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Abstract 

Artificial language games give researchers the opportunity to investigate the emergence and 

evolution of semantic structure, i.e. the organization of meaning spaces into discrete categories. A 

possible issue for this approach is that categories might simply carry over from participants’ native 

languages, a potential bias that has mostly been ignored. We investigate this in a referential 

communication game by comparing color terms from three different languages to those of an 

artificial language. Here, we assess the similarity of the semantic structures, and test the influence of 

the semantic structure on artificial language communication. We compare the in-game 

communication to a separate online naming task providing us with the native language structure. 

Our results show that native and artificial language structure overlap at least moderately. 

Furthermore, communicative behavior and performance were influenced by the shared semantic 

structure, but only for English-speaking pairs. These results imply a cognitive link between 

participants’ semantic structures and artificial language structure formation. 

 

Keywords: semantic structure, artificial language, language evolution, smartphone application,  color 

terms, categorical facilitation 
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1. Introduction 

One striking feature of human language is that it exhibits structure on a variety of levels (Everaert et 

al., 2015). For instance, a limited number of phonological units that are meaningless by themselves 

are combined into a much higher number of meaningful words (duality of patterning: Hockett, 1960); 

morphemes (single units of meaning) combine to form more complex phrases; and the semantic 

space is organized into discrete categories that allow us to structure and successfully communicate 

an otherwise intractable and infinite number of meanings (Lakoff, 1987). This is what we call the 

semantic structure of a language: It refers to the way a language divides a meaning space into 

linguistic categories (Youn et al., 2016; “categorical structure” in Carr et al., 2017; Malt et al., 2003). 

For example, different objects that can be designated by the term “furniture” can be distinguished in 

English using words such as “chair”, “table”, “sofa”, or “bed”. This is based on the respective features 

of the objects, like their physical properties and usage (e.g. a chair is used for sitting, while a table is 

typically used to place objects rather than humans on it; meanwhile, there can still be overlap in 

properties like having four legs, being made of wood, etc.). Another example would be the domain of 

color: Here, discrete color terms like “red” or “green”, but also “crimson” or “steel-blue”, structure 

the entire space of colors perceivable by humans to make them communicable to others.  

In this study, we investigate the evolution of the semantic structure of color terms in an artificial 

language game, namely an online smartphone application called the “Color Game”. In particular, we 

link this artificial language, which emerged through repeated interactions between individuals, to the 

semantic structure found in three natural languages. This is important because almost none of the 

past studies that focused on the evolution of semantic structure using artificial language games have 

been concerned with a possible bias for native language structure. We also draw on previous 

literature on color terms and categorical facilitation to ask whether artificial language 

communication is influenced by the semantic structure inferred from the native language. 

 

Artificial language games, semantic structure, and possible biases 

Artificial language games are an appropriate method to study the evolution of linguistic structure in a 

controlled environment (for an overview, see Galantucci, 2009; Galantucci et al., 2012; Galantucci & 

Garrod, 2011; Scott-Phillips & Kirby, 2010; Tamariz, 2017). These tasks typically request participants 

to communicate without a pre-established set of conventional signs. Here, the challenge is to map 

novel and unusual signals onto a space of meanings. As such, the respective signal space and 

meaning space are important features of the task. To circumvent the use of natural language, 
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previous experiments have, for example, used non-words (Kirby et al., 2008), spontaneous gesturing 

(Nölle et al., 2018), or even the movement patterns of a virtual agent (Scott-Phillips et al., 2009). 

Likewise, meaning spaces in these experiments ranged from moving shapes of different colors (Kirby 

et al., 2008) to cartoon characters of different professions (Nölle et al., 2018) and differently colored 

locations within the game (Scott-Phillips et al., 2009). 

How can artificial language games ensure that evolving conventions are novel? Two key features that 

can help here are the avoidance of prior meanings and the reliance on unusual signals – i.e., 

“genuinely ‘alien’ form spaces” (Cuskley, 2019, p. 3). One example is the groundbreaking study by 

Galantucci (2005): Here, pairs of participants were tasked to coordinate to move to the same room in 

a virtual environment with only a single movement possible for each player. To do so above chance, 

they had to communicate by making use of a novel graphical communication device. Crucially, the 

device prevented the use of conventional letters or numbers by only enabling control over the 

drawings’ horizontal (but not vertical) trace, as well as rapidly fading potential signals as time passed. 

Still, participants managed to achieve successful communication, which is evidence for the evolution 

of novel conventions. A similar case is the experiment by Scott-Phillips et al. (2009), who tasked 

participants to coordinate in a comparable virtual environment. In their case, pairs of participants 

could not even make use of a pre-defined communication channel, but only observe the partner’s 

movements in the virtual space instead. Many pairs still manage to establish successful 

communication through their movements on the screen; in doing so, they have to recognize the 

meaning of the partner’s movements, and that the partner is attempting to communicate in the first 

place. Two other examples that made use of highly unusual signal spaces are the studies by Verhoef 

et al. (2014), who had participants learn and transmit sounds by using a slide whistle, and Cuskley 

(2019), who used graphemes originally created with ferrofluid ink; however, neither of these studies 

included a meaning space that the signals had to be mapped onto.  

One key artificial language game that we heavily build on is the study by Müller et al. (2019), which 

investigated whether the amount of visual context shared between the interlocutors in a 

communicative task would influence the participants’ performance with emergent conventions. In 

the study, participant pairs had to make use of a selection of black-and-white symbols to 

communicate the correct color out of an array of four colors. The amount of visual context shared 

between the participants was manipulated by granting access either to all four colors or the correct 

color only for the participant tasked with communicating. Crucially, symbols had been chosen 

beforehand to exhibit substantial ambiguity with regard to which colors they could be associated 

with (making the space, in this context, rather unusual), and participants received neither prior 

training nor external feedback for the task. In spite of this, the study could show that participant 
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pairs established conventional meanings, peculiar to their respective dyad, for the abstract symbols 

and that access to the visual context improved pairs’ performance in the task.  

We build and expand on this basic design of using colors and black-and-white symbols to study the 

emergence of semantic structure, which the previous study was not concerned with. Because 

language exhibits structure on so many different levels, a useful distinction that can be made here is 

between a structuring of the signals and a structuring of the meanings (Carr et al., 2017). For the 

most part, previous studies have focused on the former: This normally takes the form of an 

unstructured space of signals, which, through repeated interaction and/or transmission to new 

learners, acquires systematic and conventional rules about their combination and mapping to the 

meaning space (e.g. Christensen et al., 2016; Kirby et al. 2008, 2015; Nölle et al., 2018; Selten & 

Warglien, 2007; Winters et al., 2015, 2018; Winters & Morin, 2019). These rules refer to the 

“grammar” of the artificial language (in a general sense). This first line of experiments can provide us 

with valuable insights into how linguistic features such as compositional or combinatorial structure 

can evolve. One example study employing a highly unusual signal space has been conducted by Little 

et al. (2017), who had participants use an infrared sensor that recorded hand movements and 

translated them into sounds. Their experiments showed that the dimensionality of the meaning 

space (manipulated through images varying continuously in size, shade, and/or color) can affect the 

structure of the emerging signals, in particular when there is a match or mismatch between the two.  

Less attention has been devoted to structuring of the meanings, whereby a continuous (possibly 

even open-ended: Carr et al., 2017) meaning space is discretized into categories via the formation of 

conventional signals. This refers to the semantic structure and only a few previous experiments (Carr 

et al., 2017; Perfors & Navarro, 2014; Silvey et al., 2019; Xu et al., 2013) have focused on this 

precisely. Perfors and Navarro (2014) let participants learn and transmit typed signals for a meaning 

space of squares that continuously varied in size and darkness. By manipulating this continuous 

space to show one extreme, abrupt change in either size or darkness, they were able to show that 

the semantic structure encoded by the signals tended to reflect the structure of the meaning space. 

A major influence for our study is the research by Carr et al. (2017), who investigated the effects of 

both transmission and communication on category systems. They presented participants with a vast 

space of continuously created triangles that participants had to label. This represents a particularly 

uncategorized meaning space, ensuring that meanings had to become structured from scratch within 

the task. Their experiments show that communication and transmission combined, but not 

transmission by itself, will prompt participants to structure the meaning space as well as the signals 

themselves. Lastly, Silvey et al. (2019) used a similar (but not open-ended) space of continuously 

morphed pentagons to also investigate the roles of communication and transmission, separately and 
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combined. They find that communication only increased category structure and alignment when it 

was also combined with transmission, and in fact that transmission alone eventually would lead to 

similar benefits. 

Experiments conducted in this fashion circumvent one important issue: The resulting structure 

simply might be a mirror image of the meaning space built in by the experimenter. This can be 

intended, if the purpose of the task is to demonstrate a dependence on the stimulus set and its 

arrangement (Little et al., 2017; Nölle et al., 2018; Perfors & Navarro, 2014; Silvey et al., 2015; 

Winters et al., 2015, 2018), but becomes a hindrance whenever the evolving structure is meant to be 

interpreted outside of that view. If a meaning space varies on a set of dimensions with clear-cut 

unique stimuli that need to be distinguished for successful communication (e.g. black cats vs. white 

cats vs. black dogs vs. white dogs), participants will overwhelmingly encode the same distinction in 

the structure (one morpheme for black/white and one for cat/dog). By employing continuous 

meaning spaces, the few studies focusing on the semantic structure (Carr et al., 2017; Perfors & 

Navarro, 2014; Silvey et al., 2019; Xu et al., 2013) allowed participants to structure the meanings 

outside of a forced distinction along clear-cut dimensions, thus circumventing this issue. 

One issue not currently addressed is how the native language of participants influences the evolution 

of semantic structure in these experiments. Participants are already native speakers of one or more 

languages at the start of the experiments, and it remains unclear whether a natural language bias 

influences the outcomes of the task. Although the issue has been recognized early on (Kirby et al., 

2008) and past studies have looked into a native language bias regarding a preference for suffixes 

over prefixes (Martin & Culbertson, 2020) and noun phrase word order (Martin et al., 2019), to our 

knowledge no study has systematically set out to address this question regarding semantic structure. 

The study by Xu et al. (2013) is particularly relevant here: In their artificial language task, participants 

repeatedly learned and transmitted initially random partitions of color spaces, i.e. subdivisions of a 

color space which are named with a single color term. Participants were limited to pre-set artificial 

terms to label the colors, the number of which was fixed within a transmission chain and varied 

between chains to reflect the number of terms in real-life languages. The authors then compared the 

partitions at the end of the transmission chains to color term systems found in the World Color 

Survey (Kay et al., 2009), representing data on over 100 unwritten real-world languages. Quantifying 

the difference between the two data sets, the results showed that artificial partitions evolved to 

become close to color term systems found in the World Color Survey. Since all the participants in this 

experiment were native speakers of English and Xu et al. (2013) wanted to rule out this potential 

native language bias, they compared the results to a control where an independent sample of 

participants was explicitly instructed to perform the same task, but to apply the English color term 
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structure. They found that participants’ systems under the instruction to use the English structure 

were more similar to one another than to the systems created without this instruction. From this, 

they concluded “that participants did not simply apply English colour categories when classifying 

colours” (Xu et al., 2013, p.7). While we do not contest this statement, this does not exclude any 

potential bias towards English structure either; especially in light of the result that the experimental 

color systems outside of the control condition also moved closer towards English color term 

structure over time. Are artificial language semantic structures biased towards the ones found in the 

native language of the studies’ participants? This is our first research question: (1) How similar are 

the semantic structures in native languages and an artificial language? 

 

Color terms and categorical facilitation 

The domain of color forms a continuous meaning space, which allows for minimal physical 

differences between colors, to the extent that they are indistinguishable for the human eye. It is 

subject to discrete structure in natural language, as the continuous space is carved up by color terms 

such as “red”. Since colors are perceptual phenomena linked to language through color terms 

(Witzel, 2018), color terms have been the most prominent test case for studies on linguistic 

categorization, dating back to at least the seminal studies by Brown and Lenneberg (1954) and Berlin 

and Kay (1969). While neither the debates on linguistic universalism and relativism (e.g. Kay & Regier, 

2006; Kay & Kempton, 1984; Terry Regier & Kay, 2009) nor the hierarchy and number of color terms 

in the world (Berlin & Kay, 1969; Kay & Regier, 2003; Kay et al., 2009) are our concern here, color 

terms are nevertheless a useful framework for our purposes, i.e. testing native language interference 

in the emergence of artificial language semantic structure.  

One particular phenomenon observed by the research on color terms is that of boundary effects. We 

can speak of a boundary effect occurring when continuous differences are treated differently across 

a category boundary as opposed to within the category. This is also known as categorical perception  

(Bornstein, 1987; Harnad, 1987). Studies over the years have observed boundary effects on 

performance in naming and memory tasks (Roberson et al., 2000, 2005), brain activity as measured 

by event-related potentials (Thierry et al., 2009), reaction times (Gilbert et al., 2006; Roberson et al., 

2008; Winawer et al., 2007; Zhou et al., 2010), and verbal interference (Gilbert et al., 2006; Roberson 

& Davidoff, 2000). However, the evidence is mixed, with other studies claiming null effects or 

opposite effects (Brown et al., 2011; Davidoff et al., 2012; Witzel & Gegenfurtner, 2011, 2013; Wright 

et al., 2015). Witzel (2018) attributed these mixed findings to poor stimulus control in some 

experiments, and to different levels of processing: Color perception will always involve basic sensory 
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processing (such as excitation of the cones in the retina), but might, depending on the task, also 

involve more or less high-level cognitive processes (such as attention or subjective evaluation).  

Robust effects seem to occur mostly in tasks affording high-level cognitive and directly linguistic 

processing, such as those involving verbal interference or explicit deliberation on the linguistic 

categories. This led Witzel (2018) to coin the term categorical facilitation, which we adopt in the 

current study. 

One special task that might engage this high-level processing of the color terms that has not seen 

much attention is referential communication. In particular, intentional communication that involves 

meta-cognitive processes, such as posited in many frameworks describing human communication 

(Clark, 1996; Frank & Goodman, 2012; Garrod & Pickering, 2004; Grice, 1989; Scott-Phillips, 2015; 

Sperber & Wilson, 1996; Tomasello, 2010), is a good candidate for involving the high-level processes 

mentioned above. For example, given Grice’s (1989) maxim of quantity, interlocutors should take 

into account that they and their partner provide as much information as needed, but not more. 

Testing the referential communication of colors is difficult when using natural language, since 

participants already possess color terms, making the task trivial; instead, we require an artificial 

language game. Artificial language games do not necessarily engage the high-level processes 

mentioned above, but can be reasonably expected to if they involve interaction between participants 

and little to no feedback (Müller et al., 2019). Hence our second research question: (2) Does the 

semantic structure inferred from the native language influence communication with an artificial 

language? 

Lastly, sharing a common language obviously makes communication easier. Relying on shared 

conventions, interlocutors profit in their interaction, since they are closer to mutual understanding 

already (Lewis, 1969). Transferring this to signaling systems in artificial language games, it applies to 

the individual signals (e.g. the meaning of a non-word as “red”), but also in a more general sense to 

the underlying representations: in our case, the semantic structure (e.g. the information of where 

“red” ends and “orange” begins). Thus, that if two interlocutors have different underlying semantic 

structures (e.g. considering a borderline color as “red” that the partner classifies as “orange”, even 

though the general meaning of the terms is mutually understood), they should have a hard time 

understanding each other. Combining this with native language structure could mean that native 

speakers of different languages, in which the semantic structures differ, perform worse than pairs 

that share the same native language when they communicate in an artificial language. This could be 

the case even though the use of their native languages is blocked. This is what we want to address 

with our third and last research question: (3) Do mixed-language pairs that show a different semantic 

structure in their native languages experience more problems in communication? 
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2. Method 

The Color Game 

We address these questions in an online smartphone application, the “Color Game”, designed to 

evolve an artificial language through communication between its players. The Color Game was freely 

available on the Google Play Store and Apple App Store for a runtime of roughly one year. All 

hypotheses, the exclusion criteria and analysis plan were preregistered before conducting any of the 

analyses and can be inspected here: https://osf.io/c8nme/. The processed data files and code of the 

current study can be accessed on the Open Science Framework (https://osf.io/a8bge/). Importantly, 

the project presented here was part of a larger registration that involved six projects related to the 

results of the Color Game in total. The application was created with all six projects in mind, and when 

controls or manipulations concern other projects we will outline them as such. The registration 

documents and results of the other five projects can be viewed here, as well as an in-detail 

presentation of the application as a whole, and the app’s source code: https://osf.io/9pdzk/files/. 

The full raw data will be made available after a period of embargo.  

 

Participants 

During the runtime of the game, anyone could download it for free and, after a short tutorial, play 

with another player in one of several game modes. Thus, our approach to the data acquisition for the 

different projects was not to be limited to a fixed number of participants, but adhere to predefined 

and preregistered exclusion criteria and thresholds, specific to the relevant project (see the Results 

section for the resulting breakdown after exclusions). Participants agreed to have their data collected 

in anonymous format and for research purposes only in a consent form approved at the start of the 

game. The form and the app itself were approved by the Max Planck Society’s ethical committee. 

To make the game easily accessible to a wide audience, we offered the choice of 8 different 

languages for the instructions and menus in-game: English, German, French, Spanish, Portuguese, 

Russian, Chinese, and Japanese. Note that this did not mean that players with other native languages 

were prevented from playing the game; the referential communication task worked without 

requiring any specific native language, since it was based on the symbols and colors only. In fact, a lot 

of players chose to play the game in English or some other language, even though their native 

language was different. This native language was the only personal information players were asked 

to provide for the research, along with their country of origin. In this project, we ended up focusing 

https://osf.io/c8nme/
https://osf.io/a8bge/
https://osf.io/9pdzk/files/
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on native speakers of English, German, and French only, since the sample sizes for these three 

languages allowed for robust analyses (see Results section).  

 

Materials 

Designed for the color perception aspects of this project in particular, the meaning space was a basic 

constant of the game, used in every mode and not manipulated. Using the CIE2000 color space (Luo 

et al., 2001), we constructed a circular selection of 32 colors (Fig. 1). We chose this space because it 

provides a metric for distance between color hues (“Delta E”) that was built to reflect perceptual 

distance, as opposed to merely physical quantities. The colors are equal in physical luminance and 

saturation, but show a constant perceptual distance to their two neighbors (Delta E = 7.8). 32 color 

arrays were formed from this set of colors by picking every fourth color, until a four-colors array was 

formed, using each of the colors as a starting point once. This way, all colors occur in exactly four 

arrays. These 32 arrays constituted the communicative contexts for the entire game.   

 
 

Fig. 1. The game’s color space. Each color is given its associated Hex code (as used by the app). Each of the 

game’s 32 colors is drawn from the CIE2000 color space (see Luo et al., 2001), in constant perceptual distance 

to its left and right neighbors. This includes the first and last color, meaning that the space is circular and can 

be represented as on the right. Figure adapted with permission from Morin et al. (2020). 

 

The signal space of the game overall comprised 35 black-and-white symbols (Fig. 2). Symbols were 

initially hand-drawn, then digitized and image processed to make them look cleaner and to 

standardize them all to the same squared format, taking up equal space on the app display. The 

symbols were chosen such that they had ambiguous associations with regard to the colors they could 

be used for, but at the same time allowed the players to solve the communication task above chance 
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level. To achieve this, we drew on our experience with previous similar setups and in particular a 

previously published study by three of the authors that we also reused several symbols from (Müller 

et al., 2019). Müller et al. (2019) had shown that associations for the symbols vary sufficiently, 

leading to stable conventions that still differ between participant pairs. There were an additional five 

symbols (bottom row of Fig. 2) which were not used in the actual game, but only for advertising the 

application and for the in-game tutorial. This was to avoid prior biasing of the meanings for any of 

the symbols actually used within the game. Players initially only started with ten random symbols 

from the signal space that they could use as a sender, but eventually unlocked all of the symbols as 

they progressed in the game (for details, see Procedure).  

 

Fig. 2. The 35 symbols used in the game (first four rows). Bottom row, in grey: the five symbols used for the 

tutorial and for advertising the game. Players were given a random set of 10 symbols at the start and could 

unlock the full set of 35 symbols by successfully playing the game. Figure adapted with permission from Morin 

et al. (2020). 

 

Procedure 

Regardless of the game mode, the game always brought together two participants to play a 

referential communication task: One of the players (the sender) was tasked to communicate a color, 

using the black-and-white symbols, to the other player (the receiver), who then had the pick this 

color out of an array of four colors. Fig. 3 shows an example trial and the view from both sides. On 

every trial, participants were shown a randomly chosen array from the space of 32 communicative 

contexts, and the four colors were arranged in random positions in a 2x2 grid for each participant 

(see Fig. 3). On the sender’s side, one of the colors was randomly chosen and marked as a “target 

color” by a transparent dot. This left three remaining colors of the array in the role of distractors for 
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the current trial, since they were incorrect responses for the receiver. Here, a manipulation was 

implemented, which was relevant for a different project (https://osf.io/qz597/): Senders did not 

always have access to all four colors like the receiver, but randomly saw one (the target) to four of 

them (the full array). We control for this randomized variable in our models, where necessary.  

 

Fig. 3. An example trial in synchronous mode. The sender in the current trial communicates with a receiver to 

help find the target color (here, the brighter shade of blue), marked for the sender by a dot. Figure adapted 

with permission from Morin et al. (2020). 

 

Participants always played the game in sets of ten trials. In each trial, the sender could choose up to 

ten symbols (including reduplications) from their current symbol repository to guide the receiver 

towards choosing the correct color from the array. When playing as a sender, symbols were 

displayed at the bottom of the screen. Tapping a symbol, like on a keyboard, meant it would be 

displayed in the white row (between the set of symbols and the set of colors). Senders could also 

remove previously tapped symbols from this row by tapping on them. Receivers were sent the row of 

symbols, in the original order, and could choose a color from the array by simply tapping it.  From our 

experience in past laboratory experiments, players typically solve this task by forming meaning 

conventions on single symbols that stand for a single basic color term or modifiers such as “dark” or 

“light” (Müller et al., 2019). 

https://osf.io/qz597/
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The game never provided feedback about player performance, apart from a general statement 

announcing how many trials out of the total of ten trials the pair solved correctly (but not which 

ones), which was displayed at the end of each set of 10 trials. Our reason to avoid trial-by-trial 

feedback is that it would let receivers know instantly which symbol their sender associates with 

which color, allowing them to learn a sender’s code by mere association. After completion of a set, 

both players were awarded points, depending on their performance. 

Progress in the game for the players occurred in the following way: Upon entering the game for the 

first time, players had to complete a short tutorial explaining the basics of the game.  This involved 

acting on one trial each as a sender and as a receiver, using the tutorial symbols only, and with the 

same predefined trial for every player. Having completed the tutorial (and every time they entered 

the game after that), players entered the main lobby screen. Players had the free decision to enter a 

game with another player of their choice, and also to do so repeatedly and whenever they wanted, a 

core difference between our study and classical experiments that makes for more realistic 

evolutionary dynamics (Morin et al., 2018). When players earned points, they unlocked new symbols 

and game modes. For the symbols, participants started with a basic set of ten randomly chosen 

symbols to use as a sender and gradually unlocked new ones every time they upgraded their rank. 

This was done to create a less taxing start than with a full selection of 35 symbols, to preserve more 

diversity in symbol-color mappings, and to motivate the players. For a recurring player, which is the 

only player base we can make use of in the scientific projects, these symbols could be unlocked 

rapidly. 

All players started with access to basic “synchronous” and “asynchronous” play.  Asynchronous play 

meant that the player could choose to start a set of trials at any time, upon which they played the 10 

subsequent color arrays as a sender. These trials were created by the sender in isolation and solved 

later by an interested receiver. Senders could decide to send out these asynchronous sets of trials to 

a receiver of their choice, or to release them publicly. If they did the latter, a number would appear 

next to their pseudonym for other players indicating the number of sets that the player had created, 

and anyone could open these sets and try to solve them as a receiver. However, they would have to 

pay a small amount of points to do so, only increasing their score if they were reasonably successful. 

Meanwhile, creating sets as a sender was always free. Once a set of trials had been played by any 

receiver, it was removed from the public lobby for everyone. In contrast,  synchronous interactions 

could happen by inviting another player directly into a set of trials, as the game also showed who was 

currently available. Synchronous invitations never cost any points. In this mode, players 

communicated in live interaction and the receiver could see changes to the sender’s communication 

channel in real time. Additionally, both players could also interact by sending the signs “!” and “?” to 
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one another, the meaning of which was intentionally left open. This was to make the task more 

interactive and make players relate to the partner, to separate this live communication from the 

asynchronous situation. 

When players had collected a large amount of points in the game, they also unlocked a new “speed 

mode” to play either asynchronous or synchronous trials in. Here, the rules were the same as before, 

but time was severely limited. This mode was included to present a constant challenge also for very 

experienced players and rewarded many points when successful, but also cost a lot of points to 

enter. The different game modes were included to give more variability to players other than simply 

the basic task, to assess the importance of live interaction, and to allow for content that players 

could access anytime, regardless of who else is online. As such, we are not interested in the 

differences between these modes, but game mode is controlled for in our analyses. 

 

Online survey 

We need baseline data to find the semantic structure that speakers of the three languages use for 

our (unique) set of colors, using these languages’ basic color terms. For this purpose, we set up an 

additional online study, somewhat similar to the method of the World Color Survey (Kay et al., 2009). 

This online survey was separate and independent from the Color Game and created for the needs of 

the present study. 

 

Participants 

The survey was set up online on Prolific, a platform enabling researchers to recruit participants all 

over the world in exchange for payment. This study and the Color Game thus used a different sample 

of subjects. For each of the three languages that showed robust sample sizes in the Color Game data 

(English, German, and French), we got survey data for 50 individuals. Only native speakers of the 

specific language were able to access the respective online survey. Participants were paid £1 in 

exchange for their help and time (about 5 minutes), and gave their informed consent before starting 

the survey. 
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Materials 

The task made use of the same color space as the Color Game. We operationalize the native 

language semantic structure in the form of basic color terms much like Berlin and Kay (1969), an 

approach that has proven useful for assessing the naming patterns in different languages worldwide 

(Kay et al., 2009). The goal here is to identify linguistic categories that allow us to study the semantic 

structure of colors (e.g. for English, “red”, “green”, “blue”, and so on). With a set of basic criteria, we 

can use a finite number of language-specific terms that allow for a full description of our color space. 

Moreover, by minimizing the number of color terms and avoiding overly specific descriptors (like 

“crimson” or “steel-blue”), we can more readily find commonalities in the underlying structure of the 

color space of participants while opening up the possibility of making robust cross-linguistic 

comparisons. Examples of other approaches that, like us, have gone beyond observation of the 

distribution of naming patterns and successfully built on the concept of basic color terms include 

agent-based simulations of the emergence of the patterns (Baronchelli et al., 2010; Steels & 

Belpaeme, 2005) and experiments with human participants to recreate the known real-world 

patterns (Boster, 1986; Xu et al., 2013). 

The basic color terms that were used for the three languages had been determined in advance by 

piloting with a small group of native speakers of the respective languages. This was done by freely 

eliciting the first color terms that came to mind, and then letting participants map the terms they 

named onto our space of 32 colors to rule out terms that were not applicable (like “black” or 

“brown”). The most frequently named color terms were compared and confirmed to correspond to 

well-established basic color terms for English and their respective equivalences in German and 

French, with one additional term for German, and adopted as displayed in Figure 4. English and 

French terms turned out to be very similar, both ending up with seven basic terms that applied to our 

space (note that achromatic terms, i.e. “black”, “white”, and “grey”, do not apply because we only 

vary hue in the space; and “brown” does not apply because lightness is too high in the space). In 

contrast, for German our piloting revealed that an eighth “türkis” term should be added, specifically 

referring to colors in the blue-green spectrum. 

  Color Terms 

English Blue Red Yellow Green Purple Pink Orange 
 

German Blau Rot Gelb Grün Lila Pink Orange Türkis 

French Bleu Rouge Jaune Vert Violet Rose Orange 
 

Figure 4. Color terms used for the online survey in the three languages. 
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Procedure 

After participants had given consent, they read the instructions to the task before proceeding. The 

instructions and the entire task were presented to participants in their respective native language. In 

the task, the 32 colors of the Color Game’s color space were presented to the participant, all at the 

same time, organized in a circular pattern to avoid effects of position and start/end points (see Fig. 

5). The participants must then provide a label for every color by associating it with at last one basic 

color term. This was done by presenting the respective terms, one by one and in random order, and 

asking participants to click on all colors in the circle that they associated with that term. Participants’ 

selected colors appeared at the top of the screen and could be removed from the selection by 

clicking on them again. When participants were finished with selecting all associated colors for a 

specific term, they could click “next” and would be presented with the next randomly chosen color 

term from their language. Participants continued with labeling colors until all colors had been 

named; thus, if after a complete cycle of all terms some colors were not named yet, these colors 

were presented for all terms in that language again. Colors could also be named with more than one 

term, if they were independently chosen for different terms within one cycle of the naming 

procedure; in fact, this was crucial to account for boundary cases and to mirror the potential 

structure of the communication in the Color Game, since different symbols could get used for the 

same colors. 

 

 

Fig. 5. The color wheel used in the online survey to gather baseline data for the semantic structure in native 

language color terms. The example shows a participant in the English sample tasked with selecting the colors 

associated with the term “purple”. Colors were highlighted when moused over (l ike the one on the right side) 

and appeared at the top when clicked on, and their position on the screen was randomized while the circular 

order was maintained between participants. 
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Predictions 

Bringing together the data on the native language semantic structure and the artificial language 

communication in the game, we can address our research questions outlined in the beginning. We do 

this by applying exploratory factor analysis, a method used to summarize data by reducing its 

variation to a smaller set of factors that reveal the underlying structure,  to the data from the online 

survey. After that, we try to confirm the structure found in the exploratory factor analysis on the 

data from the artificial language game by applying a confirmatory factor analysis whose parameters 

are set to the structure resulting from our baseline. For clarity, from here on we will use the term 

“color categories” or simply “categories” to refer to these statistical factors. Based on the research 

questions outlined in the introduction, we made the following predictions: 

 

Research question 1: How similar are the semantic structures in native language and an artificial 

language? 

Prediction 1. We predicted that the categorical structure (assessed by exploratory factor analysis) of 

the native language should fit the structure of the artificial language. At the very least, a 

confirmatory model that imposes the native language structure on the artificial language should not 

get rejected. This would indicate that the artificial language structure reflects the native language 

structure, to some degree. 

Research question 2: Does the semantic structure inferred from the native language influence 

communication with an artificial language? 

Prediction 2.1. If categorical facilitation is at play for communication in the game, we would expect 

color arrays that cross more boundaries between categories to be easier to solve for participant pairs 

(of the same native language) as compared to color arrays that cross fewer of these boundaries. This 

is because, if the color array covers more natural color categories, each of the colors within the array 

should be more nameable. 

Prediction 2.2. Taking the target color of a current trial into account, we also predicted that pairs 

would send more symbols when a distractor was present that was part of the same category in the 

native language structure: Presumably, they would realize that a simple symbol representing a 

meaning such as “blue” would not suffice in this case, and add modifiers, e.g. “dark blue”. This 

measure complements the simple frequency of boundaries in Prediction 2.1 by focusing directly on 

the relevant pragmatic contrast that needs to be expressed by the sender in the communicative 

situation. 
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Prediction 2.3. Regarding the effects of these same-category distractors on communicative 

performance, we put forward and preregistered three alternative predictions, supported by different 

researchers in the project. The first is that player pairs should be more likely to succeed when the 

target color is accompanied by one or more same-category distractors, because the use of modifiers 

could help to identify the target color more precisely by making a pragmatic inference (if the sender 

uses a modifier, e.g. “darker”, then the target must be amongst the same-category colors, and be the 

darker one). The alternative prediction to this is that player pairs should be less likely to succeed 

under the same circumstances, because colors within the same category should be harder to 

distinguish than colors across boundaries, and more symbols mean misunderstandings could arise 

more easily. A third possibility is that the effect of same-category distractors could be dependent on 

the experience of a pair (i.e. an interaction): With an increasing number of trials between the 

participants, we could observe a change in the effect for same-category distractors from less success 

to more success; thus, participants’ performance would first suffer due to colors being harder to 

distinguish and more misunderstandings because of the higher number of symbols, but profit from 

the pragmatic specificity later on, leading to higher success. 

Research question 3: Do mixed-language pairs that show a different semantic structure in their 

native languages experience more problems in communication? 

Prediction 3. Here, the prediction is that the coordination problems arising from different native 

language structures would lead to worse performance in pairs not sharing a semantic structure, 

compared to those that do, but only for items for which their languages do not align. 

 

3. Results 

The following data resulted from the Color Game’s runtime from May 2018 to April 2019: Overall, a 

total number of 4,277 users accessed the game, providing us with 435,842 trials of raw data. After 

applying the general exclusion criteria for the data (common to all projects on the Color Game for 

reasons like bugs, empty trials, or users that did not provide their mother tongue; see “CleanUp” in 

the online data), we are left with 347,606 trials by 2,615 users. Most relevant for our main analyses 

in this project is the number of senders and same-language pairs sharing a specific mother tongue, as 

per the preregistration. In principle, we preregistered that we only wanted to analyze data from 

senders and pairs that were sufficiently involved in the game, since symbol-color mappings of 

infrequent players might be too noisy, inaccurate and not as exhaustive with regard to the coverage 

of the symbol and color spaces. As such, we set and kept to the fixed cutoff of at least 100 trials 
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played in the game for individual senders, and at least 50 trials played together for individual pairs 

(regardless of the distribution of role in the pair as sender or receiver).  It is important to note that 

these cutoffs apply to different analyses (concerning prediction 1 and predictions 2 to 3, 

respectively). The number of users and trials in the specific subsets of relevant languages (from the 

preregistration) can be seen in Table 1.  

Language senders > 100 trials pairs > 50 trials 

 n Trial count n Trial count 

English 85 57,086 101 13,234 

German 88 122,116 116 37,070 

French 53 27,226 44 3,981 

Spanish 12 4,437 0 0 

Chinese 0 0 0 0 

Table 1. Number of senders and same-language pairs that reached the preregistered thresholds of trials for 

each of the 5 languages we intended to use.    

 

Although we did not reach the cutoffs preregistered for an early analysis in most cases, there is still 

enough data to perform the planned analyses fully for English, German, and French. Spanish and 

Chinese had to be dropped due to the lack of data of players with a high number of trials; since it was 

impossible to fully anticipate the amount of users that the app would attract, sampling issues for 

some languages were expected, however. 

Since we need it for the baseline on the color term structure in the respective languages, we start by 

summarizing the results of the online survey. The resulting data was restructured to represent one 

row for each participant-term pair, i.e. each unique combination of participants and color terms (e.g. 

participant 1/red, participant 2/red, participant 1/green, etc.;  compare also Jäger, 2012). We can 

think of this structure as a “profile” for each participant, recording the number of times that each of 

the 32 colors were associated with a specific term in their language.  Then the exploratory factor 

analysis (EFA from here on) was applied using R version 3.5.1 (R Core Team, 2018). EFA is an 

exploratory, i.e. data-driven, clustering technique that can be used to reduce datasets that show high 

dimensionality to a pre-set lower number of dimensions, called “factors”, while describing the data 

as well as possible. By structuring the data in the way described above, we can summarize the 

categorization inherent in individual color terms and participants, all at once. The number of factors 
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that should be extracted in an EFA can be hard to decide on if there are no pre-defined conceptions 

of the dimensions; however, in our case we could simply set it to the number of basic color terms 

determined in the piloting study (see Method section) and used throughout the survey. The analysis 

also reveals the factor loadings, i.e. the strength of association between each variable and the 

common factors; in our case, these correspond to the association between colors and their 

respective terms. Ideally, colors should show high loadings on their common term, but low cross-

loadings to other terms. We consider loadings higher than |0.3| to be meaningful. A common 

approach with EFA is to rotate the factors to reach a simplified orientation to facilitate 

interpretation; here, we chose promax rotation, as the factors were expected to correlate.  The goal 

of these analyses was to see whether the data would reflect our assumptions concerning the 

structure, resulting in clean categories that represent the native language terms and show low cross-

loadings, with clear boundaries which then could be used for the further analyses. 

The categorical structure of the data from the naming task for the three languages is visualized in Fig. 

6. In English and German, it reflects the native language terms that were given to participants, with 

low cross-loadings and clear-cut (i.e. overlap only on single border colors in all but one case) 

contiguous categories. It is important to emphasize that emerging categories are not pre-defined in 

the analysis, but easily identifiable as the respective color terms, confirming our approach. Another 

positive result is that we observe the highest loadings on colors that are in the center of categories 

rather than at the boundaries. The differences between these two languages mostly boil down to the 

light blue area in the color space, which is statistically explained by the “türkis” term in German but 

subsumed into the general “blue” term in English, with one specific color in this spectrum even not 

loading highly on any factor in English. This reflection of our assumptions in the results is not trivial, 

as can be seen in the French data: Here, we find that the 7-factor EFA results in an unexpected lack of 

a “red” category in favor of a “light blue” category (such as in German). Still, cross-loadings are also 

low and boundaries clear-cut. The “red” category does appear in the structure when an 8-factor 

solution is proposed instead. The results for this 8-factor structure only differ meaningfully from the 

data-driven suggestion with the 7 factors for one single model, which we flag in the analyses below; 

otherwise, the results for the 7-factor structure are reported. 
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Figure 6. Visualizations of the categorical structure resulting from the EFA on the data of the online survey. 

Boxes represent the 32 colors used in our study. Circles represent categories, named with the term that was 

most frequently associated with the colors loading on them; these categories are colored in the hue that has 

the highest loading. Arrows are drawn for all factor loadings (= the numbers on the arrows) in the EFA that are 

.3 or higher. Top left: English data. Top right: German data. Bottom left: French data, 7-factor-structure. 

Bottom right: French data, 8-factor-structure. 

 

Prediction 1 

We then proceeded with confirmatory factor analyses (CFA from here), trying to replicate the 

structures found in the EFA by directly fitting it on the communicative data from the Color Game. CFA 

is the complementary approach to EFA, used to confirm a pre-defined structure by fitting it in a 

structural equation model. As such, it is able to provide a test of our native language structures’ fit on 

the artificial language communication data. We subset the cleaned-up Color Game data to all trials 

from senders of the three languages that had played at least 100 trials in that role. This data was 

arranged so that each row represented a unique pairing of a symbol and sender, recording, for each 

color and each symbol, whether the symbol was used to indicate the color (thus mirroring the 

structure used for the EFA). We then fit the CFA once for each language using lavaan (Rosseel, 2012). 
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The structures specified for the models came from the results of the EFA, represented by loading 

each of the colors that were paired together onto a common factor (only considering loadings 

greater than .3). Model fit was assessed both by robust CFI and RMSEA estimates, two common 

measures of fit. As can be seen in Table 2, the CFA was at least a moderate fit for all languages (see 

the guidelines in Hooper et al., 2008), with values that are moderate to good for German and English. 

Descriptively, colors with high loadings in the CFA also correspond to the colors with high loadings in 

the EFA (i.e. typically the central colors of a category), and boundaries from the EFA are not 

contradicted by the loadings of the CFA. 

Language n CFI RMSEA (95% CI) Model Fit 

English 2056 .88 .063 (.061-.065) good to moderate 

German 2096 .92 .054 (.052-.056) good to moderate 

French 1123 .86 .077 (.074-.080) moderate 

Table 2. Goodness of fit measures (robust estimates) for the CFA on the three languages. 

 

Prediction 2.1 

Next, we tested whether colors could be communicated more accurately when there were more 

boundaries present in a given array for a given language. Again, the results of the EFA were taken as 

a baseline, and by assigning each color to the category it had the highest loading on, each color array 

in the game could be described in terms of how many boundaries were present for each of the three 

languages (from the view of the full array, regardless of how many colors were shown to the sender). 

In case of single colors not loading highly on any factor (only relevant for one color in English and 

three in French), a full transition between the two categories bordering these colors was needed 

within the arrays to count the array as exhibiting an additional boundary. Coding the 32 color arrays 

in this way for each of the languages revealed that German exhibited much less variation in the 

number of boundaries than English due to its 8 categories, being limited to arrays that crossed either 

two or three boundaries (resulting mean number of boundaries in German: M = 2.63; standard 

deviation SD = 0.49; English: M = 2.25; SD = 0.76). In French, this depended on whether the 7-factor 

or the 8-factor structure was used (7-factor: M = 2.41; SD = 0.67; 8-factor: M = 2.44; SD = 0.62), but 

was overall still more varied than for German. 

The analyses were performed on subsets of the data limited to pairs of the same native language 

that had played at least 50 trials together. We used separate logistic mixed-effects models (lme4 
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package in R; Bates et al., 2015) for each language to test the effect of the number of boundaries on 

accuracy on a trial-by-trial level, controlling for the fixed effects of the number of trials a pair had 

played together and the number of colors in the senders’ array. Random intercepts were added for 

participant pairs, color arrays, and the game mode. Random slopes were added for the number of 

boundaries and then reduced in a stepwise approach until a model could converge with acceptable 

correlations in the random-effects structure. We then compared the AIC (as an indicator of model 

quality) of these final models to the AIC of a simpler model that was identical but had the fixed effect 

of the number of boundaries removed, respectively. This simpler model should show an increased 

AIC value to support our hypothesis. As a guideline, we consider a ΔAIC of 2 or greater to be 

meaningful evidence of a better performing model (Burnham & Anderson, 2004); at the same time, 

we also report the results of likelihood-ratio tests to see how robust this analytic strategy is. This 

procedure will be repeated in a similar way for all upcoming analyses. The results for these models 

can be seen in Table 3. For the English data, the number of boundaries in the arrays had a positive 

effect on performance. This means that English pairs were better when the colors in a given trial 

loaded on more different categories (according to English color terms). For German and French, no 

such effect could be detected.   

Language n AIC simple 

model 

AIC model 

including 

#boundaries 

ΔAIC Likelihood-ratio 

tests: p-value  

English 13234 15174.9 15171.6 3.3 .022* 

German 37070 43074.3 43075.3 negative .326 

French 3981 5193.2 5193.9 negative .250 

Table 3. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of 

the number of boundaries on performance. “Negative” in the ΔAIC column implies the simpler model 

minimized the AIC and was favored over the model including the number of boundaries.  

 

Prediction 2.2 

We then turned to the analyses investigating whether same-category distractors would impact 

performance, given the native language structure. For this, we had to restrict the data from the 

previous models only to trials that showed all 4 colors to the sender (roughly 25% of the data in the 

analyses for prediction 2.1), since otherwise the sender would not necessarily be aware of the 

presence of same-category colors. We then coded each trial for whether the color array presented 

the sender with a distractor that was part of the same category as the target, given their native 
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language structure (the method for this coding being similar to how the previous analyses were 

handled): the “distractor” variable. We predicted the number of symbols sent in the given trial by 

this variable, ignoring reduplications of the same symbol. We did this in separate linear mixed-effects 

models for each language that again controlled for the fixed effect of the number of trials a pair had 

played together and the random intercepts of participant pairs, color arrays, and the game mode 

played in. Random slopes were added and reduced similarly to the previous analyses.  

The results for these models can be seen in Table 4. We again found the expected results for the 

English data, as suggested by the difference in the AIC between the two models. As such, English 

senders sent more symbols when a same-category distractor was present in a given trial. For German 

and French, no such difference could be detected; additionally, the direction of the estimate of the 

effect pointed into the opposite direction. This analysis also is the only case in which the French 

structure with 8 factors differed meaningfully from the 7-factor structure: Here, the difference 

between the models became significant, meaning that, only with 8 factors in the structure, French 

senders sent less symbols when a same-category distractor was present in a given trial. 

Language n AIC simple 

model 

AIC model 

including 

“distractor” 

variable 

ΔAIC Likelihood-

ratio tests: 

p-value  

Direction 

of effect 

English 3323 8503.8 8499.5 4.3 .012* positive 

German 9356 25717.8 25717.8 0 .154 negative 

French 995 2750.4 2749.3 1.1 .082 negative 

French, 

8 factors 

 

995 2742.3 2739.9 2.4 .035* negative 

Table 4. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of 

the presence of a same-category distractor on the number of symbols sent in the given trial.  

 

Prediction 2.3 

After that, we also predicted performance by the presence of same-category distractors in three 

separate models fit to the data used for prediction 2.2. These were logistic mixed-effects models 

with the same controls as before. Additionally, we included the interaction between the presence of 

same-category distractors and the trial experience of pairs in another set of models and tested these 
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against the models including the main effects only. Again, there was a difference between the 

simplest model and the model including the distractor variable for English, but it was close to non-

significance (ΔAIC of 1.9 and p-value of .049; see Table 5). This means that English pairs also tended 

to perform worse when a same-category distractor was present in a trial, but this result is less 

robust. This supports option 2 from our different predictions, implying that English pairs potentially 

found colors that belonged to the same native language category harder to communicate.  No such 

effect could be found for German or French, nor for the interaction effect in any of the three 

languages.  

Language n AIC simple 

model 

AIC model 

including 

“distractor” 

variable 

AIC model 

including 

interaction 

ΔAIC Likelihood-

ratio tests: 

p-value  

English 3323 3881.8 3879.9 3881.4 1.9; 

negative 

.049*; .458 

German 9356 10905.9 10907.6 10909.6 negative; 

negative 

.602; .985 

French 995 1307.5 1309.4 1310.7 negative; 

negative 

.725; .408 

Table 5. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of 

the presence of a same-category distractor on performance in a given trial. Note the additional column for the 

AIC including the interaction effect between the distractor variable and the number of trials a pair had played 

together, and thus the two values for the ΔAIC and likelihood-ratio test columns: The first number indicates the 

value for the comparison between the simplest model and the model including the main effect, and the second 

the value for the comparison between the model including the main effect and the model including the 

interaction effect. 

 

Prediction 3 

Lastly, we investigated the performance of mixed-language pairs of speakers of German and English 

more closely. We focus on these two languages specifically because they have shown an interesting 

contrast in their exploratory structure for four colors in the blue-green spectrum, and because their 

structures and analyses have shown clearer results than French so far. Hence, we created a variable 

coding whether a trial in the data was conducted by a same-language pair or by a mixed-language 

pair (no matter who was sender or receiver). We tested for an effect of this variable in a model 

comparison including random effects of participant pairs, color arrays, and game mode. There was 
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no meaningful difference between the model including the same/different-language variable and the 

one without (Table 6). After this, we subset the data for an additional analysis concerning the same 

effect for the four colors mentioned above only. Similar to the results of the first model, there was 

no difference for the same/different-language variable.  

Data subset n AIC simple 

model 

AIC model 

including effect 

ΔAIC Likelihood-

ratio tests 

Same vs. 

different 

language 

75252 89126.1 89126.2 negative .166 

4 colors in the 

blue-green 

spectrum only 

9435 10724.3 10726.2 negative .782 

Table 6. AIC values and p-values of the likelihood-ratio tests computed from the models testing the effect of 

same-language vs. different-language pairs on performance in the given trial. 

 

4. Discussion 

By combining the results of the online survey with data collected in the artificial language game, this 

study was able to compare the Color Game’s referential conventions to the respective semantic 

structures of English, German, and French, and found a good to moderate correspondence.  Our 

findings provide evidence in favor of similarities between the semantic structures present in the 

native language of participants and their evolved structures in the artificial language game. One 

important point to note is that the samples of the online survey and the application were 

independent. As a consequence, we do not follow individuals’ tendencies to apply their personal 

semantic structure to artificial language structure, but generalize to the average behavior of a native 

language community instead.  

Over the three languages, our EFA of the data gathered in the online survey revealed structures 

consistent with our expectations based on the concept of basic color terms and on our piloting 

before the study. First, category boundaries were clear-cut, which implies that participants divided 

the space by applying mutually exclusive color terms. This is very much in line with the idea of the 

basicness of color terms proposed by Berlin and Kay (1969) and their criterion that the basic 

categories should not be included in any other color category. Second, the color categories resulting 

from the EFA were also maximally contiguous, with no interruptions within the arrangement of the 

space. This confirms the validity of our approach to create the color space in a circle of hue while 
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keeping lightness and saturation constant. Third, colors that were located more centrally within a 

category showed very high loadings overall, whereas peripheral colors showed the lowest loadings. 

This is in agreement with central colors being prototypes within their category (Berlin & Kay, 1969). 

Between the three languages, there was one peculiar case with mixed results that came to attention 

during the EFA, and it concerned the naming of the colors in the blue-green spectrum. English 

speakers tended to name one particular color on this boundary as neither “green” nor “blue”. 

German speakers applied their eighth term, “türkis”, exclusively in this area, and thus filled the gap 

that could be seen in the English data. This supports our decision to work with eight German terms 

after the piloting, and chimes in with research suggesting the growing basicness of the term “türkis” 

in German (e.g. Zimmer, 1982; Zollinger, 1984). The results for the French speakers were weaker and 

unexpected, with a category for the blue-green colors instead of a “rouge” category, even though 

they had not been offered a term for blue-green. While the addition of an eighth factor to the EFA 

remedied this issue, it is still puzzling, but also shows that this data-driven approach to the semantic 

structure of the languages was by no means a guaranteed way to arrive at the results we had 

expected. Overall, we believe that the reason for the peculiarities surrounding this exact part of the 

space lies in the large number of colors that could be classified, in English terms, as either “blue” or 

“green”. Even though we created the color space such that neighboring colors were equidistant, this 

turned out to be one characteristic feature. French speakers, then, ostensibly preferred 

distinguishing between light and dark blue first (rather than orange and red) in the online survey, 

which is understandable given the high number of colors there (in contrast to the low number of red 

colors). This touches upon a related point regarding what an “optimal” categorical system to organize 

our color space should theoretically look like (see Regier et al., 2007): Given the imbalance between 

the “red” and “blue” regions, a theoretically optimal system would have to choose to include more 

colors into the “red” category and less colors into the “blue” category than we find in English and 

German, such that communicating any color can be achieved with comparable efficiency. Instead, we 

find that the participants in the task fall back on, in this sense, “suboptimal” categories close to their 

native language semantic structure, a central result of the current study. 

An important point is that while our results on the CFA speak for similarities between native and 

artificial language semantic structure, they do not necessarily imply a direct causal link. It might be 

tempting to argue that native language structure should have caused participants to apply similar 

structuring in creating the artificial language; however, an alternative explanation could be that a 

common factor is underlying and causing the structure both in native and artificial languages. This is 

one reason for the emphasis in the outline of the paper that we are neither providing support for 

theories claiming relativity nor those arguing for universalism among color terms. Instead, we argue 
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for a general cognitive link between the native and artificial language structures, but do not make 

claims as to where it might come from. A methodological caveat for artificial language studies, then, 

is to keep this potential confound in mind: When dealing with colors (but possibly with other 

meaning spaces as well), participants might not create novel structure spontaneously in the task, but 

rather recreate ones they know from their native language (coming from a relativist stance) or have a 

general preference for (coming from a universalist stance). Future work would be in a good position 

to dive deeper into this question, and could in particular concentrate more on the contrast between 

two specific languages that differ substantially in their native language structures, a sample that our 

smartphone application could not aim specifically for: We were limited to working with three closely 

related Indo-European languages that mostly overlapped in their semantic structure.  If it turns out 

that participants in such a sample create artificial language structures that fit well on their own 

native language, but not on the contrasting language, this would imply that potential biases are 

language-specific. 

Answering research question 2, we also looked more closely at the importance of semantic structure 

for the communicative performance of pairs of the same language in the game.  More precisely, we 

found that English participant pairs communicated more successfully when color arrays crossed more 

boundaries in their native language semantic structure. They also communicated less successfully 

and sent more symbols when an array contained a distractor that belonged to the same color 

category as the target. Regarding the alternative predictions we put forward to answer this question, 

our data suggests that participants did not profit from additional pragmatic information; nor does 

the more complex hypothesis involving pairs’ experience with the game seem accurate. Instead, 

given the results, we favor the explanation that same-category distractors are harder for participants 

to delineate clearly in communication than distractors from a different color category. This also 

explains the need for a higher number of symbols in the relevant trials.  Overall, the results are the 

first evidence for categorical facilitation within a communication task, and for artificial language 

performance and pragmatics being influenced by pre-existing semantic structure. This expands our 

study from merely observing similarities between native and artificial language structure (research 

question 1) to finding concrete behavioral impact of the shared semantic structure. As outlined in the 

introduction, we believe that communication as a rather involved and explicit task engages linguistic 

processing of the structure, which in turn facilitates communicating different-category colors in the 

game.  

However, we were not able to observe the same effects that we found for English speakers for either 

German or French. We believe it is unlikely that the impact of the semantic structure would be 

specific to English speakers only, especially since we found overlap in the native and artificial 
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structures of German and French that was close to the one for English. Instead, our suggestion is that 

the most likely explanation for the null effects lies in the stimuli and their performance for German 

and French: For German, applying the eight basic color terms to the space meant that color arrays in 

the game never showed less than two boundaries for the language, limiting variation in the statistical 

analysis. For French, the EFA with seven color terms did not mirror our expectations, leading to an 

unplanned alternative version with eight terms that suffered from problems similar to the German 

analysis. For this reason, we also do not put any weight on the result that for the 8-factor structure, 

French senders sent less symbols when a same-category distractor was present; especially since it 

was unexpected. The conclusion, then, is that stimuli have to be carefully selected with regard to the 

structure that the respective languages are going to be tested on. Again, future studies with similar 

aims to ours could profit from explicitly focusing on specific contrasts between two or more 

languages, designing stimuli in a way that allows all tested languages to vary in the crucial conditions 

to a reasonable degree. 

Regarding our last research question, we did not find differences in performance between mixed 

pairs of English and German speakers and same-language pairs, neither for the overall color space 

nor for the specific set of colors in the blue-green area that we were interested in. For the complete 

color space, overlap between the two languages was great, so we did not expect any difference. That 

native language did not make much of a difference for the four targeted colors was more surprising, 

however. Presumably, the distinction for an eighth category specifically describing these colors that 

was found for German was straightforward to incorporate for English speakers as well; again, given 

our distribution of color in the space with a heavy reliance on the blue area, players might have 

become well aware of the need to distinguish these colors more clearly as they continued playing. 

This is also demonstrated by the sample of French speakers in the survey that tended to create this 

light blue category over the expected red category. One positive conclusion we can draw from the 

results on mixed-language pairs is that performance in the artificial language task apparently was 

rather independent from the native language of one’s partner, suggesting participants were able to 

adjust to their partners flexibly.  

Concerning the choice of a smartphone application as a means to operate our artificial language 

game, there were several advantages and limitations. We cannot, for instance, be certain that all of 

our participants had normal color vision or that some smartphone screens had not been calibrated in 

ways that significantly bias color perception (although we did warn about that when players 

downloaded the game). Another issue stems from the size of the overall project, involving not only 

this study but six different preregistered projects overall; this led to some design choices (e.g. 

manipulating the senders’ color arrays or the different game modes) that were not relevant for the 
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current study and had to be controlled for statistically. We cannot tell whether a direct experiment 

only dedicated towards addressing our questions could have revealed clearer results in the cases of 

German and French, and concerning research question 3. 

Hopefully, some of these concerns were compensated for by the sheer scale of the project: It is rare 

to have the opportunity to analyze experimental data that, in the most extreme example, includes 

over 100,000 trials of native speakers of German. Even if the numbers on other languages and same-

language pairs were lower than this and we could not obtain enough data on Spanish and Chinese, 

the separate data sets used in our final study included several thousand observations, respectively. 

Even if a conventional online study invested the time and effort to reach a similar scale in sheer 

numbers, there are still advantages to the approach we have taken here with the smartphone 

application. In particular, we believe the application allowed us to create more realistic interaction 

and transmission dynamics (Morin et al., 2018). For the interactions between participants, there is 

free partner choice: Instead of being forced to interact with the one same person over the course of 

an entire experiment, participants could decide to switch partners as much as they want, for instance 

if they could not reach a common convention. For the individual player, there was also the choice of 

when and for how long they wanted to access the game, as opposed to the fixed and rigid application 

of trials typical of regular artificial language experiments.  

 

5. Conclusion 

In this study, we investigated the semantic structure of an artificial language that participants 

evolved by communicating colors, and compared it to the respective native language structure of 

speakers of English, German, and French. To do so, we combined the results of a large-scale online 

smartphone application with a separate online survey, whilst building on previous work on color 

terms and structure in artificial language games. Our first result is that structures developing in the 

artificial language fit native language semantic structures to a moderate to good degree, confirming 

our expectations. This does not necessarily imply a causal effect of native language on artificial 

language formation, but at the very least demonstrates a cognitive link between the two, the exact 

nature of which remains unclear. Our second result showed that the semantic structure shared 

between the native and artificial language influenced the performance and pragmatics of the 

artificial language, however only for speakers of English. This is evidence for categorical facilitation in 

artificial language communication, and for a direct behavioral influence of the semantic structure 

shared by the artificial and native languages. Methodologically, we argue 1) that potential biases 

towards native language structures in artificial language games should be taken into consideration 
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more often, and 2) that meaning spaces used to study several different languages at once should be 

carefully tailored towards the respective structures within those languages.    
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