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Introduction
Proxies based on aggregated radiocarbon-dates are popular in 
archaeological and palaeoenvironmental research. They are cre-
ated by estimating through-time changes in the amount of radio-
carbon deposited into the archaeological and palaeoenvironmental 
records. These time-series of radiocarbon amounts are thought to 
reflect target processes including, for example, population levels 
in archaeological research (e.g. d’Alpoim Guedes et  al., 2016; 
Edinborough et  al., 2017; Riede, 2009; Shennan, 2009) or past 
climate changes in palaeoenvironmental research (e.g. Bleicher, 
2013; Thorndycraft and Benito, 2006; Turney and Brown, 2007). 
Widespread adoption of the proxies is having a significant impact 
on our understanding of both human–environment dynamics and 
climate processes.

The idea that radiocarbon dates could be used for something other 
than chronological control appears to have first been published in a 
1969 paper by palaeoclimatologist Mebus Geyh. The paper reports a 
study of Holocene sea level changes along the North Sea coast with 
the help of “statistischen Auswertung von 14 C-Daten” (“statistical 
evaluation of 14 C data”) (Geyh, 1969). In the paper, Geyh argued 
that the amount of radiocarbon (effectively, number of dated sam-
ples) in different layers of sediment from around the North Sea could 
be used as a proxy for past through-time fluctuations in sea level. His 
argument was based on the relationship between marine ingression, 
wetland formation, peat deposits, and carbon preservation. When sea 
levels rise, the argument goes, coastal areas experience an increase in 
wetland formation. This increase in turn leads to the formation of 
peat and, as a consequence, increased carbon preservation in 

sediments. Thus, Geyh observed, sediment cores will contain more 
carbon in layers that formed during periods of high sea level. Using 
this logic, he proposed a method for turning a set of radiocarbon 
dates into a proxy for past sea-level changes. The approach entailed 
approximating the Gaussian radiocarbon-date distributions with 
step-functions and then summing those functions (see Figure 1). 
Using this approach, Geyh created several sea-level proxies based on 
radiocarbon samples from coastal sediment cores around the North 
Sea. Each proxy corresponded to a region within the wider study 
area. He then compared the regional proxies and identified peaks in 
the proxies that appeared to be contemporaneous. These coeval 
peaks, he claimed, demonstrated sea-level change in the North Sea 
was regionally synchronous. Geyh then went on to use the technique 
in several more studies of Holocene climate change (e.g. Geyh, 1971, 
1980).
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Independently, it seems, a similar notion occurred to archaeolo-
gists in the early 1970s. Rather than summing step-functions, though, 
early attempts to count radiocarbon-dated events involved binning 
median dates into temporal frequency histograms. Janette Deacon 
(1974), for example, used such a histogram as a proxy for fluctua-
tions in human population levels in South Africa over the last 
20,000 years. Deacon collected a database of 200 radiocarbon dates 
from South African archaeological sites and binned them into 1000-
year time bins. The resulting distribution appeared to be dramatically 
increasing toward the present, which she argued indicated that popu-
lation levels had increased over that period. Her reasoning was based 
on the idea that more radiocarbon dated sites in a given time/place 
indicated more people were present in that time/place. Other studies 
employed a similar approach with variations in sample size and tem-
poral resolution (bin width) (e.g. Wendland and Bryson, 1974).

A few years later, in 1977, Garry Law suggested a method-
ological improvement (Black and Green, 1977). In a short contri-
bution to a paper by Black and Green (1977) reporting radiocarbon 
sample data from the Solomon Islands, Law argued that binning 
median dates into a histogram failed to account for the probabilis-
tic nature of radiocarbon assays. He proposed instead that the 
dates should be treated like probability densities and then added 
together. The approach was coincidentally similar to Geyh’s, but 
involved a much higher temporal resolution and, consequently, 
produced smoother curves.

In the following decade, proxies based on radiocarbon dates 
appeared in several studies that would catalyze growth in the 
method’s popularity among archaeologists. Michael Berry (1982) 
examined the temporal distribution of radiocarbon dates from the 
southwestern US to infer Ancestral Puebloan (Anasazi) population 
history from roughly 2200 to 1300 years BP. He argued that 
changes through time in numbers of dates from known sites 
tracked changes in population size and territorial abandonment. 
Declines in numbers of dates, he argued, corresponded to impor-
tant climatic shifts in the region. Similar research involving the 
same logic was carried out at the same time by Gary Wright (1982) 
in an analysis of the population history of the Northwestern Plains 

of North America. Then, John Rick (1987) published a highly 
influential article titled “Dates as Data: An Examination of the 
Peruvian Preceramic Radiocarbon Record”. Using a binned-dates 
approach, Rick argued that radiocarbon dates from Peru indicated 
important spatio-temporal population dynamics including changes 
in landscape use and settlement distributions throughout the pre-
ceramic period (roughly 20,000 to 3000 years ago). Importantly, 
Rick dedicated much of the paper to defending the notion of using 
radiocarbon dates as a proxy for population dynamics, spelling out 
potential biases and attempting to clarify the inferential logic 
behind the approach. The paper has since been cited hundreds of 
times and its title, “Dates as Data,” is now a common label for the 
approach itself among archaeologists.

A key methodological development then occurred in the early 
1990s. Up to this point, the methods for counting or summing 
radiocarbon-date densities involved uncalibrated dates. As Dye and 
Komori (1992) explained, however, aggregating only uncalibrated 
dates is a problem because it ignores the fact that environmental 
ratios of radiocarbon isotopes fluctuate through time. This fluctua-
tion gives rise to the need to calibrate radiocarbon dates, which 
projects the date distribution from the radiocarbon timescale onto 
the calendar timescale (Taylor et al., 2014). Thus, Dye and Komori 
(1992) advocated applying the annual frequency distribution 
method developed by Law (Black and Green, 1977) to calibrated 
rather than uncalibrated dates. This was the first appearance of the 
now well-known “summed probability density function” (SPDF; 
see Figure 2), which is currently the most commonly-used proxy 
based on aggregated radiocarbon-dates.

The proxies have become extremely popular in the last decade 
as relatively large databases of radiocarbon dates have become 
available. A Web-of-Science search for the topic “summed radio-
carbon” in archaeological and interdisciplinary palaeoenviron-
mental science journals returned over 100 articles published since 
2010 and a similar Google Scholar search returned over 400 arti-
cles. In palaeoenvironmental research the approach has been 
widely adopted, and the proxies have been used to study a variety 
of target phenomena including past sea level changes, fire-regime 
surges, and climatic changes more generally (e.g. Bleicher, 2013; 
Mooney et al., 2011; Pierce et al., 2004; Thorndycraft and Benito, 
2006). Archaeologists have been particularly enthusiastic, rou-
tinely using radiocarbon dates as a proxy for past population lev-
els (e.g. Armit et al., 2013; Collard et al., 2010; Colledge et al., 
2019; Faulkner, 2011; Gamble et al., 2005; Hannah and McLaugh-
lin, 2019; Leipe et al., 2019; Lepofsky et al., 2005; Mclaughlin 
et al., 2018; Prentiss et al., 2014; Schulting, 2010; Shennan, 2013; 
Steele, 2010; Turney and Brown, 2007).

Since their introduction in the 1970s, however, scholars have 
also been aware of several key sources of bias affecting the prox-
ies (e.g. Armit et al., 2013; Bamforth and Grund, 2012; Bleicher, 
2013; Brown, 2015; Contreras and Meadows, 2014; Crema et al., 
2017; Deacon, 1974; Kerr and McCormick, 2014; Manning and 
Timpson, 2014; Rick, 1987; Williams, 2012). These include 
radiocarbon sample quality (Brown, 2015), the relationship 
between a given sample and its sedimentary context (Geyh, 1969, 
1971), spatio-temporal sampling sufficiency (Crema et al., 2017; 
Deacon, 1974; Rick, 1987; Williams, 2012), taphonomic pro-
cesses (Brown, 2015; Surovell and Brantingham, 2007; Williams, 
2012), calibration artifacts (Bamforth and Grund, 2012; Brown, 
2015; Geyh, 1980; Kerr and McCormick, 2014), and – in the case 
of archaeological research – cultural, technological, and eco-
nomic effects (Rick, 1987).

The widespread recognition of these biases has led to a num-
ber of methodological recommendations (see Crema et al., 2017; 
Williams, 2012, for more detailed reviews). To address issues of 
sample quality, several scholars have advocated carefully select-
ing radiocarbon dates based on the perceived reliability of the 
dates, quality of the dated material, and consideration of deposi-
tional context – together referred to as “chronometric hygiene” 

Figure 1.  Step function summing technique developed by Geyh 
(1969) . Each radiocarbon-date density (represented by smooth 
Gaussian distributions in this image) is first approximated by a step 
function (represented here by blocks). Then, the height of each 
step function is summed for each interval of time to produce the 
summed radiocarbon-date curve, which is represented in this image 
by the blocky histogram-like figure above the double-line.
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(e.g. Collard et al., 2010; Ebert et al., 2017; Hoggarth et al., 2016; 
Shennan, 2013). To overcome sampling issues, most scholars 
argue that large databases of dates are required (e.g. Shennan, 
2013; Williams, 2012), although little agreement exists regarding 
what constitutes a good sample size in this setting. And, with 
respect to taphonomic bias, Surovell et al. (2009) suggested that 
independently dated tephra-based proxies for taphonomic loss 
could be used to correct the preservation bias in the proxies.

In addition, there have also been recent methodological advances 
concerning the proxies. These improvements can be divided into 
two groups. One focuses primarily on null hypothesis testing – com-
paring an empirical SPDF to one that acts as a benchmark for deter-
mining whether the empirical SPDF differs in a statistically 
significant way. For the approaches in this group, observed data are 
either compared to SPDFs of dates simulated from theoretical 
growth models (Crema and Kobayashi, 2020; Manning and Timp-
son, 2014; Shennan et al., 2013; Wicks and Mithen, 2014) or to a 
baseline distribution derived from the observed data with a permuta-
tion procedure (Crema et al., 2016, 2017). The former attempts to 
separate the target process from well-known spurious features intro-
duced by the calibration process (e.g. Manning and Timpson, 2014; 
Shennan et al., 2013), while the latter attempts to account for spuri-
ous patterns produced by sampling variability (variation in spatial 
sampling intensity, specifically) (e.g. Crema and Kobayashi, 2020). 
In contrast, the other group focuses on improving the way date den-
sities are summarised. This includes methods like sample bootstrap-
ping (McLaughlin, 2019), Bayesian Gaussian mixture models 
(unpublished function in BChron, an R package for Bayesian radio-
carbon date calibration; http://andrewcparnell.github.io/Bchron/), 
composite kernel density estimation (CKDE) (Brown, 2017), and 
partially-Bayesian kernel density estimation (KDE) (Bronk Ramsey, 
2017). The density estimation and mixture model approaches limit 
the impact of calibration curve features resulting in smooth esti-
mates. They also produce uncertainty envelopes that help distin-
guish potentially important variation from spurious fluctuations 
caused by the calibration curve (Bronk Ramsey, 2017).

The KDE-based approaches are perhaps the most significant 
developments because they involve a change in the fundamental 
way radiocarbon-dates are aggregated (Bronk Ramsey, 2017; 

Brown, 2017). KDE is a commonly used non-parametric method 
for estimating the continuous probability density of a random 
variable given a finite set of realizations of that variable (Silver-
man, 1986). In the case of proxies based on aggregated radiocar-
bon-dates, the realizations are an observed set of dates while the 
desired density is the aggregate temporal distribution of those 
dates. The kernel is essentially a moving window that computes a 
weighted-sum of the number of radiocarbon-dated events that 
occurred in a given time. It assigns weights based on the temporal 
distance from the center of the kernel to the date of a given sam-
ple. The closer a given date is to the center of the kernel, the more 
it contributes to the level of the proxy at the corresponding time. 
Of course, the dates are uncertain and that uncertainty is expressed 
by a radiocarbon-date distribution. So, both Bronk Ramsey (2017) 
and Brown (2017) have suggested algorithms to incorporate that 
uncertainty into a KDE. These algorithms sample the individual 
radiocarbon date distributions producing a set of probable dates, 
one for each event in a given database. Then, they apply a KDE to 
the random sample of event dates to produce a smooth estimate of 
temporal event density. The resulting sample “curve” is also 
referred to simply as a KDE. This process of sampling and density 
estimation is repeated a large number times yielding a set of 
KDEs. These KDEs are then combined to produce a single aver-
age KDE – which we will refer to as KDEa to distinguish it. The 
set of individual KDEs can then be used to produce the uncer-
tainty envelope mentioned earlier.

Proxies based on aggregate radiocarbon-dates have been used 
so far in at least two distinct ways. The first way we call the “inte-
gral approach.” Researchers employing this approach have used 
the proxies as approximately indicative of the total temporal dis-
tribution of events and their corresponding temporal uncertainties 
in a given database (Bronk Ramsey, 2017). Peaks or rises in the 
SPDF, for instance, are thought to indicate more events during the 
interval of time beneath them. This approach involves looking at 
the area under an SPDF and observing that more/less of that area 
is concentrated in one interval or another within the span of all of 
the relevant date densities (see Figure 3). The interpretation is 
downward-looking and horizontally oriented, focused on inter-
vals of the time axis. In a sense, this view is analogous to the 

Figure 2.  Example SPDF. Top panel (labelled “Sum”) shows an SPDF based on the individual calibrated radiocarbon-date densities in the 
bottom panel (labelled “Calibrated Dates”).

http://andrewcparnell.github.io/Bchron/
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interpretation of an individual radiocarbon date density – that is, 
the probability that a given event dates to a given interval is pro-
portional to the area under the density that spans the interval in 
question. In aggregate, then, more events are likely dated to peri-
ods over which the sum of many date densities has a larger area 
than the same sum over other periods.

A prominent example of the integral approach is a study by 
Shennan (2009) of population dynamics surrounding the appear-
ance of the Linearbandkeramik (LBK) cultural phenomenon of 
Neolithic Western Europe. Shennan (2009) pointed to a set of 
SPDFs and claimed that “[l]ow Mesolithic population levels are 
succeeded by a massively increased LBK population.” (p. 343) 
This claim appears to have been based on an integral interpreta-
tion of the relevant SPDF plots. The area under the SPDFs in 
those plots was much smaller in the interval before than after the 
accepted date for the onset of the LBK phenomenon. Thus, more 
of the dates – including their uncertainties – were located in the 
interval of time following the onset of the LBK. It follows that the 
events in question are more likely to be dated to the LBK period 
than before it. This pattern in turn, according to Shennan, indi-
cates population levels must have increased dramatically after the 
onset of the LBK. The integral approach has been used exten-
sively in numerous case studies (e.g. Becerra-Valdivia and 
Higham, 2020; Bishop, 2015; Boulanger and Lyman, 2013; 
Faulkner, 2011; Kerr et al., 2009; Lepofsky et al., 2005; Riede, 
2008; Thorndycraft and Benito, 2006; Weninger et al., 2006).

We refer to the other way the proxies have been used as “point-
wise” (or point-wise-like). This approach changes the orientation of 
analysis from the temporal distribution of events and their uncer-
tainties (horizontal-looking) to through-time fluctuations in a given 
proxy (vertical-looking). It is a change from viewing the proxies as 

distributions of chronological information (Bronk Ramsey, 2017) 
to viewing them as if they are indicators of some process that may 
have changed through time (see Figure 4). The treatment of an 
SPDF/KDEa is necessarily point-wise whenever the level of the 
proxy at a given point in time needs to be compared to either its 
level at another time or another proxy at the same point in time. The 
proxy at time t  is mapped directly to some other variable at time  
t. This type of comparison is necessary to make claims about 
covariation, estimate rates of change, or use regression models. 
Importantly, qualitative assessments can also be point-wise if an 
analyst is describing through-time changes explicitly and/or visu-
ally matching wiggles in a proxy with other variables. And, given 
small enough intervals of time, the previously described integral 
approach can become practically indistinguishable from a point-
wise approach – that is, it can become point-wise-like – because 
changes in area under the curve start to become like simply changes 
in the level of the curve as the interval of time considered shrinks.

A recent example of point-wise comparisons is a paper on 
Late Quaternary Megafauna extinctions in North America by 
Broughton and Weitzel (2018). In that paper, the authors used 
linear regression to compare SPDFs representing megafauna 
populations to SPDFs representing human populations. By defi-
nition, the level of the megafauna population proxy at a given 
time was being mapped onto the level of the human population 
proxy at the same time. The average relationship between the 
pairings for every time under investigation was then represented 
by the estimated regression model parameters. The authors found 
a relationship between increasing human populations and declin-
ing megafauna populations for some species of megafauna 
between 15,000 BP and 10,000 BP. Quantitative point-wise com-
parisons like this occurred sporadically early on in the develop-
ment of proxies based on aggregated radiocarbon-dates (e.g. 
Wendland and Bryson, 1974) and are becoming increasingly 
common (e.g. Bettinger, 2016; Ebert et al., 2017; Edinborough 
et al., 2017; Hannah and McLaughlin, 2019; Hinz et al., 2012; 
Plunkett et al., 2013; Robinson et al., 2019; Smith et al., 2008; 
Wang et al., 2014; Zahid et al., 2016).

Point-wise comparisons are important for understanding past 
processes, but it is not clear that they make sense where SPDF/
KDEa proxies are involved. Ideally, point-wise comparisons 
would allow us to estimate rates of change in target processes 
and to identify potentially important casual forces by comparing 
a given proxy to the passage of time or to other proxy records, 
as we explained. Unfortunately, though, there is a good reason 
to think these comparisons may be unwise. Individual radiocar-
bon-date densities do not represent duration or through-time 
variation in a process that produces radiocarbon samples – they 
represent chronological uncertainty. It follows, then, that sums 
or aggregates of individual date densities also reflect chrono-
logical uncertainty in some way. Currently, to our knowledge, 
no attempts have been made to derive accurate point-wise inter-
pretations for the established proxies, which leaves open crucial 
questions about how chronological uncertainty affects point-
wise comparisons.

Here we attempt to rectify this situation. We first describe an 
attempt to derive interpretations for the SPDF and KDEa proxies and 
then we explore the downstream implications of those interpretations 
for point-wise comparisons. Lastly, we provide suggestions for future 
research that we think could improve dates-as-data approaches.

Interpreting proxies based on 
aggregated radiocarbon dates
For context, we imagined a hypothetical research scenario in 
which a large database of radiocarbon dates had been amassed. 
We further supposed that the individual dates represented a cli-
matic or archaeological process. We also imagined that there was 

Figure 3.  This graphic represents the “integral approach” with 
a simulated SPDF. Areas under the proxy are compared and 
interpreted like a probability density function. In this example, area 
A contains roughly 68% of the total area enclosed by the proxy, so 
it could be said that most of the total chronological information in 
the dataset – including uncertainty – is contained in area A, which 
is defined in part by a corresponding interval of time. Since it is 
larger than area B, one could argue that given the uncertainties 
in the underlying event times, most of the events have a higher 
likelihood of having occurred in interval A. The primary concern 
under the integral approach is the total temporal distribution of 
chronological information in the underlying dataset – that is, the 
distribution of dates for the events in question. The major analytical 
orientation, therefore, is horizontal, concerning the time-axis.



Carleton and Groucutt	 5

no need for a complex Bayesian calibration model because the 
individual radiocarbon dates were not related stratigraphically, 
and we assumed a good representative sample. Lastly, we assumed 
that each event (e.g. archaeological or palaeoenvironmental 
deposit) was dated by precisely one radiocarbon date density – 
this meant that each event was dated by only one radiocarbon 
sample or that a given event was dated by a pooled density of 
multiple samples. These simplifications aided only in the explora-
tion of the simplest kinds of SPDF/KDEa and more complex sce-
narios could be considered in the same manner.

SPDF
First, we explored the SPDF. Let p( )τ  be a single radiocarbon 
date density where τ  refers to a single year in the domain (x-axis) 
of the density. The level of the density – that is, height with 
respect to the y-axis – at any given τ  is proportional to the rela-
tive probability that the sample dates to τ  compared to other 
times (see Figure 5) (Bronk Ramsey, 2009; Buck et  al., 1996). 
Importantly, this interpretation holds for both calibrated and 
uncalibrated dates even though uncalibrated date densities – the 
kind returned from a radiocarbon dating lab – are used as “likeli-
hoods” in Bayesian calibration models (Bronk Ramsey, 2009). 
Next, let pn ( )τ  be a radiocarbon date density, n , from a set of 
N  such densities. Since the domain (time) is common to all den-

sities, τ  in any pn ( )τ  refers to a particular year in a given inter-
val of years [ , ]τ τa b . Then, the sum of the N  densities for a given 
τ τ τ∈[ , ]a b , denoted S( )τ  is

S p
n

N

n( ) = ( ).τ τ∑ 	 (1)

That pn ( )τ  is proportional to the probability that event n  
occurred in year τ  has implications for the interpretation of the 
summed function in equation (1). To see the implication clearly, 
we can expand the summation in equation (1) as follows:

S p p pN( ) = ( ) ( ) ( ).1 2τ τ τ τ+ + + 	 (2)

Since the terms in the sum are proportional to probabilities, 
the sum is a quantity proportional to the sum of the individual 
probabilities. We can, therefore, treat them as equivalent to prob-
abilities and look to modern probability theory for the correct 
interpretation of S( )τ .

Given standard probability theory, there are two potential 
interpretations of S( )τ  (the SPDF). The difference between them 
depends on the relationship between individual events. Both 
interpretations involve the probability of the union of the indi-
vidual events, which is calculated using the sum rule (Blitzstein 
and Hwang, 2015). The sum rule, as the name suggests, describes 
the situations in which probabilities can be summed (as in equa-
tion (2)) and the interpretations of the resulting sums.

Figure 4.  This graphic represents the “point-wise approach” with a 
simulated SPDF. Every point in the proxy is considered an observation 
that is indicative of the target process in some meaningful sense. This 
is required in order to estimate rates of change (i.e. compare the 
proxy to the passage of time itself) or to compare the proxy to other 
variables, like palaeoclimate reconstructions. The major analytical 
orientation, therefore, is vertical, concerning the measurement axis. 
That axis (the y-axis) is treated as if it measures the number of events 
dated to a particular time.

Figure 5.  Example radiocarbon date densities. These densities represent an uncalibrated radiocarbon date of 1900 BP (50 CE) with an error 
of ±20  years. The plot on the left shows the uncalibrated distribution and the plot on the right shows the calibrated distribution produced 
by OxCal (Bronk Ramsey, 2009). The height of each curve for a given year indicates the probability that the sample dates to the relevant year 
compared to other years.
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For the first interpretation, we assume that the events are 
mutually exclusive, meaning that they cannot co-occur. Consider, 
for example, events A  and B , with corresponding probabilities, 
P A( )  and P B( ) . When the events are mutually exclusive – that 
is, only one or the other can happen, not both – the sum rule is as 
follows (Blitzstein and Hwang, 2015),

P A B P A P B( ) = ( ) ( ).∪ + 	 (3)

With respect to a pair of radiocarbon dates, mutual exclusivity 
would mean that the two events in question could not have hap-
pened in the same interval. Or, more formally, given two events, 
p i1( )τ  and p j2 ( )τ ,

P p p i ji j( ( ) ( )) = 0 | = ,1 2τ τ∩ 	 (4)

where τ i  and τ j  each refer to a date (interval, like a year or a 
decade) on a common time-axis.

Substituting into equation (3) two mutually exclusive radio-
carbon-dated events – pi ( )τ  and p j ( )τ  – the right-hand side of 
equation (3) is equivalent to the SPDF in equation (2):

P p p S p p i ji j i j( ( ) ( )) = ( ) = ( ) ( ) | .τ τ τ τ τ∪ + ≠ 	 (5)

The interpretation in this case is straightforward. It is the prob-
ability that at least one of the individual events occurred (Blitzs-
tein and Hwang, 2015). In archaeological terms, it would be the 
probability that at least one of our imaginary radiocarbon-dated 
domestic buildings dates to a given time. This is essentially the 
interpretation described in the reference manual for OxCal under 
the “sum function” entry (https://c14.arch.ox.ac.uk/oxcalhelp/
hlp_commands.html, accessed 2019-11-01).

If, however, the individual events are not mutually exclusive, 
the probability of the union must be calculated differently and this 
yields the second interpretation for S( )τ . According to the sum 
rule, the probability of the union of non-mutually exclusive events 
is given by

P A B P A P B P A B( ) = ( ) ( ) ( ),∪ + − ∩ 	 (6)

where the last term – P A B( )∩  – is the probability of the 
intersection of the events (Blitzstein and Hwang, 2015). This 
intersection refers to the portion of the probability space in which 
both events occur. In scientific terms, it would be the probability 
that both events (e.g. construction dates of domestic structures) 
date to the same time. But, the summation in eq. 1 contains no 
such term. Standard SPDFs are calculated without considering 
the probability of the intersection of events. Consequently, in the 
case of non-mutually-exclusive events, S( )τ  is not proportional 
to the probability of the union of the individual events. Instead it 
must be greater by some quantity proportional to the probability 
of the intersection of the events in question. Again using two 
hypothetical radiocarbon-dated events, for example, equation (6) 
becomes,

P p p p p

P p p i j

i j i j

i j

( ( ) ( )) = ( ) ( )

( ( ) ( )) | .

τ τ τ τ

τ τ

∪ +

− ∩ ≠
	 (7)

Thus, considering

S p p i ji j( ) = ( ) ( ) | ,τ τ τ+ ≠ 	 (8)

it is clear that

S P p p i ji j( ) > ( ( ) ( )) | .τ τ τ∪ ≠ 	 (9)

As a result, when the events in a given sample are not mutually 
exclusive, the level of an SPDF, S( )τ , has no scientifically useful 
interpretation. Instead, SPDFs should be interpreted as indicating 
through-time variations in some quantity greater than another 
quantity proportional to the probability that at least one of the 
events in the relevant data set occurred at a given time. If that 
interpretation seems bewildering, then the point is clear.

The SPDF at any specific time conflates the number of events 
in a given database with uncertainty about their temporal posi-
tions. Even accounting for the probabilistic relationships among 
events – say by including the intersection term in equation (6) – 
the SPDF still refers to uncertainty. Its level at any given time indi-
cates only the probability that at least one event occurred at the 
relevant time. Importantly, even the probability being indicated – 
at least one event – bears no necessary connection to the number 
of events that occurred. A few events with a high probability of 
occurrence at a given time would produce an SPDF value indistin-
guishable from a larger number of events that each had a low prob-
ability of having occurred at that time. Thus, variation from one 
time to the next in the level of the SPDF indicates only a change in 
relative probabilities, not a change in the number of events. There 
need not be any change in the number of underlying events for 
there to be fluctuations in level of an SPDF – and this would be 
true even in the absence of calibration artifacts or other biases.

Average KDE models
The KDEa models recently proposed by Bronk Ramsey (2017) 
and Brown (2017) are constructed in a very different way than a 
standard SPDF. Rather than summing radiocarbon-date densities 
at a given temporal resolution, the KDEa models are based on 
estimating the temporal density of radiocarbon samples. As a 
result, a KDEa model has a different interpretation than an SPDF. 
For our investigation, we primarily followed Bronk Ramsey’s 
(2017) definitions and approach, but the same basic process 
underlies Brown’s (2017) model.

Kernel density estimation is a method for approximating an 
unobservable continuous distribution from a finite observed sam-
ple (Silverman, 1986). In the context of KDEa models, the sam-
ples are a database of radiocarbon dates and the continuous 
distribution refers to the distribution of the relevant events in 
time. If there was no chronological uncertainty, the continuous 
density at any given time, τ , of a set of events, t = { , , , }1 2t t tn , 
could be approximated by a simple kernel density estimator,

f̆
hn

K
t

h
i

n

i( ) =
1

( ),
=1

τ
τ∑ − 	 (10)

where K ( )⋅  is a weighting function – usually Gaussian – that 
takes two inputs: (1) the distance from τ  to each observation, and 
(2) the kernel bandwidth represented here by h  (Bronk Ramsey, 
2017). The kernel can be thought of as a kind of moving window 
and the bandwidth as the width of the window. As the window 
slides along the time-axis, it estimates the level of the density 
function at a time, τ , corresponding to its center. The density at 
the center of the kernel is a weighted sum of the number of events 
within its bandwidth, with weights inversely correlated to dis-
tance from the center to each event. But, unlike a moving window, 
the kernel density is continuous. So, instead of hard boundaries 
like the ones defining window edges, the kernel applies a smooth 
distance decay function. As a result, the weights applied to each 
event in the database are a function of distance and all of the 
events are included in the sum. The further away in time an 
observed event is from the center of the kernel, the less it counts 
toward the density at τ . The bandwidth parameter helps to deter-
mine how rapidly the assigned weights decay with distance – a 

https://c14.arch.ox.ac.uk/oxcalhelp/hlp_commands.html
https://c14.arch.ox.ac.uk/oxcalhelp/hlp_commands.html
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wider bandwidth would give more weight to observations further 
away in time.

In order to account for chronological uncertainty in the tempo-
ral locations of radiocarbon-dated events, the KDEa approaches 
involve a simulation. Essentially, the simulation has three main 
steps. First, a sample of potential dates, t̂ ^ ^ ^= { , , , }1 2t t t n , is ran-
domly drawn from the set of radiocarbon-date densities. Impor-
tantly, the probability of a given date being drawn from a given 
density is proportional to the level of the density corresponding to 
that date.

Then, a bandwidth is determined. For Bronk Ramsey’s 
approach, a modifier, g , is randomly drawn from a theoretical 
prior uniform distribution, g U (0,1) , and the following kernel 
density function is used to estimate the density of the sample, t̂ ,

f
t^ ^

h
S

S i

n
i

Sgh n
K

gh
( ) =

1
( ).

=1

τ
τ∑ − 	 (11)

where hS  refers to the commonly used Silverman (1986) 
bandwidth. Lastly, the likelihood of that density estimate and cor-
responding bandwidth modifier, g , is calculated. This process is 
repeated a large number of times to obtain a posterior density for 
g  and a likelihood-weighted average KDEa model. The whole 

simulation is nested within the Markov-Chain Monte Carlo 
(MCMC) simulation used in OxCal (Bronk Ramsey, 2009) to 
calibrate radiocarbon dates. This means that prior information 
about stratigraphic relationships can be included and will be 
respected by the KDEa model. OxCal will also output an ensem-
ble of KDE models, each of which represents a KDE calculated 
with a slightly different bandwidth because each will have used a 
slightly different g  parameter. The ensemble can be used to pro-
vide a kind of uncertainty envelope for the primary, likelihood-
weighted average KDEa model.

Brown’s (2017) approach differs only in that it does not 
involve a Bayesian treatment of the bandwidth parameter. Instead, 
it uses a “plug-in” bandwidth that is determined by solving a sep-
arate equation (Jones et al., 1996) for every randomly drawn set 
of probable event dates. Ultimately, though, it also produces an 
average (composite) KDEa model and an ensemble based on ran-
domly sampled dates from the set of densities.

We discovered a precise interpretation of both KDEa models 
by looking at the way they account for chronological uncertainty. 
As we explained, each iteration of the simulation used to produce 
a KDEa model involves randomly drawing a set of probable dates 
for a given set of radiocarbon samples. So, we let t̂ ^ ^ ^= { , , , }1 2t t t n  
be the set of probable dates. Next we imagined focusing in on a 
specific time (τ ) with a kernel that has a given bandwidth ( ghS ). 
The level of the kernel function, K , at τ  is primarily determined 
by the temporal distance between τ  and a given set of dates, 
τ τ∆

i i= − t̂ . Treating the ratio outside the sum in eq. 11 as a pro-
portionality constant and leaving it out we rewrote the equation 
more simply as follows,
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Viewing this equation, it became clear that variation at τ  
between potential KDE models arises from repeatedly re-drawing 
t̂ , which leads to variation in the numerator, τ∆

i
. Greater dis-

tances between a given τ  and t̂  cause f̂ ( )τ  to be lower for the 
relevant τ , while smaller distances cause it to be higher. Over the 
course of the simulation, this variability also leads to different 
optimal values for the bandwidth (or bandwidth modifier for 
Bronk Ramsey’s KDEa approach). So during the simulation the 
primary source of variability in both the bandwidth and in f̂ ( )τ  

is variability in τ∆
i

. Since τ  is just an arbitrary fixed position on 
the time-axis, the variability in τ∆

i
 also reflects variability in the 

temporal distance between radiocarbon samples around a given 
τ . Each time t̂  is drawn, the temporal distances between sam-
ples in t̂  change, which causes event-dates to cluster around 
some τ  and disperse away from others. As the clustering fluctu-
ates around a given τ , the level of the corresponding optimal 
KDEa model at that τ  changes in response. It is these fluctua-
tions in the shape of the optimal KDE that are captured in a KDE 
ensemble and combined in a likelihood-weighted average (the 
KDEa). Thus, we reasoned, the level of the KDEa model at a 
given time (τ ) should be interpreted as an estimate of the tempo-
ral density of radiocarbon samples weighted by uncertainty about 
the temporal distance between them.

Importantly, the second part of this interpretation means that a 
KDEa model does not solely reflect through-time changes in the 
number of radiocarbon samples – it reflects chronological uncer-
tainty as well. Just like the SPDF, changes in the level of the 
proxy are also a function of chronological uncertainty, not simply 
the number of radiocarbon samples dated to a particular time. 
This mixture of through-time variation in the number of dated 
events and chronological uncertainty is partly what makes the 
KDEa useful as a summary of chronological information for a 
large database of radiocarbon dates. It also, however, raises prob-
lems for interpreting specific fluctuations (point-wise differences) 
in the model. Ups and downs in the level of the curve cannot be 
directly interpreted as fluctuations in the number of events dated 
to a given time, nor the temporal density of events at a given time. 
The fluctuations also represent uncertainty about the temporal 
locations of the events in question, specifically uncertainty about 
the temporal distance between them. Consequently, point-wise 
fluctuations in the model cannot be straightforwardly interpreted 
as directly indicative of through-time fluctuations in the number 
of events or the corresponding target process. As Bronk Ramsey 
(2017) explained, the KDEa approach “.  .  . can be used to sum-
marize the distribution of events.  .  .” in large 14C databases 
(emphasis added) (p. 1831). It is a summary of chronological 
information, not a simple reflection of through-time variation in 
event-counts.

Discussion
Our investigation revealed a major underappreciated problem 
with proxies based on aggregated radiocarbon-dates: they do not 
represent the processes they are often thought to represent in a 
point-wise sense. It is important to stress that the problem does 
not extend to the method of radiocarbon dating more generally, 
only the use of aggregated/summed date densities as proxies for 
event counts. Both SPDF and KDEa proxies conflate chronologi-
cal uncertainty with through-time variation in their target process. 
Neither, therefore, should be expected to clearly reflect through-
time (point-wise) changes in any phenomenon related to the num-
ber of radiocarbon samples in palaeoenvironmental or 
archaeological records.

The conflation gives rise to several problems for point-wise 
analyses. We will explore the ones we think are the most obvious 
and important. Then, we will consider some of the main implica-
tions of these problems. Lastly, we will share some ideas for 
future research directions that we think could overcome them.

Analytical problems for point-wise approaches

Conceptual and statistical model mis-specification.  Chiefly, the 
logic underpinning point-wise comparisons fails to hold because 
these proxies do not sufficiently indicate their intended target. 
This means that conceptual or quantitative models based on point-
wise comparisons are mis-specified. Consequently, models 
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involving these proxies are almost certain to be misleading. While 
this is a problem for both quantitative and qualitative (visual) 
assessments, it is easiest to understand why the problem exists in 
quantitative terms.

Quantitatively, a point-wise comparison makes an explicit claim 
about how variables might be related. One variable, often called the 
“response” variable, is said to be a function of one or more other 
variables, often called “covariates” (Rencher and Schaalje, 2008). 
Referring back to Figure 4, the radiocarbon proxy would be the 
response variable and the covariate would be the date corresponding 
to a given proxy measurement. This type of point-wise relationship 
can be expressed by a simple equation. Imagine a single response 
variable, say an SPDF thought to represent the number of hearths 
dated to a given time. Also imagine a single covariate, say a palaeo-
climate proxy for temperature, that we hypothesize might be related 
to hearth numbers. A simple equation describing the relationship 
between these variables could be written as,

Hearths Temptime time= . .β 	 (13)

In this equation β  – the regression coefficient – is a scaling 
factor or weight that relates the temperature at a given time to the 
number of hearths. The temperature at one point is equated with 
the number of hearths at the same point – a point-wise compari-
son. Within the context of statistical regression, it is also assumed 
that there is some uncertainty about the relationship. So, a term 
gets added to the right-hand side of the equation. This term 
changes the meaning of the equation from an exact relationship 
(“an increment of temperature will result in an exact proportional 
change in the number of hearths”) to a probabilistic one whereby 
a change in temperature affects a change in the mean of a distribu-
tion of hearth-counts. The added term is often called an “error 
term” and conventionally denoted  , but it also simply means the 
uncertainty around the mean response level. It determines the 
variance of the distribution of hearth-counts – how spread out 
observed hearth counts are around the mean level. So, equation 
(13) becomes,

Hearths Temptime time time= . .β +  	 (14)

But, when an SPDF or KDEa model is used as a proxy for the 
response, the equation would actually look more like the follow-
ing (with some abuse of notation for simplicity),

Hearths

Dating Uncert
Temp

time

time time

,

.
= . .









 +β  	 (15)

The revised model is saying that temperature determines the 
mean of some variable that is both the number of hearths and 
uncertainty about whether the hearths date to the relevant time. 
Information about dating uncertainty is being treated in the model 
as if it were information about hearth-count. We cannot tell the 
difference between an increase in hearth count and an increase in 
the relative likelihood that at least one hearth is dated to the rele-
vant time. Consequently, the model cannot be used to say any-
thing exclusively about hearth-count.

This conflation diminishes the model’s utility as an explana-
tion for through-time changes in the number of hearths. With the 
SPDF/KDEa proxies, it is as if someone poured two bags of mar-
bles into a new bag, handed it to you, and then asked you to tell 
them how much each of the original bags weighed. Without more 
information you could never know. We cannot weigh the effect of 
temperature on mean hearth-count separate from its relationship 
to dating uncertainty. The marbles are all in the same bag.

This type of information misplacement is a kind of model mis-
specification (Dennis et al., 2019; Rencher and Schaalje, 2008). 

The mathematical model is saying the wrong thing about the focal 
process. We want the model to tell us how temperature is related 
to the average number of hearths, but it is clearly telling us some-
thing else. Mis-specifications are known to produce biased and 
misleading results (Dennis et  al., 2019), and the one we are 
describing here would have a similar effect. In fact, a recent simu-
lation study by Brown (2017) demonstrated as much. Brown esti-
mated a simple linear model that used a simulated SPDF as the 
response variable and found that the estimated regression coeffi-
cient – β  in our example above – was severely biased. We also 
performed a simulation study showing the same thing (see Sup-
plementary Information).

The mis-specification should trigger concern for a couple of 
reasons. One involves the biased estimates and misleading pat-
terns we just discussed. It makes it much harder to meaningfully 
compare SPDF/KDEa proxies to other variables or to make com-
parisons involving the same proxy at different times. This prob-
lem precludes certain lines of research altogether – like identifying 
rates of change, or distinguishing the impacts of one potential 
causal factor from another.

The other reason is more grave. While some scholars may 
choose to see biases affecting statistical models as merely a tech-
nical nuisance, the main reason for concern is that the point-wise 
comparisons necessary for creating such a model make no scien-
tific sense. These proxies mix up chronological uncertainty with 
their intended target in such a way that the two values cannot be 
unmixed. So, even if a covariate looks as if it may explain varia-
tion in the target process, what is actually being explained will 
always be a combination of variation in chronological uncertainty 
and the number of events. This is a serious scientific problem 
whether the point-wise comparison is formal and quantitative, or 
informal and visual.

Strange non-independence.  A second, closely related, analytical 
problem involves observation independence. For both the SPDF 
and KDEa model, neighbouring observations have an unusual 
effect on each other. If one observation is proposed to be true – 
that is, accurately reflects the underlying number of events at a 
given time – the neighbouring observations must be false. This is 
because the events on which a given proxy is based can only have 
occurred at one time and not another. It is another consequence of 
the fact that individual date densities are expressions of uncer-
tainty and, by extension, the aggregate proxies are too.

To illustrate, consider a single calibrated radiocarbon-date 
density. Variations in the level of the density indicate the relative 
probability that the event in question occurred at a given time. If 
it did occur in a particular time, however, it cannot have occurred 
in another time. The same logic applies to the SPDF and KDEa 
models. If we imagine for a moment that the level of an SPDF at 
time τ , for instance, reflected the number of events at time τ , the 
number of events at neighbouring times (τ τ± ±1, 2,... ) must 
necessarily be different than the proxy indicates. This is because 
events contributing to the level at time τ  cannot simultaneously 
contribute to the level at neighbouring times. The problem is simi-
lar for the KDEa model – though, in that case, it is the magnitude 
of the contribution of a given event to the density at τ  that must 
change in response to fixing any given event to a particular time.

This inter-temporal dependence has two immediately obvious 
consequences. One is that the error terms in a typical regression 
model are no longer independent. Referring back to the examples 
above (equations (13)–(15)), the dependence means that the time  
term depends heavily on values at other times. For point-wise 
comparisons involving SPDF/KDEa proxies, this dependence 
cannot be easily accounted for with common time-series methods. 
For standard time-series models, the error structure is typically 
characterized by linear regression (Chatfield, 2004). Take, for 
example, moving average models. Such models account for 
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inter-temporal dependence in uncertainty by regressing the error 
term at one time on previous error terms with a linear model. This 
approach assumes that the error term at any given time is a linear 
combination of previous error terms weighted by regression coef-
ficients. But, a database of radiocarbon dates has a much more 
complicated uncertainty structure. It is characterized by the joint-
density of all the individual date densities and it would likely be 
far too complex to model linearly. That is not to say a model could 
not be developed, at least in theory, only that we are not aware of 
any established methods that could be used given the conflation 
of uncertainty and process in SPDF/KDEa proxies.

The other consequence of the unusually complex inter-tempo-
ral dependence in SPDF/KDEa proxies is that the proxies cannot 
be mapped to covariate observations in a stable, consistent way. It 
is impossible to determine whether a given proxy observation – 
say the level of an SPDF at time τ 2  – should be paired with a 
potential covariate observation at time τ1 , τ 2 , τ3 , or some other 
time. Importantly, this problem is more than just additional mea-
surement error, and as far as we can tell there is no standard sta-
tistical model that properly accounts for this strange 
non-independence where these proxies based on aggregated 
radiocarbon-dates are concerned.

Finite observations and infinite sample sizes.  A third problem is 
that these proxies can give a false impression of the number of 
observations available with consequences for the identification of 
significant features/findings. In a classical statistical setting, “sig-
nificance” often depends on the number of unique and indepen-
dent pieces of information contributing to a perceived pattern. 
This is why standard text books devote space to discussing the 
importance of sample size (e.g. Devore, 2012; Ryan, 2013). Far 
from being unique to statistical applications, though, it is simply 
good scientific practice to be aware of how many observations are 
required to be confident that an identified pattern reflects reality.

The aggregate proxies, however, can be sampled at an arbi-
trarily high rate. This allows for a kind of quantitative alchemy 
whereby a finite number of individual radiocarbon-dated events 
can be transmuted into a sample of unlimited size. An individual 
radiocarbon-date density, for instance, is an approximation of an 
underlying function that can be produced at any resolution. Often 
the default for calibration programs is 5 or 10 years, but there is no 
hard cap in theory with the only limiting factor being a trade-off 
between spuriously high precision and accuracy. So, an SPDF or 
KDEa model could, for example, be annually resolved and span 
millennia. This would result in an apparent sample size in the 
multiple thousands, even if the SPDF was ultimately based on 
only a dozen dates.

A statistical model, unfortunately, could not “know” the dif-
ference – they are just equations, after all, and it is up to the one 
using them to decide whether they apply in a given case. Most 
common approaches (regressions or time-series methods, for 
example) entail counting the number of observations in the SPDF 
in order to determine sample size. This would mean that the sam-
ple size was the number of time-points at which the proxy was 
sampled, which is determined by its resolution, not the number of 
dates used to create the proxy in the first place. Scientifically, 
though, it is the number of dates that indicate how many unique 
pieces of information are involved in the analysis, at least with 
respect to models seeking to explain event count variation.

For point-wise comparisons, we think this sample size prob-
lem is unavoidable. While several archaeologists have cautioned 
that sample sizes need to be large for SPDFs/KDEas to be mean-
ingful (e.g. Bishop, 2015; Contreras and Meadows, 2014; Wil-
liams, 2012), it is nonetheless always possible to oversample 
these models. Thus, these proxies will tend to give the impression 
that the sample size is much larger than it actually is. More impor-
tantly, there is no obvious relationship between the number of 

dates used to create a proxy and the appropriate sampling rate that 
should be used in order to avoid oversampling. Ultimately, the 
problem again stems from confusing chronological uncertainty 
with event counts. Single date densities, representing only one 
sample, are treated like representations of through-time processes 
when they are aggregated with the densities of other samples. 
Individually, the densities do reflect some latent, smooth process 
that has to do with radiocarbon-dating uncertainties (e.g. isotope 
instrumentation error, calibration curve uncertainties, through-
time fluctuations in environmental carbon isotope ratios, etc.). 
But aggregated together and used as a proxy for a radiocarbon 
sample producing process, the smooth line is thought to reflect 
event-count. In the former case, one could justifiably assume that 
there is some smooth underlying process represented by a date 
density and then sample it at whatever rate was reasonable – this 
is the basis for Functional Data Analysis where a smooth estimate 
based on a finite sample actually does represent an underlying 
continuous process (Ramsay et al., 2009). With proxies based on 
aggregated radiocarbon-dates this is simply not the case. At least, 
the continuous underlying process that could be sampled is a 
reflection of chronological uncertainty, not through-time changes 
in the number of events. It is the latter most scholars are interested 
in and the way that the established proxies are often interpreted.

Misleading density-like structure.  The last major analytical prob-
lem is that chronological uncertainty imposes a characteristic 
structure on these proxies that can be misleading. Chronological 
uncertainty is inherently density-like, by which we mean shaped 
like a density function (e.g. a bell-curve). Uncertainty about the 
timing of an event means that we assign some likelihood to the 
event having occurred at a given time and that likelihood declines 
with increasing temporal distance from that most likely time. As 
one might expect, this density-like structure applies to individual 
radiocarbon-date densities, sums of radiocarbon-date densities, 
and of course KDEas based on radiocarbon-date densities.

A density-like structure creates a confounding problem for 
point-wise approaches. Any density function has to have a positive 
finite integral – that is, the area between a continuous density func-
tion (curve) and its domain (x-axis) has to be entirely above the 
domain (positive everywhere) and it has to have a finite limit (the 
area cannot be infinitely large) (Blitzstein and Hwang, 2015). In 
more concrete terms, our uncertainty about the timing of one or 
more events is not infinite, so a curve representing that uncertainty 
must occupy a finite amount of time. This means that the curve can 
go up and down in any manner, but it must “begin” by going up 
and “end” at some point by going down. The same is true of aggre-
gated density functions representing groups of individual events, 
like the SPDF and KDEa. Sometimes, a given proxy may exhibit 
several up/down fluctuations, but overall the up-then-down pattern 
will be consistent irrespective of the true through-time structure of 
the target process. Consequently, whatever the true relationship 
looks like for a given process–covariate pair, the relationship 
between a corresponding proxy and the covariate will be distorted. 
Ultimately, the distortion occurs because we are uncertain about 
the timing of the individual events in question and our uncertainty 
has a natural density-like structure. Importantly, this structure can-
not be accounted for separately from variation in event-count 
when SPDF/KDEa models are used.

Implications
The problems we identified can lead scientists severely astray in 
point-wise analyses. Determining the magnitude of the problem 
depends on many factors that will be particular to a given dataset 
and analysis. These include the number of dates involved, the 
span of time under analysis, the level of calibration curve uncer-
tainty, the slope of the calibration curve, and the variation in the 
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target process. These factors will affect the “signal-to-noise” ratio 
– that is, the magnitude of variation in the target process relative 
to the level of chronological uncertainty. If, for example, the 
underlying target process changes dramatically over a given inter-
val of interest, then certain features of an SPDF/KDEa proxy of 
that process may be vaguely representative assuming (1) a high 
enough sampling rate (number of dates per unit of time) and (2) 
low chronological uncertainty per date relative to the length of 
interval of interest. But, the chronological uncertainty will be 
present nonetheless and the problems we described above will 
continue to hinder attempts to recover underlying patterns. Impor-
tantly, the problem of inter-temporal dependence will still be 
present, and the overall density-like structure of the proxy will 
distort the true target process. Thus, faulty inferences are very 
likely, even when attempting to address an elementary research 
question like whether a given target process increased, decreased, 
or remained constant through time.

To demonstrate, we conducted a simple simulation. The target 
process in our simulation was a simple uniform function – mean-
ing, no change through time and an average slope of zero. It 
would be analogous to, say, population levels that were constant 
through time. We then used standard regression models to try and 
estimate the slope value. The goal was to determine whether 
false-positive findings were likely and, if they were, to figure out 
whether the conflation between chronological uncertainty and 
process variation was likely to blame.

First, we created a uniform process over a 1000-year interval 
with a start date chosen at random from between 48,000 and 
2000 BP (see Figure 6). We then sampled the uniform process ran-
domly, drawing 1000 event-dates from it. Next, we used the 
“calBP.14C” function from the R package, “clam” (Blaauw, 2020), 
to derive uncalibrated dates from the event-date sample, which we 
subsequently calibrated with the “calibrate” function from the same 
package. We then created three time-series. One was an SPDF 
based on the simulated calibrated dates. The second was a count 
time series of the event-date sample – this series represents a high-
fidelity sample of the true process with no chronological error. The 
last was a density estimate of the event-date sample, produced with 
R’s built-in “density()” function. This series was approximately 
like an SPDF/KDEa model, but without any chronological error. It 
allowed us to isolate the distorting effects that smooth density esti-
mates would be expected to have on regression models from the 
specific effect of conflating chronological uncertainty with process 
variation as the SPDF/KDEa proxies do.

With these data in hand, we ran three regressions using R’s 
“glm()” function. In one, we used a Gamma-distributed model 
with the simulated SPDF as the response variable and time as the 
only covariate. For the second one we used the count-series as the 
response variable and time as the covariate in a Poisson model. 
For the last regression we produced another Gamma-distributed 
model with the chronological-error-free density estimate as the 
response variable.

The regression results were very clear. Unsurprisingly, the 
models involving the chronological-error-free time-series indi-
cated that the slope of the target process was indistinguishable 
from zero (see Figure 7). The SPDF regression, however, pro-
duced a very different result. The target estimate was severely 
biased, with the mean very far from zero (see Figure 7). Crucially, 
it also indicated that the non-zero effect was highly statistically 
significant, well beyond the standard 95% or 99% confidence lev-
els. We re-ran this simulation repeatedly with consistent results. 
Using an SPDF in a point-wise analysis can be very misleading 
for the reasons we outlined. The simulation described in our SI 
demonstrates similar problems for the KDEa proxy.

These problems have important implications for past and future 
research. A major implication for previous research is that pub-
lished findings based on SPDF/KDEa proxies could be mislead-
ing. In more qualitative studies involving no regression models 
(e.g. Bradtmöller et al., 2012), narratives about through-time pro-
cesses like demographic changes or fluctuations in sea level may 
be telling the wrong story. In more quantitative research involving 
correlation and/or regression (e.g. Bettinger, 2016), hypothesis 
tests could be invalid and parameter estimates false or biased, call-
ing into question inferences drawn from such findings. In light of 
the potential problems we have identified, this body of research 
should be viewed with some measure of suspicion, in our view.

A major implication for future research is that these proxies 
should be avoided when point-wise interpretations are necessary 
or implied. They could instead be profitably used for addressing 
some questions about chronological relationships. Research into, 
for example, whether a collection of events pre- or post-dates a 
fixed date could also be based on the established proxies (e.g. 
Bronk Ramsey, 2017). This is the “integral approach” we 
described earlier whereby the analysis is focused on the relative 
sizes of areas under the proxies and the corresponding intervals of 
time covered. Comparing these areas does not appear to be con-
flating process variation and chronological uncertainty in the 
same manner as the “point-wise” approach does. It is important to 

Figure 6.  Simulated SPDF data. The bottom time series represents the target uniform process. The center series represents the count series 
corresponding to the random event-date sample of 1000 observations. The top series is the corresponding SPDF proxy.
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emphasize, though, that more systematic and mathematically 
grounded approaches exist for estimating the relevant probabili-
ties (Bronk Ramsey, 2009; Buck et  al., 1996) and, at best, an 
SPDF or KDEa may only be appropriate for visualization. 
Research intended to improve our understanding of through-time 
fluctuations in the number of radiocarbon-dated events, however, 
should not be based on these proxies.

Directions for future work
We imagine future research proceeding in two main directions. 
One involves a review of previous studies. Many of the published 
studies involving proxies based on aggregated radiocarbon-dates 
should be re-evaluated to determine whether the problems we 
identified undermine previous conclusions. This is especially the 
case where interpretations depend on the point-wise approach. 
We recognize that determining whether a given argument or study 
depends on point-wise interpretations may be challenging for 
qualitative cases because of the vagueness of the language some-
times used. But, reports that highlight short-term fluctuations in 
these proxies, or reports that involve claims about rates of change 
or magnitude of fluctuations, should probably be considered sus-
pect. Similarly, claims about “events,” like rapid declines in event 
counts, must be relying on point-wise comparisons because iden-
tifying a “rapid change” requires one to evaluate the difference 
between levels of a given proxy at neighbouring or nearby times. 
Quantitative research, in contrast, will be easier to evaluate in this 
regard because it is necessarily point-wise and the claims being 
made must have been explicitly spelled out.

The other direction for future research involves methodologi-
cal development. As is hopefully clear, we think that the main 
problem with using dates-as-data in point-wise analyses is the 
confounding between chronological uncertainty and process vari-
ation. There are potentially useful alternative approaches, though. 
In a study on chronological uncertainty in layer-counted archives, 
for example, Boers et al. (2017) proposed a method of re-project-
ing uncertainty from the time-domain onto the measurement 
domain. It takes chronological uncertainty and turns it into mea-
surement uncertainty, which would make point-wise comparisons 
more sensible. Rather than conflating chronological uncertainty 
with event counts, the reprojected proxy would ideally indicate 
the probable number of events that occurred in a given time. That 
way, point-wise conceptual or quantitative models would be 

explaining variation in one dimension exclusively. The method 
they proposed was developed for use with layer-counted archives 
– e.g. ice cores, or varved lake sediments – but it might be adapted 
for use with radiocarbon-dated events. A persistent challenge will 
be finding a way to correctly account for the non-independence 
between observations, but further research is warranted.

Another recent development involves a Bayesian regression 
approach for analyzing radiocarbon-dated event-count series. 
These Radiocarbon-dated Event Count (REC) models have been 
tested with simulated data and appear to be able to separate target 
process dynamics (event-counts) from chronological uncertainty 
(Carleton, 2020). REC models effectively extend the basis of the 
KDEa approaches (Bronk Ramsey, 2017; Brown, 2017) but are 
directed at regression model estimation rather than density esti-
mation. They are based on ensembles of potential event-count 
sequences created by sampling the corresponding calibrated 
radiocarbon-date densities – a Radiocarbon Event-Count Ensem-
ble, or RECE. Each member of the RECE is then placed in a 
suitable regression model. The individual models are nested in a 
multi-level Bayesian framework so that priors for target param-
eters (e.g. regression coefficients) can be specified. As such, no 
individual regression model conflates uncertainty with process 
variation – these types of information are kept separate. At the 
same time, chronological uncertainty is accounted for in the pos-
terior distributions of the top-level parameters. Further method-
ological exploration of REC models could go some way toward 
making the dates-as-data paradigm viable in the context of point-
wise comparisons aimed at rate estimation, model comparison, 
and standard hypothesis testing.

Conclusion
Proxies for radiocarbon-dated event counts are tempting to use and 
have appeared in hundreds of scholarly articles since their incep-
tion. They are generally intended to represent through-time fluctua-
tions in the amount of radiocarbon in the archaeological and 
palaeoenvironmental records. These through-time fluctuations are 
thought to be caused by variation in one or more radiocarbon-pro-
ducing target processes, including past human activity, population 
level changes, sea-level changes, and surging fire regimes. How-
ever, there are lurking problems that make these proxies unsuitable 
representations of their targets when viewed in a point-wise way. 
The main problem is that these proxies do not clearly reflect 

Figure 7.  Regression simulation parameter estimates. The two densities were created by using the regression coefficient parameters 
estimated from our two regression models. The density on the left represents the sampling distribution for the regression coefficient related 
to time in the SPDF regression model. The density in the center represents the sampling distribution for the corresponding coefficient in the 
Poisson model based on the sample of event-dates. And, the distribution on the left represents the same information for the model involving 
the density estimate of the event-dates. The dark blue areas indicate the 95% confidence regions and the lighter blue areas represent the 99% 
regions.
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through-time variation in the number of radiocarbon-dated events 
in a given database. Rather, they combine through-time variation 
with chronological uncertainty. Unfortunately, this conflation is 
easy to miss, leading to biases and faulty interpretations. We, there-
fore, urge scholars to think carefully about how the proxies are 
being interpreted and whether they are appropriate for a given 
research agenda. Any researchers intent on using the proxies will 
need to explain precisely why the problems we have identified are 
not materially affecting their interpretations. Alternative approaches 
that avoid the conflation are under development and scholars inter-
ested in using radiocarbon-dates as data should consider using 
those methods instead.
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