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Fig. 1. Our RGB2Hands approach tracks and reconstructs the 3D pose and shape of two interacting hands in real time based on a single RGB camera (right).

We obtain global 3D pose and shape (bottom left), which can be used to visualize interacting hands in VR (upper left), among many other applications.

Tracking and reconstructing the 3D pose and geometry of two hands in
interaction is a challenging problem that has a high relevance for several
human-computer interaction applications, including AR/VR, robotics, or
sign language recognition. Existing works are either limited to simpler track-
ing settings (e.g., considering only a single hand or two spatially separated
hands), or rely on less ubiquitous sensors, such as depth cameras. In contrast,
in this work we present the first real-time method for motion capture of
skeletal pose and 3D surface geometry of hands from a single RGB camera
that explicitly considers close interactions. In order to address the inherent
depth ambiguities in RGB data, we propose a novel multi-task CNN that
regresses multiple complementary pieces of information, including segmen-
tation, dense matchings to a 3D hand model, and 2D keypoint positions,
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together with newly proposed intra-hand relative depth and inter-hand dis-
tance maps. These predictions are subsequently used in a generative model
fitting framework in order to estimate pose and shape parameters of a 3D
hand model for both hands. We experimentally verify the individual compo-
nents of our RGB two-hand tracking and 3D reconstruction pipeline through
an extensive ablation study. Moreover, we demonstrate that our approach
offers previously unseen two-hand tracking performance from RGB, and
quantitatively and qualitatively outperforms existing RGB-based methods
that were not explicitly designed for two-hand interactions. Moreover, our
method even performs on-par with depth-based real-time methods.

CCS Concepts: • Computing methodologies → Tracking; Computer vi-

sion; Neural networks.

Additional Key Words and Phrases: hand tracking, hand pose estimation,
hand reconstruction, two hands, monocular RGB, RGB video, computer
vision

ACM Reference Format:
Jiayi Wang, Franziska Mueller, Florian Bernard, Suzanne Sorli, Oleksandr
Sotnychenko, Neng Qian, Miguel A. Otaduy, Dan Casas, and Christian
Theobalt. 2020. RGB2Hands: Real-Time Tracking of 3D Hand Interactions
from Monocular RGB Video. ACM Trans. Graph. 39, 6, Article 218 (Decem-
ber 2020), 16 pages. https://doi.org/10.1145/3414685.3417852

ACM Trans. Graph., Vol. 39, No. 6, Article 218. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417852
https://doi.org/10.1145/3414685.3417852


218:2 ˆ

1 INTRODUCTION
Marker-less 3D hand motion capture is a challenging and impor-
tant problem. With the abundance of smart and mobile devices,
interaction paradigms with computers are changing rapidly and
moving farther away from the traditional desktop setting. With the
recent progress on virtual and augmented reality (VR/AR), hand
pose estimation has gained further attention as direct, natural, and
immersive way to interact. The numerous opportunities for appli-
cation also include robotics, activity recognition, or sign language
recognition and translation. Hence, hand pose estimation has been
an actively researched topic for years. Depending on the application,
several properties are desirable for the method,e.g., marker-less cap-
ture, real time performance, capabilities for tracking two interacting
hands, automatically adapting to the users' hand shape, or the use
of a single RGB camera. However, due to a range of challenges, such
as frequent occlusion, depth-scale ambiguity, and self-similarity of
hand parts, achieving all of these properties is a di�cult task.

To ease the problem, many previous works on 3D hand pose esti-
mation use special depth cameras providing partial 3D information.
Nevertheless, many of them focused on tracking a single isolated
hand [Yuan et al. 2018], with only a few exceptions that are able to
handle object interactions [Panteleris et al. 2015; Sridhar et al. 2016;
Tzionas and Gall 2015] or interactions with a second hand [Mueller
et al. 2019; Taylor et al. 2016, 2017]. In recent years, the research
focus has shifted towards methods that use a single RGB camera
since these sensors are ubiquitous [Cai et al. 2018; Mueller et al.
2018; Zimmermann et al. 2019]. Despite tremendous progress, to
date there is no method explicitly designed for and capable of re-
constructing close two-hand interactions from single RGB input.
However, humans naturally use both of their hands for interaction
with real and virtual surroundings, and for gesturing and communi-
cation. Therefore, many applications require hand pose estimation
of both hands in close interaction simultaneously.

To this end, we present the �rst method for marker-less cap-
ture of 3D hand motion and shape from monocular RGB input that
successfully handles two closely interacting hands. Our real-time
approach automatically adapts to the user's hand shape, and reli-
ably captures collision-resolved poses also under di�cult occlusions.
Since color images carry no explicit 3D information, we also have
to cope with scale and depth ambiguities. A proper handling of
these ambiguities, which are inherent to monocular RGB data, is
particularly important in the two-hand case, since mismatches in
per-hand depth estimates would lead to incorrectly captured inter-
actions in 3D. Hence, our setting with a monocular RGB camera
is signi�cantly more challenging compared to previous works that
make use of depth data, such as [Mueller et al. 2019; Tzionas et al.
2016]. To achieve our goal, and thus overcome the challenges and
ambiguities of monocular RGB data, we propose a novel multi-task
CNN which regresses multiple variables simultaneously: per-pixel
left/right hand segmentation masks, dense vertex matchings to a
parametric hand model, intra-hand relative depth maps, inter-hand
distance, as well as occlusion-robust 2D keypoint positions. Our
regression targets are designed to explicitly consider the challenges
of monocular two-hand reconstruction like strong occlusions and

ambiguous relative 3D placement of the hands. We use these predic-
tions in a generative model �tting framework to robustly estimate
for both hands the pose and shape parameters of a 3D hand model.

For training our multi-task network we combine real and syn-
thetic data from di�erent sources to bridge the domain gap. Since
none of the publicly available datasets are su�cient for our pur-
poses, in addition we create our own dataset comprising both real
and synthetic images. To obtain real data with (possibly noisy) an-
notations, we use the depth-based CNN from Mueller et al. [2019]
and an RGB-D sensor. To obtain perfectly annotated synthetic data,
we develop the �rst system simulating physically correct two-hand
interactions with personalized hand shape, based on the parametric
MANO hand model [Romero et al. 2017], and diverse appearances.
We experimentally show that our proposed mixed-data training set
in conjunction with the multi-task CNN is crucial for a successful
optimization of the hand model parameters on monocular RGB im-
ages. Our extensive evaluation, in both 2D and 3D, is enabled by
our new benchmark datasetRGB2Handsthat contains signi�cantly
stronger hand interactions compared to previous benchmarks.

In summary, we propose the �rst monocular-RGB-based method
for 3D motion capture of two strongly interacting hands, which
simultaneously estimates hand pose and shape, while running in real
time. The technical contributions in order to achieve this include:

� A generative model �tting formulationthat is speci�cally tai-
lored towards �tting parametric 3D hand models of two inter-
acting hands to an RGB image, while taking inherent depth
ambiguities and occlusions into account. To this end, we ex-
tract information from the input image based on a machine
learning pipeline, which is then used as �tting target.

� We propose analternative image-based representation of 3D
geometry information, namely intra-hand relative depth, and
inter-hand distance, which can be extracted directly from
RGB images using our novelmulti-task CNNand is scalable
to dense hand surfaces. In combination with 2D keypoint pre-
dictions, and an image-to-hand-model matching prediction,
this allows to e�ectively �t the parametric model.

� To train our machine learning predictors, we use synthetic
data to complement a real dataset that has possibly noisy
annotations. For the former, we introduce aphysically-correct
synthetic data generation framework, which is able to account
for interacting hands with varying hand identities, both in
terms of shape and appearance.

� For performance evaluation we introduce a new benchmark
datasetRGB2Handsof real two-hand image sequences that
comes with manual keypoint annotations of position and
occlusion state. Synchronously recorded depth data enables
3D evaluation.

2 RELATED WORK
Marker-less 3D hand pose estimation has been an actively researched
problem for decades, which can be explained by the fact that it
enables many important applications, e. g. in human�computer in-
teraction, activity recognition, or robotics. In our review of related
work we focus on methods using a single depth or RGB camera that
are most related to our approach.
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Depth-Based Methods.The majority of previous work on 3D hand
pose estimation with a single camera has used depth data [Yuan
et al. 2018]. These approaches can generally be classi�ed as gen-
erative, discriminative, or hybrid approaches. Generative methods
use a parametric generative hand model and compare current pose
hypotheses to the observed image [Melax et al. 2013; Tagliasacchi
et al. 2015; Tkach et al. 2016]. The parameters of the hand model are
commonly found by minimizing an energy function which describes
the discrepancy between the current pose and the observation, com-
monly in conjunction with suitable priors to serve es regularization.
The employed optimization strategies require a good initialization,
so that oftentimes tracking failures occur when there is large inter-
frame motion. With an increasing popularity of machine learning
techniques in computer vision, researchers started to investigate hy-
brid methods. These approaches add a discriminative component to
a generative method to improve the overall robustness, e. g. through
regression of �nger-part labels [Sridhar et al. 2015] or partial pose
[Tang et al. 2015]. Especially due to the success of neural networks
and deep learning, most of the recent work has focused on purely dis-
criminative methods for 3D hand pose estimation. These approaches
are generally based on regressing joint locations from depth data
[Baek et al. 2018; Chen et al. 2019; Ge et al. 2018; Li and Lee 2019;
Oberweger et al. 2015; Tompson et al. 2014; Wan et al. 2017]. Most
of these approaches are single-frame methods and therefore inde-
pendent of an initialization (in contrast to the mentioned generative
methods), however, they are dependent on the training data, which
are not trivial to obtain, and independent per-frame estimates may
exhibit temporal noise on sequences. The majority of depth-based
hand pose estimation methods are limited to tracking or recon-
structing a single hand in free space, and only few approaches have
tackled the harder problems of estimating hands and objects, or two
interacting hands. The methods by [Mueller et al. 2017; Rogez et al.
2014] work for a strongly occluded hand in cluttered scenes with
arbitrary objects. Other methods, like [Sridhar et al. 2016; Tzionas
et al. 2016], jointly reconstruct hand and object motion, and are thus
able to exploit mutual constraints like physically stable grasps. Pose
estimation methods for two hands often have a trade-o� between
real-time runtime [Taylor et al. 2017] and accurate collision resolu-
tion [Kyriazis and Argyros 2014; Oikonomidis et al. 2012; Tzionas
et al. 2016]. The most recent method by [Mueller et al. 2019] runs
in real time while providing coarse interpenetration avoidance. All
methods discussed in this paragraph have the shortcoming that they
rely on specialized camera hardware. In contrast, we address the
much more di�cult setting of using only more common RGB data,
as will be addressed in the next paragraph.

RGB-Based Methods.Due to the ubiquity of RGB cameras, re-
search on 3D hand pose estimation has shifted towards monocular
RGB methods. Earlier approaches [Simon et al. 2017] estimate 2D
hand pose from a single RGB image but require multi-view RGB
for 3D pose. More recent methods are able to estimate normalized
3D pose [Cai et al. 2018; Spurr et al. 2018; Yang et al. 2019; Zimmer-
mann and Brox 2017] or even global 3D pose with respect to the
camera [Iqbal et al. 2018; Mueller et al. 2018; Panteleris et al. 2018].
The approach by Ge et al. [2019] estimates a full 3D hand mesh
directly. With the increasing popularity of the MANO hand model

[Romero et al. 2017] several methods that regress both shape and
pose parameters have been proposed [Baek et al. 2019; Boukhayma
et al. 2019; Zhang et al. 2019]. Zimmermann et al. [2019] recently
built an extensive dataset of RGB images with �tted MANO models.
However, all the aforementioned monocular-RGB methods only
work for a single isolated hand.

Alternatively, a few existing methods track the full 3D body from
RGB-only input, including the two articulated hands, by �tting a
parametric human model [Pavlakos et al. 2019; Xiang et al. 2019].
Despite the impressive results, they often fail in close hand-to-hand
interaction since they have not been explicitly designed for this
setting. Two-hand tracking has also been attempted by performing
per-hand tracking based on tight crops around each hand,e.g., by
Panteleris et al. [2018]. Similarly to the full body methods, this
strategy performs poorly in close two-hand interaction. There are
few methods [Hasson et al. 2019; Tekin et al. 2019] that jointly
reconstruct the pose of a single hand and a manipulated object, but
to the best of our knowledge there is no method that reconstructs
very close two-hand interactions from monocular RGB images.

In this work we �ll this gap and propose the �rst method to jointly
estimate global 3D hand pose and shape of two strongly interacting
hands from monocular RGB video. In addition, our approach runs
in real time and resolves collisions for fast and physically accurate
results.

3 OVERVIEW
We present an overview of our approach in Figure 2. Given a monoc-
ular RGB image that depicts a two-hand interaction scenario, our
goal is to recover the global 3D pose and 3D surface geometry by
�tting a parametric hand model to both hands in the input image, as
described in Sec. 4. Such a model-�tting task requires information
extracted from the input image to be used as a �tting target, which
however represents a major challenge when using monocular RGB
data only. Previous methods that rely on depth data [Mueller et al.
2019; Taylor et al. 2017] are implicitly provided with a much richer
input (i.e., global depth), which is the fundamental ingredient for
an accurate 3D pose and shape �t. Per-pixel estimation of correct
3D hand depth from a single RGB image is very challenging.

Note that, in particular in the two-hand case, inconsistent depth
estimates per hand would lead to incorrectly captured interactions
in 3D. Thus, the method and the scene representation need to be
able to handle these ambiguities well. Therefore, in Sec. 5, we design
an alternative representation of dense 3D geometry information,
tailored for a two-hand scenario, which is amenable to be directly
extracted from RGB images based on a machine learning pipeline.
This is in contrast to existing representations which are limited to
sparse (i.e., per-hand and/or per-joint) information and cannot be
extended to dense geometry in a scalable way, such as joint heatmaps
[Mueller et al. 2018; Panteleris et al. 2018; Zimmermann and Brox
2017] or part orientation �elds [Xiang et al. 2019]. To this end, we
opt to regress inter-hand distance and intra-hand depth maps, in
combination with robust 2D keypoints. This design choice explicitly
provides su�cient information to resolve depth ambiguities in our
model-�tting step. Furthermore, we also regress dense per-pixel
surface matchings to the parametric hand model directly from input
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Fig. 2. Illustration of our RGB2Hands approach. The RGB input image is processed by neural predictors that estimate segmentation, dense matching,
intra-hand relative depth, inter-hand distances, as well as 2D keypoints. This is then used within our two-hand tracking energy minimization framework. The
output are pose and shape parameters of the 3D MANO model [Romero et al. 2017] of both hands, which directly give rise to a bimanual 3D reconstruction.

images. This step is designed to be robust against the signi�cant
skin tone and illumination variability in RGB images.

Finally, we describe the training data that we used to train our
machine learning components in Sec. 6, where we also introduce a
novel methodology to generate photorealistic and physically accu-
rate synthetic data of sequences with interacting hand motions. To
this end, we employ a motion capture-driven physics-based simula-
tion to generate physically-correct sequences of hands with varying
identities (skin tone and shape).

4 TWO-HAND TRACKING FRAMEWORK
Our hand representation builds on the parametric surface hand
model MANO proposed by Romero et al. [2017], which we summa-
rize below. Subsequently, we will derive our model-based �tting
framework.

4.1 Parametric Pose and Shape Model
MANO was built from more than 1,000 scans of 30 subjects perform-
ing a large variety of poses, and consequently the model is capable
of reproducing hand shape variability and surface deformations of
articulated hands with high detail. Speci�cally, for a single hand,
MANO outputs a set of 3D vertex positionsX of an articulated 3D
hand mesh,i.e.,

X¹� ; � º = W¹T¹� ; � º; J¹� º; Wº; (1)

where� 2 R10 and� 2 R51 are the shape and pose parameters with
the latter consisting of 45 articulation parameters and 6 global rota-
tion and translation parameters.T¹�º is a parametric hand template
in rest pose with pose-dependent corrections to reduce skinning
artifacts,J¹�º computes the 3D position of the hand joints, andW is
a matrix of rigging weights used by the skinning functionW (based
on linear blend skinning). See [Romero et al. 2017] for further details.

As we are targeting a two-hand scenario, we use two sets of shape
and pose parameters¹� h; � h º;h 2 f left; rightg, for the left and right
hand respectively. To simplify the notation, we stack the parameters
of both hands as� = ¹� left; � rightº 2 R20 and� = ¹� left; � rightº 2
R102, and de�ne the unique set of verticesX = ¹Xleft; Xrightº, where
we may omit the dependence ofX on � and� for brevity.

4.2 Overview of Model-Based Fi�ing Formulation
In order to track two interacting hands in an image sequence we
use the parametric MANO model within an energy minimization
framework. To this end we introduce the �tting energyf ¹� ; � º as

f ¹� ; � º = � ¹� ; � º + 
 ¹� ; � º ; (2)

where � ¹�º is the image �tting term that accounts for �tting the
model to the observed RGB image, and
 ¹�º is the regularizer that
has the purpose of obtaining a plausible and well-behaved tracking
result. By minimizing the �tting energyf we jointly estimate the
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pose and shape parameters� 2 R102; � 2 R20 (of both hands) for
each frame of the image sequence.

4.3 Image-fi�ing Term
Due to the 2D nature of RGB images and the so-resulting depth
ambiguities, as well as the additional level of di�culty caused by
interactions between the left and right hand, our novel image-�tting
term � is designed carefully in order to allow for a reliable �t of the
parametric hand model. In particular it uses speci�c information that
our multi-task CNN (see Sec. 5) extracts from 2D images that enables
us to estimate the correct and coherent 3D pose of both hands
in interaction, and minimizes the risk of implausible interaction
capture due to ambiguous 3D pose estimates of each individual
hand. We propose to combine �ve components, where we use

(1) the dense 2D �tting term� dense,
(2) the silhouette term� sil,
(3) the 2D keypoint term� key,
(4) the intra-hand relative depth term� intra, and
(5) the inter-hand distance term� inter.

We emphasize that existing methods that are capable of trackingtwo
hands in interactionavoid 3D pose ambiguities by heavily relying
on depth-based input data that is used in their image-�tting term,
which, however severely simpli�es the problem. In contrast, our
energy terms� dense, � intra, � inter have the purpose of compensating
the lack of available depth information and enable 3D consistent two-
hand reconstructions by using a strong neural prior that extracts
suitable information from RGB images only.

With that, the complete image �tting term that accounts for the
model-to-image �tting reads

� ¹� ; � º = � dense+ � sil + � key + � intra + � inter ; (3)

where we have omitted the explicit dependence on¹� ; � º of the
individual terms for the sake of readability.

We assume known camera intrinsics and de�ne� : R3 ! � to
be the projection from camera space onto the image plane. When
this is not available, plausible intrinsics can be provided to obtain
results accurate up to a scale.

One crucial part for de�ning the image �tting term is thedense
matching map : X ! � , which predicts for each vertexx 2 X the
corresponding pixel position¹u;vº 2 � in the input image. For the
time being we will assume that is known, and later in Sec. 5 we
will explain how we obtain it. In the following, when we sum over
vertices in the setX, we only consider those vertices that are visible,
where a vertexx is considered to be visible whenever ¹xº , ; .

We will now explain the individual components in depth.

Dense 2D Fitting:Since an RGB image does not contain explicit 3D
information, the actual depth of a model vertex is unknown. Hence,
we penalize the 2D image-plane distance between a projected visible
vertex� ¹xº and its corresponding pixel ¹xº. We de�ne the dense
2D �tting term as

� dense¹� ; � º = � d

Õ

x 2X

k� ¹xº �  ¹xºk2
2 ; (4)

where� d is the relative weight of this term.

Silhouettes:Since the dense matching map might not be per-
fectly precise for neighboring vertices and pixels, we introduce
an occlusion-aware silhouette term to improve the projection error
of the estimated hand models in the input image. Similar to pre-
vious work [Habermann et al. 2019], we de�ne a set ofboundary
verticesXb and penalize their distance from the silhouette edges in
the input image. We determine the set of boundary vertices based
on the current pose and shape estimate in every iteration of the
optimization. We choose all hand model vertices that lie close to
model-to-background edges in the projected view. To e�ciently
represent the distance to the silhouette edges without explicit corre-
spondences, a Euclidean distance transform representation is used.
Since we need to distinguish the right and left hand, we create two
distance transform imagesDTright and DTleft, one for each hand
respectively. To this end, we make use of the predicted segmenta-
tion maskS (see Section 5.1) to extract silhouette edges per hand.
Since we speci�cally target close two-hand interactions, the seg-
mentation mask does not only contain silhouette edges but also
occlusion boundaries (i.e., hand-hand boundaries). Without proper
handling, vertices that are occluded by the other hand would be
drawn towards the occlusion boundary, which in turn would en-
courage shrinking of the occluded hand. Thus, we set the distance
transform image for each hand to 0 at all pixels that are predicted to
belong to the other hand (see Fig. 3). With that, boundary vertices
that project onto the other hand in the input image are not pulled
towards the occlusion boundary, which would produce an undesir-
able distortion e�ect, leading to a grasping pose, everytime a hand
is occluded. Mathematically, our occlusion-aware silhouette term is
formulated as

� sil¹� ; � º = � sil

Õ

xb 2Xb

�
DTh¹xb º¹� ¹xbºº

� 2
; (5)

whereh¹xbº gives the handedness of boundary vertexxb . Note that
we use an additional normal-based weight for each summand as
introduced by Habermann et al. [2019]. Please refer to this paper
for further details.

2D keypoints:Since the dense 2D �tting only constrains visible
parts of the hand model, we add an occlusion-robust 2D keypoint
term. We penalize the discrepancy between corresponding keypoint
predictions on the RGB image and the hand model projected to the
image plane. Our keypoint detection is designed to also be available
under occlusion, increasing the robustness to strong occlusions that
frequently occur in the two-hand scenario. For each hand we use
the center of the wrist and the 5 �ngertip positions as keypoints,
leading to a total number of 12 keypoints across both hands. We
usex j 2 R3 to denote the 3D position of thej-th keypoint of the
hand model. Similarly, byQkey¹j º 2 � we denote the pixel position
of the j-th keypoint in the image, which is obtained based on the
keypoint predictorQkey that we will de�ne in Sec. 5. LetJ be the
set ofdetectedkeypoints, which may have less than 12 elements
whenever some keypoints do not meet the con�dence threshold
(see Section 5.1). With that, our 2D keypoint term reads

� key¹� ; � º = � key

Õ

j 2J

k� ¹x j º � Q key¹j ºk
2
2 : (6)
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Fig. 3. Visualization oflog¹DTle� + 1º with (top le�) and without (top right)
occlusion handling. The reconstructed hand without occlusion handling
(bo�om right) incorrectly articulates to explain an occlusion boundary, while
our proposed method (bo�om le�) correctly handles the occlusion.

Intra-hand relative depth:In order to address depth ambiguities
within estimated 3D pose and shape of each individual hand (cf. the
Bas-Relief Ambiguity [Belhumeur et al. 1999]), we introduce the
intra-hand relative depth termthat penalizes the di�erences between
per-hand root-relative depth values of the 3D hand model and per-
hand relative depth predictions obtained from the RGB image. To
this end, we compare the estimated distance along the camera di-
rection (which we refer to asz-direction) from the hand root joint in
the model to an analogous output of a machine learning predictor
(Sec. 5) that serves as relative depth prior conditioned on the RGB
image. Let the functionroot¹xº compute the 3D position of the root
joint of the hand to which the vertexx belongs to, and let¹�ºz de-
note the extraction of the z-component of a 3D vector. Moreover,
by Qintra¹u;vº we denote the relative depth that was predicted by a
neural network in the image at the pixel¹u;vº. With that, we de�ne
the intra-hand relative depth term� intra as

� intra¹� ; � º = � intra

Õ

x 2X

¹Qintra¹ ¹xºº � ¹ xz � root¹xºzºº2 : (7)

Inter-hand distance:In addition to the intra-hand relative depth,
we also take theinter-hand distanceinto account, where we compare
the estimated distance between the root of both hands to the output
of a trained learning system predicting the same conditioned on the
RGB image. Note that this term is crucial to obtain correct relative
placement of the two hands in 3D from monocular RGB data. Let
rooth;h 2 f left, rightgbe the 3D position of the root joint of a hand
and letqinter denote the relative distance of the left hand from the
right hand as predicted by a neural network. With that, we de�ne
the inter-hand distance term as

� inter¹� ; � º = � inter

�
¹rootleftºz � ¹ rootrightºz � qinter

� 2
: (8)

4.4 Hand Model and Tracking Regularization
In order to enable a plausible and realistic tracking, we de�ne a
regularizer
 ¹� ; � º that combines di�erent terms to account for an
appropriate regularization of the parametric hand model:


 ¹� ; � º = 
 0¹� ; � º + 
 overlap¹� ; � º + 
 scale¹� º : (9)

Below we �rst summarize thestructural regularizers
 0 and
 overlap,
which are a well-established terms in hand tracking and reconstruc-
tion settings. We refer the interested reader to previous works for
a more detailed description, such as [Mueller et al. 2019; Romero
et al. 2017; Tagliasacchi et al. 2015; Tan et al. 2016]. Subsequently,
we introduce the new (optional)hand scale prior
 scale, which we
designed in order to address the scale ambiguity that arises speci�-
cally when performing 3D reconstruction in monocular RGB data.
If this prior is provided, our method is able to obtainmetric3D pose
and shape reconstruction results.

Structural Regularization:We impose Tikhonov regularization
upon the shape parameter� , which accounts for it following a multi-
variate standard normal distribution. Similarly, we use a thresholded
version thereof for the pose paraemter� , so that poses close to the
mean pose are not penalized. Furthermore, we impose a temporal
regularization that penalizes the di�erence between the parameters
at the current and the previous frame. Moreover, in order to ensure
that the shapes of the left and right hand are similar, we penalize
discrepancies between the hand shapes. We write these structural
regularizers in terms of the squared̀2-norm summarily as


 0¹� ; � º =



2
6
6
6
6
6
6
6
6
4

� � �
� � 1> t � ¹� º
� � ¹� 0 � � º
� � ¹� 0 � � º

� sym¹� left � � rightº

3
7
7
7
7
7
7
7
7
5


 2
2 ; (10)

where1> t � ¹� º is a function yielding� if j j� j j2 > t� , and0otherwise.
The variables� 0and� 0denote the shape and pose parameters from
the previous frame, and� � are the respective weights.

For avoiding collisions between the two hands, as well as within
each hand, we penalize mesh overlaps as approximated with 3D
Gaussians that are attached to the parametric hand model. The
position and size of the Gaussians change according to the shape
and pose parameters¹� ; � º [Mueller et al. 2019]. ForNi ¹zj� ; � º
denoting thei -th 3D Gaussian evaluated at the positionz 2 R3, we
compute the overlap between all pairs¹i ; j º of Gaussians as


 overlap¹� ; � º = � N

Õ

i ; j

�
¹

R3
Ni ¹zj� ; � º � Nj ¹zj� ; � ºdz

�2 : (11)

Hand Scale Prior:Since reconstruction from monocular RGB data
is inherently ambiguous up to a single scalar factor, we give the
option to provide a single metric measurement of the user's hand in
order to produce metric results. We choose this measurement to be
the length of the palm, de�ned as the distance between the middle
�nger metacarpophalangeal joint (MCP) and the wrist. If the user
does not provide this measurement, we assume the palm length
is given by the mean shape of the MANO model, i.e., for� = 0.
We formulate the hand scale prior to penalize deviations from the
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pre-de�ned palm length� as


 scale¹� º = � s

Õ

h 2f left;rightg

¹palmlength¹� h º � � º2 ; (12)

where the functionpalmlength¹�º computes the length of the palm
of the hand model given a set of shape parameters.

4.5 Numerical Optimization
For the numerical optimization of the �tting energyf in (2)we use
a Levenberg-Marquardt (LM) approach. The main idea here is to
iteratively update the parameters� := ¹� ; � º using the Jacobian
matrix Jf of f as

� = � old � ¹ JT
f Jf + � Iº� 1JT

f f ¹� oldº ; (13)

where f is the vector-valued function that stacks all the individual
(quadratic) residuals off , and� is the LM damping factor. Based on
empirical evidence, the LM method is generally known for rapidly
decreasing the objective function with very few iterations. Hence,
and in order to maintain real-time performance, in addition to ef-
�ciently evaluating the Jacobian on the GPU, we terminate the
iterative optimization after10iterations.

5 DENSE MATCHING AND DEPTH REGRESSION
In order to obtain the predictions that were described in the previous
section, including predictions for segmentation, dense matching,
intra-hand depth, inter-hand distance and 2D keypoints, we feed
the RGB input image to a fully-convolutional neural network. This
enables us to work on entire images without requiring a potentially
error-prone bounding box estimation for each hand. Since our net-
work is trained using a large training corpus, it successfully learns
priors to handle the inherent ambiguities in monocular RGB data.
In the following, we describe our network, including the outputs,
losses, and the architecture, in more detail.

5.1 Network Outputs
Our network architecture comprises two stages. In the �rst stage our
network performs per-pixel segmentation into left hand, right hand,
and background pixels. Then, we branch into multiple subnetworks
to regress dense matching, 2D keypoints, intra-hand relative depth,
and inter-hand distance (the latter two using a shared multi-task
subnetwork). The input for the second stage are both the original
RGB input image, as well as the segmentation masks predicted in
the �rst stage. Fig. 4 shows all outputs predicted from test images.

Segmentation.Let the image have heighth and widthw. Given
only the RGB input image, the �rst-stage segmentation network
predicts class-probability mapsS0 2 »0; 1¼h � w � 3 for the three
classesleft , right , andbg. We convert the probability maps to
a segmentation maskS 2 f left, right, bg gh � w by assigning the
most probable class to each pixel.

Dense Matching.The dense matching subnetwork regresses a
dense matching imageM 2 Rh � w � k , wherek is the number of
features. Each pixel = ¹u;vº 2 � contains the feature vector
M¹  º 2 Rk that uniquely determines the surface point of the 3D
hand model which is visible at this pixel. We call the mapping

from the feature vector to the 3D model surfacedense matching
encoding. Note that the dense matching encoding is the same for
the left and right hand, where we make use of the segmentation
maskS for disambiguation. We use the same encoding as [Mueller
et al. 2019] to embed the hand surface to a 3D feature space for our
dense matching map. This is done using the method of [Bronstein
et al. 2006] to approximately preserve geodesic distances in the
feature space. We then map the feature space to an HSV color space
cylinder which results in each �nger being assigned a di�erent hue.
We denote the extended feature vector at vertexx as� 0¹xº 2 Rk+1

and de�ne� 0¹xº = »� ¹xº;s¹xº¼, where� : X ! Rk is the original
dense matching encoding de�ned on the mesh. The scalars¹xº yields
a di�erent value � ¹right º or � ¹left º that encodes which handx
belongs to. We can then measure thematching distancebetween 3D
hand model verticesx and pixels in the image as

� M ;S ¹ ; xº = jj »M¹ º; � ¹S¹ ºº¼ �� 0¹xº j j2 : (14)

We formulate the dense matching map : X ! � to establish
correspondence between model vertices and the RGB image as

 0¹xº = arg min
 2�

� M ;S ¹ ; xº (15)

 ¹xº =

(
 0¹xº ; if � M ;S ¹ 0¹xº;xº < tc
; ; otherwise

: (16)

If the minimum distance of vertexx to all pixels is larger than the
thresholdtc, this vertex is likely not visible and we set ¹xº = ; . The
calculation of the dense matching map is e�ciently implemented
using parallel reduction in CUDA. The dense matching encoding
� ¹�º is de�ned analogously to the approach by Mueller et al. [2019]
with k = 3.

Furthermore, we set� ¹left º = 0:0 and� ¹right º = 0:5.

Intra-Hand Relative Depth.The network further learns to predict
an intra-hand relative depth mapD intra 2 Rh � w . For each hand
pixel, it contains the estimated depth di�erence of this hand point to
the root of the respective hand. Note thatD intra is scale-normalized
due to the inherent ambiguity in RGB images. We multiply it with
the palm length� to obtain themetricrelative depth mapQintra,
which is used for 3D model �tting (cf. Equation 7).

Inter-Hand Distance.Our multi-task CNN also learns to estimate
the distance in depth between the two hands. Instead of predicting
a single scalar, we predict the distance as imageD inter 2 Rh � w .
This allows us to use a fully-convolutional network and thereby
enables feature sharing with the intra-hand depth prediction task.
Every pixel inD inter that belongs to a hand contains the distance
of its root joint from the other hand's root (in the case for only a
single hand being visible, we assign a constant value to all pixels).
Note that each pixel in the output can thus be seen as member of
an ensemble. Analogous to the intra-hand relative depth, we also
normalize the inter-hand distance with the size of the hand for
training. We summarize the ensemble with one relative distance
valuedh per hand by calculating the median over all pixels that are
predicted to belong to the respective hand based on the segmentation
maskS, i.e.

dh = median
 2� ;S¹ º=h

D inter¹ º : (17)
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