficult to experimentally distinguish effects of memory quality due to differences in encoding from age-related processing differences at later stages. The experimental design developed for the MERLIN studies tracked the fate of single items within each participant, thereby allowing us to separate these effects. Our findings further emphasize that age differences in structural and functional integrity do not only impact the ability to form high quality memories with rich details. Rather, we can demonstrate that impaired structural integrity in memory-specific networks puts an
additional burden on all processing stages, from encoding to consolidation and retrieval. This observation is generally in line with the so-called “brain maintenance” hypothesis which suggests that the level of an older person cognitive capabilities is related to the degree of maintained neural integrity including structure, function, and neurochemistry (Cabeza et al., 2018; Lindenberger, 2014; Nyberg et al., 2012; Nyberg & Lindenberger, 2020).

The formation and maintenance of highly specific memories has been shown to depend on successful pattern separation processes of the hippocampus (Keresztes et al., 2018; Yassa & Stark, 2011). At the same time, the hippocampus is disproportionately atrophied in old adulthood (Raz et al., 2005) with hippocampal shrinkage being clearly related to episodic memory decline in longitudinal studies (Gorbach et al., 2017; Persson et al., 2012). Not surprisingly, impaired pattern separation processes, linked to structural alterations in hippocampal subfields, haven been shown to drive age differences in memory performance in humans (Shing et al., 2011; Yassa et al., 2011) as well as in animal models (Wilson et al., 2006). Accordingly, with regard to episodic memory functioning, hippocampal maintenance (Köhncke et al., 2020) may be crucial for the formation of high quality memories as key determinant of episodic memory functioning in old age (Nyberg & Lindenberger, 2020).

At the same time, while age-related changes do not affect all brain regions to the same degree, they are nevertheless widespread and not a phenomenon that can be localized to only some regions (for a recent review see Raz, 2020). Whether neural decline is a general or specific phenomenon is still a matter of debate (see Nyberg & Lindenberger, 2020, for a discussion), however, there is evidence that changes within functional neural networks are indeed often correlated. For example, longitudinal evidence has shown that 5-year changes in prefrontal white matter and hippocampus volume show high correlations, whereas lower change-change correlations were observed for other regions (Raz et al., 2005). Thus,
interdependencies in structural change in PFC and MTL support the notion that successful memory performance in aging results from the joint effect of sufficient memory quality and controlled retrieval processes (Devitt & Schacter, 2016; Fandakova et al., 2013; Lindenberger, 2014; Shing et al., 2010; Trelle et al., 2017).

Conclusion

In sum, we have reviewed evidence that while general mechanisms of memory formation may not differ between younger and older adults, age-related structural changes in the episodic memory network and particularly in key regions such as the hippocampus and prefrontal cortex, may nonetheless result in a reduced quality of older adults’ memories. We further argued that variations in memory quality have downstream consequences for subsequent cognitive stages like consolidation and retrieval. Accordingly, memories of low quality pose a general challenge to the episodic memory network such that their processing requires an upregulation within brain regions that are central to the cognitive stage at hand. At the same time, structural decline in those brain regions that support consolidation and retrieval such as cingulo-opercular regions, medial prefrontal cortex, and the thalamus, then puts older adults in a double jeopardy situation during the processing of low quality memories, resulting in a decline in episodic memory performance in old adulthood.

Author Note

The MERLIN studies were conducted at the Center for Lifespan Psychology at the Max Planck Institute for Human Development in Berlin, Germany. They were partially financed by the Max Planck Society and a grant from the German Research Foundation (DFG, WE 4269/3-1) awarded to M. W.-B. and Yee Lee Shing. M. C. S. was supported by the MINERVA program of
the Max Planck Society. M. W.-B.’s work is supported by a grant from the German Research Foundation (DFG, WE 4269/5-1) and the Jacobs Foundation (Early Career Research Fellowship 2017–2019). We thank all members of the MERLIN project, in particular Yee Lee Shing as Principal Investigator, and Xenia Grande, Thomas Grandy and Beate Muehlroth for their support in conducting these studies. Thanks to Sarah Otterstetter for help with the adaptation of figures and Julia Delius for editorial assistance.
References

Craik, Fergus I. M. (1983). On the transfer of information from temporary to permanent memory. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 302(1110),

Dumay, N. (2016). Sleep not just protects memories against forgetting, it also makes them more accessible. Cortex, 74, 289–296. https://doi.org/10.1016/j.cortex.2015.06.007

Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through

Muehlroth, B. E., Sander, M. C., Fandakova, Y., Grandy, T. H., Rasch, B., Lee Shing, Y., &

