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Abstract

Statistical learning and probabilistic prediction are fundamental processes in auditory cogni-

tion. A prominent computational model of these processes is Prediction by Partial Matching

(PPM), a variable-order Markov model that learns by internalizing n-grams from training

sequences. However, PPM has limitations as a cognitive model: in particular, it has a perfect

memory that weights all historic observations equally, which is inconsistent with memory

capacity constraints and recency effects observed in human cognition. We address these

limitations with PPM-Decay, a new variant of PPM that introduces a customizable memory

decay kernel. In three studies—one with artificially generated sequences, one with chord

sequences from Western music, and one with new behavioral data from an auditory pattern

detection experiment—we show how this decay kernel improves the model’s predictive

performance for sequences whose underlying statistics change over time, and enables

the model to capture effects of memory constraints on auditory pattern detection. The

resulting model is available in our new open-source R package, ppm (https://github.com/

pmcharrison/ppm).

Author summary

Humans hear a rich variety of sounds throughout everyday life, ranging from the basic

(e.g. an alarm clock, a whistling kettle, an ambulance siren) to the complex (e.g. speech,

music, birdsong). Understanding these sounds depends on an ability to detect and

remember patterns in these sounds, patterns ranging from the two-tone oscillation of the

ambulance siren to the classic four-chord progression of Western popular music. A key

challenge in audition research is to develop effective computer models of these pattern-

detection processes. The Prediction by Partial Matching model is one such model, origi-

nally developed for data compression, that learns statistical patterns of varying complexity

from sequences of discrete symbols (e.g. ‘A, B, A, A, B, A, B’). In previous research this

model has proved particularly effective for simulating listeners’ responses to music as well

as other kinds of auditory sequences. However, the model is an unrealistic simulation of

human cognition in that it possesses a perfect memory, unbounded in capacity, where
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historic events are recalled just as clearly as recent events. In this paper we therefore intro-

duce a memory-decay component to the model, whereby the salience of historic auditory

events decreases over time in line with the dynamics of human auditory memory. We

present an experiment showing that this memory-decay model provides a natural account

of experimental data from an auditory pattern detection task, explaining how human per-

formance deteriorates as a function of the length of the patterns being detected and the

speed at which they are played. Conversely, we also present two simulation studies

showing that this memory-decay component can improve pattern detection in auditory

environments whose statistical structure changes dynamically over time. These studies

indicate the potential benefit of incorporating memory constraints into statistical models

of auditory pattern detection, and highlight how these memory constraints can both

impair and improve pattern detection, depending on the environment.

Introduction

Humans are sensitive to structural regularities in sound sequences [1–10]. This structural sen-

sitivity underpins many aspects of audition, including sensory processing [11, 12], auditory

scene analysis [13, 14], language acquisition [15], and music perception [16].

The Prediction by Partial Matching (PPM) algorithm is a powerful approach for modeling

this sensitivity to sequential structure. PPM is a variable-order Markov model originally devel-

oped for data compression [17] that predicts successive tokens in symbolic sequences on the

basis of n-gram statistics learned from these sequences. An n-gram is a contiguous sequence of

n symbols, such as ‘ABA’ or ‘ABB’; an n-gram model generates conditional probabilities for

symbols, for example the probability that the observed sequence ‘AB’ will be followed by the

symbol ‘A’, based on the frequencies of different n-grams in a training corpus. Different values

of n yield different operational characteristics: in particular, small values of n are useful for

generating reliable predictions when training data are limited, whereas large values of n are

useful for generating more accurate predictions once sufficient training data have been

obtained. The power of PPM comes from combining together multiple n-gram models with

different orders (i.e. different values of n), with the weighting of these different orders varying

according to the amount of training data available. This combination process allows PPM to

retain reliable performance on small training datasets while outperforming standard Markov

chain models with larger training datasets.

The PPM algorithm has been adopted by cognitive scientists and neuroscientists as a cogni-

tive model for how human listeners process auditory sequences. The algorithm has proved

particularly useful in modeling music perception, forming the basis of the Information

Dynamics Of Music (IDyOM) model of [18] which has been successfully applied to diverse

musical phenomena such as melodic expectation [19], emotional experience [20], similarity

perception [21], and boundary detection [22]. More recently, the PPM algorithm has been

applied to non-musical auditory modeling, including the acquisition of auditory artificial

grammars [5] and the detection of repeating patterns in fast tone sequences [3].

These cognitive studies typically use PPM as an ideal- or rational- observer model. Applied

to a particular experimental paradigm, an ideal-observer model simulates a theoretically opti-

mal strategy for performing the participant’s task. This optimal strategy provides a benchmark

against which human performance can be measured; deviations from this benchmark can

then be analysed to yield further insights into human cognition. In artificial experimental para-

digms, where the stimuli are generated according to a prespecified formal model, it is often
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possible to derive a ‘true’ ideal-observer model that provably attains optimal performance.

However, in naturalistic domains (e.g. music, language) the researcher does not typically have

access to the true model that generated the stimuli, and so it is not possible to construct a prov-

ably optimal ideal-observer model. Moreover, in certain experimental paradigms [3] it is

unlikely that the participant’s cognitive processes reflect a strategy perfectly tailored to the

exact experimental task; instead, they are likely to reflect general principles that tend to work

well for naturalistic perception. PPM is typically applied in these latter contexts: it does not

constitute the provably optimal observer for most particular tasks, but it represents a rational

model of predictive processing that is assumed to approximate ideal performance for a broad

variety of sequential stimuli.

However, the PPM algorithm suffers from an important limitation when applied to cogni-

tive modeling. All observed data are stored in a single homogenous memory unit, with historic

observations receiving equal salience to recent observations. This is problematic for two rea-

sons. First, it means that the model performs suboptimally on sequences where the underlying

statistical distribution changes over time. Second, it means that the model cannot capture how

human memory separates into distinct stages with different capacity limitations and temporal

profiles, and the way that these different stages interact to determine cognitive performance

[23–25].

Some sequence modeling approaches from the cognitive literature do incorporate phenom-

ena such as recency effects and capacity limits. [26] describe a hand-crafted model for expecta-

tions elicited by symbolic sequences that incorporates an exponential-decay component. [27]

and [28] describe Bayesian inference approaches where continuous observations are assumed

to be generated from Gaussian distributions whose underlying parameters change at unknown

points, a situation where the optimal inference strategy involves downweighting historic obser-

vations. The latter paper’s model additionally incorporates a fixed bound on memory capacity

and a perceptual noise parameter, improving its cognitive plausibility. [29] describe a similar

approach with categorical observations generated by a first-order Markov model, and [30]

model similar data using both a hierarchical Bayesian model and a simpler exponential-decay

model. [31] present participants with sequences of synthetic face images, and model resulting

brain activity with an exponential-decay memory model. These studies demonstrate the

importance of recency effects for sequence modeling; however, the resulting models generally

cannot learn the kinds of higher-order statistics that PPM specializes in.

Some approaches from the natural language processing literature also incorporate recency

effects. Here the motivation is primarily ‘model adaptation’, helping the model to respond to

changing statistics in the data being modeled; a useful byproduct can be reducing the compu-

tational resources required by the implementation. A recency effect with a particularly efficient

implementation is exponential decay, which has been applied to a variety of model types, such

as trigram word models [32, 33], Web search term recurrence models [34], topic models [35],

data streaming models [36], and hidden Markov models [37]. Related heuristics are the sliding

window of the Lempel-Ziv data compressor [38] and the nonstationary update rule of the

PAQ compressor [39]. However, these models have yet to be integrated into mainstream cog-

nitive modeling research, having been primarily optimized for engineering applications rather

than for cognitive plausibility.

In the specific context of PPM, some attempts have been made to implement memory

bounds and recency effects. Moffat’s [40] implementation allocated a fixed amount of storage

space to the trie data structure used to store observed data, and rebuilt this tree from scratch

each time this storage limit was exceeded, after [41]. This solution may be computationally effi-

cient but it has limited cognitive validity. [42] introduced a technique whereby two PPM mod-

els would be trained, a long-term model and a short-term model, with the long-term model
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retaining training data from all historic sequences and the short-term model only retaining

training data from the current sequence. The predictions from these two models would then

be combined to form one probability distribution. This technique works well for capturing the

distinction between the structural regularities characterizing a domain (e.g. a musical style, a

language) and the statistical regularities local to a given item from the domain (e.g. a musical

composition or a specific text), but it cannot capture recency effects within a given sequence or

distinguish between historic sequences of different vintages.

Here we present a new version of the PPM algorithm that directly addresses these issues of

memory modeling. This new algorithm, termed ‘PPM-Decay’, introduces a decay kernel that

determines the weighting of historic data as a function of various parameters, typically the

time elapsed since the historic observation, or the number of subsequent observations (Fig 1).

It also introduces stochastic noise into memory retrieval, allowing the model to capture analo-

gous imperfections in human memory. We have developed an open-source implementation of

the model in C++, made available in the R package ppm and released under the MIT license,

that allows the user to configure and evaluate different variants of the PPM-Decay model on

arbitrary sequences.

We demonstrate the utility of this new algorithm in a series of experiments corresponding

to a variety of task domains. Experiment 1 simulates the prediction of sequences generated

from a prespecified statistical model, and shows that incorporating memory decay improves

the predictive performance of PPM for sequences when the underlying model parameters

change over time. Experiment 2 simulates the prediction of chord sequences from three musi-

cal styles, and shows that a decay profile with a non-zero asymptote is useful for capturing a

combination of statistical regularities specific to the current composition and statistical regu-

larities general to the musical style. Experiment 3 models new empirical data from human lis-

teners instructed to detect repeated patterns in fast tone sequences, and shows that a multi-

stage decay kernel is useful for explaining human performance. Together these experiments

speak to the utility of the PPM-Decay algorithm as a cognitive model of symbolic sequence

processing.

Fig 1. A simple decay kernel. The kernel is defined by an initial weight of w0 = 1, an exponential decay with half life

t0.5 = 1 s, and an asymptotic weight w1 = 0.2.

https://doi.org/10.1371/journal.pcbi.1008304.g001
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Overview of the PPM-Decay model

This section provides a short overview of the PPM-Decay model. A full exposition is provided

at the end of the paper.

The PPM-Decay model is a direct extension of the PPM model [17] incorporating the inter-

polated smoothing technique of [43] alongside a custom memory retrieval function. PPM is an

incremental sequence prediction model: it progresses through sequences symbol by symbol,

generating a predictive distribution for the next symbol before it arrives, with this predictive

distribution derived from statistics learned from the model’s previous observations. The

predictive distribution comprises a list of probabilities for all symbols in the alphabet, with

likely continuations receiving high probabilities and unlikely continuations receiving low

probabilities.

PPM’s predictions are produced by combining predictions from several sub-models, specif-

ically n-gram models. An n-gram is a sequence of n adjacent symbols; for example, ‘ABCABC’

is an example of a 6-gram. An n-gram model generates predictions by counting and compar-

ing observations of n-grams. To predict what happens after the sequence ‘ABCAB’, a 6-gram

model would look at all 6-gram occurrences of the form ‘ABCABX’, where ‘X’ is allowed to

vary. The predicted probability of observing ‘C’ having just observed ‘ABCAB’ would then be

equal to the number of observations for ‘ABCABC’ divided by the total number of observa-

tions for n-grams of the form ‘ABCABX’.

The Markov order of an n-gram model is equal to the length of its n-grams minus one. Dif-

ferent orders of n-gram model have different strengths and weaknesses. Low-order n-gram

models are quick to learn, but can only capture simple structure; high-order n-gram models

can capture more complex structure, but require more training data. The power of PPM

comes from flexibly switching between different Markov orders based on context; this is why

it is termed a ‘variable-order’ Markov model.

Different PPM variants use different techniques for combining n-gram models. The origi-

nal PPM model used a technique called backoff smoothing, where the model chooses one top-

level n-gram model from which to generate predictions for a given context, and only calls

upon lower-level n-gram models in the case of symbols that have never been seen before by

the top-level n-gram model. Here we instead use the interpolated smoothing technique of [43],

where lower-order models contribute to predictions for all the symbols in the alphabet. This

approach is more computationally expensive, but results in significantly improved predictive

power.

The different n-gram models are weighted according to training data availability for the

current predictive context: with limited training data, low-order models receive the most

weight, but as training data accumulates, high-order models receive increasing weight. The

procedure for deriving these weights is termed the ‘escape method’; though various improved

escape methods have been introduced over the years, here we retain the escape method from

the original PPM model [17], because it generalizes most naturally to the memory-decay pro-

cedures considered here.

The PPM-Decay model adds a custom memory retrieval function to PPM. This retrieval

function modifies how n-grams are counted: whereas in the original PPM model, each n-gram

observation contributes a fixed amount to the respective n-gram count, in the PPM-Decay

model the contribution of a given n-gram observation decreases as a function of the time

elapsed since the observation. This function is termed the decay kernel; an example decay ker-

nel is plotted in Fig 1. In the following experiments we explore how decay kernels may be con-

structed that help predictive performance for particular kinds of sequences, and that reflect the

dynamics of human auditory memory.
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Results

Experiment 1: Memory decay helps predict sequences with changing

statistical structure

The original PPM algorithm weights all historic observations equally when predicting the

next symbol in a sequence. This represents an implicit assertion that all historic observations

are equally representative of the sequence’s underlying statistical model. However, if the

sequence’s underlying statistical model changes over time, then older observations will be less

representative of the current statistical model than more recent observations. In such scenar-

ios, an ideal observer should allocate more weight to recent observations than historic observa-

tions when predicting the next symbol.

Various weighting strategies can be envisaged representing different inductive biases about

the evolution of the sequence’s underlying statistical model. A useful starting point is an expo-

nential weighting strategy, whereby an observation’s salience decreases by a constant fraction

every time step. Such a strategy is biologically plausible in that the system does not need to

store a separate trace for each historic observation, but instead can simply maintain one trace

for each statistical regularity being monitored (e.g. one trace per n-gram), which is incremen-

ted each time the statistical regularity is observed and decremented automatically over time.

This exponential-weighting strategy can also be rationalised as an approximation to optimal

Bayesian weighting for certain types of sequence structures [44].

We will now describe a proof-of-concept experiment to demonstrate the intuitive notion

that such weighting strategies can improve predictive performance in the PPM algorithm. This

experiment used artificial symbolic sequences generated from an alphabet of five symbols,

where the underlying statistical model at any particular point in time was defined by a first-

order Markov chain. A first-order Markov chain defines the probability of observing each pos-

sible symbol conditioned on the immediately preceding symbol; second-order Markov chains

are Markov chains that take into account two preceding symbols, whereas zeroth-order Mar-

kov chains take into account zero preceding symbols. Our sequence-generation models were

designed as hybrids between zeroth-order and first-order Markov chains, reflecting PPM’s

capacity to model sequential structure at different Markov orders. These generative models

took the form of first-order Markov chains, constructed as follows. First, we sampled five first-

order conditional distributions from a symmetric Dirichlet prior with concentration parame-

ter 0.1, with each distribution corresponding to a different conditioning symbol from the

alphabet. Second, we averaged these conditional distributions with a 0th-order distribution

sampled from the same Dirichlet prior. The resulting Markov chain models can be represented

as two-dimensional transition matrices, where the cell in the ith row and the jth column iden-

tifies the probability of observing symbol j given that the previous symbol was i (Fig 2A).

Zeroth-order structure is then manifested as correlations between transition probabilities in

the same column, and can be summarised in marginal bar plots (Fig 2A).

Each sequence began according to an underlying statistical model constructed by the above

procedure, with the first symbol in each sequence being sampled from the model’s stationary

distribution. At the next symbol, the underlying statistical model was either preserved with

probability .99 or discarded and regenerated with probability .01. The new symbol was then

sampled from the resulting statistical model conditioned on the immediately preceding sym-

bol. This procedure was repeated to generate a sequence totalling 500 symbols in length.

Individual experimental trials were then conducted as follows. The PPM-Decay model was

presented with one symbol at a time from a sequence constructed according to the procedure

defined above, and instructed to return a predictive probability distribution for the next sym-

bol. A single prediction was then extracted from this probability distribution, corresponding

PLOS COMPUTATIONAL BIOLOGY Auditory prediction with memory decay

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008304 November 4, 2020 6 / 41

https://doi.org/10.1371/journal.pcbi.1008304


to the symbol assigned the highest probability. Prediction success was then operationalized as

the proportion of observed symbols that were predicted correctly.

This experimental paradigm was used to evaluate a PPM-Decay model constructed with an

exponential-decay kernel and a Markov order bound of one. This kernel is parametrized by a

single half-life parameter, defined as the time interval for an observation’s weight to decrease

by 50%. This half-life parameter was optimized by evaluating the model on 500 experimental

trials generated by the procedure described above, maximizing mean prediction success over

all trials using Rowan’s [45] Subplex algorithm as implemented in the NLopt package [46], and

Fig 2. Illustrative plots for Experiment 1. A) Example sequence-generation models as randomly generated in Experiment 1. The bar plots describe 0th-

order symbol distributions, whereas the matrices describe 1st-order transition probabilities. B) Repeated-measures plot indicating how predictive accuracy

for individual sequences (N = 500, hollow circles) increases after the introduction of an exponential-decay kernel. C) Absolute changes in predictive

accuracy for individual sequences, as summarised by a kernel density estimator. The median accuracy change is marked with a solid vertical line.

https://doi.org/10.1371/journal.pcbi.1008304.g002
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refreshing the model’s memory between each trial. The resulting half-life parameter was 12.26.

The PPM-Decay model was then evaluated with this parameter on a new dataset of 500 experi-

mental trials and compared with an analogous PPM model without the decay kernel.

The results are plotted in Fig 2B and 2C. They indicate that the exponential-decay kernel

reliably improves the model’s performance, with the median percentage accuracy increasing

from 48.8% to 62.2%. The exponential-decay kernel causes the algorithm to downweight his-

toric observations, which are less likely to be representative of the current sequence statistics,

thereby helping the algorithm to develop an effective model of the current sequence statistics

and hence generate accurate predictions. Correspondingly, we can say that the exponential-

decay model better resembles an ideal observer than the original PPM model.

Experiment 2: Memory decay helps predict musical sequences

We now consider a more complex task domain: chord sequences in Western music. In particu-

lar, we imagine a listener who begins with zero knowledge of a musical style, but incrementally

acquires such knowledge through the course of musical exposure, and uses this knowledge to

predict successive chords in chord sequences. This process of musical prediction is thought to

be integral to the aesthetic experience of music, and so it is of great interest to music theorists

and psychologists to understand how these predictions are generated [16, 47–50].

Chord sequences in Western music resemble sentences in natural language in the sense

that they can be modeled as sets of symbols drawn from a finite dictionary and arranged in

serial order. Such chord sequences provide the structural foundation of most Western music.

For the purpose of modeling with the PPM algorithm, it is useful to translate these chord

sequences into sequences of integers, which we do here using the mapping scheme described

in Methods. For example, the first eight chords of the Bob Seger song ‘Think of Me’ might be

represented as the integer sequence ‘213, 159, 33, 159, 213, 159, 33, 159’.

Here we consider chord sequences drawn from three musical corpora: a corpus of popular

music sampled from the Billboard ‘Hot 100’ charts between 1958 and 1991 [51], a corpus of jazz

standards sampled from an online forum for jazz musicians [52], and a corpus of 370 chorale

harmonizations by J. S. Bach [53], translated into chord sequences using the chord labeling algo-

rithm of [54] (see Methods for details). These three corpora may be taken as rough approxima-

tions of three musical styles: popular music, jazz music, and Bach chorale harmonizations. While

we expect these three corpora each to be broadly consistent with general principles of Western

tonal harmony [55], we also expect each corpus to possess distinctive statistical regularities that

differentiate the harmonic languages of the three musical styles [52, 56–58]. Fig 3 displays exam-

ple chord sequences from these three corpora, alongside their corresponding integer encodings.

We expect the underlying sequence statistics to vary as we progress through a musical corpus.

Sequence statistics are likely to change significantly at the boundaries between compositions,

but they are also likely to change within compositions, as the chord sequences modulate to dif-

ferent musical keys, and travel through different musical sections. Similar to Experiment 1, we

might therefore hypothesize that some kind of decay kernel should help the listener maintain an

up-to-date model of the sequence statistics, and thereby improve predictive performance.

However, unlike Experiment 1, the chord sequences within a given musical corpus are

likely to share certain statistical regularities. If the corpus is representative of a given musical

style, then these statistical regularities will correspond to a notion of ‘harmonic syntax’, the

underlying grammar that defines the harmonic conventions of that musical style. An ideal

model will presumably take advantage of these stylistic conventions. However, the exponen-

tial-decay kernel from Experiment 1 is not well-suited to this task, because observations from

historic sequences continuously decay in weight until they make essentially no contribution to
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the model. This is not ideal because these historic sequences will still contribute useful infor-

mation about the musical style. Here we therefore evaluate a modified exponential-decay ker-

nel, where memory traces decay not to zero but to a positive asymptote (see e.g. Fig 1). Such a

kernel should provide a useful compromise between following the statistics of the current

musical passage and capturing long-term knowledge of a style’s harmonic syntax.

We conducted our experiment as follows. For each musical corpus, we simulated a listener

attempting to develop familiarity with the musical style by listening to one chord sequence

every day, corresponding to one composition randomly selected from the corpus without rep-

etition, for 100 days. We supposed that the listener began each chord sequence at the same

time of day, so that the beginning of each successive chord sequence would be separated by

24-hour intervals, and we supposed that each chord in each chord sequence lasted one second

in duration. Similar to Experiment 1, we supposed that the listener constantly tried to predict

the next chord in the chord sequence, but this time we operationalized predictive success

Fig 3. Sample chord sequences analyzed in Experiment 2. A) represents the popular music corpus (‘Night Moves’, by

Bob Seger), B) represents the jazz corpus (‘Thanks for the Memory’, by Leo Robin), and C) represents the Bach chorale

harmonization corpus (‘Mit Fried und Freud ich fahr dahin’, by J. S. Bach). Each chord is labeled by its integer

encoding within the chord alphabet for the respective corpus. Each chord sequence corresponds to the first eight

chords of the first composition in the downsampled corpus. Each chord is defined by a combination of a bass pitch

class (lower stave) and a collection of non-bass pitch classes (upper stave). For visualization purposes, bass pitch classes

are assigned to the octave below middle C, and non-bass pitch classes to the octave above middle C.

https://doi.org/10.1371/journal.pcbi.1008304.g003
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using the cross-entropy error metric, defined as the mean negative log probability of each

chord symbol as predicted by the model. This metric is more appropriate than mean success

rate for domains with large alphabet sizes, such as harmony, because it assigns partial credit

when the model predicts the continuation with high but non-maximal probability. A similar

metric, perplexity, is commonly used in natural language processing (cross-entropy is equal to

the logarithm of perplexity). We used the cross-entropy metric to evaluate two decay kernels:

the exponential-decay kernel evaluated in Experiment 1, termed the ‘Decay only’ kernel, and a

new exponential-decay kernel incorporating a positive asymptote, termed the ‘Decay + long-

term learning’ model. We found optimal parametrizations for these kernels using the same

optimizer as Experiment 1 [45], and compared the predictive performance of the resulting

optimized models to a standard PPM model without a decay kernel. Each model was imple-

mented with a Markov order bound of four, which seems to be a reasonable upper limit for

the kinds of Markovian regularities present in Western tonal harmony [49, 59, 60].

Fig 4 describes the performance of these two decay kernels. Examining the results for the

three different datasets, we see that the utility of different decay parameters depends on the

musical style. For the popular music corpus, incorporating exponential decay improves the

model’s performance by c. 1.9 bits, indicating that individual compositions carry salient short-

term regularities that the model can better leverage by downweighting historic observations.

Introducing a non-zero asymptote to the decay kernel does not improve predictive perfor-

mance on this dataset, indicating that long-term syntactic regularities contribute very little to

predictive performance over and above these short-term regularities in popular music. A dif-

ferent pattern is observed for the jazz and Bach chorale corpora, however. In both cases, the

decay-only model performs no better than the original PPM model, presumably because any

improvement in capturing local statistics is penalized by a corresponding deterioration in

long-term syntactic learning. However, incorporating a non-zero asymptote in the decay ker-

nel allows the model both to upweight local statistics and still achieve long-term syntactic

learning, thereby improving predictive performance by c. 1.5 bits.

These analyses have two main implications. First, they show that more advanced decay ker-

nels are useful for producing a predictive model that better approximates ideal performance in

the cognitive task of harmony prediction. The nature of these improved kernels can be related

directly to the statistical structure of Western music, where compositions within a given musi-

cal style tend to be characterized by local statistical regularities, yet also share common statisti-

cal structure with other pieces in the musical style. An ideal-observer model of harmony

prediction ought therefore to recognize these different kinds of statistical structure. Second,

these analyses offer quantitative high-level insights into the statistical characteristics of the

three musical styles. In particular, the popular music analyses found that long-term learning

offered no improvement over a simple exponential-decay kernel, implying that the harmonic

structure of popular music is dominated by local repetition. In contrast, both the jazz analyses

and the Bach chorale analyses found that both exponential decay and long-term learning were

necessary to improve from baseline performance, implying that chord progressions in these

styles reflect both short-term statistics and long-term syntax to significant degrees.

Experiment 3: Memory decay helps to explain the dynamics of auditory

pattern detection

The PPM model has recently been used to simulate how humans detect recurring patterns in

fast auditory sequences [3]. Barascud et al. used an experimental paradigm where participants

were played fast tone sequences derived from a finite pool of tones, with the sequences orga-

nised into two sections: a random section (labelled ‘RAND’) and a regular section (labelled
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‘REG’). The random section was constructed by randomly sampling tones from the frequency

pool, whereas the regular section constituted several repetitions of a fixed pattern of frequencies

from the pool. These two-stage sequences, termed ‘RAND-REG’ sequences, were contrasted

with ‘RAND’ sequences which solely comprised one random section. The participant’s task was

to detect transitions from random to regular sections as quickly as possible (see Fig 5 for an

example trial).

Two simplified sequence types were also included for the purpose of baselining reaction

times: ‘CONT’ sequences, which were simplified versions of RAND sequences that comprised

just one repeated tone of a given frequency, and ‘STEP’ sequences, which were simplified

Fig 4. Predictive performances for different decay kernels in Experiment 2. Each composition contributed one

cross-entropy value for each decay kernel; these cross-entropy values are expressed relative to the cross-entropy values

of the original PPM model, and then summarised using kernel density estimators. Median performance improvements

are marked with solid vertical lines.

https://doi.org/10.1371/journal.pcbi.1008304.g004
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versions of RAND-REG sequences where all tones within a given section had the same fre-

quency, with this frequency differing between sections. We used the STEP trials to estimate

baseline response times, and normalized the RAND-REG response times by subtracting these

baseline response times (see Methods for more details).

These experimental stimuli were constructed according to a well-defined statistical pro-

cess, and it would be straightforward to derive a model that achieves provably optimal per-

formance on the task given a well-defined performance metric. However, Barascud et al.

reasoned that the cognitive mechanisms underlying fast auditory pattern recognition would

be unlikely to be tailored to exact repetition, because exact repetitions are uncommon in nat-

uralistic auditory environments. Instead, they supposed that human performance would be

better characterized by more generic regularity detection mechanisms, such as those embod-

ied in the PPM algorithm.

Fig 5. Example analysis of a single trial in Experiment 3. The three panels plot each tone’s frequency, change-point

statistic, and information content respectively. ‘Nominal transition’ denotes the point at which the pattern changes from

random tones to a repeating pattern of length 10. This repetition starts to become discernible after 10 tones (‘Effective

transition’), at which point the sequence becomes fully deterministic. Correspondingly, information content (or ‘surprise’)

drops, and triggers change-point detection at ‘Detection of transition’.

https://doi.org/10.1371/journal.pcbi.1008304.g005
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In particular, [3] suggested that listeners maintain an internal predictive model of incoming

tone sequences that is incrementally updated throughout each sequence, and that listeners

monitor the moment-to-moment surprise experienced by this model. They modeled this pro-

cess using PPM as the predictive model, and operationalized surprise as the information con-

tent of each tone, defined as the tone’s negative log probability conditioned on the portion of

the sequence heard so far. The authors proposed that listeners detect section changes based on

the evolution of information content throughout the stimulus; in particular, changes from ran-

dom to regular precipitate a sharp drop in information content, reflecting the transition from

unpredictability to predictability.

Examining information content profiles produced by the PPM model, [3] concluded that

an ideal observer should detect the transition from random to regular sections by the fourth

tone of the second occurrence of the regular tone cycle. Analyzing behavioral and neuroimag-

ing data, the authors found that participants reached this benchmark when the cycle length

was small (5, 10 tones) but not when it was large (15, 20 tones). In other words, the ideal-

observer model replicated human performance well for short cycle lengths, but some kind of

cognitive constraints seemed to impair human performance for large cycle lengths.

One candidate explanation for this impaired performance is the limited capacity of auditory

short-term memory. In order to detect a cycle repetition, the listener must compare incoming

tones to tones that occurred at least one cycle ago. To achieve this, the listener’s auditory

short-term memory must therefore span at least one cycle length. Short cycles may fit comfort-

ably in the listener’s short-term memory, thereby supporting near-optimal task performance,

but longer cycles may progressively test the limits of the listener’s memory capacity, resulting

in progressively worsened performance.

An important question is whether this memory capacity is determined by temporal limits

or informational limits. A temporal memory limit would correspond to a fixed time duration,

within which events are recalled with high precision, and outside of which recall performance

suffers. Analogously, an informational limit would correspond to a fixed number of tones that

can be recalled with high fidelity from short-term memory, with attempts to store larger num-

bers of tones resulting in performance detriment.

Both kinds of capacity limits have been identified for various stages of auditory memory.

Auditory sensory memory, or echoic memory, is typically characterized by its limited temporal

capacity but high informational capacity. Auditory working memory has a more limited infor-

mational capacity, and a temporal capacity that can be extended for long periods through

active rehearsal. Auditory long-term memory seems to be effectively unlimited in both tempo-

ral and informational capacity [23–25, 61].

The auditory sequences studied by Barascud et al. used very short cycle lengths, of the order

of 1 s, and were therefore likely to fall within the bounds of echoic memory. Temporal limits

to echoic memory are well-documented in the literature: echoic memory seems to persist for a

few seconds, and is susceptible to interference from subsequent sounds [62]. Informational

limits to echoic memory are less well understood. The most relevant precedent to this para-

digm in the literature seems to be [63], studying change detection in sequences of pure tones

where total sequence duration ranged from 60 to 2000 ms. In this regime, change-detection

performance was largely unaffected by sequence duration, and was instead constrained by the

number of tones in the sequence, pointing to an informational limit to echoic memory. How-

ever, related work has studied change detection where the tones were presented simulta-

neously rather than sequentially, and failed to find compelling evidence for memory capacity

limits over and above sensory processing limits [64, 65]. Another relevant precedent is [66],

who played participants pairs of adjacent click trains each of 1 s duration, and asked partici-

pants to answer whether the second click train was a repetition of the first click train.
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Performance decreased as click rate increased, which could reflect capacity limits in echoic

memory, but could also reflect capacity limits in sensory processing. In summary, informa-

tional limits to echoic memory have received limited characterization in the literature, but

nonetheless seem equally plausible to temporal limits as explanations of Barascud et al.’s results

[3].

We conducted a behavioral experiment to test these competing explanations. We based this

experiment on the regularity detection task from Barascud et al., and created six experimental

conditions that orthogonalised two stimulus features: the number of tones in the cycle (10

tones or 20 tones), and the temporal duration of each tone in the cycle (25 ms, 50 ms, or 75

ms). We reasoned that if performance were constrained by informational capacity, then it

would be best predicted by the number of tones in the cycle, whereas if performance were con-

strained by temporal limits, it would be best predicted by the total duration of each cycle. We

were particularly interested in the pair of conditions with equal cycle duration but different

numbers of tones per cycle (10 × 50 ms = 20 × 25 ms); a decrease in performance in the latter

condition would be evidence for informational constraints on regularity detection.

The behavioral results are summarized in Fig 6. Response accuracies are plotted in Fig 6A

in terms of the sensitivity metric from signal detection theory. Response accuracy was close

to ceiling performance across all conditions, with the exception of the condition with the

maximum-duration cycles (20 tones each of length 75 ms), where some participants fell away

from ceiling performance. This is consistent with [3]; the task manipulations change how

long it takes for the participant to detect the change, but they mostly do not prevent the par-

ticipant from eventually detecting the change. Following [3], we therefore focus on interpret-

ing reaction-time metrics (Fig 6B) rather than response accuracy. Here we see a clear effect

of the number of tones in the cycle, with 10-tone cycles eliciting considerably lower reaction

times than 20-tone cycles. This is consistent with the notion of an informational capacity

to echoic memory. In particular, comparing the two conditions with equal cycle duration

but different numbers of tones per cycle (10 × 50 ms tones; 20 × 25 ms tones), we see that

increasing the number of tones substantially impaired performance even when cycle dura-

tion stayed constant.

Fig 6B does not show a clear effect of tone duration. However, the figure does not account

for the repeated-measures structure of the data, meaning that between-condition effects may

be partly masked by individual differences between participants. To achieve a more sensitive

analysis, Fig 6C takes advantage of the repeated-measures structure of the data, and plots each

participant’s response time in the 50-ms and 75-ms conditions relative to their response time

in the relevant 25-ms condition. Here we again see null or limited effects of tone duration,

except in the case of the maximum-duration condition (20 tones each of length 75 ms), where

reaction times seem higher than in the corresponding 25-ms and 50-ms conditions. We tested

the reliability of this effect by computing each participant’s difference in mean response time

between the 25-ms and 75-ms conditions for the 20-tone cycles, and subtracting the analogous

difference in response times for the 10-tone cycles, in other words: {RT(75 ms, 20 tones) − RT

(25 ms, 20 tones)} − {RT(75 ms, 10 tones) − RT (25 ms, 10 tones)}. This number summarizes

the extent to which increasing tone duration has a stronger effect on reaction times for cycles

containing more tones. Using the bias-corrected and accelerated bootstrap [67], the 95% confi-

dence interval for this parameter was found to be [2.08, 5.93]. The lack of overlap with zero

indicates that the effect was fairly reliable: increasing tone duration from 25-ms and 75-ms had

a stronger negative effect on reaction times for 20-tone cycles than for 10-tone cycles. This

interaction between tone duration and cycle length was also evident from a 3 x 2 repeated-

measures ANOVA (F(2, 44) = 8.76, η2 = .07, p< .001).
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Fig 6. Behavioral results for Experiment 3. A) Participant d-prime scores by condition, as summarized by violin plots

and Tukey box plots. B) Participant mean response times by condition, as summarized by violin plots and Tukey

box plots. C) As B, except benchmarking response times against the 25 ms conditions.

https://doi.org/10.1371/journal.pcbi.1008304.g006

PLOS COMPUTATIONAL BIOLOGY Auditory prediction with memory decay

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008304 November 4, 2020 15 / 41

https://doi.org/10.1371/journal.pcbi.1008304.g006
https://doi.org/10.1371/journal.pcbi.1008304


To summarize, then: the behavioral data indicate that performance in this regularity-detec-

tion task was primarily constrained by the number of tones in the repeating cycles, rather than

their duration. However, the data do suggest a subtle negative effect of tone duration which

may manifest for cycles containing large numbers of tones.

We now consider how these effects may be reproduced by incorporating memory effects

into the PPM model. Instead of the decay kernel solely operating as a function of time, as in

Experiments 1 and 2, it must now account for the number of tones that have been observed by

the listener. Various such decay kernels are possible. Here we decided to base our decay kernel

on the following psychological ideas, inspired by previous research into echoic memory [23,

24, 68]:

1. Echoic memory operates as a continuously updating buffer that stores recent auditory

information.

2. While a memory remains in the buffer, it is represented with high fidelity, and is therefore a

reliable source of information for regularity detection mechanisms.

3. The buffer has a limited temporal and informational capacity. Memories will remain in the

buffer either until a certain time period has elapsed, or until a certain number of subsequent

events has been observed.

4. Once a memory leaves the buffer, it is represented in a secondary memory store.

5. Observations in this secondary memory store contribute less strongly to auditory pattern

detection, and gradually decay in salience over time, as in Experiments 1 and 2.

These principles, formalized computationally and applied to the continuous tone sequences

from the behavioral experiment, result in the decay kernels described in Fig 7. In each case the

buffer is limited to a capacity of 15 tones, which corresponds to a time duration of 0.375 s for

Fig 7. Decay kernels employed in Experiment 3. The temporal duration of the buffer corresponds to the buffer’s

informational capacity (15 tones) multiplied by the tone duration.

https://doi.org/10.1371/journal.pcbi.1008304.g007
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25-ms tones, 0.75 s for 50-ms tones, and 1.125 s for 75-ms tones. While the n-gram observation

remains within this buffer, its weight is w0 = 1.0; once the memory exits the buffer its weight

drops to w1 = 0.6, and thereafter decays exponentially to w1 = 0 with a half life of t0.5 = 3.5 s.

The precise parameters of this decay kernel come from manual optimization to the behavioral

data, and it should be noted that these parameters may well be task-dependent; nonetheless,

we will show that each qualitative component of the decay kernel seems to be necessary to

explain the observed pattern of results.

Weight decay by itself is not sufficient to cause memory loss, because PPM computes its

predictions using ratios of event counts, which are preserved under multiplicative weight

decay. We therefore introduce stochastic noise to the memory retrieval component of the

PPM model, meaning that weight decay reduces the signal-to-noise ratio, and thereby gradu-

ally eliminates the memory trace of the original observation. In our optimized model this

noise component is implemented by sampling from a Gaussian with zero mean and standard

deviation σ� = 0.8, taking the absolute value, and adding this to the total weight over all obser-

vations for a given n-gram, this total weight being an arbitrarily large non-negative number.

We avoid negative noise samples so as to avoid negative event counts, for which the PPM

model is not well-defined.

Applied to an individual trial, the model returns the information content for each tone in

the sequence, corresponding to the surprisingness of that tone in the context of the prior por-

tion of the sequence (Fig 5). Following [3], we suppose that the listener identifies the transition

from random to regular tone patterns by detecting the ensuing drop in information content.

We model this process using a non-parametric change-detection algorithm that sequentially

applies the Mann-Whitney test to identify changes in a time series’ location while controlling

the false positive rate to 1 in 10,000 observations [69].

All stimuli were statistically independent from one another, and so responses should not be

materially affected by experiences on previous trials. For simplicity and computational effi-

ciency, we therefore left the PPM-Decay model’s long-term learning weight (w1) fixed at zero,

and reset the model’s memory store between each trial.

We analyzed 6 different PPM-Decay configurations, aiming to understand how the model’s

different features contribute to task performance, and which are unnecessary for explaining the

perceptual data. Specifically, we built the proposed model step-by-step from the original PPM

model, first adding exponential decay, then adding retrieval noise, then adding the memory

buffer. We tested three versions of the final model with different buffer capacities: 5 items, 10

items, and 15 items. We manually optimized each model configuration to align mean participant

response times to mean model response times, producing the parameter sets listed in Table 1.

Table 1. Optimized model parameters for Experiment 3.

Model mmax tb nb w0 w1 t0.5 w1 σ�
Original PPM 4 0 0 0.0 1.00 1 0 0.00

+ Exponential decay 4 0 0 0.0 1.00 0.26 0 0.00

+ Retrieval noise 4 0 0 0.0 0.65 1.65 0 0.50

+ 5-item buffer 4 1 5 2.0 0.70 1.45 0 0.50

+ 10-item buffer 4 1 10 1.5 0.40 1.90 0 0.35

+ 15-item buffer 4 1 15 1.0 0.60 3.50 0 0.80

Bold denotes parameters manipulated from the previous step. mmax is the model’s Markov order bound. tb is the temporal buffer capacity, nb the itemwise buffer

capacity. w0 is the buffer weight, w1 is the initial post-buffer weight, and w1 is the asymptotic post-buffer weight. σ� is the scale parameter for the retrieval noise

distribution.

https://doi.org/10.1371/journal.pcbi.1008304.t001
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Original PPM. As expected, the original PPM model proved not to be sensitive to tone

length or to alphabet size (Fig 8A). Furthermore, the model systematically outperformed the

participants, with an average reaction time of 6.23 tones compared to the participants’ mean

reaction time of 12.90.

Adding exponential decay. Here we add time-based exponential decay, as in Experi-

ments 1 and 2. One might expect this feature to induce a negative relationship between pat-

tern-detection performance and cycle length. We do observe such an effect, but only with a

very fast memory-decay rate (half life = 0.26 s; Fig 8A). This robustness of models without

retrieval noise to memory decay can be rationalized by observing that, even as absolute

weights of memory traces decrease with memory decay, the important information, namely

the ratios of these weights, remains more or less preserved, and so the pattern-detection

algorithm continues to perform well. Further to this, the model is problematic in that it

Fig 8. Modeling participant data in Experiment 3. Participant data (mean response times) are plotted as white circles, whereas

different model configurations (mean simulated response times) are plotted as solid bars. Error bars denote 95% confidence intervals

computed using the central limit theorem. A) Progressively adding exponential weight decay and retrieval noise to the original PPM

model. B) Progressively adding longer buffers to the PPM-Decay model.

https://doi.org/10.1371/journal.pcbi.1008304.g008
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substantially outperforms participants in the 10-tone conditions, and exhibits no clear dis-

continuity in performance between the 10-tone conditions and the 20-tone conditions.

Adding retrieval noise. Retrieval noise increases the model’s sensitivity to memory decay,

and means that the drop in performance from the shortest cycles (10 tones, 25 ms/tone) to the

longest cycles (20 tones, 75 ms/tone) can be replicated with a more plausible half-life of 1.65 s

(Fig 8A). However, the model still fails to capture the discontinuity in reaction times between

10-tone and 20-tone conditions, especially with tone lengths of 25 and 50 ms.

Adding the memory buffer. We anticipated that a buffer with an informational capacity

limit between 10 tones and 20 tones should be able to replicate the behavioral discontinuity

between 10-tone and 20-tone conditions. The 10-tone cycles should largely fit in such a buffer,

resulting in near-ceiling performance in the 10-tone conditions; conversely, the 20-tone cycles

should be too big for the buffer, resulting in performance deterioration. Fig 8B shows that

such an effect does indeed take place with a 15-tone buffer. In contrast, shorter buffers (5

tones, 10 tones) do not elicit this clear discontinuity between 10-tone and 20-tone conditions.

The resulting model also replicates the insensitivity to tone duration in the 10-tone conditions,

and the adverse effect of increasing tone duration to 75 ms in the 20-tone condition that was

hinted at in the behavioral data. It therefore seems clear that a PPM-Decay model with a finite-

capacity buffer can explain the main patterns of reaction times observed in this experiment, in

contrast to the original PPM model.

Finally, we performed a simple sensitivity analysis to understand how much the model’s fit

depended on the precise values of the model parameters. We took the five optimized model

parameters (itemwise buffer capacity, buffer weight, half life, initial post-buffer weight, and

retrieval noise), and represented each as a Gaussian with mean equal to its optimized value

and with standard deviation equal to 15% of the mean. We then sampled 100 parameter vec-

tors from these Gaussians, reran the simulation with each of these parameter vectors, and com-

pared the resulting model fits to that of the original parameter vector. We quantified model fit

in terms of the consistency between mean model reaction times and mean participant reaction

times, with reaction times measured in tones and aggregated by condition, and with consis-

tency operationalized by two coefficients: the intraclass correlation coefficient (one-way, single

measurement, absolute agreement), and the Spearman correlation coefficient. The former

assesses how successfully the model predicts absolute reaction times, whereas the latter assesses

how successfully the model predicts the order of reaction times. We found a mean intraclass

correlation coefficient of .77 for the resampled parameters, compared to a coefficient of .96 for

the original parameters, indicating that absolute model fit is moderately sensitive to the choice

of parameters. In contrast, the mean Spearman correlation coefficient for the resampled

parameters was essentially identical to that of the original parameters (ρs = .83, .83), indicating

that the qualitative trends in the model predictions are comparatively robust to local changes

in the parameters.

Here we supposed that our observed trends in reaction times reflect auditory memory

decay. It is worth considering alternative explanations for these trends. One possibility is that

the trends reflect interference in auditory memory rather than memory decay per se [70]. This

would be an important mechanistic distinction to make, but would not change our main con-

clusions about the importance of memory limitations for auditory prediction and the presence

of a finite-capacity auditory memory buffer. A second possibility is that the reaction-time

trends were not driven by memory decay, but were instead driven by older memories taking

longer to retrieve from memory than newer memories. Likewise, this would be an important

mechanistic distinction, but would not change our main conclusions. A third possibility is that

the reaction-time trends were driven by sensory processing limitations. However, such limita-

tions would predict that the faster tones be processed less effectively, meaning that more tones
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would be required for change detection in fast-tone conditions than in slow-tone conditions,

which is not what we observe. Memory dynamics therefore still seem to provide the most plau-

sible explanation for these effects.

Discussion

PPM is a powerful sequence prediction algorithm that has proved well-suited to modeling the

cognitive processing of auditory sequences [3, 5, 19–22]. In these contexts, PPM has tradition-

ally been interpreted as an ideal observer, simulating an (approximately) optimal strategy for

predicting upcoming auditory events on the basis of learned statistics. This modeling strategy

has proved very useful for elucidating the role of statistical cognition in auditory perception

[3, 16].

Here we introduced a customizable decay kernel to PPM, which downweights historic

observations as time passes and subsequent observations are registered in memory. This decay

kernel is useful for two primary reasons. First, it makes PPM a better approximation to an

ideal observer when the underlying sequence statistics change over time, as is common in

many real-world listening contexts. Second, it allows the model to capture the multi-stage

nature of human auditory memory, with its corresponding capacity limitations and temporal

profiles.

We applied this new PPM-Decay model in three experiments. The first experiment ana-

lyzed sequences generated from a statistical model whose underlying parameters evolved over

time, and verified that PPM-Decay better approximates an ideal observer than PPM when

applied to such sequences. The second experiment simulated a musically naive listener who

gradually learns to predict chord progressions through exposure to compositions from three

musical styles: popular music, jazz music, and chorale harmonizations by J. S. Bach. Again, we

found that PPM-Decay better approximated an ideal observer than the original PPM model.

The ideal model configuration incorporated a recency effect, reflecting how the underlying sta-

tistics of the chord progressions differ between compositions, and evolve during the course

of individual compositions. However, the model’s decay kernel also incorporated a positive

asymptote, allowing the model to develop long-term knowledge of certain statistical regulari-

ties that are shared between different compositions from the same musical style.

The third experiment revisited an auditory detection paradigm from [3], where participants

had to detect transitions between random and regular sections in tone sequences that varied in

alphabet size and tone length. The original authors found tentative evidence for auditory pat-

tern detection being constrained by the capacity limitations of echoic memory, but were

unable to determine whether these results reflected temporal limitations (e.g. echoic memory

only spans two seconds) or informational limitations (e.g. echoic memory can only hold up to

15 tones). We conducted a new behavioral experiment using stimuli designed to distinguish

these two possibilities, by varying tone duration and the number of tones in the regular pat-

terns independently. The resulting data implied that human performance stayed constant as

long as the relevant auditory input could fit within a buffer of limited itemwise capacity. We

formalized this explanation computationally with our PPM-Decay model, and showed that the

model could successfully reproduce the observed behavioral data, in contrast to simpler model

variants such as the original PPM model [3, 18, 43] or a PPM model with solely exponential

memory decay. Now, this particular experiment only provided a limited amount of data with

which to evaluate this relatively complex model, and it is difficult to dismiss the possibility

of alternative model configurations predicting the data equally well. Nonetheless, our model

provides a plausible hypothesis for how the observed response patterns came about, and our
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experiment provides a useful starting point for developing computational models that better

resemble human auditory prediction.

It is interesting to note how memory decay can behave both as a cognitive limitation (by

constraining the amount of information that can be retained by the observer) and an adaptive

strategy for predicting sequences whose statistical structure changes over time (by prioritizing

recent and hence more informative statistics). In line with these observations, it seems likely

that the dynamics of memory decay in human listeners reflect both the constraints of limited

cognitive resources and the mutability of natural auditory environments.

We anticipate that this PPM-Decay model should prove useful for other applications in

auditory modeling. The combination of the statistical power of PPM and the flexible decay

kernel makes the model well-suited to simulating online auditory statistical learning under

memory constraints and in changing statistical environments. A particularly relevant applica-

tion domain is music cognition, which has already made significant use of PPM models with-

out decay kernels [19–22, 48, 71]. Incorporating decay kernels into these models should be

useful for capturing how recency effects and memory limitations influence the probabilistic

processing of musical structure. However, the PPM-Decay algorithm itself is relatively

domain-agnostic, and should be applicable to any sequential domain where observations can

be approximated as discrete symbols drawn from a finite alphabet. We anticipate that our pub-

licly available R package “ppm” should prove useful for supporting such work (https://github.

com/pmcharrison/ppm).

An important avenue for future work is to improve our understanding of the ideal decay

kernels for different modeling applications. When optimizing a decay kernel for predictive

performance on a corpus of sequences, we learn about the statistical structure of that corpus,

specifically the sense in which historical events of different vintages contribute useful informa-

tion about upcoming events. Such analyses are particularly relevant to computational musicol-

ogy, where a common goal is to quantify statistical processes underlying music composition.

When optimizing a decay kernel to reproduce human performance, we learn about the predic-

tive strategies actually used by humans, and the sense in which they may be constrained by

cognitive limitations. The optimized decay kernel from Experiment 3 provides an initial

model that seems to account well for the behavioral data collected here, but further empirical

work is required to constrain the details of this model and to establish its generalizability to dif-

ferent experimental contexts.

A primary limitation of the PPM and PPM-Decay models is that they operate over discrete

representations, and do not model the process by which these discrete representations are

extracted from the auditory signal. This simplification is convenient when modeling systems

such as music and language, which are often well-suited to symbolic expression, but it is prob-

lematic when modeling continuous stimulus spaces. One solution to this problem is to adopt

continuous-input models [28, 72], where discretization plays no part; however, such models

typically struggle to capture the kinds of structural dependencies common in music and lan-

guage, and do not reflect the apparent importance of categorical perception in human auditory

perception [73]. One alternative way forward might be to prefix the PPM-Decay model with

an unsupervized discretization algorithm, such as k-means clustering [74].

The PPM-Decay algorithm can become computationally expensive with long input

sequences. In the naive implementation, the algorithm must store an explicit record of each n-

gram observation as it occurs, meaning that the time and space complexity for generating a

predictive distribution is linear in the length of the training sequence. However, particular

families of decay kernels can support more efficient implementations. For example, a decay

kernel comprising the sum of N exponential functions can be implemented as a set of N coun-

ters for each n-gram, each of which is incremented upon observing the respective n-gram,
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and each of which is decremented by a fixed ratio at each timestep. This implementation has

bounded time and space complexity with regard to the length of the training sequence. Such

approaches should be useful for speeding the application of the PPM-Decay model to large

datasets, and for improving its biological plausibility.

The PPM and PPM-Decay models assume that listeners process auditory stimuli by com-

puting transition probabilities from memories of n-gram observations. While n-gram models

seem to provide a good account of auditory processing [3, 16], they may not be sufficient to

explain all aspects of auditory learning. For example, n-gram models struggle to explain how

listeners can (albeit with some difficulty) learn non-adjacent dependencies [75, 76] or recur-

sive grammatical structures [10, 77]. Some of these phenomena might be explained by incor-

porating further modifications to the memory model; for example, non-adjacent dependencies

could be learned by combining n-gram modeling with the abstraction method of [78]. Other

phenomena, such as the acquisition of recursive grammars, might only be explained by alter-

native modeling approaches. This remains a challenge for future research.

The current PPM-Decay model uses memory decay to cope with changes in sequence sta-

tistics. This technique works well if sequence statistics are always changing to new, unfamiliar

values; however, in the natural world it is quite possible that historic sequence statistics end up

returning in the future. In such scenarios, it would be desirable to have retained a memory of

these historic statistics, and to reactivate this memory once it becomes relevant again. It seems

plausible that humans do something like this; for example, individuals who learn multiple lan-

guages seem able to learn separate models for each language, and switch between these models

according to context. Something similar may happen when individuals become familiar with

multiple musical styles [79]. In the domain of natural language processing, various techniques

have been developed that implement such a model switching process, with input sequences

being allocated to models using either prespecified assignments or unsupervised clustering

[80–83]. It would be worthwhile to incorporate similar techniques into the PPM-Decay model.

The memory-decay function in the PPM-Decay model currently only depends on the time-

points of event observations. However, one might expect memory retention to be influenced

by various other phenomena, such as attention [84, 85], or sleep consolidation [86–88].

Though such phenomena are not currently captured by the PPM-Decay model, it should be

possible to address them through various modifications to the memory-decay function with-

out having to modify the wider modeling framework.

The informational buffer capacity of the PPM-Decay model is currently defined as a fixed

number of items, implying that each auditory event occupies an identically sized portion of audi-

tory memory. However, it is possible that the auditory memory buffer is not restricted so much

by the number of events but rather by the amount of information that these events represent.

According to this proposition, highly expected or repetitive events would occupy less of the buffer,

hence increasing its effective itemwise capacity [63, 89]. It would be interesting to test a variant of

the PPM-Decay model that implements such a buffer, perhaps quantifying the information car-

ried by each event as its negative log probability according to the predictive model, after [90].

The PPM-Decay model addresses how listeners generate predictions based on a learned

generative model of sequential structure: the resulting predictions may be termed ‘schematic

expectations’. However, given sufficient exposure to particular sequences, listeners may memo-

rize the sequences themselves, allowing them to produce what may be termed ‘veridical expec-

tations’. While schematic expectations are relevant for individuals learning new languages and

new musical styles, veridical expectations are relevant for individuals memorizing passages of

literature or particular pieces of music. It seems that these two kinds of expectations may con-

stitute distinct psychological mechanisms [91, 92]; future work is required to understand how

well the PPM-Decay model can extend past schematic expectations to veridical expectations.
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We modeled musical corpora using PPM-Decay with an exponentially decaying memory

kernel. However, it has been argued that sequential dependencies in many natural sequences

(e.g. language, birdsong) have power-law decay, not exponential decay [93, 94]. To the extent

that music is characterized by syntactic expressivity greater than that of a probabilistic regular

grammar [95], we would also expect it to exhibit power-law dependencies [96]. It has been

argued that human memory also exhibits power-law decay, making it ideally suited to process-

ing natural language [94], though see [97–99] for reasons to be cautious. A natural follow-up

would therefore be to compare PPM-Decay models with exponential decay to equivalent mod-

els with power-law decay; if natural sequences and human memory are better characterized by

power-law decay, we would expect the latter models to generate more accurate sequence pre-

dictions and better simulations of participant behavior.

We chose to focus on extending PPM for the present work because PPM already plays an

important role in the predictive processing literature. However, there are many other algo-

rithms that could theoretically be used in its place. When choosing a potential replacement for

PPM, it is important to bear three principles in mind: a) how well the algorithm approximates

an ideal observer, as quantified by corpus modeling; b) how plausible the algorithm would be

as a cognitive model; c) how easily the algorithm can be customized to implement cognitively

motivated features. One prominent competitor from the data-compression literature is the

Lempel-Ziv algorithm [100], an example of a dictionary-coding model that can be formulated

as an incremental sequence prediction model like PPM [101–103]. Formulated this way, Lem-

pel-Ziv has a similar form to PPM, but one that trades PPM’s complex blending strategies for

increased computational efficiency. Consequently, PPM systematically outperforms Lempel-

Ziv algorithms on data compression benchmarks [103–105]; we therefore prefer PPM for our

purposes, as it provides a better approximation to an ideal observer. A second prominent com-

petitor from the data-compression literature is the PAQ family of algorithms, which takes the

n-gram blending principle of PPM as a starting point and adds many additional features, such

as neural networks for combining sub-models, two-dimensional contexts for modeling spread-

sheets, and specialized models for BMP, TIFF, and JPEG image formats [106]. While the PAQ

algorithms outperform PPM on standard data compression benchmarks [39], their specializa-

tion to computer file formats makes them implausible as cognitive models. A third potential

competitor from the machine-learning literature is the recurrent neural network, a model

that (given sufficiently many parameters and appropriate training) has a powerful universal

approximator property [107]. However, such networks typically require a lot of training data

to reach high performance levels, and it is difficult to see how they could incorporate fully cus-

tomizable memory decay functions (though some kinds of memory decay could be achieved

through a combination of online learning and regularization). In conclusion, we chose to use

PPM as it provides an effective balance of predictive power, cognitive plausibility, and custo-

mizability that makes it well-suited to modeling auditory predictive processing; nonetheless,

future research might profitably consider potential alternative models, and seek to collect cog-

nitive data that can help choose between such models.

Several alternative cognitive models of sequence prediction have explicitly Bayesian formu-

lations [29, 30, 72]. This approach is appealing because it formally motivates the predictive

algorithm from a set of assumptions about the underlying sequence statistics. Such approaches

can also be applied to mixed-order Markov models such as PPM, but typically they come with

substantially increased computational complexity [108], which may prove impractical for

many cognitive modeling applications. Nonetheless, it would be worth examining how the

present approaches might be motivated as computationally efficient approximations to Bayes-

optimal models.
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Methods

Ethics statement

The present research was approved by the research ethics committee of University College

London (Project ID Number: 1490/009). Written informed consent was obtained from each

participant.

Model

Our PPM-Decay model embodies a predictive processing account of auditory regularity detec-

tion. It supposes that listeners acquire an internal model of incoming sounds through auto-

matic processes of statistical learning, and use this model to generate prospective predictions

for upcoming auditory events. The model derives from the PPM algorithm [17, 43], but adds

three psychological principles:

a) The memory salience of a given observation decays as a function of the timepoints of subse-

quently observed events and the timepoint of memory retrieval.

b) There exists some noise, or uncertainty, in memory retrieval.

c) A limited-capacity memory buffer constrains learning and prediction. Contiguous events (n-

grams) must fit into this buffer to be internalized or to contribute to prediction generation.

Each of these three features can be enabled or disabled in isolation. In ideal-observer analy-

ses, such as Experiments 1 and 2, it often makes sense to omit features b) and c), because they

correspond to cognitive constraints that typically impair prediction. Here we therefore omit

these two features for the ideal-observer analyses (Experiments 1 and 2), but retain them for

the behavioral analyses in Experiment 3.

Many variants of PPM exist in the literature [17, 40, 43, 109]. Our formulation incorporates

the interpolated smoothing technique of [43], but avoids techniques such as Kneser-Ney

smoothing, exclusion, update exclusion, and state selection, because it is not obvious how to

generalize these techniques to decay-based models where n-gram counts can fall between zero

and one, and because we do not yet have compelling evidence that human cognition employs

analogous methods. Nonetheless, an interesting topic for future work is to explore the cogni-

tive relevance and potential computational implementations of these techniques.

Domain. The model assumes that the auditory input can be represented as a sequence of

symbols drawn from a discrete alphabet; the cognitive processes involved in developing this

discrete representation are not addressed here. Let A denote the discrete alphabet, let () denote

an empty sequence, and let eN
1
¼ ðe1; e1; . . . ; eNÞ denote a sequence of N symbols, where ei 2 A

is the ith symbol in the sequence, and eji is defined as

eji ¼
ðei; eiþ1; . . . ; ejÞ if i � j;

ðÞ otherwise:

(

We suppose that this sequence is presented over time, and denote the timepoint of the ith sym-

bol as τi.
Now suppose that EN

1
is a random variable corresponding to a sequence of length N. We

consider an observer predicting each symbol of En
1

based on the previously observed symbols.

This corresponds to the probability distribution PðEi ¼ eijEi� 1
1
¼ ei� 1

1
Þ, which we will abbrevi-

ate as Pðeijei� 1
1
Þ. The model is tasked with estimating this conditional probability distribution.

Learning. The model learns by counting occurrences of different sequences of length n
termed n-grams (n 2 Nþ), where n is termed the n-gram order. As in PPM, the model counts
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n-grams for all n� nmax (nmax 2 N
þ

), where nmax is the n-gram order bound. A three-symbol

sequence (e1, e2, e3) contains six n-grams: (e1), (e2), (e3), (e1, e2), (e2, e3), and (e1, e2, e3).

We suppose that n-grams are extracted from a finite-capacity buffer (Fig 9). Successive

symbols enter and leave this buffer in a first-in first-out arrangement, so that the buffer repre-

sents a sliding window over the input sequence. The buffer has two capacity limitations: item-
wise capacity and temporal capacity. The itemwise capacity, nb, determines the maximum

number of symbols stored by the buffer; the temporal capacity, tb, determines the maximum

amount of time that a given symbol can remain in the buffer before expiry. Generally speaking,

itemwise capacity will be the limiting factor at fast presentation rates, whereas temporal capac-

ity will be the limiting factor at slow presentation rates. As n-grams may only be extracted if

they fit completely within the buffer, these capacities bound the order of extracted n-grams.

Correspondingly, we constrain nmax (the n-gram order bound) not to exceed nb (the itemwise

buffer capacity).

In PPM, n-gram observations are recorded by incrementing a counter. Our PPM-Decay

model also stores the ordinal position within the input sequence when the observation

occurred; this is necessary for simulating the temporal dynamics of auditory memory. For

Fig 9. Schematic figure of accumulating observations within a memory buffer. Weights for the n-gram “AB” are displayed

as a function of time, assuming an itemwise buffer capacity (nb) of 5, a buffer weight (w0) of 1.5, an initial post-buffer weight

(w1) of 1, a half life (t0.5) of 1 second, and an asymptotic post-buffer weight (w1) of 0.

https://doi.org/10.1371/journal.pcbi.1008304.g009
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each n-gram x, we define count(x) as the total number of observations of x, and pos(x) as a list

of ordinal positions in the input sequence when these observations occurred, defined with

respect to the final symbol in the n-gram. pos(x) is initialized as an empty list; each time a new

n-gram x is observed, the respective ordinal position is appended to the list. count(x) is then

represented implicitly as the length of pos(x).

The input sequence is processed one symbol at a time, from beginning to end. Observing

the ith symbol, ei, yields up to nmax n-gram observations, corresponding to all n-grams in the

buffer that terminate with the most recent symbol: feii� nþ1
: n � min ði; nmaxÞg. If the buffer

component of the model is enabled, an n-gram observation will only be recorded if it fits

completely within the itemwise and temporal capacities of the buffer; the former constraint is

ensured by the constraint that nmax� nb, but the latter must be checked by comparing the cur-

rent timepoint (corresponding to the final symbol in the n-gram) with the timepoint of the

first symbol of the n-gram. If the current ordinal position is written posend, and the n-gram

length is written size(x), then the necessary and sufficient condition for n-gram storage is

timeend � timestart � tb

where

timeend ¼ tposend

timestart ¼ tposstart
posstart ¼ posend � sizeðxÞ þ 1;

τi is the ith timepoint in the input sequence, and tb is the temporal buffer capacity, as before.

Table 2 describes the information potentially learned from training on the sequence (a, b, a).

Memory decay. In the original PPM algorithm, the influence of a given n-gram observa-

tion is not affected by the passage of time or the encoding of subsequent observations. This

contrasts with the way in which human observers preferentially weight recent observations

over historic observations [26, 27, 29–31, 44, 110]. This inability to capture recency effects lim-

its the validity of PPM as a cognitive model.

Here we address this problem. We suppose that the influence, or weight, of a given n-gram

observation varies as a function both of the current timepoint and the timepoints of the sym-

bols that have since been observed. This weight decay function represents the following

hypotheses about auditory memory:

1. Each n-gram observation begins in the memory buffer (Fig 9). Within this buffer, observa-

tions do not experience weight decay.

2. Upon leaving the buffer, observations enter a secondary memory store. This transition is

accompanied by an immediate drop in weight.

Table 2. n-grams learned from training on the sequence a, b, a.

x count(x) pos(x)

(a) 2 1, 3

(b) 1 2

(a, b) 1 2

(b, a) 1 3

(a, b, a) 1 3

https://doi.org/10.1371/journal.pcbi.1008304.t002
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3. While in the secondary memory store, observations experience continuous weight decay

over time, potentially to a non-zero asymptote.

These hypotheses must be considered tentative, given the scarcity of empirical evidence

directly relating memory constraints to auditory prediction. However, the notion of a short-

lived memory buffer is consistent with pre-existing concepts of auditory sensory memory [23–

25], and the continuous-decay phenomenon is consistent with well-established recency effects

in statistical learning [26, 27, 29–31, 44, 110].

We formalize these ideas as follows. For readability, we write pos(x, i) for the ith element of

pos(x), corresponding to the ordinal position of the ith observation of n-gram x within the

input sequence, defined with respect to the final symbol of the n-gram. Similarly, we write

time(x, i) as an abbreviation of τpos(x, i), the timepoint of the ith observation of n-gram x. We

then define w(x, i, t) as the weight for the ith observation of n-gram x for an observer situated

at time t:

wðx; i; tÞ ¼
w0 if t � timeexpireðx; iÞ;

w1 þ ðw1 � w1Þf ðt � timeexpireðx; iÞÞ otherwise:

(

Here w0 is the buffer weight, w1 is the initial post-buffer weight, and w1 is the asymptotic post-
buffer weight (w0� w1� w1� 0). The function f defines an exponential decay with half-life

equal to t0.5, with t0.5 > 0:

f ðtÞ ¼ expð� ltÞ

l ¼ log ð2Þ=t0:5:

timeexpire(x, i) denotes the timepoint at which the ith observation of n-gram x expires from the

buffer, computed as the earliest point when either the temporal capacity or the itemwise capac-

ity expires. The temporal capacity expires when tb seconds have elapsed since the first symbol

in the n-gram, whereas the itemwise capacity expires when nb symbols have been observed

since the first symbol in the n-gram:

timeexpireðx; iÞ ¼ min ðtimetemporal expiryðx; iÞ; timeitemwise expiryðx; iÞÞ

timetemporal expiryðx; iÞ ¼ timebeginðx; iÞ þ tb
timebeginðx; iÞ ¼ tposbeginðx;iÞ

posbeginðx; iÞ ¼ posðx; iÞ � sizeðxÞ þ 1

timeitemwise expiryðx; iÞ ¼

(
1 if positemwise expiryðx; iÞ > N;

tpositemwise expiryðx;iÞ
otherwise;

positemwise expiryðx; iÞ ¼ posbeginðx; iÞ þ nb:

An illustrative memory-decay profile is shown in Fig 10.

Memory traces accumulate over repeated observations of the same n-gram. We define

W(x, t), the accumulated weight for an n-gram x, as

Wðx; tÞ ¼
X

i:1�i�countðxÞ

wðx; i; tÞ:

As currently specified, memory decay does not necessarily cause forgetting, because the

same information may be preserved in the ratios of n-gram weights even as the absolute values

of the weights shrink. For example, consider a pair of n-grams AB and AC with weights 4 and
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1 respectively, both undergoing exponential decay to an asymptotic weight of 0. From these n-

gram weights, the model can estimate the probability that B follows A as p(B|A) = 4/(4 + 1) =

0.8. After one half-life, the new counts are 2 and 0.5 respectively, but the maximum-likelihood

estimate remains unchanged: p(B|A) = 2/(2 + 0.5) = 0.8.

A better account of forgetting can be achieved by supposing that memory traces must com-

pete with noise factors introduced by imperfections in auditory memory; in this case, shrink-

ing the absolute values of n-gram weights decreases their signal-to-noise ratio and hence

induces forgetting. Here we model imperfections in memory retrieval by adding truncated

Gaussian noise to the retrieved weights:

W�ðx; tÞ ¼Wðx; tÞ þ max ð0; �Þ ð1Þ

where W�(x, t) is the retrieved weight of n-gram x at time t, and � � Nð0; s2
�
Þ represents

Gaussian noise uncorrelated across n-grams or timepoints. Setting s2
�

to zero disables the

noise component of the model.

Prediction. Traditionally, a maximum-likelihood n-gram model estimates the probability

of symbol ei given context ei� 1
1

by taking all n-grams beginning with ei� 1
i� nþ1

and finding the pro-

portion that continued with ei. For n� i:

Pðeijei� 1
1
Þ � P̂nðeijei� 1

1
Þ ¼

(
1=jAj Cnðei� 1

1
Þ ¼ 0;

cðeii� nþ1
Þ=Cnðei� 1

1
Þ otherwise:

Cnðei� 1
1
Þ ¼

X

x2A

cðei� 1

i� nþ1
:: xÞ

where P̂n denotes an n-gram probability estimator of order n, cðejiÞ is the number of times n-

gram cðejiÞ occurred in the training set, and eji :: x denotes the concatenation of sequence eji and

Fig 10. Illustrative weight decay profile. This figure plots the weight of an n-gram of length one as a function of

relative observer position, assuming that new symbols continue to be presented every 0.05 seconds. Model parameters

are set to tb = 2, nb = 15, w0 = 1.0, t0.5 = 3.5, w1 = 0.6, and w1 = 0, as optimized in Experiment 3.

https://doi.org/10.1371/journal.pcbi.1008304.g010
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symbol x. The n-gram model predicts from the previous n − 1 symbols, and therefore consti-

tutes an (n − 1)th-order Markov model. Note that the estimator defaults to a uniform distribu-

tion if Cnðei� 1
1
Þ ¼ 0, when the context has never been seen before. Note also that the predictive

context of a 1-gram model is the empty sequence ei� 1
i ¼ ðÞ.

To incorporate memory decay into a maximum-likelihood n-gram model, we replace the

count function c with the retrieval weight function W�. For n� i:

Pðeijei� 1
1
Þ � P̂nðeijei� 1

1
Þ ¼

(
1=jAj Tnðei� 1

1
Þ ¼ 0;

W�ðeii� nþ1
; timeðeiÞÞ=Tnðei� 1

1
Þ otherwise:

Tnðei� 1
1
Þ ¼

X

x2A

W�ðei� 1

i� nþ1
:: x; timeðeiÞÞ

This decay-based model degenerates to the original maximum-likelihood model when w0 = 1,

tb!1, nb!1, σ� = 0 (i.e. an infinite-length memory buffer with unit weight and no

retrieval noise).

High-order n-gram models take into account more context when generating their predic-

tions, and are hence capable of greater predictive power; however, this comes at the expense of

greater tendency to overfit to training data. Conversely, low-order models are more robust to

overfitting, but this comes at the expense of lower structural specificity. Smoothing techniques

combine the benefits of both high-order and low-order models by merging n-gram models of

different orders, with model weights varying according to the amount of training data. Here

we use interpolated smoothing as introduced by [43, 104]. For n� i, the unnormalized inter-

polated n-gram estimator is recursively defined as a weighted sum of the nth-order maximum-

likelihood estimator and the (n − 1)th-order interpolated estimator:

P̂�nðeije
i� 1
1
Þ ¼

(
1=ðjAj þ 1Þ if n ¼ 0;

P̂nðeijei� 1
1
Þanðei� 1

1
Þ þ ð1 � anðei� 1

1
ÞÞP̂�n� 1

ðeijei� 1
1
Þ otherwise;

ð2Þ

where P̂�n is the nth-order unnormalized interpolated n-gram estimator, P̂n is the nth-order

maximum-likelihood estimator, jAj is the alphabet size, and an is a function of the context

sequence that determines how much weight to assign to P̂n, the maximum-likelihood n-gram

estimator of order n.

The unnormalized interpolated estimator defines an improper probability distribution that

does not necessarily sum to 1. We therefore define P̂��n as the normalized interpolated estima-

tor:

P̂��n ðeije
i� 1

1
Þ ¼

P̂�nðeije
i� 1
1
Þ

P
x2AP̂�nðxjei� 1

1
Þ

for n � i:

Note that the need for normalization can alternatively be avoided by redefining P̂�nðeije
i� 1
1
Þ ¼

1=jAj for n = 0 in Eq (2), meaning that the interpolated smoothing terminates with a proper

probability distribution. However, we keep the original definition to preserve equivalence with

[43] and [18].

The weighting function an corresponds to the so-called “escape mechanism” of the original

PPM algorithm. [111] review five different escape mechanisms, termed “A” [17], “B” [17], “C”

[40], “D” [112], and “AX” [113] [43, 104], each corresponding to different weighting functions

an. Of these, “C” tends to perform the best in data compression benchmarks [111]. However,

methods “B”, “C”, “D”, and “AX” do not generalize naturally to decay-based models; in
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particular, it is difficult to ensure that the influence of an observation is a continuous function

of its retrieved weight w�. We therefore adopt mechanism “A”.

In its original formulation, mechanism “A” gives the higher-order model a weight of an = 1

− 1/(1 + Tn), where Tn is the number of times the predictive context has been seen before

(which can be interpreted as the observer’s familiarity with the preceding sequence of n − 1

tokens). When the context has never been seen before, Tn = 0 and an = 0, and the estimator

relies fully on the lowest-order model; as Tn!1, an! 1, and the estimator relies fully on the

highest-order model. In the original PPM algorithm, the number of times that the predictive

context has been seen before is equal to the sum of the weights (or counts) for each possible

continuation:

Tnðe
i� 1

1
Þ ¼

X

x2A

W�ðei� 1

i� nþ1
:: x; timeðeiÞÞ:

Introducing memory-decay reduces the weights for these prior observations, decreasing the

model’s effective experience, and preferentially weighting lower-order models, as might be

expected. However, retrieval noise is problematic, because it positively biases the retrieved

weights (see Eq (1)), causing the algorithm to overestimate its familiarity with its predictive

context, and to overweight high-order predictive contexts as a result. We compensate for this

by subtracting the expected value of the retrieval noise’s contribution to Tn, which can be com-

puted from standard results for the truncated normal distribution as s�
ffiffi
2

p

p
, and truncating at

zero:

T�n ei� 1

1

� �
¼ max 0;Tn ei� 1

1

� �
� s�

ffiffiffi
2

p

r !

:

Putting this together, we have (for i� n):

anðei� 1
1
Þ ¼ 1 � 1=ð1þ T�nðe

i� 1
1
ÞÞ

T�nðe
i� 1
1
Þ ¼ max 0;Tn ei� 1

1

� �
� s�

ffiffiffi
2

p

r !

Tnðei� 1
1
Þ ¼

X

x2A

W�ðei� 1

i� nþ1
:: x; timeðeiÞÞ:

For its final output, the model selects the maximum-order available normalized interpo-

lated estimator. The available orders are constrained by three factors:

1. The n-gram order bound: the model cannot predict using n-grams larger than nmax.

2. The sequence: the predictive context must fit within the observed sequence.

3. The buffer: the predictive context must fit within the buffer at the point when the incoming

symbol is observed.

Putting this together, the selected n-gram order for generating predictions from a context

of ei� 1
1

becomes:

orderðei� 1

1
Þ ¼ maxfy 2 f0; 1; . . . ; nmaxg : y � i; ti � ti� yþ1 � tbg:
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The final model output is then:

Pðeije
i� 1

1
Þ � P̂��orderðei� 1

1
Þ
ðeije

i� 1

1
Þ:

The n-gram order bound, nmax, constrains the length of n-grams that are learned by the

model. However, it is often more convenient to speak in terms of the model’s Markov order,
mmax, defined as the number of preceding symbols that contribute towards prediction genera-

tion. A single n-gram model generates predictions with a Markov order of n − 1; correspond-

ingly, mmax = nmax − 1.

Fig 11 illustrates the interpolated smoothing mechanism. Here we imagine that a model

with a Markov order bound of two processes the sequence “abracadabra”, one letter at a time,

Fig 11. Illustration of the interpolated smoothing mechanism. This smoothing mechanism blends together maximum-likelihood n-gram models of

different orders. Here the Markov order bound is two, the predictive context is “abracadabra”, and the task is to predict the next symbol. Columns are

identified by Markov order; rows are organized into weight distributions, maximum-likelihood distributions, and interpolated distributions. Maximum-

likelihood distributions are created by normalizing the corresponding weight distributions. Interpolated distributions are created by recursively combining

the current maximum-likelihood distribution with the next-lowest-order interpolated distribution. The labelled arrows give the weight of each distribution,

as computed using escape method “A”. The “Order = −1” column identifies the termination of the interpolated smoothing, and does not literally mean a

Markov order of −1.

https://doi.org/10.1371/journal.pcbi.1008304.g011
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and then tries to predict the next symbol. The highest-order interpolated distribution, at a

Markov order of two, is created by averaging the order-2 maximum-likelihood distribution

with the order-1 interpolated distribution, which is itself created by averaging the order-1

maximum-likelihood distribution with the order-0 interpolated distribution. The resulting

interpolated distribution combines information from maximum-likelihood models at every

order.

We have implemented the resulting model in a freely available R package, “ppm”, the core

of which is written in C++ for speed. With this package, it is possible to define a PPM-Decay

model customized by the eight hyperparameters summarized in Table 3. The package also sup-

ports simpler versions of PPM-Decay, where (for example) the buffer functionality is disabled

but the exponential-decay functionality is preserved. The resulting models can then be evalu-

ated on arbitrary symbolic sequences. The package may be accessed from its open-source

repository at https://github.com/pmcharrison/ppm or its permananent archive at https://doi.

org/10.5281/zenodo.2620414.

Musical corpora

Popular corpus. This corpus was derived from the McGill Billboard corpus of [51], a

dataset of popular music sampled from the Billboard ‘Hot 100’ charts between 1958 and 1991.

The sampling algorithm was designed such that the composition dates should be approxi-

mately uniformly distributed between 1958 and 1991, and such that composition popularity

should be approximately uniformly distributed across the range of possible chart positions (1–

100). Having sampled 1,084 compositions with this algorithm, [51] had expert musicians tran-

scribe the underlying chord sequences of these compositions. These transcriptions took a tex-

tual format, where each chord was represented as a combination of a root pitch class (e.g. ‘Ab’)

and a chord quality (e.g. ‘maj’). For example, the following text represents the beginning of

‘Night Moves’ by Bob Seger:

| Ab:maj | Ab:maj . . Gb:maj | Db:maj | Db:maj . . Gb:maj |
As is common in harmonic analyses, these transcriptions characterize chords in terms of

their constituent pitch classes. A pitch class is an equivalence class of pitches under octave
transposition; octave transposition means shifting a pitch by twelve semitones, which is equiva-

lent to multiplying (or dividing) its fundamental frequency by a power of two.

This ‘root + chord quality’ representation is intuitive for performing musicians, but it is

problematic for cognitive modeling in that the chord root is a subjective music-theoretic con-

struct. We therefore translated these textual representations into sequences of pitch-class
chords, defined as the combination of a bass pitch class with a set of non-bass pitch classes

[114]. We performed this translation using the chord dictionary from the hrep software

Table 3. Summary of PPM-Decay hyperparameters.

Symbol Name Description

mmax Markov order bound Maximum length of conditioning context

tb Temporal buffer capacity Time after which observation is expunged from buffer

nb Itemwise buffer capacity Maximum number of symbols that can fit in buffer

w0 Buffer weight Weight of n-gram while in buffer

t0.5 Half life Half life of the exponential-decay phase

w1 Initial post-buffer weight Weight of n-gram immediately after leaving buffer

w1 Asymptotic post-buffer weight Weight of n-gram as time tends to infinity

σ� Retrieval noise Scale parameter for the retrieval noise distribution

https://doi.org/10.1371/journal.pcbi.1008304.t003
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package [114]. For this and the following corpora, an integer chord encoding was then derived

by enumerating each unique chord observed in the respective corpus.

Harmonic analyses often do not systematically differentiate between one long chord and

several repetitions of the same chord. In this and the following corpora we therefore collapsed

consecutive repetitions of the same chord into single chords, as well as omitting all explicitly

marked section repeats from the original transcriptions.

At the time of writing, only part of the Billboard corpus had been publicly released, the

remainder being retained for algorithm evaluation purposes. Here we used the 739 transcrip-

tions available at the time of writing, having removed transcriptions corresponding to dupli-

cate compositions.

Fig 3A shows the resulting transcription for the first eight chords of ‘Night Moves’. The full

corpus is available in the hcorp R package alongside the other two musical corpora used in this

paper (https://doi.org/10.5281/zenodo.2545754).

Jazz corpus. This corpus was derived from the iRb corpus of [52], a dataset of lead sheets

for jazz compositions as compiled from an Internet forum for jazz musicians. Broze and Sha-

nahan converted these lead sheets into a textual representation format termed ��jazz, which

(similar to the McGill Billboard corpus) expresses each chord as a combination of a root pitch

class and a chord quality, alongside its metrical duration expressed as a number. For example,

the following text represents the beginning of ‘Thanks for the Memory’ by Leo Robin:

2G:min7
2C7
=
1F6
=
2F6
2F#o7
=
4G:min7
4C7
2F6
=
2F#o7
2G:min7
=
2Ao7
2B-6
=
As with the popular music corpus, we translated these textual representations into

sequences of pitch-class chords using the chord dictionary from the hrep package [114], and

eliminated consecutive repetitions of the same chord. Fig 3B shows the result for the first eight

chords of ‘Thanks for the Memory’.

Bach chorale corpus. This corpus was derived from the ‘371 chorales’ dataset from the

KernScores repository [53]. This dataset comprises four-part chorale harmonizations by J. S.

Bach, as collected by his son C. P. E. Bach and his student Kirnberger, and eventually digitally

encoded by Craig Sapp. The 150th chorale harmonization is omitted from Sapp’s dataset as it

is not in four parts, leaving 370 chorales in total. This dataset uses the ��kern representation

scheme [115], designed to convey the core semantic information of traditional Western music

notation. For example, the following text represents the first two bars of the chorale harmoni-

zation ‘Mit Fried und Freud ich fahr dahin’:
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4D 4F 4A 4d
=1 =1 =1 =1
4C# 4A 4e 4a
4D 4d 4f 4a
4E 4B 4e 4g
8F#L 8AL 8dL 4dd
8G#J 8BJ 8eJ .
=2 =2 =2 =2
4A 8cnXL 8eL 4ccnX
. 8dJ 8f#J .
4E 8eL 4g# 4b
. 8dJ . .
4AA; 4c; 4e; 4a;
4E [4c 4g 4cc
=3 =3 =3 =3
We derived chord sequences from these ��kern representations by applying the harmonic

analysis algorithm of [54], which selects from a dictionary of candidate chords using a tem-

plate-matching procedure. Here we used an extended version of this template dictionary,

described in Table 4.

We computed one chord for each quarter-note beat, reflecting the standard harmonic

rhythm of the Bach chorale style, and collapsed consecutive repetitions of the same chord into

one chord, as before. Fig 3C shows the result for the first eight chords of the chorale harmoni-

zation ‘Mit Fried und Freud ich fahr dahin’.

Behavioral experiment

Stimuli and procedure. Each stimulus comprised a sequence of tones, with each tone

gated on and off with 5-ms raised cosine ramps. Tone frequencies were drawn from a pool of

20 values equally spaced on a logarithmic scale between 222 Hz and 2,000 Hz. Tone length was

always constant within a given trial and across trials in a block. Across blocks, three different

Table 4. The dictionary of chord templates used in constructing the Bach chorale corpus.

Pitch classes Label Weight

[0, 4, 7, 11] maj7 0.2

[0, 3, 7, 10] min7 0.2

[0, 4, 8] aug 0.02

[0, 7] no3 0.05

[0, 7, 10] min7no3 0.05

[0, 4, 7] maj 0.436

[0, 7, 4, 10] dom7 0.219

[0, 3, 7] min 0.194

[0, 3, 6, 9] dim7 0.044

[0, 3, 6, 10] hdim7 0.037

[0, 3, 6] dim 0.018

Each row identifies a different template. Each template comprises a set of pitch classes, expressed relative to the chord

root. Applied to a collection of pitch classes within a harmonic segment, Pardo and Birmingham’s [54] algorithm

evaluates each candidate template with the respect to each of the 12 possible chord roots, and selects the template and

root combination that best reflect the pitch-class content of the harmonic segment. Ties are broken using the ‘weight’

attribute; templates with higher weights are given priority.

https://doi.org/10.1371/journal.pcbi.1008304.t004
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tone durations were used (25, 50 and 75 ms). Individual stimuli ranged in length between 117

and 160 tones and in duration between 3,250 and 11,025 ms.

Four stimulus types were defined: ‘CONT’, ‘STEP’, ‘RAND’, and ‘RAND-REG’. CONT and

RAND trials contained no section change: CONT trials constituted one repeated tone of a

given frequency, and RAND trials constituted randomly sampled tones from the full frequency

pool, with the constraint that final tone counts were balanced by the end of the stimulus. STEP

and RAND-REG trials each contained exactly one section change, occurring between 80 and

90 tones after sequence onset. Each section of a STEP trial comprised one repeated tone of a

given frequency, with the section change constituting a change in frequency. RAND-REG tri-

als comprised an initial random section, constructed under the same constraints as RAND tri-

als, followed by a REG section constituting repeated iterations of a sequence of tones sampled

randomly from the frequency pool without replacement. These repeating sequences comprised

either 10 or 20 tones, depending on the block, with the REG section always comprising at least

three repeating cycles. All stimuli were generated anew at each trial, and RAND and RAN-

D-REG sequences occurred equiprobably.

The experimental session was delivered in 6 blocks, each containing 80 stimuli of a

given tone length and alphabet size (35 RAND-REG, 35 RAND, 5 STEP, and 5 CONT),

with the inter-stimulus interval jittered between 700 and 1100 ms, and with block duration

ranging between 5.7 and 17.4 minutes. The order of blocks was randomized across partici-

pants. Before starting, participants were familiarized with the task with a short training

session comprising six short blocks of 12 trials each, representing the same conditions as

the main experiment. Stimuli were presented with the PsychToolBox in MATLAB (9.2.0,

R2017a) in an acoustically shielded room and at a comfortable listening level selected by

each listener.

Participants were encouraged to detect the transition as fast as possible. Correspondingly,

feedback about response accuracy and speed was delivered at the end of each trial. This feed-

back consisted of a green circle if the response fell between the first and the second cycle of the

regularity, or before 400 ms from the change of tone in the STEP condition; for slower RTs, an

orange circle was displayed.

The RAND-REG trials were of primary interest for our analyses. We used the STEP trials to

estimate baseline response times, computed separately for each participant within each block

using correct responses only, and normalized the RAND-REG response times by subtracting

these baseline response times. We excluded all RAND-REG trials where the participant

responded incorrectly, and interpreted RAND and CONT trials as foils for the change-detec-

tion task.

Participants. We collected data from 25 paid participants (20 females; mean age 24.17, SD
age = 3.17). Data from two participants were discarded due to overly slow reaction times on

the STEP condition (mean reaction time more than three standard deviations from the mean).

Preprocessing reaction time data. We discarded 530 trials where participants responded

incorrectly, and then normalized each participant’s reaction times by subtracting the mean

reaction time to all correctly answered STEP trials in the same block. We then retained all

RAND-REG trials where the normalized reaction times fell within two standard deviations

from the mean for a given combination of participant, tone duration, and cycle length. This

left 4,439 trials.

Modeling reaction time data

We modeled participants’ reaction times using the new PPM-Decay model presented in

Model. We modeled each trial separately, resetting the model’s memory after each trial.
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We modeled participants’ change detection processes using a non-parametric change-

detection algorithm that sequentially applies the Mann-Whitney test to identify changes in a

time series’ location while controlling the false positive rate [69, 116]. We used the algorithm

as implemented in the ‘cpm’ R package [116], setting the desired false positive rate to one in

10,000, and the algorithm’s warm-up period to 20 tones.

For comparison with the participant data, we computed representative model reaction

times for each condition by taking the mean reaction time over all trials where the model

successfully detected a transition, excluding any trials where the model reported a

transition before the effective transition (this resulted in excluding 0.32% of trials). We

used R and C++ for our data analyses [117]; our PPM-Decay implementation is available at

https://github.com/pmcharrison/ppm and https://doi.org/10.5281/zenodo.2620414. Raw

data, analysis code, and generated outputs are archived at https://doi.org/10.5281/zenodo.

3603058.
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