Learning with Kernels

Bernhard Schölkopf
Max-Planck-Institut für biologische Kybernetik
72076 Tübingen, Germany
bs@tuebingen.mpg.de
Roadmap

- Elements of Statistical Learning Theory
- Kernels and feature spaces
- Support vector algorithms and other kernel methods
- Applications
Roadmap of Today

• Informal introduction to ideas of machine learning
• Learning theory: Uniform convergence
Learning and Similarity: some Informal Thoughts

• input/output sets \mathcal{X}, \mathcal{Y}
• training set $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathcal{Y}$
• “generalization”: given a previously unseen $x \in \mathcal{X}$, find a suitable $y \in \mathcal{Y}$
• (x, y) should be “similar” to $(x_1, y_1), \ldots, (x_m, y_m)$
• how to measure similarity?
 – for outputs: loss function (e.g., for $\mathcal{Y} = \{\pm 1\}$, zero-one loss)
 – for inputs: kernel

B. Schölkopf, Canberra, February 2006
Similarity of Inputs

• symmetric function
 \[k : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \]
 \[(x, x') \mapsto k(x, x') \]

• for example, if \(\mathcal{X} = \mathbb{R}^N \): canonical dot product
 \[k(x, x') = \sum_{i=1}^{N} [x]_i [x']_i \]

• if \(\mathcal{X} \) is not a dot product space: assume that \(k \) has a representation as a dot product in a linear space \(\mathcal{H} \), i.e., there exists a map \(\Phi : \mathcal{X} \to \mathcal{H} \) such that
 \[k(x, x') = \langle \Phi(x), \Phi(x') \rangle . \]

• in that case, we can think of the patterns as \(\Phi(x), \Phi(x') \), and carry out geometric algorithms in the dot product space (“feature space”) \(\mathcal{H} \).
An Example of a Kernel Algorithm

Idea: classify points \(\mathbf{x} := \Phi(x) \) in feature space according to which of the two class means is closer.

\[
\mathbf{c}_+ := \frac{1}{m_+} \sum_{y_i=1} \Phi(x_i), \quad \mathbf{c}_- := \frac{1}{m_-} \sum_{y_i=-1} \Phi(x_i)
\]

Compute the sign of the dot product between \(\mathbf{w} := \mathbf{c}_+ - \mathbf{c}_- \) and \(\mathbf{x} - \mathbf{c} \).
An Example of a Kernel Algorithm, ctd. [56]

\[f(x) = \text{sgn} \left(\frac{1}{m_+} \sum_{i:y_i=+1} \langle \Phi(x), \Phi(x_i) \rangle - \frac{1}{m_-} \sum_{i:y_i=-1} \langle \Phi(x), \Phi(x_i) \rangle + b \right) \]

\[= \text{sgn} \left(\frac{1}{m_+} \sum_{i:y_i=+1} k(x, x_i) - \frac{1}{m_-} \sum_{i:y_i=-1} k(x, x_i) + b \right) \]

where

\[b = \frac{1}{2} \left(\frac{1}{m_-^2} \sum_{(i,j):y_i=y_j=-1} k(x_i, x_j) - \frac{1}{m_+^2} \sum_{(i,j):y_i=y_j=+1} k(x_i, x_j) \right). \]

- provides a geometric interpretation of Parzen windows
- the decision function is a hyperplane. Will it generalize well?
An Example of a Kernel Algorithm, ctd.

- Demo
- Exercise: derive the Parzen windows classifier by computing the distance criterion directly
Statistical Learning Theory

1. started by Vapnik and Chervonenkis in the Sixties
2. model: we observe data generated by an unknown stochastic regularity
3. learning = extraction of the regularity from the data
4. the analysis of the learning problem leads to notions of capacity of the function classes that a learning machine can implement.
5. support vector machines use a particular type of function class: classifiers with large “margins” in a feature space induced by a kernel.

[72, 73]
Example: Regression Estimation

- **Data:** input-output pairs \((x_i, y_i) \in \mathbb{R} \times \mathbb{R}\)
- **Regularity:** \((x_1, y_1), \ldots (x_m, y_m)\) drawn from \(P(x, y)\)
- **Learning:** choose a function \(f : \mathbb{R} \rightarrow \mathbb{R}\) such that the error, averaged over \(P\), is minimized.
- **Problem:** \(P\) is unknown, so the average cannot be computed — need an “induction principle”
Example: Pattern Recognition
Pattern Recognition

Learn $f : \mathcal{X} \rightarrow \{\pm 1\}$ from examples

$$(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \{\pm 1\},$$

generated i.i.d. from $P(x, y)$, such that the expected misclassification error on a test set, also drawn from $P(x, y)$,

$$R[f] = \int \frac{1}{2}|f(x) - y| \, dP(x, y),$$

is minimal (Risk Minimization (RM)).

Problem: P is unknown. \rightarrow need an induction principle.

Empirical risk minimization (ERM): replace the average over $P(x, y)$ by an average over the training sample, i.e. minimize the training error

$$R_{\text{emp}}[f] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}|f(x_i) - y_i|$$
Risk minimization

- Regression estimation. RM: minimize

\[R[f] = \int (f(x) - y)^2 \, dP(x, y) \]

— leads to the regression \(y(x) = \int y \, dP(y|x) \).

ERM gives least mean squares: minimize

\[\sum_i (f(x_i) - y_i)^2 \]

- Density estimation. RM: minimize

\[R[f] = \int (- \log p(x)) \, dP(x) \]

ERM gives maximum likelihood estimation: maximize

\[\sum_i \log p(x_i) = \log(\prod_i p(x_i)) \]
Convergence of Means to Expectations

Law of large numbers:

\[R_{\text{emp}}[f] \to R[f] \]

as \(m \to \infty \).

Does this imply that empirical risk minimization will give us the optimal result in the limit of infinite sample size ("consistency" of empirical risk minimization)?

No.

Need a uniform version of the law of large numbers. Uniform over all functions that the learning machine can implement.
Consistency and Uniform Convergence

Risk

Function class

$R_{\text{emp}}[f]$

$R[f]$

f

f_{opt}

f^m

R

R_{emp}

B. Schölkopf, Canberra, February 2006
The Importance of the Set of Functions

What about allowing all functions from \mathcal{X} to $\{\pm 1\}$?

Training set $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \{\pm 1\}$

Test patterns $\bar{x}_1, \ldots, \bar{x}_m \in \mathcal{X}$,
such that $\{\bar{x}_1, \ldots, \bar{x}_m\} \cap \{x_1, \ldots, x_m\} = \{\}$. For any f there exists f^* s.t.:

1. $f^*(x_i) = f(x_i)$ for all i
2. $f^*(\bar{x}_j) \neq f(\bar{x}_j)$ for all j.

Based on the training set alone, there is no means of choosing which one is better. On the test set, however, they give opposite results. There is ’no free lunch’ [32, 82].

→ a restriction must be placed on the functions that we allow
Restricting the Class of Functions

Two views:

1. Statistical Learning (VC) Theory: take into account the capacity of the class of functions that the learning machine can implement

2. The Bayesian Way: place Prior distributions $P(f)$ over the class of functions
Detailed Analysis

- loss $\xi_i := \frac{1}{2} |f(x_i) - y_i|$ in $\{0, 1\}$
- the ξ_i are independent Bernoulli trials
- empirical mean $\frac{1}{m} \sum_{i=1}^{m} \xi_i$ (by def: equals $R_{\text{emp}}[f]$)
- expected value $\mathbb{E}[\xi]$ (equals $R[f]$)
Chernoff’s Bound

\[
P \left\{ \left| \frac{1}{m} \sum_{i=1}^{m} \xi_i - E[\xi] \right| \geq \epsilon \right\} \leq 2 \exp(-2m\epsilon^2)
\]

- here, \(P \) refers to the probability of getting a sample \(\xi_1, \ldots, \xi_m \) with the property \(\left| \frac{1}{m} \sum_{i=1}^{m} \xi_i - E[\xi] \right| \geq \epsilon \) (is a product measure)

Useful corollary: Given a \(2m \)-sample of Bernoulli trials, we have

\[
P \left\{ \left| \frac{1}{m} \sum_{i=1}^{m} \xi_i - \frac{1}{m} \sum_{i=m+1}^{2m} \xi_i \right| \geq \epsilon \right\} \leq 4 \exp \left(-\frac{m\epsilon^2}{2} \right).
\]

B. Schölkopf, Canberra, February 2006
Chernoff’s Bound, II

Translate this back into machine learning terminology: the probability of obtaining an m-sample where the training error and test error differ by more than $\epsilon > 0$ is bounded by

$$P \{ |R_{\text{emp}}[f] - R[f]| \geq \epsilon \} \leq 2 \exp(-2m\epsilon^2).$$

- refers to one fixed f
- not allowed to look at the data before choosing f, hence not suitable as a bound on the test error of a learning algorithm using empirical risk minimization
Two Observations

• denote the minimizer of R by f^{opt}, and the minimizer of R_{emp} by f^m. Then we have in particular

$$R[f^m] - R[f^{\text{opt}}] \geq 0$$

and

$$R_{\text{emp}}[f^{\text{opt}}] - R_{\text{emp}}[f^m] \geq 0.$$

• For consistency, would like the LHS of both to converge to 0 in probability.

• If the sum of the two converges to 0, we are done.
The sum of these two inequalities satisfies

\[0 \leq R[f^m] - R[f^{opt}] + R_{emp}[f^{opt}] - R_{emp}[f^m] \]
\[= R[f^m] - R_{emp}[f^m] + R_{emp}[f^{opt}] - R[f^{opt}] \]
\[\leq \sup_{f \in \mathcal{F}} (R[f] - R_{emp}[f]) + (R_{emp}[f^{opt}] - R[f^{opt}]). \]

- second half of RHS: \(f^{opt} \) is fixed (independent of training sample), hence by Chernoff: for all \(\epsilon > 0 \),

\[\lim_{m \to \infty} P\{|R_{emp}[f^{opt}] - R[f^{opt}]| > \epsilon\} = 0 \]

(“convergence in probability”)
If the first half of RHS also converges to zero (in probability), i.e.,

\[\lim_{m \to \infty} \mathbb{P}\{ \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon \} = 0, \]

for all \(\epsilon > 0 \), then

\[R[f^m] - R[f^{\text{opt}}] \to 0 \]
\[R_{\text{emp}}[f^{\text{opt}}] - R_{\text{emp}}[f^m] \to 0 \]

in probability — in this case, empirical risk minimization can be seen to be \textit{consistent}.
Uniform Convergence (Vapnik & Chervonenkis)

Necessary and sufficient conditions for nontrivial consistency of empirical risk minimization (ERM):
One-sided convergence, uniformly over all functions that can be implemented by the learning machine.

$$\lim_{m \to \infty} P\{ \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon \} = 0$$

for all $\epsilon > 0$.

• note that this takes into account the whole set of functions that can be implemented by the learning machine
• this is hard to check for a learning machine

Are there properties of learning machines (≡ sets of functions) which ensure uniform convergence of risk?

B. Schölkopf, Canberra, February 2006
How to Prove a VC Bound

Take a closer look at \(P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} \).

Plan:

- if the function class \(\mathcal{F} \) contains only one function, then Chernoff’s bound suffices:
 \[
P\{\sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon\} \leq 2 \exp(-2m\epsilon^2).
 \]

- if there are finitely many functions, we use the ‘union bound’

- even if there are infinitely many, then on any finite sample there are effectively only finitely many (use symmetrization and capacity concepts)
The Case of Two Functions

Suppose $\mathcal{F} = \{f_1, f_2\}$. Rewrite

$$P\left\{ \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon \right\} = P(C^1_\epsilon \cup C^2_\epsilon),$$

where

$$C^i_\epsilon := \{(x_1, y_1), \ldots, (x_m, y_m) \mid (R[f_i] - R_{\text{emp}}[f_i]) > \epsilon \}$$

denotes the event that the risks of f_i differ by more than ϵ. The RHS equals

$$P(C^1_\epsilon \cup C^2_\epsilon) = P(C^1_\epsilon) + P(C^2_\epsilon) - P(C^1_\epsilon \cap C^2_\epsilon) \leq P(C^1_\epsilon) + P(C^2_\epsilon).$$

Hence by Chernoff’s bound

$$P\left\{ \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon \right\} \leq P(C^1_\epsilon) + P(C^2_\epsilon) \leq 2 \cdot 2 \exp(-2m\epsilon^2).$$
The Union Bound

Similarly, if $\mathcal{F} = \{f_1, \ldots, f_n\}$, we have

$$P\left\{ \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon \right\} = P(C_\epsilon^1 \cup \cdots \cup C_\epsilon^n),$$

and

$$P(C_\epsilon^1 \cup \cdots \cup C_\epsilon^n) \leq \sum_{i=1}^{n} P(C_{\epsilon}^i).$$

Use Chernoff for each summand, to get an extra factor n in the bound.

Note: this becomes an equality if and only if all the events C_{ϵ}^i involved are disjoint.
Infinite Function Classes

• Note: empirical risk only refers to m points. On these points, the functions of \mathcal{F} can take at most 2^m values
• for R_{emp}, the function class thus “looks” finite
• how about R?
• need to use a trick

B. Schölkopf, Canberra, February 2006
Symmetrization

Lemma 1 (Vapnik & Chervonenkis (e.g., [69, 20]))

For $m^2 \geq 2$ we have

$$P\left\{ \sup_{f \in F} (R[f] - R_{emp}[f]) > \epsilon \right\} \leq 2P\left\{ \sup_{f \in F} (R_{emp}[f] - R'_{emp}[f]) > \epsilon/2 \right\}$$

Here, the first P refers to the distribution of iid samples of size m, while the second one refers to iid samples of size $2m$. In the latter case, R_{emp} measures the loss on the first half of the sample, and R'_{emp} on the second half.
Shattering Coefficient

• Hence, we only need to consider the maximum size of \mathcal{F} on $2m$ points. Call it $\mathcal{N}(\mathcal{F}, 2m)$.

• $\mathcal{N}(\mathcal{F}, 2m) = \text{max. number of different outputs } (y_1, \ldots, y_{2m}) \text{ that the function class can generate on } 2m \text{ points} — \text{ in other words, the max. number of different ways the function class can separate } 2m \text{ points into two classes.}$

• $\mathcal{N}(\mathcal{F}, 2m) \leq 2^{2m}$

• If $\mathcal{N}(\mathcal{F}, 2m) = 2^{2m}$, then the function class is said to shatter $2m$ points.
Putting Everything Together

We now use (1) symmetrization, (2) the shattering coefficient, and (3) the union bound, to get

\[P\{ \sup_{f \in F} (R[f] - R_{\text{emp}}[f]) > \epsilon \} \]
\[\leq 2P\{ \sup_{f \in F} (R_{\text{emp}}[f] - R'_{\text{emp}}[f]) > \epsilon / 2 \} \]
\[= 2P\{ (R_{\text{emp}}[f_1] - R'_{\text{emp}}[f_1]) > \epsilon / 2 \lor \ldots \lor (R_{\text{emp}}[f_{\mathcal{N}(\mathcal{F},2m)}] - R'_{\text{emp}}[f_{\mathcal{N}(\mathcal{F},2m)}]) > \epsilon / 2 \} \]
\[\leq \sum_{n=1} \, 2P\{ (R_{\text{emp}}[f_n] - R'_{\text{emp}}[f_n]) > \epsilon / 2 \}. \]
Use Chernoff’s bound for each term:

\[
P \left\{ \frac{1}{m} \sum_{i=1}^{m} \xi_i - \frac{1}{m} \sum_{i=m+1}^{2m} \xi_i \geq \epsilon \right\} \leq 2 \exp \left(-\frac{m\epsilon^2}{2} \right).
\]

This yields

\[
P \{ \sup_{f \in \mathcal{F}} (R[f] - R_{\text{emp}}[f]) > \epsilon \} \leq 4 \mathcal{N}(\mathcal{F}, 2m) \exp \left(-\frac{m\epsilon^2}{8} \right).
\]

• provided that \(\mathcal{N}(\mathcal{F}, 2m) \) does not grow exponentially in \(m \), this is nontrivial

• such bounds are called \(VC \) type inequalities

• two types of randomness: (1) the \(P \) refers to the drawing of the training examples, and (2) \(R[f] \) is an expectation over the drawing of test examples.

* A rigorous treatment would need to use a second randomization over permutations of the \(2m \)-sample, see [56].
Confidence Intervals

Rewrite the bound: specify the probability with which we want R to be close to R_{emp}, and solve for ϵ:

With a probability of at least $1 - \delta$,

$$R[f] \leq R_{\text{emp}}[f] + \sqrt{\frac{8}{m} \left(\ln(\mathcal{N}(\mathcal{F}, 2m)) + \ln \frac{4}{\delta} \right)}.$$

This bound holds independent of f; in particular, it holds for the function f^m minimizing the empirical risk.

B. Schölkopf, Canberra, February 2006
Discussion

- tighter bounds are available (better constants etc.)
- cannot minimize the bound over \(f \)
- other capacity concepts can be used
VC Entropy

On an example \((x, y)\), \(f\) causes a loss

\[
\xi(x, y, f(x)) = \frac{1}{2} |f(x) - y| \in \{0, 1\}.
\]

For a larger sample \((x_1, y_1), \ldots, (x_m, y_m)\), the different functions \(f \in \mathcal{F}\) lead to a set of loss vectors

\[
\xi_f = (\xi(x_1, y_1, f(x_1)), \ldots, \xi(x_m, y_m, f(x_m))),
\]

whose cardinality we denote by

\[
\mathcal{N}(\mathcal{F}, (x_1, y_1) \ldots, (x_m, y_m)).
\]

The VC entropy is defined as

\[
H_{\mathcal{F}}(m) = \mathbb{E} \left[\ln \mathcal{N}(\mathcal{F}, (x_1, y_1) \ldots, (x_m, y_m)) \right],
\]

where the expectation is taken over the random generation of the \(m\)-sample \((x_1, y_1) \ldots, (x_m, y_m)\) from \(P\).

\[
H_{\mathcal{F}}(m)/m \to 0 \iff \text{uniform convergence of risks (hence consistency)}
\]
Further PR Capacity Concepts

• exchange ’E’ and ’ln’: *annealed entropy*.

\[H^{\text{ann}}_{\mathcal{F}}(m)/m \to 0 \iff \text{exponentially fast uniform convergence} \]

• take ’max’ instead of ’E’: *growth function*.

Note that \(G_{\mathcal{F}}(m) = \ln \mathcal{N}(\mathcal{F}, m) \).

\[G_{\mathcal{F}}(m)/m \to 0 \iff \text{exponential convergence for all underlying distributions } \mathcal{P}. \]

\[G_{\mathcal{F}}(m) = m \cdot \ln(2) \text{ for all } m \iff \text{for any } m, \text{ all loss vectors can be generated, i.e., the } m \text{ points can be chosen such that by using functions of the learning machine, they can be separated in all } 2^m \text{ possible ways (shattered).} \]
Structure of the Growth Function

Either \(G_\mathcal{F}(m) = m \cdot \ln(2) \) for all \(m \in \mathbb{N} \)

Or there exists some maximal \(m \) for which the above is possible. Call this number the \textit{VC-dimension}, and denote it by \(h \). For \(m > h \),

\[
G_\mathcal{F}(m) \leq h \left(\ln \frac{m}{h} + 1 \right).
\]

Nothing “in between” linear growth and logarithmic growth is possible.
VC-Dimension: Example

Half-spaces in \mathbb{R}^2:

$$f(x, y) = \text{sgn}(a + bx + cy), \quad \text{with parameters } a, b, c \in \mathbb{R}$$

- Clearly, we can shatter three non-collinear points.
- But we can never shatter four points.
- Hence the VC dimension is $h = 3$ (in this case, equal to the number of parameters)
For any $f \in F$ and $m > h$, with a probability of at least $1 - \delta$,

$$R[f] \leq R_{\text{emp}}[f] + \phi \left(\frac{h}{m}, \frac{\log(\delta)}{m} \right)$$

holds, where the confidence term ϕ is defined as

$$\phi \left(\frac{h}{m}, \frac{\log(\delta)}{m} \right) = \sqrt{\frac{h \left(\log \frac{2m}{h} + 1 \right) - \log(\delta/4)}{m}}.$$

- does this mean, that we can learn anything?
- The study of the consistency of ERM has thus led to concepts and results which lets us formulate a better induction principle: we can use this bound to get a low risk!
- in practice: use as a guideline for designing algorithms

B. Schölkopf, Canberra, February 2006
Examples of Induction Principles

- **Empirical risk minimization:** minimize

\[
R_{\text{emp}}[f] = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} |f(x_i) - y_i|
\]

- **Minimum description length:** minimize some measure of the description length of the sequence \((x_1, y_1), \ldots, (x_m, y_m)\) by a function \(f\).

- **Structural risk minimization (SRM) (Vapnik, 1979):** minimize the RHS of

\[
R[f] \leq R_{\text{emp}}[f] + \phi \left(\frac{h}{m} \right).
\]

To this end, introduce a structure on \(\mathcal{F}\).

Learning machine \(\equiv\) a set of functions and an induction principle
SRM: The Picture

\[\mathcal{R}(f_{\star}) \]

bound on test error

capacity term

training error

\[\ldots S_{n-1} \subset S_n \subset S_{n+1} \ldots \]

B. Schölkopf, Canberra, February 2006
Finding a Good Function Class

• recall: separating hyperplanes in \mathbb{R}^2 have a VC dimension of 3.
• more generally: separating hyperplanes in \mathbb{R}^N have a VC dimension of $N + 1$.
• hence: separating hyperplanes in high-dimensional feature spaces have extremely large VC dimension, and may not generalize well
• however, margin hyperplanes can still have a small VC dimension
Separating Hyperplane

\[\langle w, x \rangle + b > 0 \]

\[\langle w, x \rangle + b < 0 \]

\[\{ x \mid \langle w, x \rangle + b = 0 \} \]
Canonical Hyperplanes

Note: if $c \neq 0$, then

$$\{x | \langle w, x \rangle + b = 0 \} = \{x | \langle cw, x \rangle + cb = 0 \}.$$

Hence (cw, cb) describes the same hyperplane as (w, b).

Definition: The hyperplane is in *canonical* form w.r.t. $X^* = \{x_1, \ldots, x_r\}$ if $\min_{x_i \in X} |\langle w, x_i \rangle + b| = 1$.

Note that for canonical hyperplanes, the distance of the closest point to the hyperplane ("margin") is $1/\|w\|:

$$\min_{x_i \in X} \left| \frac{\langle w, x_i \rangle}{\|w\|} + \frac{b}{\|w\|} \right| = \frac{1}{\|w\|}.$$

B. Schölkopf, Canberra, February 2006
Theorem 2 (Vapnik [69]) Consider hyperplanes $\langle \mathbf{w}, \mathbf{x} \rangle = 0$ where \mathbf{w} is normalized such that they are in canonical form w.r.t. a set of points $X^* = \{\mathbf{x}_1, \ldots, \mathbf{x}_r\}$, i.e.,

$$\min_{i=1,\ldots,r} |\langle \mathbf{w}, \mathbf{x}_i \rangle| = 1.$$

The set of decision functions $f_{\mathbf{w}}(\mathbf{x}) = \text{sgn} \langle \mathbf{x}, \mathbf{w} \rangle$ defined on X^* and satisfying the constraint $\|\mathbf{w}\| \leq \Lambda$ has a VC dimension satisfying

$$h \leq R^2\Lambda^2.$$

Here, R is the radius of the smallest sphere around the origin containing X^*.

B. Schölkopf, Canberra, February 2006
Proof Strategy (Gurvits, 1997)

Assume that $\mathbf{x}_1, \ldots, \mathbf{x}_r$ are shattered by canonical hyperplanes with $\|\mathbf{w}\| \leq \Lambda$, i.e., for arbitrary $y_1, \ldots, y_r \in \{\pm 1\}$, there exists a \mathbf{w} such that

$$y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1 \text{ for all } i = 1, \ldots, r.$$ \hspace{1cm} (1)

Two steps:

- prove that the more points we want to shatter (1), the larger $\| \sum_{i=1}^{r} y_i \mathbf{x}_i \|$ must be
- upper bound the size of $\| \sum_{i=1}^{r} y_i \mathbf{x}_i \|$ in terms of R

Combining the two tells us how many points we can at most shatter.
Part I

Summing (1) over $i = 1, \ldots, r$ yields

$$\langle w, \left(\sum_{i=1}^{r} y_i x_i \right) \rangle \geq r.$$

By the Cauchy-Schwarz inequality, on the other hand, we have

$$\langle w, \left(\sum_{i=1}^{r} y_i x_i \right) \rangle \leq \|w\| \left\| \sum_{i=1}^{r} y_i x_i \right\| \leq \Lambda \left\| \sum_{i=1}^{r} y_i x_i \right\|.$$

Combine both:

$$\frac{r}{\Lambda} \leq \left\| \sum_{i=1}^{r} y_i x_i \right\|.$$

(2)

B. Schölkopf, Canberra, February 2006
Consider independent random labels $y_i \in \{\pm 1\}$, uniformly distributed (Rademacher variables).

\[
E \left[\left\| \sum_{i=1}^{r} y_i x_i \right\|^2 \right] = \sum_{i=1}^{r} E \left[\left\langle y_i x_i, \sum_{j=1}^{r} y_j x_j \right\rangle \right] \\
= \sum_{i=1}^{r} E \left[\left\langle y_i x_i, \left(\left(\sum_{j \neq i} y_j x_j \right) + y_i x_i \right) \right\rangle \right] \\
= \sum_{i=1}^{r} \left(\left(\sum_{j \neq i} E \left[\left\langle y_i x_i, y_j x_j \right\rangle \right] \right) + E \left[\left\langle y_i x_i, y_i x_i \right\rangle \right] \right) \\
= \sum_{i=1}^{r} E \left[\|y_i x_i\|^2 \right] = \sum_{i=1}^{r} \|x_i\|^2
\]
Part II, ctd.

Since \(\|x_i\| \leq R \), we get

\[
E \left[\left\| \sum_{i=1}^{r} y_i x_i \right\|^2 \right] \leq rR^2.
\]

- This holds for the *expectation* over the random choices of the labels, hence there must be at least one set of labels for which it also holds true. Use this set.

Hence

\[
\left\| \sum_{i=1}^{r} y_i x_i \right\|^2 \leq rR^2.
\]

B. Schölkopf, Canberra, February 2006
Part I and II Combined

Part I: \(\left(\frac{r}{\Lambda} \right)^2 \leq \left\| \sum_{i=1}^{r} y_i x_i \right\|^2 \)

Part II: \(\left\| \sum_{i=1}^{r} y_i x_i \right\|^2 \leq r R^2 \)

Hence

\[
\frac{r^2}{\Lambda^2} \leq r R^2,
\]

i.e.,

\[
r \leq R^2 \Lambda^2.
\]

B. Schölkopf, Canberra, February 2006
Pattern Noise as Maximum Margin Regularization
Can perturb γ by $\Delta \gamma$ with $|\Delta \gamma| < \arcsin \frac{\rho}{R}$ and still correctly separate the data. Hence only need to store γ with accuracy $\Delta \gamma$ [56, 75].
Kernels and Feature Spaces

Preprocess the data with

\[
\Phi : \mathcal{X} \rightarrow \mathcal{H}
\]

\[
x \mapsto \Phi(x),
\]

where \(\mathcal{H} \) is a dot product space, and learn the mapping from \(\Phi(x) \) to \(y \).

• usually, \(\text{dim}(\mathcal{X}) \ll \text{dim}(\mathcal{H}) \)
• “Curse of Dimensionality”?
• crucial issue: capacity, not dimensionality
Example: All Degree 2 Monomials

\[\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2} x_1 x_2, x_2^2) \]
General Product Feature Space

How about patterns $x \in \mathbb{R}^N$ and product features of order d?
Here, $\dim(\mathcal{H})$ grows like N^d.
E.g. $N = 16 \times 16$, and $d = 5 \rightarrow$ dimension 10^{10}
The Kernel Trick, $N = d = 2$

$$\langle \Phi(x), \Phi(x') \rangle = (x_1^2, \sqrt{2} x_1 x_2, x_2^2)(x'_1^2, \sqrt{2} x'_1 x'_2, x'_2^2)^\top$$

$$= \langle x, x' \rangle^2$$

$$= : k(x, x')$$

\rightarrow the dot product in \mathcal{H} can be computed in \mathbb{R}^2
The Kernel Trick, II

More generally: \(x, x' \in \mathbb{R}^N, d \in \mathbb{N} \):

\[
\langle x, x' \rangle^d = \left(\sum_{j=1}^{N} x_j \cdot x'_j \right)^d = \sum_{j_1, \ldots, j_d=1}^{N} x_{j_1} \cdots x_{j_d} \cdot x'_{j_1} \cdots x'_{j_d} = \langle \Phi(x), \Phi(x') \rangle,
\]

where \(\Phi \) maps into the space spanned by all ordered products of \(d \) input directions.

B. Schölkopf, Canberra, February 2006
Mercer’s Theorem

If \(k \) is a continuous kernel of a positive definite integral operator on \(L_2(\mathcal{X}) \) (where \(\mathcal{X} \) is some compact space),

\[
\int_{\mathcal{X}} k(x, x') f(x) f(x') \, dx \, dx' \geq 0,
\]

it can be expanded as

\[
k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')
\]

using eigenfunctions \(\psi_i \) and eigenvalues \(\lambda_i \geq 0 \) [42].

B. Schölkopf, Canberra, February 2006
The Mercer Feature Map

In that case

\[\Phi(x) := \begin{pmatrix} \sqrt{\lambda_1} \psi_1(x) \\ \sqrt{\lambda_2} \psi_2(x) \\ \vdots \end{pmatrix} \]

satisfies \(\langle \Phi(x), \Phi(x') \rangle = k(x, x') \).

Proof:

\[
\langle \Phi(x), \Phi(x') \rangle = \left\langle \begin{pmatrix} \sqrt{\lambda_1} \psi_1(x) \\ \sqrt{\lambda_2} \psi_2(x) \\ \vdots \end{pmatrix}, \begin{pmatrix} \sqrt{\lambda_1} \psi_1(x') \\ \sqrt{\lambda_2} \psi_2(x') \\ \vdots \end{pmatrix} \right\rangle \\
= \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x') = k(x, x')
\]

B. Schölkopf, Canberra, February 2006
The Kernel Trick — Summary

- any algorithm that only depends on dot products can benefit from the kernel trick
- this way, we can apply linear methods to vectorial as well as non-vectorial data
- think of the kernel as a nonlinear similarity measure
- examples of common kernels:
 - Polynomial \(k(x, x') = (\langle x, x' \rangle + c)^d \)
 - Sigmoid \(k(x, x') = \tanh(\kappa \langle x, x' \rangle + \Theta) \)
 - Gaussian \(k(x, x') = \exp(-\|x - x'\|^2/(2 \sigma^2)) \)
- Kernels are studied also in the Gaussian Process prediction community (covariance functions) [79, 76, 81, 41]
Positive Definite Kernels

It can be shown that (modulo some details) the admissible class of kernels coincides with the one of positive definite (pd) kernels: kernels which are symmetric (i.e., $k(x, x') = k(x', x)$), and for

- any set of training points $x_1, \ldots, x_m \in \mathcal{X}$ and
- any $a_1, \ldots, a_m \in \mathbb{R}$

satisfy

$$\sum_{i,j} a_i a_j K_{ij} \geq 0,$$

where $K_{ij} := k(x_i, x_j)$.

K is called the Gram matrix or kernel matrix.

B. Schölkopf, Canberra, February 2006
Elementary Properties of PD Kernels

Kernels from Feature Maps.
If Φ maps \mathcal{X} into a dot product space \mathcal{H}, then $\langle \Phi(x), \Phi(x') \rangle$ is a pd kernel on $\mathcal{X} \times \mathcal{X}$.

Positivity on the Diagonal.
$k(x, x) \geq 0$ for all $x \in \mathcal{X}$

Cauchy-Schwarz Inequality.
$k(x, x')^2 \leq k(x, x)k(x', x')$ (Hint: compute the determinant of the Gram matrix)

Vanishing Diagonals.
$k(x, x) = 0$ for all $x \in \mathcal{X} \implies k(x, x') = 0$ for all $x, x' \in \mathcal{X}$
The Feature Space for PD Kernels

• define a feature map

\[\Phi : \mathcal{X} \rightarrow \mathbb{R}^\mathcal{X} \]

\[x \mapsto k(., x). \]

E.g., for the Gaussian kernel:

Next steps:

• turn \(\Phi(\mathcal{X}) \) into a linear space

• endow it with a dot product satisfying

\[\langle \Phi(x), \Phi(x') \rangle = k(x, x'), \text{ i.e., } \langle k(., x), k(., x') \rangle = k(x, x') \]

• complete the space to get a reproducing kernel Hilbert space
Turn it Into a Linear Space

Form linear combinations

\[f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, x_i), \]
\[g(\cdot) = \sum_{j=1}^{m'} \beta_j k(\cdot, x'_j) \]

\((m, m' \in \mathbb{N}, \alpha_i, \beta_j \in \mathbb{R}, x_i, x'_j \in \mathcal{X}).\)
Endow it With a Dot Product

\[
\langle f, g \rangle := \sum_{i=1}^{m} \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i, x'_j)
\]

\[
= \sum_{i=1}^{m} \alpha_i g(x_i) = \sum_{j=1}^{m'} \beta_j f(x'_j)
\]

• This is well-defined, symmetric, and bilinear (more later).

B. Schölkopf, Canberra, February 2006
The Reproducing Kernel Property

Two special cases:

- Assume
 \[f(.) = k(., x). \]
 In this case, we have
 \[\langle k(., x), g \rangle = g(x). \]

- If moreover
 \[g(.) = k(., x'), \]
 we have
 \[\langle k(., x), k(., x') \rangle = k(x, x'). \]

\(k\) is called a reproducing kernel
Endow it With a Dot Product, II

- It can be shown that $\langle ., . \rangle$ is a p.d. kernel on the set of functions
 \(\{ f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i) | \alpha_i \in \mathbb{R}, x_i \in X \} : \)

 \[
 \sum_{ij} \gamma_i \gamma_j \langle f_i, f_j \rangle = \left\langle \sum_i \gamma_i f_i, \sum_j \gamma_j f_j \right\rangle =: \langle f, f \rangle
 \]

 \[
 = \left\langle \sum_i \alpha_i k(., x_i), \sum_i \alpha_i k(., x_i) \right\rangle = \sum_{ij} \alpha_i \alpha_j k(x_i, x_j) \geq 0
 \]

- furthermore, it is strictly positive definite:

 \[
 f(x)^2 = \langle f, k(., x) \rangle^2 \leq \langle f, f \rangle \langle k(., x), k(., x) \rangle = \langle f, f \rangle k(x, x)
 \]

 hence $\langle f, f \rangle = 0$ implies $f = 0$.

- Complete the space in the corresponding norm to get a Hilbert space \mathcal{H}_k.
Explicit Construction of the RKHS Map for Mercer Kernels

Recall that the dot product has to satisfy
\[\langle k(x, .), k(x', .) \rangle = k(x, x'). \]

For a Mercer kernel
\[
k(x, x') = \sum_{j=1}^{N_F} \lambda_j \psi_j(x) \psi_j(x')
\]
(with \(\lambda_i > 0 \) for all \(i \), \(N_F \in \mathbb{N} \cup \{ \infty \} \), and \(\langle \psi_i, \psi_j \rangle_{L_2(X)} = \delta_{ij} \)), this can be achieved by choosing \(\langle ., . \rangle \) such that
\[\langle \psi_i, \psi_j \rangle = \delta_{ij}/\lambda_i. \]
To see this, compute

\[
\langle k(x, .), k(x', .) \rangle = \left\langle \sum_i \lambda_i \psi_i(x) \psi_i, \sum_j \lambda_j \psi_j(x') \psi_j \right\rangle
\]

\[
= \sum_{i,j} \lambda_i \lambda_j \psi_i(x) \psi_j(x') \langle \psi_i, \psi_j \rangle
\]

\[
= \sum_{i,j} \lambda_i \lambda_j \psi_i(x) \psi_j(x') \delta_{ij} / \lambda_i
\]

\[
= \sum_i \lambda_i \psi_i(x) \psi_i(x')
\]

\[
= k(x, x').
\]
Deriving the Kernel from the RKHS

An RKHS is a Hilbert space \mathcal{H} of functions f where all point evaluation functionals
$$p_x : \mathcal{H} \to \mathbb{R}$$
$$f \mapsto p_x(f) = f(x)$$
exist and are continuous.

Continuity means that whenever f and f' are close in \mathcal{H}, then $f(x)$ and $f'(x)$ are close in \mathbb{R}. This can be thought of as a topological prerequisite for generalization ability.

By Riesz’ representation theorem, there exists an element of \mathcal{H}, call it r_x, such that
$$\langle r_x, f \rangle = f(x),$$
in particular,
$$\langle r_x, r_x' \rangle = r_x'(x).$$

Define $k(x, x') := r_x(x') = r_{x'}(x)$.

(cf. Canu & Mary, 2002)
The Empirical Kernel Map

Recall the feature map

$$\Phi : \mathcal{X} \rightarrow \mathbb{R}^\mathcal{X}$$

$$x \mapsto k(., x).$$

- each point is represented by its similarity to all other points
- how about representing it by its similarity to a sample of points?

Consider

$$\Phi_m : \mathcal{X} \rightarrow \mathbb{R}^m$$

$$x \mapsto k(., x)|_{(x_1, \ldots, x_m)} = (k(x_1, x), \ldots, k(x_m, x))^\top$$
• $\Phi_m(x_1), \ldots, \Phi_m(x_m)$ contain all necessary information about $\Phi(x_1), \ldots, \Phi(x_m)$

• the Gram matrix $G_{ij} := \langle \Phi_m(x_i), \Phi_m(x_j) \rangle$ satisfies $G = K^2$
 where $K_{ij} = k(x_i, x_j)$

• modify Φ_m to
 \[
 \Phi_m^w : \mathcal{X} \rightarrow \mathbb{R}^m
 \]
 \[
 x \mapsto K^{-\frac{1}{2}}(k(x_1, x), \ldots, k(x_m, x))^\top
 \]

• this “whitened” map ("kernel PCA map") satisfies
 \[
 \langle \Phi_m^w(x_i), \Phi_m^w(x_j) \rangle = k(x_i, x_j)
 \]
 for all $i, j = 1, \ldots, m$.

B. Schölkopf, Canberra, February 2006
Some Properties of Kernels \[56\]

If \(k_1, k_2, \ldots \) are pd kernels, then so are

- \(\alpha k_1 \), provided \(\alpha \geq 0 \)
- \(k_1 + k_2 \)
- \(k_1 \cdot k_2 \)
- \(k(x, x') := \lim_{n \to \infty} k_n(x, x') \), provided it exists
- \(k(A, B) := \sum_{x \in A, x' \in B} k_1(x, x') \), where \(A, B \) are finite subsets of \(X \)
 (using the feature map \(\tilde{\Phi}(A) := \sum_{x \in A} \Phi(x) \))

Further operations to construct kernels from kernels: tensor products, direct sums, convolutions \[30\].
Suppose we are given distinct training patterns x_1, \ldots, x_m, and a positive definite $m \times m$ matrix K.

K can be diagonalized as $K = SDS^\top$, with an orthogonal matrix S and a diagonal matrix D with nonnegative entries. Then

$$K_{ij} = (SDS^\top)_{ij} = \langle S_i, DS_j \rangle = \langle \sqrt{D}S_i, \sqrt{D}S_j \rangle,$$

where the S_i are the rows of S.

We have thus constructed a map Φ into an m-dimensional feature space \mathcal{H} such that

$$K_{ij} = \langle \Phi(x_i), \Phi(x_j) \rangle.$$

Properties, II: Functional Calculus [60]

- K symmetric $m \times m$ matrix with spectrum $\sigma(K)$
- f a continuous function on $\sigma(K)$
- Then there is a symmetric matrix $f(K)$ with eigenvalues in $f(\sigma(K))$.
- compute $f(K)$ via Taylor series, or eigenvalue decomposition of K: If $K = S^\top DS$ (D diagonal and S unitary), then $f(K) = S^\top f(D)S$, where $f(D)$ is defined elementwise on the diagonal
- can treat functions of symmetric matrices like functions on \mathbb{R}

 \[
 \begin{align*}
 (\alpha f + g)(K) &= \alpha f(K) + g(K) \\
 (fg)(K) &= f(K)g(K) = g(K)f(K) \\
 \|f\|_{\infty,\sigma(K)} &= \|f(K)\| \\
 \sigma(f(K)) &= f(\sigma(K))
 \end{align*}
 \]

(the C^*-algebra generated by K is isomorphic to the set of continuous functions on $\sigma(K)$)
Computing Distances in Feature Spaces

Clearly, if \(k \) is positive definite, then there exists a map \(\Phi \) such that
\[
\|\Phi(x) - \Phi(x')\|^2 = k(x, x) + k(x', x') - 2k(x, x')
\]
(it is the usual feature map).

This embedding is referred to as a \textit{Hilbert space representation} as a distance. It turns out that this works for a larger class of kernels, called \textit{conditionally positive definite}.

In fact, all algorithms that are translationally invariant (i.e. independent of the choice of the origin) in \(\mathcal{H} \) work with cpd kernels [56].
Support Vector Classifiers

input space

feature space

\[\Phi \]
Separating Hyperplane

\[\langle w, x \rangle + b > 0 \]

\[\langle w, x \rangle + b < 0 \]

\[\{x | \langle w, x \rangle + b = 0\} \]
Optimal Separating Hyperplane

\[\{ x \mid \langle w, x \rangle + b = 0 \} \]
Note: if $c \neq 0$, then
\[
\{ x | \langle w, x \rangle + b = 0 \} = \{ x | \langle cw, x \rangle + cb = 0 \}.
\]
Hence (cw, cb) describes the same hyperplane as (w, b).

Definition: The hyperplane is in *canonical* form w.r.t. $X^* = \{ x_1, \ldots, x_r \}$ if $\min_{x_i \in X} | \langle w, x_i \rangle + b | = 1$.
Canonical Optimal Hyperplane

\{x \mid \langle w, x \rangle + b = -1\}

\{x \mid \langle w, x \rangle + b = +1\}

\{x \mid \langle w, x \rangle + b = 0\}

\begin{align*}
\langle w, x_1 \rangle + b &= +1 \\
\langle w, x_2 \rangle + b &= -1 \\
\Rightarrow \quad \langle w, (x_1 - x_2) \rangle &= 2 \\
\Rightarrow \quad \langle \frac{w}{||w||}, (x_1 - x_2) \rangle &= \frac{2}{||w||}
\end{align*}

B. Schölkopf, Canberra, February 2006
Formulation as an Optimization Problem

Hyperplane with maximum margin: minimize

\[\|w\|^2 \]

(recall: margin \(\sim 1/\|w\| \)) subject to

\[y_i \cdot [\langle w, x_i \rangle + b] \geq 1 \quad \text{for } i = 1 \ldots m \]

(i.e. the training data are separated correctly).

B. Schölkopf, Canberra, February 2006
Lagrange Function (e.g., [5])

Introduce Lagrange multipliers $\alpha_i \geq 0$ and a Lagrangian

$$L(w, b, \alpha) = \frac{1}{2}\|w\|^2 - \sum_{i=1}^{m} \alpha_i (y_i \cdot [\langle w, x_i \rangle + b] - 1).$$

L has to minimized w.r.t. the primal variables w and b and maximized with respect to the dual variables α_i

- if a constraint is violated, then $y_i \cdot (\langle w, x_i \rangle + b) - 1 < 0 \rightarrow$
 - α_i will grow to increase L — how far?
 - w, b want to decrease L; i.e. they have to change such that the constraint is satisfied. If the problem is separable, this ensures that $\alpha_i < \infty$.
- similarly: if $y_i \cdot (\langle w, x_i \rangle + b) - 1 > 0$, then $\alpha_i = 0$: otherwise, L could be increased by decreasing α_i (KKT conditions)
Derivation of the Dual Problem

At the extremum, we have

\[\frac{\partial}{\partial b} L(w, b, \alpha) = 0, \quad \frac{\partial}{\partial w} L(w, b, \alpha) = 0, \]

i.e.

\[\sum_{i=1}^{m} \alpha_i y_i = 0 \]

and

\[w = \sum_{i=1}^{m} \alpha_i y_i x_i. \]

Substitute both into \(L \) to get the dual problem
The Support Vector Expansion

\[w = \sum_{i=1}^{m} \alpha_i y_i x_i \]

where for all \(i = 1, \ldots, m \) either

\[y_i \cdot [\langle w, x_i \rangle + b] > 1 \quad \Rightarrow \alpha_i = 0 \quad \rightarrow \quad x_i \text{ irrelevant} \]

or

\[y_i \cdot [\langle w, x_i \rangle + b] = 1 \quad (\text{on the margin}) \quad \rightarrow \quad x_i \text{ “Support Vector”} \]

The solution is determined by the examples on the margin.

Thus

\[f(x) = \text{sgn} (\langle x, w \rangle + b) \]
\[= \text{sgn} \left(\sum_{i=1}^{m} \alpha_i y_i \langle x, x_i \rangle + b \right). \]
Why it is Good to Have Few SVs

Leave out an example that does not become SV \rightarrow same solution.

Theorem [70]: Denote $\#SV(m)$ the number of SVs obtained by training on m examples randomly drawn from $P(x, y)$, and E the expectation. Then

$$E[\text{Prob(test error)}] \leq \frac{E[\#SV(m)]}{m}$$

Here, Prob(test error) refers to the expected value of the risk, where the expectation is taken over training the SVM on samples of size $m - 1$.
A Mechanical Interpretation

Assume that each SV \mathbf{x}_i exerts a perpendicular force of size α_i and sign y_i on a solid plane sheet lying along the hyperplane. Then the solution is mechanically stable:

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

implies that the forces sum to zero.

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$

implies that the torques sum to zero, via

$$\sum_{i} \mathbf{x}_i \times y_i \alpha_i \cdot \mathbf{w} / ||\mathbf{w}|| = \mathbf{w} \times \mathbf{w} / ||\mathbf{w}|| = 0.$$

B. Schölkopf, Canberra, February 2006
Dual Problem

Dual: maximize

\[W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \]

subject to

\[\alpha_i \geq 0, \; i = 1, \ldots, m, \; \text{and} \; \sum_{i=1}^{m} \alpha_i y_i = 0. \]

Both the final decision function and the function to be maximized are expressed in dot products \(\langle x_i, x_j \rangle \) can use a kernel to compute

\[\langle x_i, x_j \rangle = \langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j). \]

B. Schölkopf, Canberra, February 2006
The SVM Architecture

\[f(x) = \text{sgn} \left(\sum \lambda_i k(x, x_i) + b \right) \]

- **Input vector** \(x \)
- **Support vectors** \(x_1 \ldots x_4 \)
- **Comparison**: \(k(x, x_i) \), e.g.,
 - \(k(x, x_i) = (x \cdot x_i)^d \)
 - \(k(x, x_i) = \exp(-||x-x_i||^2 / c) \)
 - \(k(x, x_i) = \tanh(\kappa(x \cdot x_i) + \theta) \)
- **Weights** \(\lambda_1 \ldots \lambda_4 \)
- **Classification**

B. Schölkopf, Canberra, February 2006
Toy Example with Gaussian Kernel

\[k(x, x') = \exp\left(-\|x - x'\|^2 \right) \]
Nonseparable Problems

If $y_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1$ cannot be satisfied, then $\alpha_i \to \infty$.

Modify the constraint to

$$y_i \cdot (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_i$$

with

$$\xi_i \geq 0$$

(“soft margin”) and add

$$C \cdot \sum_{i=1}^{m} \xi_i$$

in the objective function.
Soft Margin SVMs

C-SVM [15]: for $C > 0$, minimize

$$
\tau(w, \xi) = \frac{1}{2}\|w\|^2 + C \sum_{i=1}^{m} \xi_i
$$

subject to $y_i \cdot (\langle w, x_i \rangle + b) \geq 1 - \xi_i$, $\xi_i \geq 0$ (margin $2/\|w\|$)

ν-SVM [58]: for $0 \leq \nu < 1$, minimize

$$
\tau(w, \xi, \rho) = \frac{1}{2}\|w\|^2 - \nu \rho + \frac{1}{m} \sum_{i} \xi_i
$$

subject to $y_i \cdot (\langle w, x_i \rangle + b) \geq \rho - \xi_i$, $\xi_i \geq 0$ (margin $2\rho/\|w\|$)
The ν-Property

SVs: $\alpha_i > 0$

“margin errors:” $\xi_i > 0$

KKT-Conditions \implies

- All margin errors are SVs.
- Not all SVs need to be margin errors.
 Those which are not lie exactly on the edge of the margin.

Proposition:
1. fraction of Margin Errors $\leq \nu \leq$ fraction of SVs.
2. asymptotically: $\ldots = \nu = \ldots$

B. Schölkopf, Canberra, February 2006
Duals, Using Kernels

C-SVM dual: maximize

\[
W(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j)
\]

subject to \(0 \leq \alpha_i \leq C\), \(\sum_i \alpha_i y_i = 0\).

\nu-SVM dual: maximize

\[
W(\alpha) = -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j)
\]

subject to \(0 \leq \alpha_i \leq \frac{1}{m}\), \(\sum_i \alpha_i y_i = 0\), \(\sum_i \alpha_i \geq \nu\)

In both cases: decision function:

\[
f(x) = \text{sgn} \left(\sum_{i=1}^{m} \alpha_i y_i k(x, x_i) + b \right)
\]
Connection between ν-SVC and C-SVC

Proposition. If ν-SV classification leads to $\rho > 0$, then C-SV classification, with C set a priori to $1/\rho$, leads to the same decision function.

Proof. Minimize the primal target, then fix ρ, and minimize only over the remaining variables: nothing will change. Hence the obtained solution w_0, b_0, ξ_0 minimizes the primal problem of C-SVC, for $C = 1$, subject to

$$y_i \cdot (\langle x_i, w \rangle + b) \geq \rho - \xi_i.$$

To recover the constraint

$$y_i \cdot (\langle x_i, w \rangle + b) \geq 1 - \xi_i,$$

rescale to the set of variables $w' = w/\rho, b' = b/\rho, \xi' = \xi/\rho$. This leaves us, up to a constant scaling factor ρ^2, with the C-SV target with $C = 1/\rho$.

B. Schölkopf, Canberra, February 2006
SVM Training

• naive approach: the complexity of maximizing

\[W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \]

scales with the third power of the training set size \(m \)

• only SVs are relevant \(\rightarrow \) only compute \((k(x_i, x_j))_{ij} \) for SVs. Extract them iteratively by cycling through the training set in chunks [69].

• in fact, one can use chunks which do not even contain all SVs [43]. Maximize over these sub-problems, using your favorite optimizer.

• the extreme case: by making the sub-problems very small (just two points), one can solve them analytically [46].

• http://www.kernel-machines.org/software.html
MNIST Benchmark

handwritten character benchmark (60000 training & 10000 test examples, 28 × 28)

B. Schölkopf, Canberra, February 2006
MNIST Error Rates

<table>
<thead>
<tr>
<th>Classifier</th>
<th>test error</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear classifier</td>
<td>8.4%</td>
<td>[7]</td>
</tr>
<tr>
<td>3-nearest-neighbour</td>
<td>2.4%</td>
<td>[7]</td>
</tr>
<tr>
<td>SVM</td>
<td>1.4%</td>
<td>[11]</td>
</tr>
<tr>
<td>Tangent distance</td>
<td>1.1%</td>
<td>[62]</td>
</tr>
<tr>
<td>LeNet4</td>
<td>1.1%</td>
<td>[39]</td>
</tr>
<tr>
<td>Boosted LeNet4</td>
<td>0.7%</td>
<td>[39]</td>
</tr>
<tr>
<td>Translation invariant SVM</td>
<td>0.56%</td>
<td>[19]</td>
</tr>
</tbody>
</table>

Note: the SVM used a polynomial kernel of degree 9, corresponding to a feature space of dimension \(\approx 3.2 \cdot 10^{20} \).

Other successful applications: e.g., [35, 33, 31, 12, 67, 9, 84, 26, 24, 14, 22, 45, 77, 83]
Speeding up the decision rule

Approximate
\[w = \sum_{i=1}^{m} \alpha_i y_i \Phi(x_i) \]
by
\[w' = \sum_{i=1}^{N_z} \gamma_i \Phi(z_i), \]
with \(N_z \ll m \): Minimize
\[\rho = \| w - w' \|^2 \]
Note that \(\rho \) can be expressed in terms of \(k \) by using
\[\langle \Phi(x), \Phi(x') \rangle = k(x, x') \]
Construct the new expansion sequentially.
“reduced set methods”, [e.g. 10, 11, 44, 53]

B. Schölkopf, Canberra, February 2006
Face Detection

• scan test images in several resolutions

• critical issue: runtime speed. Compute sequential approximation via reduced set expansion.

• need to evaluate on average 2 – 3 kernels per image location [49]

after 0, 1 (13.3% patches remaining), 10 (2.6%), 20 (0.01%) and 30 (0.002%) kernels

templates:

B. Schölkopf, Canberra, February 2006
Invariant Hyperplanes

Consider decision functions \(f(x) = \text{sgn}(g(x)) \), where

\[
g(x) := \sum_{i=1}^{m} v_i \langle Bx, Bx_i \rangle + b.
\]

To get local invariance under transformations of the Lie group \(\{L_t\} \), minimize the regularizer

\[
\frac{1}{m} \sum_{j=1}^{m} \left(\frac{\partial}{\partial t} \bigg|_{t=0} g(L_t x_j) \right)^2.
\]

This corresponds to an SV optimization after preprocessing with

\[
B = C^{-\frac{1}{2}},
\]

where

\[
C = \frac{1}{m} \sum_{j=1}^{m} \left(\frac{\partial}{\partial t} \bigg|_{t=0} \mathcal{L}_t x_j \right) \left(\frac{\partial}{\partial t} \bigg|_{t=0} \mathcal{L}_t x_j \right)^\top.
\]
The Tangent Covariance Matrix

\[C = \text{covariance matrix of } \pm \frac{\partial}{\partial t} \big|_{t=0} \mathcal{L}_t x \]

Preprocessing of \(x \):

\[B x = C^{-\frac{1}{2}} x = S D^{-\frac{1}{2}} S^\top x \]

1. project \(x \) onto the Eigenvectors of \(C \)

2. divide by the square roots of the Eigenvalues, i.e.: the directions of main variance of \(\pm \frac{\partial}{\partial t} \big|_{t=0} \mathcal{L}_t x \) are scaled back

- in practice, use \(C_\lambda := (1 - \lambda)C + \lambda I \)

- for the nonlinear case, use the kernel PCA map [13]
USPS Digit Recognition Application [13]

Results for 4 invariance transformations (translations) and different trade-offs between margin maximization and invariance enforcement (left: standard SVM).

B. Schölkopf, Canberra, February 2006
SV Regression: ε-Insensitive Loss (Vapnik, 1995)

Goal: generalize SV pattern recognition to regression, preserving the following properties:

- formulate the algorithm for the linear case, and then use kernel trick
- sparse representation of the solution in terms of SVs

ε-Insensitive Loss:

$$|y - f(x)|_\varepsilon := \max\{0, |y - f(x)| - \varepsilon\}$$

Estimate a linear regression $f(x) = \langle w, x \rangle + b$ by minimizing

$$\frac{1}{2} \|w\|^2 + \frac{C}{m} \sum_{i=1}^{m} |y_i - f(x_i)|_\varepsilon.$$
ε-SV Regression Estimation

B. Schölkopf, Canberra, February 2006
Formulation as an Optimization Problem

Estimate a linear regression

\[f(x) = \langle w, x \rangle + b \]

with precision \(\varepsilon \) by minimizing

\[
\begin{align*}
\text{minimize} & \quad \tau(w, \xi, \xi^*) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*) \\
\text{subject to} & \quad (\langle w, x_i \rangle + b) - y_i \leq \varepsilon + \xi_i \\
& \quad y_i - (\langle w, x_i \rangle + b) \leq \varepsilon + \xi_i^* \\
& \quad \xi_i, \xi_i^* \geq 0
\end{align*}
\]

for all \(i = 1, \ldots, m \).
Dual Problem, In Terms of Kernels

For $C > 0, \varepsilon \geq 0$ chosen a priori,

maximize $W(\alpha, \alpha^*) = -\varepsilon \sum_{i=1}^{m} (\alpha_i^* + \alpha_i) + \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) y_i$

$- \frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i^* - \alpha_i)(\alpha_j^* - \alpha_j) k(x_i, x_j)$

subject to $0 \leq \alpha_i, \alpha_i^* \leq C, \ i = 1, \ldots, m,$ and $\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0.$

The regression estimate takes the form

$f(x) = \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) k(x_i, x) + b,$
\(\nu \)-SV Regression

Again, use \(\nu \) to eliminate another parameter: Estimate \(\varepsilon \) from the data s.t. the \(\nu \)-property holds.

Primal problem: for \(0 \leq \nu \leq 1 \), minimize

\[
\tau(w, \varepsilon) = \frac{1}{2} \|w\|^2 + C \left(\nu \varepsilon + \frac{1}{m} \sum_{i=1}^{m} |y_i - f(x_i)|_{\varepsilon} \right)
\]

B. Schölkopf, Canberra, February 2006
A Graphical Proof of the ν-Property

Cost function: $\frac{1}{2C}\|w\|^2 + \nu\varepsilon + \frac{1}{m}\sum_{i=1}^{m}(\xi_i + \xi^*_i)$

B. Schölkopf, Canberra, February 2006
The ν-Property

Proposition 3 Assume $\varepsilon > 0$. The following statements hold:

(i) ν is an upper bound on the fraction of errors.

(ii) ν is a lower bound on the fraction of SVs.

(iii) Suppose the data were generated iid from a ’well-behaved’* distribution $P(x, y)$. With probability 1, asymptotically, ν equals both the fraction of SVs and the fraction of errors.

* Essentially, $P(x, y) = P(x)P(y|x)$ with $P(y|x)$ continuous (some details omitted).
Identical machine parameters ($\nu = 0.2$), but different amounts of noise in the data.
\(\varepsilon\)-SV-Regression, Run on the Same Data

Identical machine parameters \((\varepsilon = 0.2)\), but different amounts of noise in the data.

B. Schölkopf, Canberra, February 2006
Toy Examples: Estimating a Noisy Sinc Function

\[\nu = 0.2 \]

<table>
<thead>
<tr>
<th>(m)</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
<th>1500</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>0.27</td>
<td>0.22</td>
<td>0.23</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>fraction of errors</td>
<td>0.00</td>
<td>0.10</td>
<td>0.14</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>fraction of SVs</td>
<td>0.40</td>
<td>0.28</td>
<td>0.24</td>
<td>0.23</td>
<td>0.21</td>
<td>0.21</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

- automatically computed \(\varepsilon \) largely independent of \(m \)
- asymptotics consistent with theorem
Boston Housing Benchmark

- 506 examples, 13-dimensional.

Results (MSE):
- Bagging regression trees: 11.7 [8]
- ε-SV regression: 7.6 [64]

- 100 runs, with 25 randomly selected test points.
- training set is split into actual training set and validation set (80 points) for selecting ε, C, and kernel parameters
Comparison: ν vs. ε

<table>
<thead>
<tr>
<th>ν-SVR</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>automatic ε</td>
<td>2.6</td>
<td>1.7</td>
<td>1.2</td>
<td>0.8</td>
<td>0.6</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MSE</td>
<td>9.4</td>
<td>8.7</td>
<td>9.3</td>
<td>9.5</td>
<td>10.0</td>
<td>10.6</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>Errors</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>SVs</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ε-SVR</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>11.3</td>
<td>9.5</td>
<td>8.8</td>
<td>9.7</td>
<td>11.2</td>
<td>13.1</td>
<td>15.6</td>
<td>18.2</td>
<td>22.1</td>
<td>27.0</td>
<td>34.3</td>
</tr>
<tr>
<td>Errors</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SVs</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- RBF kernel, C and σ chosen as in [59]
Parametric Error Models

Use a tube of varying radius $\zeta(x) \geq 0$:

minimize

$$
\tau(w, \xi^(*), \varepsilon) = \|w\|^2/2 + C \cdot \left(\nu m \varepsilon + \sum_{i=1}^{m} (\xi_i + \xi_i^*) \right)
$$

subject to

$$(\langle w, x_i \rangle + b) - y_i \leq \varepsilon \zeta(x_i) + \xi_i$$

$$y_i - (\langle w, x_i \rangle + b) \leq \varepsilon \zeta(x_i) + \xi_i^*$$

$$\xi_i^(*) \geq 0, \quad \varepsilon \geq 0.$$

This leads to the “usual” dual, with the modified last constraint

$$\sum_{i=1}^{m} (\alpha_i + \alpha_i^*) \zeta(x_i) \leq C m \nu.$$

B. Schölkopf, Canberra, February 2006
Assumption: we have prior knowledge indicating that the noise is modulated by $\zeta(x) = \sin^2((2\pi/3)x)$.

B. Schölkopf, Canberra, February 2006
constant-radius tube
parametric model using $\zeta(x)$
Robustness of SV Regression

Proposition. Using SVR with $|.|_\varepsilon$, local movements of target values of points outside the tube do not change the estimated regression.

Proof.

1. Shift y_i locally $\rightarrow (x_i, y_i)$ still outside the tube \rightarrow original dual solution $\alpha^{(*)}$ still feasible ($\alpha_i^{(*)} = C$, since all points outside the tube are at the upper bound).

2. The primal solution, with ξ_i transformed according to the movement, is also feasible.

3. The KKT conditions are still satisfied, as still $\alpha_i^{(*)} = C$. Thus [5, e.g.], $\alpha^{(*)}$ is still the optimal solution.
The Representer Theorem

Theorem 4 Given: a p.d. kernel k on $\mathcal{X} \times \mathcal{X}$, a training set $(x_1, y_1), \ldots, (x_m, y_m) \in \mathcal{X} \times \mathbb{R}$, a strictly monotonic increasing real-valued function Ω on $[0, \infty[$, and an arbitrary cost function $c : (\mathcal{X} \times \mathbb{R}^2)^m \to \mathbb{R} \cup \{\infty\}$

Any $f \in \mathcal{H}$ minimizing the regularized risk functional

$$c((x_1, y_1, f(x_1)), \ldots, (x_m, y_m, f(x_m))) + \Omega(\|f\|)$$

admits a representation of the form

$$f(.) = \sum_{i=1}^{m} \alpha_i k(x_i, .).$$
 Remarks

• significance: many learning algorithms have solutions that can be expressed as expansions in terms of the training examples

• original form, with mean squared loss

\[c((x_1, y_1, f(x_1)), \ldots, (x_m, y_m, f(x_m))) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2, \]

and \(\Omega(\|f\|) = \lambda \|f\|^2 (\lambda > 0) \): [37]

• generalization to non-quadratic cost functions: [16]

• present form: [56]
Proof

Decompose $f \in \mathcal{H}$ into a part in the span of the $k(x_i, .)$ and an orthogonal one:

$$f = \sum_i \alpha_i k(x_i, .) + f_\perp,$$

where for all j

$$\langle f_\perp, k(x_j, .) \rangle = 0.$$

Application of f to an arbitrary training point x_j yields

$$f(x_j) = \langle f, k(x_j, .) \rangle$$

$$= \left\langle \sum_i \alpha_i k(x_i, .) + f_\perp, k(x_j, .) \right\rangle$$

$$= \sum_i \alpha_i \langle k(x_i, .), k(x_j, .) \rangle,$$

independent of f_\perp.

B. Schölkopf, Canberra, February 2006
Proof: second part of (3)

Since \(f_\perp \) is orthogonal to \(\sum_i \alpha_i k(x_i, .) \), and \(\Omega \) is strictly monotonic, we get

\[
\Omega(\|f\|) = \Omega \left(\| \sum_i \alpha_i k(x_i, .) + f_\perp \| \right)
\]

\[
= \Omega \left(\sqrt{\| \sum_i \alpha_i k(x_i, .) \|^2 + \| f_\perp \|^2} \right)
\]

\[
\geq \Omega \left(\| \sum_i \alpha_i k(x_i, .) \| \right), \tag{4}
\]

with equality occurring if and only if \(f_\perp = 0 \).

Hence, any minimizer must have \(f_\perp = 0 \). Consequently, any solution takes the form

\[
f = \sum_i \alpha_i k(x_i, .).
\]
Application: Support Vector Classification

Here, $y_i \in \{\pm 1\}$. Use

$$c((x_i, y_i, f(x_i))_i) = \frac{1}{\lambda} \sum_i \max(0, 1 - y_i f(x_i)),$$

and the regularizer $\Omega(\|f\|) = \|f\|^2$.

$\lambda \to 0$ leads to the hard margin SVM.
Further Applications

Bayesian MAP Estimates. Identify (3) with the negative log posterior (cf. Kimeldorf & Wahba, 1970, Poggio & Girosi, 1990), i.e.

- \(\exp(-c((x_i, y_i, f(x_i)))_i) \) — likelihood of the data
- \(\exp(-\Omega(\|f\|)) \) — prior over the set of functions; e.g., \(\Omega(\|f\|) = \lambda \|f\|^2 \) — Gaussian process prior [81] with covariance function \(k \)
- minimizer of (3) = MAP estimate

Kernel PCA (see below) can be shown to correspond to the case of

\[
c((x_i, y_i, f(x_i))_{i=1,...,m}) = \begin{cases}
0 & \text{if } \frac{1}{m} \sum_i \left(f(x_i) - \frac{1}{m} \sum_j f(x_j) \right)^2 = 1 \\
\infty & \text{otherwise}
\end{cases}
\]

with \(g \) an arbitrary strictly monotonically increasing function.
Regularization Interpretation of Kernel Machines

The norm in \mathcal{H} can be interpreted as a regularization term (Girosi 1998, Smola et al., 1998, Evgeniou et al., 2000): if P is a regularization operator (mapping into a dot product space \mathcal{D}) such that k is Green’s function of P^*P, then

$$\|w\| = \|Pf\|,$$

where

$$w = \sum_{i=1}^{m} \alpha_i \Phi(x_i)$$

and

$$f(x) = \sum_i \alpha_i k(x_i, x).$$

Example: for the Gaussian kernel, P is a linear combination of differential operators.
\[\|w\|^2 = \sum_{i,j} \alpha_i \alpha_j k(x_i, x_j) \]
\[= \sum_{i,j} \alpha_i \alpha_j \langle k(x_i, .), \delta_{x_j}(.) \rangle \]
\[= \sum_{i,j} \alpha_i \alpha_j \langle k(x_i, .), (P^* Pk)(x_j, .) \rangle \]
\[= \sum_{i,j} \alpha_i \alpha_j \langle (P^* Pk)(x_i, .), (Pk)(x_j, .) \rangle \}
\[= \langle \left(P \sum_{i} \alpha_i k(x_i, .) \right), \left(P \sum_{j} \alpha_j k(x_j, .) \right) \rangle_D \]
\[= \| P f \|^2, \]
using \(f(x) = \sum_i \alpha_i k(x_i, x) \).
Further Kernel Algorithms — Design Principles

1. “Kernel module”
 • similarity measure $k(x, x')$, where $x, x' \in \mathcal{X}$
 • data representation
 (in associated feature space where $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$)
 — thus can construct geometric algorithms
 • function class (representer theorem, $f(x) = \sum_i \alpha_i k(x, x_i)$)

2. “Learning module”
 • classification
 • quantile estimation / novelty detection
 • feature extraction
 • ...

B. Schölkopf, Canberra, February 2006
SV Morphing

...powerpoint
Unsupervised SVM Learning

\(x_1, \ldots, x_m \in \mathcal{X} \) i.i.d. sample from \(P \)

- extreme view: unsupervised learning = density estimation
- easier problem: for \(\alpha \in (0, 1] \), compute a region \(R \) such that
 \[P(R) \approx \alpha, \]
 i.e., estimate quantiles of a distribution, not its density.
- becomes well-posed using a regularizer: find “smoothest” region that contains a certain fraction of the probability mass
- given only the training data, we will get a trade-off: try to enclose many training points (more than \(\alpha \)) in a smooth region
Multi-Dimensional Quantiles

• \mathcal{C} a class of measurable subsets of \mathcal{X}
• λ a real-valued function on \mathcal{C}
• *quantile function* with respect to $(P, \lambda, \mathcal{C})$:
 \[
 U(\alpha) = \inf\{\lambda(C) | P(C) \geq \alpha, C \in \mathcal{C}\} \quad 0 < \alpha \leq 1.
 \]

• present case [54]: $\lambda(C) \propto \frac{1}{\text{margin}^2}$, where
 \[
 \mathcal{C} := \{\text{half-spaces in } \mathcal{H}, \text{ not containing the origin}\}.
 \]
Separating Unlabelled Data from the Origin

One can show: if $\Phi(x_1), \ldots, \Phi(x_m)$ are separable from the origin in \mathcal{H}, then the solution of

$$\min_{\mathbf{w} \in \mathcal{H}} \frac{1}{2} \| \mathbf{w} \|^2 \quad \text{subject to} \quad \langle \mathbf{w}, \Phi(x_i) \rangle \geq 1$$

is the normal vector of the hyperplane separating the data from the origin with maximum margin.
\(\nu \)-Soft Margin Separation

For \(\nu \in (0, 1] \), compute

\[
\min_{\mathbf{w} \in \mathcal{H}, \xi \in \mathbb{R}^m, \rho \in \mathbb{R}} \frac{1}{2} \| \mathbf{w} \|^2 + \frac{1}{m} \sum_i \xi_i - \nu \rho
\]

subject to \(\langle \mathbf{w}, \Phi(x_i) \rangle \geq \rho - \xi_i, \quad \xi_i \geq 0 \) for all \(i \).

Result:

- the decision function \(f(x) = \text{sgn}(\langle \mathbf{w}, \Phi(x) \rangle - \rho) \) will be positive for “most” examples \(x_i \) contained in the training set
- \(\| \mathbf{w} \| \) will be small, hence the separation from the origin large

Related approaches: enclose data in a sphere [52, 65]
Deriving the Dual Problem

Using multipliers $\alpha_i, \beta_i \geq 0$, we introduce a Lagrangian

$$L = \frac{\|w\|^2}{2} + \frac{1}{\nu m} \sum_i \xi_i - \rho - \sum_i \alpha_i (\langle w, \Phi(x_i) \rangle - \rho + \xi_i) - \sum_i \beta_i \xi_i,$$

and set the derivatives w.r.t. the primal variables w, ξ, ρ equal to zero, yielding

$$w = \sum_i \alpha_i \Phi(x_i), \quad (5)$$

$$\alpha_i = \frac{1}{\nu m} - \beta_i \leq \frac{1}{\nu m}, \quad (6)$$

$$\sum_i \alpha_i = 1. \quad (7)$$

Patterns with $\alpha_i > 0$ are Support Vectors.
Dual Problem

\[
\min_{\alpha \in \mathbb{R}^m} \quad \frac{1}{2} \sum_{ij} \alpha_i \alpha_j k(x_i, x_j)
\]
subject to \(0 \leq \alpha_i \leq \frac{1}{\nu m}, \quad \sum_i \alpha_i = 1. \)

The decision function is

\[
f(x) = \text{sgn} \left(\sum_i \alpha_i k(x_i, x) - \rho \right).
\]

—a thresholded sparsified Parzen windows estimator

B. Schölkopf, Canberra, February 2006
Support Vectors and Outliers

\[SV := \{ i \mid \alpha_i > 0 \}; \quad OL := \{ i \mid \xi_i > 0 \} \]

The KKT-Conditions imply:

- \(\xi_i > 0 \implies \alpha_i = 1/(\nu m) \), hence \(OL \subset SV \)
- \(SV \setminus OL \subset \{ i \mid \sum_j \alpha_j k(x_j, x_i) - \rho = 0 \} \)
The Meaning of ν

Proposition.

(i) \[\frac{|OL|}{m} \leq \nu \leq \frac{|SV|}{m} \]

(ii) Suppose P does not contain discrete components, and the kernel is analytic and non-constant. With probability 1, asymptotically,

\[\frac{|OL|}{m} = \nu = \frac{|SV|}{m}. \]
Toy Examples using $k(x, y) = \exp\left(-\frac{\|x-y\|^2}{c}\right)$

<table>
<thead>
<tr>
<th>ν, width c</th>
<th>0.5, 0.5</th>
<th>0.5, 0.5</th>
<th>0.1, 0.5</th>
<th>0.5, 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVs/OLS</td>
<td>0.54, 0.43</td>
<td>0.59, 0.47</td>
<td>0.24, 0.03</td>
<td>0.65, 0.38</td>
</tr>
</tbody>
</table>

B. Schölkopf, Canberra, February 2006
Error Bound for Single-Class Classification

For $x \in \mathcal{X}, \theta \in \mathbb{R}$, let $d(x, f, \theta) := \max\{0, \theta - f(x)\}$. Similarly for $X := (x_1, \ldots, x_m)$, $\mathcal{D}(X, f, \theta) := \sum_{x \in X} d(x, f, \theta)$.

Theorem 5 Denote

- $X \in \mathcal{X}^m$ a sample generated from an unknown distribution P, without discrete components
- f_w the solution of the optimization problem,
- $R_{w, \rho} := \{x|f_w(x) \geq \rho\}$ the induced decision region.

With probability $1 - \delta$, for any $\gamma > 0$,

$$P \left\{ x'|x' \not\in R_{w, \rho - \gamma} \right\} \leq \frac{2}{m} \left(k + \log m^2 / (2\delta) \right),$$

where

$$k = \frac{c_1 \log(c_2 \hat{\gamma}^2 m)}{\hat{\gamma}^2} + \frac{2\mathcal{D}}{\hat{\gamma}} \log \left(e \left(\frac{(2m - 1)\hat{\gamma}}{2\mathcal{D}} + 1 \right) \right) + 2,$$

$c_1 = 16c^2$, $c_2 = \ln(2)/(4c^2)$, $c = 103$, $\hat{\gamma} = \gamma/\|w\|$, $\mathcal{D} = \mathcal{D}(X, f_w, 0, \rho) = \mathcal{D}(X, f_w, \rho, 0)$.
Discussion

• algorithm tries to enclose training sample in R_w, ρ
• theorem bounds the probability that test points will be in the larger region $R_w, \rho - \gamma$
• a small γ leads to a small region but a large complexity term
• a small $\|w\|$ leads to a small complexity term (recall $\hat{\gamma} = \gamma/\|w\|$)
Typical examples (random selection):

Experiment: perform outlier detection on the 2007-element USPS test set (using $\nu = 5\%$)

Next slides: the outliers, ranked by their “badness”
Kernel PCA

linear PCA

\[k(x,y) = (x \cdot y) \]

kernel PCA

\[k(x,y) = (x \cdot y)^d \]
Kernel PCA, II

\(x_1, \ldots, x_m \in \mathcal{X}, \quad \Phi: \mathcal{X} \to \mathcal{H}, \quad C = \frac{1}{m} \sum_{j=1}^{m} \Phi(x_j)\Phi(x_j)^\top \)

Eigenvalue problem

\[
\lambda \mathbf{V} = C \mathbf{V} = \frac{1}{m} \sum_{j=1}^{m} \langle \Phi(x_j), \mathbf{V} \rangle \Phi(x_j).
\]

For \(\lambda \neq 0 \), \(\mathbf{V} \in \text{span}\{\Phi(x_1), \ldots, \Phi(x_m)\} \), thus

\[
\mathbf{V} = \sum_{i=1}^{m} \alpha_i \Phi(x_i),
\]

and the eigenvalue problem can be written as

\[
\lambda \langle \Phi(x_n), \mathbf{V} \rangle = \langle \Phi(x_n), C \mathbf{V} \rangle \text{ for all } n = 1, \ldots, m
\]
Kernel PCA in Dual Variables

In term of the $m \times m$ Gram matrix

$$K_{ij} := \langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j),$$

this leads to

$$m \lambda K \alpha = K^2 \alpha$$

where $\alpha = (\alpha_1, \ldots, \alpha_m)^\top$.

Solve

$$m \lambda \alpha = K \alpha$$

$$\longrightarrow (\lambda_n, \alpha^n)$$

$$\langle V^n, V^n \rangle = 1 \iff \lambda_n \langle \alpha^n, \alpha^n \rangle = 1$$

thus divide α^n by $\sqrt{\lambda_n}$

B. Schölkopf, Canberra, February 2006
Feature extraction

Compute projections on the Eigenvectors

\[V^n = \sum_{i=1}^{m} \alpha_i^n \Phi(x_i) \]

in \(\mathcal{H} \):

for a test point \(x \) with image \(\Phi(x) \) in \(\mathcal{H} \) we get the features

\[\langle V^n, \Phi(x) \rangle = \sum_{i=1}^{m} \alpha_i^n \langle \Phi(x_i), \Phi(x) \rangle \]

\[= \sum_{i=1}^{m} \alpha_i^n k(x_i, x) \]

B. Schölkopf, Canberra, February 2006
The Kernel PCA Map

Recall

$$\Phi^w_m : \mathcal{X} \rightarrow \mathbb{R}^m$$

$$x \mapsto K^{-\frac{1}{2}}(k(x_1, x), \ldots, k(x_m, x))^\top$$

If $K = U D U^\top$ is K’s diagonalization, then $K^{-1/2} = U D^{-1/2} U^\top$. Thus we have

$$\Phi^w_m(x) = U D^{-1/2} U^\top (k(x_1, x), \ldots, k(x_m, x))^\top.$$

We can drop the leading U (since it leaves the dot product invariant) to get a map

$$\Phi^w_{KPCA}(x) = D^{-1/2} U^\top (k(x_1, x), \ldots, k(x_m, x))^\top.$$

The rows of U^\top are the eigenvectors α^n of K, and the entries of the diagonal matrix $D^{-1/2}$ equal $\lambda^{-1/2}$.

B. Schölkopf, Canberra, February 2006
Toy Example with Gaussian Kernel

\[k(x, x') = \exp \left(-\|x - x'\|^2 \right) \]
Kernel PCA Denoising

Idea: in feature space, discard higher-order principal components, and compute approximate pre-images [53].

Original data, first 8 feature extractors (*left*), pre-images computed by retaining 1...8 components in feature space (*right*).
Comparison of Different Algorithms

<table>
<thead>
<tr>
<th>kernel PCA (4 PCs)</th>
<th>nonlinear autoencoder</th>
<th>Principal Curves</th>
<th>linear PCA (1 PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[53, 29, 21]

B. Schölkopf, Canberra, February 2006
Denoising of USPS Digits

<table>
<thead>
<tr>
<th>$n = 1$</th>
<th>Gaussian noise</th>
<th>‘speckle’ noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>orig.</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>noisy</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
</tbody>
</table>

PCA Reconstruction

<table>
<thead>
<tr>
<th>$n = 1$</th>
<th>Gaussian noise</th>
<th>‘speckle’ noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>C</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>A</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
<tr>
<td>K</td>
<td>0123456789</td>
<td>0123456789</td>
</tr>
</tbody>
</table>

Kernel PCA Reconstruction

Other applications: face modeling [48], image superresolution (see below).
Natural Image KPCA Model

Training images of size 396×528. The 12×12 training patterns are obtained by sampling 2,500 patches at random from each image.
Example of natural image super-resolution: a. original image of resolution 528×396, b. low resolution image (264×198) stretched to the original scale, c. reconstruction of the high-frequency components.
Super-Resolution

(Kim, Franz, & Schölkopf, 2004)

Comparison between different super-resolution methods.

B. Schölkopf, Canberra, February 2006
Kernel Dependency Estimation

Given two sets \mathcal{X} and \mathcal{Y} with kernels k and k', and training data (x_i, y_i).

Estimate a dependency $w : \mathcal{H} \to \mathcal{H}'$

$$w(\cdot) = \sum_{ij} \alpha_{ij} \Phi'(y_j) \langle \Phi(x_i), \cdot \rangle.$$

This can be evaluated in various ways, e.g., given an x, we can compute the pre-image

$$y = \arg\min_{y} \|w(\Phi(x)) - \Phi'(y)\|.$$

A convenient way of learning the α_{ij} is to work in the kernel PCA basis.

B. Schölkopf, Canberra, February 2006
Shown are all digits where at least one of the two algorithms makes a mistake (73 mistakes for k-NN, 23 for KDE).

(from [80])

B. Schölkopf, Canberra, February 2006
Vector Quantization

- given a set of \(m \) data vectors \(X = x_1, \ldots, x_m \)
- wish to represent them by a reduced number of \(M \) ‘codebook’ vectors \(V = v_1, \ldots, v_M \)
- Codebook \(V \) is chosen such that some overall measure of distortion is (approximately) minimized when each \(x \) is represented by its ‘nearest’ \(v \):

\[
E_{VQ} = \sum_{n=1}^{m} D [v(x_n), x_n]
\]

where \(v(x_n) = \arg\min_{v \in V} D [v, x_n] \)

- A common distortion is squared Euclidean distance: \(D [v, x_n] = \|v - x_n\|^2 \)
Kernel VQ

- Conventionally: specify codebook size M and minimize EV_Q over V
 - e.g., Linde-Buzo-Gray (LBG) algorithm
- kernel approach [66]:
 - specify a maximum distortion guarantee:
 \[D[v(x_n), x_n] \leq R \] (\(^*)\)
 - constrain the codebook to be a subset of the data set:
 \[\{v_1, \ldots, v_M\} \subseteq \{x_1, \ldots, x_m\} \]
 - try to find v_1, \ldots, v_M with minimal M such that (\(^*)\) holds

 (Tipping & Schölkopf, 2001 [66])
• define a kernel:

\[k(x_i, x_n) = \begin{cases}
1 & \text{if } D[x_i, x_n] \leq R \\
0 & \text{otherwise}
\end{cases} \]

• seek a sparse vector \(\mathbf{w} = (w_1, \ldots, w_m) \) such that for all \(x_n \)

\[
\sum_{i=1}^{m} w_i k(x_i, x_n) > 0
\]

• Every \(x_n \) lies within ‘distance’ \(R \) of at least one \(x_i \) for which \(w_m > 0 \)

• recall the empirical kernel map

\[\Phi_m(x) = (k(x_1, x), \ldots, k(x_m, x)) \]
• seek solutions with few positive w_m by solving the optimization problem:

$$\min_{\mathbf{w}} \|\mathbf{w}\|_q$$

subject to $\mathbf{w}^\top \Phi_m(x_n) \geq 1$ for all $x_n \in X$

• Ideally, we would choose $q = 0$, since $\|\mathbf{w}\|_0$ counts the non-zero coefficients

• But $q = 1$ leads to a tractable *linear programming* problem

• Penalizers of the form $\|\mathbf{w}\|_1$ generally lead to sparse solutions
Practicalities

• Actual penalty used:

\[\sum_{m=1}^{m} \frac{|w_m|}{c_m} \]

\[c_m = \sum_n k(x_m, x_n) \] the number of examples in the support of \(k(x_m, x) \)

– this improves sparsity without affecting the constraints

• perform a final ‘pruning’ step since symmetries in many tasks still give a number of superfluous vectors

– a consequence of using the \(q = 1 \) rather than \(q = 0 \) penalty

– typically, this step removes a further 1%–5% of vectors

B. Schölkopf, Canberra, February 2006
$R=0.1 \quad M=42$
\(R = 0.4 \quad M = 4 \)
Application to Block Coding of Images

- Popular use of conventional VQ

- Example 384 × 256 image:

- Split into 8 × 8 blocks

- X comprises $m = 1536$ examples of 192-dimensional vectors (64 × 3 colours)
Original Image (288KB)

LP–VQ reconstruction with $R=200$, 144KB (50%)

LP–VQ reconstruction with $R=500$, 33KB (12%)

LBG reconstruction, 33KB (12%)

B. Schölkopf, Canberra, February 2006
Image Statistics

<table>
<thead>
<tr>
<th>Image</th>
<th>Size</th>
<th>Ratio</th>
<th>R</th>
<th>M</th>
<th>E_{max}</th>
<th>E_{rms}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>288KB</td>
<td>100%</td>
<td>0</td>
<td>1536</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LP-VQ Reconstruction</td>
<td>144KB</td>
<td>50%</td>
<td>200</td>
<td>757</td>
<td>199.9</td>
<td>88.7</td>
</tr>
<tr>
<td>LP-VQ Reconstruction</td>
<td>33KB</td>
<td>12%</td>
<td>500</td>
<td>170</td>
<td>499.5</td>
<td>283.8</td>
</tr>
<tr>
<td>LBG Reconstruction</td>
<td>33KB</td>
<td>12%</td>
<td>-</td>
<td>170</td>
<td>816.4</td>
<td>229.8</td>
</tr>
</tbody>
</table>

B. Schölkopf, Canberra, February 2006
Discussion

• Complementary approach to standard VQ
• Useful where:
 – a ‘genuine’ R exists
 – ‘outliers’ must be accurately coded
 – prototypes must be representative of data
 – as an initialiser for standard VQ
• Need not be a vector space as long as $D[v, x_n]$ defined
Kernel Machines Research

- optimization and implementation: QP, SDP (Lanckriet et al., 2002), online versions, ...
- theory of empirical inference: sharper capacity measures and bounds (Bartlett, Bousquet, & Mendelson, 2002), generalized evaluation spaces (Mary & Canu, 2002), ...
- kernel design
 - transformation invariances [13]
 - kernels for discrete objects [30, 78, 40, 18, 74]
 - kernels based on generative models [34, 61, 68]
 - local kernels [e.g., 84]
 - complex kernels from simple ones [30, 2], global kernels from local ones [38]
 - functional calculus for kernel matrices [60]
 - model selection, e.g., via alignment [17]
 - kernels for dimensionality reduction [27]
Conclusion

- crucial ingredients of SV algorithms: kernels that can be represented as dot products, and large margin regularizers
- kernels allow the formulation of a multitude of geometrical algorithms (Parzen windows, SVMs, kernel PCA,...)
- the choice of a kernel corresponds to
 - choosing a similarity measure for the data, or
 - choosing a (linear) representation of the data, or
 - choosing a hypothesis space for learning,

 and should reflect prior knowledge about the problem at hand.

For further information, cf.
http://www.kernel-machines.org,
References

B. Schölkopf, Canberra, February 2006