
Supplemental Information

Overview from NARPS

The NARPS team collected collected fMRI data on two versions of a mixed
gambles task [1]. On each trial, a mixed gamble was presented (one gain amount,
one loss amount) and the participants decided whether to accept the gamble
or not. Each participant was assigned to one of two conditions: In the equal
indifference condition, the matrix of gambles included potential gains twice the
range of potential losses [1]; in the equal range condition, the matrix included
an equal range of potential gains and losses [2]. For completeness, below we
present the original experimental protocol, data description, MRI scanning
protocols, fmriprep preprocessing output, and the original ex-ante hypotheses
from the NARPS team. Alternatively, this information is also available on
the NARPS website http://www.narps.info, the data descriptor [3], and/or the
ensuing publication [4].

Experimental protocol and instructions (NARPS)

Upon arrival, as soon as they signed the consent forms, participants were endowed
with 20 ILS ( $5.5 USD) cash payment for their participation. The experimenter
explained that the money is theirs to keep, and is part of the full amount they
would receive at the end of the experiment. Next, the participants received
general instructions regarding behaviour inside the scanner and performed a
shortened version of the full task (i.e. a demo).

Then, participants entered the MRI scanner. Participants completed four runs
of the mixed gambles task, each consisting of 64 trials. On each trial, a mixed
gamble was presented, entailing a 50/50 chance of gaining one amount of money
or losing another amount. Possible gains ranged from 10-40 ILS (in increments
of 2 ILS) or 5-20 ILS (equal indifference and equal range conditions, respectively)
and possible losses ranged from 5-20 ILS (in increments of 1 ILS). All 256 possible
combinations of gains and losses were presented across the four runs.

Stimulus presentation was similar to [1]. Timing of all stimuli and response events
were computed using Matlab 2014b and the Psychtoolbox [5, 6] on an Apple
MacBookPro running Mac OS X Yosemite version 10.10.5 (Apple Computers,
Cupertino, CA). The timing and order of stimulus presentation was optimised for
estimation efficiency using a tailored code from the creators of neuropowertools
[7]. Due to the fact that this experiment involved only one trial type, which
is beyond the scope of the existing tool, a custom solution was required. The
efficiency calculations assumed a 32s HRF, a 1s TR and a truncated exponential
distribution of ITIs (min=6s, max=10s mean=7s, lambda was extrapolated from
these parameters), the minimal ITI encompass a potential trial duration of 4s
and 2s intermission.
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To even the gambles between different runs, the full matrix of gambles was
divided into 16 4X4 sub matrices, which were independently scrambled and
allocated to the different runs. This procedure facilitated the overall similarity
between runs. Eight different onsets were created using this procedure for each
experimental condition.

As in [1], participants were asked to evaluate whether or not they would like
to play each of the gambles presented to them (strongly accept, weakly accept,
weakly reject or strongly reject). They were told that one trial from each of the
runs would be selected at random, and if they had accepted that gamble during
the task, the outcome would be decided with a coin toss; if they had rejected
the gamble, then the gamble would not be played.

Following imaging, participants were presented with questionnaires regarding
gambling attitudes and made a number of choices involving hypothetical gambles.

Data from NARPS

119 healthy participants completed the experiment (n = 60 from the equal
indifference group and n = 59 from the equal range group). Nine participants
were excluded prior to fMRI analysis based on pre-registered exclusion criteria:
Five did not show a significant effect of both gains and loses on their choices
(Bayesian logistic regression, p < 0.05; reflecting a lack of understanding of the
task) and four missed over 10% of trials (in one or more runs). Data of two
additional participants is currently under QA. Thus, at least 108 participants
will be included in the final dataset sent to the analysis teams (n = 54 from the
equal indifference group and n = 54 from the equal range group).

MRI scanning protocols (NARPS)

MRI was performed on a 3T Siemens Prisma scanner at Tel Aviv University.
MRI scanning included the following acquisitions:

Structural MRI High-resolution T1w structural images were acquired using a
magnetisation prepared rapid gradient echo (MPRAGE) pulse sequence
with the following parameters: TR = 2530 ms, TE = 2.99 ms, FA = 7,
FOV = 224 × 224 mm, resolution = 1 × 1 × 1 mm.

Functional MRI Whole-brain FMRI data were acquired using echo-planar
imaging with multi-band acceleration factor of 4 and parallel imaging
factor (iPAT) of 2, TR = 1000 ms, TE = 30 ms, flip angle = 68 degrees, in
plane resolution of 2X2 mm 30 degrees of the anterior commissure-posterior
commissure line to reduce the frontal signal dropout, with slice thickness
of 2 mm and a gap of 0.4 mm between slices to cover the entire brain.
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Data were converted to NIFTI format using dcm2nii [RRID:SCR_014099, 8]
and transformed into the Brain Imaging Data Structure (BIDS) [9].

fMRI preprocessing (NARPS)

Results included in this manuscript come from preprocessing performed using
fMRIPprep 1.1.6 ([10]; [11];RRID:SCR_016216), which is based on Nipype 1.1.2
([12]; [13]; RRID:SCR_002502).

Anatomical data preprocessing The T1-weighted (T1w) image was cor-
rected for intensity non-uniformity (INU) using N4BiasFieldCorrection
[14, ANTs 2.2.0], and used as T1w-reference throughout the workflow. The
T1w-reference was then skull-stripped using antsBrainExtraction.sh
(ANTs 2.2.0), using OASIS as target template. Brain surfaces were recon-
structed using recon-all [FreeSurfer 6.0.1,RRID:SCR_001847, 15], and
the brain mask estimated previously was refined with a custom variation
of the method to reconcile ANTs-derived and FreeSurfer-derived segmenta-
tions of the cortical gray-matter of Mindboggle [RRID:SCR_002438, 16].
Spatial normalisation to the ICBM 152 Nonlinear Asymmetrical template
version 2009c [17, RRID:SCR_008796] was performed through nonlinear
registration with antsRegistration [ANTs 2.2.0,RRID:SCR_004757, 18],
using brain-extracted versions of both T1w volume and template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and
gray-matter (GM) was performed on the brain-extracted T1w using fast
[FSL 5.0.9,RRID:SCR_002823, 19].

Functional data preprocessing For each of the 4 BOLD runs found per
subject (across all tasks and sessions), the following preprocessing was
performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A deformation field
to correct for susceptibility distortions was estimated based on a field map
that was co-registered to the BOLD reference, using a custom workflow
of fMRIPrep derived from D. Greve’s epidewarp.fsl script and further
improvements of HCP Pipelines [20]. Based on the estimated susceptibil-
ity distortion, an unwarped BOLD reference was calculated for a more
accurate co-registration with the anatomical reference. Head-motion pa-
rameters with respect to the BOLD reference (transformation matrices,
and six corresponding rotation and translation parameters) are estimated
before any spatiotemporal filtering using mcflirt [FSL 5.0.9, 21]. The
BOLD time-series (including slice-timing correction when applied) were
resampled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions. These
resampled BOLD time-series will be referred to as preprocessed BOLD
in original space, or just preprocessed BOLD. The BOLD reference was
then co-registered to the T1w reference using bbregister (FreeSurfer)
which implements boundary-based registration [22]. Co-registration was
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configured with nine degrees of freedom to account for distortions remain-
ing in the BOLD reference. The BOLD time-series, were resampled to
surfaces on the following spaces: fsaverage5. The BOLD time-series were
resampled to MNI152NLin2009cAsym standard space, generating a prepro-
cessed BOLD run in MNI152NLin2009cAsym space. Several confounding
time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. FD and
DVARS are calculated for each functional run, both using their imple-
mentations in Nipype [following the definitions by 23]. The three global
signals are extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction [CompCor, 24]. Principal components
are estimated after high-pass filtering the preprocessed BOLD time-series
(using a discrete cosine filter with 128s cut-off) for the two CompCor vari-
ants: temporal (tCompCor) and anatomical (aCompCor). Six tCompCor
components are then calculated from the top 5% variable voxels within a
mask covering the subcortical regions. This subcortical mask is obtained by
heavily eroding the brain mask, which ensures it does not include cortical
GM regions. For aCompCor, six components are calculated within the
intersection of the aforementioned mask and the union of CSF and WM
masks calculated in T1w space, after their projection to the native space
of each functional run (using the inverse BOLD-to-T1w transformation).
The head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file. All resamplings can be
performed with a single interpolation step by composing all the pertinent
transformations (i.e. head-motion transform matrices, susceptibility dis-
tortion correction when available, and co-registrations to anatomical and
template spaces). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos interpolation to
minimise the smoothing effects of other kernels [25]. Non-gridded (surface)
resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.4.2 [26, RRID:SCR_001362],
mostly within the functional processing workflow. For more details of the pipeline,
see the section corresponding to workflows in fMRIPrep’s documentation.

Original NARPS ex-ante hypotheses

Participating teams will submit yes/no decisions regarding the following anatom-
ical hypotheses for specific contrasts, based on previous results from [1], [2], [27],
and [28].

Parametric effect of gain

1. Positive effect in ventromedial prefrontal cortex (vmPFC) - for the equal
indifference group
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2. Positive effect in ventromedial PFC - for the equal range group

3. Positive effect in ventral striatum - for the equal indifference group

4. Positive effect in ventral striatum - for the equal range group

Parametric effect of loss

5. Negative effect in ventromedial PFC - for the equal indifference group

6. Negative effect in ventromedial PFC - for the equal range group

7. Positive effect in amygdala - for the equal indifference group

8. Positive effect in amygdala - for the equal range group

Equal range vs. equal indifference

9. Greater positive response to losses in amygdala for equal range condition vs.
equal indifference condition.

For each hypothesis, each analysis team would report a binary decision (yes/no)
based on a whole-brain correction analysis.
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Behavioural model

The behavioural model described in the Methods was a logistic regression model
which included an intercept and coefficients for losses and gains as predictors
(Full model, Supplementary Figure 1). This model was compared to other models
to evaluate goodness-of-fit with respect to the Bayesian Information Criterion
(BIC). The other models were a model with only an intercept (baseline model,
sum total BIC of 33090), a model with an intercept and gains (sum total BIC of
24640), and a model with an intercept and losses (sum total BIC of 26693, see
Supplementary Figure 1a). Since the Full model clearly outperformed the other
models with overall lower BIC (sum total BIC of 12981; 100% of participants
show lower BIC for this model), this model was chosen as the behavioural model
that would serve to extract subjective value and decision entropy to calculate
the GLMs for the fMRI data.

Supplementary Figure 1: Behavioural model selection and evaluation. The Full
model is first compared to three other reduced versions (in terms of parameters)
with respect to the BIC criterion in a. The Full model is evaluated in b by
plotting the distribution of the losses and gains coefficients. Also, in c, the
Full model’s predictions - mean probability of gamble acceptance - was plotted
against the four possible levels of response. Probabilities (model predictions)
were averaged across trials for each response level. Not all participants showed
responses for all four levels. For all panels, each dot represents a participant.

In Supplementary Figure 1b, we present the distribution of the losses and gains
coefficients (βlosses and βgains, respectively). There we can observe a very strong
correlation between coefficients across participants (rpearson = −0.96, p < 0.001).
Furthermore, in Supplementary Figure 1c, we evaluate the model predictions of
the Full model with respect to the four original (ordered) levels of the dependent
variable (participants’ response: strongly accept, weakly accept, weakly reject,
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or strongly reject the gamble). The expected ordering of these levels is reflected
in the mean probability of acceptance for the gambles during the experiment:
95.11% (SD = 13.33%), 78.29% (SD = 24.93%), 22.86% (SD = 25.39%) and
7.69% (SD = 16.48%), respectively. All participants presented the expected
ordering of the Full model’s mean probabilities of gamble acceptance, except for
two which showed higher probability for strongly reject than for weakly reject.
(Note the expected ordering was adjusted for participants who did not use all
four possible responses.)

Validation of iDE

Due to the relative novelty of inverse decision entropy (iDE) as a proxy variable
for confidence, here we validate its use by correlating it with pcorrect for the
NARPS data (left panel of Supplementary Figure 2), as well as for a two
alternative forced choice task from Folke et al. [29] (middle and right panels of
Supplementary Figure 2). For the data from Folke et al. [29], we also Spearman
correlate iDE with explicit confidence ratings (as reported in the main text).

The variable pcorrect is another possible proxy variable for confidence previously
suggested by De Martino et al. [30]. It is the subjective probability of being
correct, thus closely related to paccept as defined in the current study:

pcorrect =
{
paccept, if gamble accepted
preject, otherwise

where preject is defined as 1 − paccept. It can be similarly defined for a two
alternative forced choice task, as in Folke et al. [29], where one choice option is
presented on the left and another one on the right for each trial. For the study
in Folke et al. [29], the items were common retail snacks.

pcorrect =
{
pchoose right item, if DV ≥ 0
pchoose left item, otherwise

where pchoose left item = 1 − pchoose right item — estimated with a model that
outputs probabilities like logistic regression — and DV is the difference in value:

DV = v(right item) − v(left item)

The function v(·) assigns a value to each item. Commonly, the values are elicited
through a Becker–DeGroot–Marschak (BDM) auction by asking participants to
report their willingness-to-pay, usually in units of their monetary currency [31].
The variables in the correlation matrix for the middle panel of Supplementary
Figure 2 are based on such BDM values — except for the explicit confidence
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ratings, of course. On the other hand, the right panel of the same figure directly
estimates such values (for 32 snack items) by optimising the log-likelihood of a
logistic regression; regressing DV on the choices participants made during the
experiment. To our knowledge, directly estimating these values from choices is
not common practice and further validates the use of BDM auctions to elicit
such values; the correlation between BDM values and the estimated values have
a mean Spearman correlation of 0.85 (s.d. = 0.135) and were significantly higher
than zero (t(27) = 32.59, p < 0.001). This also provides support for direct
estimation of value when BDM values were not collected.

Supplementary Figure 2: Spearman correlation matrices for NARPS and a
two alternative forced choice task from Folke et al. [29]. Left panel shows the
(Spearman) correlation matrix for several variables estimated from the NARPS
behavioural data: subjective value (SV), paccept, inverse decision entropy (iDE),
and pcorrect, which is the subjective probability of being correct. The middle
and right panels are based on behavioural data from Folke et al. [29] for a
similar set of variables: difference in value (DV), iDE, confidence (i.e., explicit
ratings), and pcorrect. The middle panel estimates all variables (except for the
confidence ratings) based on explicit reports of willingness-to-pay values for the
choice options (i.e., snacks) from a Becker–DeGroot–Marschak (BDM) auction.
However, the right panel does not use such BDM values, but estimates them
directly from the choices instead. DV is simply the subjective value of an item
presented on the right minus the value of an item presented on the left in that
experiment.

For completeness, we also present the participant-level plots of iDE against SV
in Supplementary Figure 3.

Loss aversion in the brain

The section on loss aversion serves the function of further validating our be-
havioural model. It is important to show that a relationship exists between
losses and gains in the brain and at the behavioural level. These analyses justify
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Supplementary Figure 3: Scatterplots of iDE by SV per participant. Each panel
represents a participant (104 in total). The y-axis presents inverse decision
entropy (iDE) and the x-axis presents (z-scored) subjective value (SV). Each
dot represents one choice for a given gamble.

our usage of subjective value as well. As shown in Supplementary Figure 4, be-
havioural loss aversion correlates with the ratio of voxels that showed sensitivity
to losses over sensitivity to gains across participants. behavioural loss aversion
was calculated as the ratio of the loss coefficient divided by the gains coefficient
estimated from the behavioural model described in the Methods (M = 1.389,
SD = 0.813). (The ratio was multiplied by -1 to keep the relationship to neural
activation positive.) To calculate the ratio of loss voxels to gain voxels, we ran
a first level GLM on the fMRI data with exactly the same preprocessing and
setup as described in the Methods, but instead of using subjective value and
decision entropy as parametric modulators we included gains and losses from the
experimental design. The first level estimates were averaged with a fixed effects
GLM at the second level for each participant. We used a threshold of above or
below 2.3 on the Z statistical maps for each participant. Afterwards, we simply
counted the number of voxels that survived this thresholding for boths gains
and losses for each participant. Finally, the count of loss voxels was divided by
the count of gains voxels (M = 1.261, SD = 1.202). To our knowledge, this is a
novel way of relating behavioural loss aversion to neural loss aversion.

To assess the relationship between behavioural loss aversion with the losses-to-
gains voxel ratio, we ran three different analyses. First, we computed Pearson
and Spearman correlations which were both significant (respectively: rpearson =
0.249, p = 0.011, and rspearman = 0.272, p = 0.005). Second, we ran two robust
regressions, downweighting outliers with Huber’s loss [32], which also showed
significant coefficients for: behavioural loss aversion predicting losses-to-gains
voxel ratio (β = 0.373, p = 0.001) and losses-to-gains voxel ratio predicting
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Supplementary Figure 4: Behavioural loss aversion correlates with extent of
neural activation. Presents a significant relation between behavioural loss aversion
and the ratio of losses to gains voxels across participants.

behavioural loss aversion (β = 0.07, p = 0.043). Thirdly, we used a standard
outlier detection technique; the standardised difference in fit statistic (DFFITS)
[33] was used with a threshold of ±2

√
(k + 1)/n, where k is the number of

parameters and n is the number of observations, to exclude five outliers. After
outlier exclusion, we ran an ordinary least squares (OLS) regression. The same
as with the robust regression, both directions of the OLS regression showed
significant effects for: behavioural loss aversion (β = 0.516, p = 0.031) and
losses-to-gains voxel ratio (β = 0.092, p = 0.031).

Negative main effects of subjective value and inverse deci-
sion entropy

Other SV clusters with negative activation include the right occipital fusiform
gyrus (33865 voxels, p < 0.001, peak Z = 6.19), right temporal pole (19881 voxels,
p < 0.001, peak Z = 5.53), left supramarginal gyrus (8058 voxels, p < 0.001,
peak Z = 4.75), right cerebellum (7466 voxels, p < 0.001, peak Z = 5.27), right
frontal pole (7024 voxels, p < 0.001, peak Z = 5.72), right middle frontal gyrus
(4480 voxels, p < 0.001, peak Z = 3.82), left thalamus (3442 voxels, p < 0.001,
peak Z = 4.34), and vermis crus II (1749 voxels, p < 0.05, peak Z = 4.23).

For iDE, other clusters include the right and left crus I in the cerebellum
(respectively: 29123 voxels, p < 0.001, peak Z = 7.95, and 27585 voxels,
p < 0.001, peak Z = 8.5), left occipital pole (15664 voxels, p < 0.001, peak
Z = 8.28), right caudate (13001 voxels, p < 0.001, peak Z = 5.19), right IT
(9946 voxels, p < 0.001, peak Z = 7.66), ventral tegmental area (VTA, 1759
voxels, p = 0.042, peak Z = 4.71), and right intracalcarine cortex (1713 voxels,
p = 0.049, peak Z = 3.78).
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For more information on these clusters see Supplementary Table 1 below.

Positive main effects of subjective value and inverse deci-
sion entropy

Other positively activated clusters for SV include the left precentral and post-
central gyri (2969 voxels, p = 0.0014, peak Z = 6.9), left inferior temporal (IT)
gyrus (2297 voxels, p = 0.009, peak Z = 4.63), left frontal pole (1983 voxels,
p = 0.023, peak Z = 5.62), left crus I in the cerebellum (1844 voxels, p = 0.035,
peak Z = 4.98), and left lateral occipital cortex (LOC, 1827 voxels, p = 0.037,
peak Z = 3.62).

For iDE, other clusters with positive activation include the left superior frontal
gyrus (3852 voxels, p < 0.001, peak Z = 6.38) and three clusters in the cerebellum:
right VIIIb (2255 voxels, p = 0.009, peak Z = 5.08), left VIIIb (2015 voxels,
p = 0.019, peak Z = 4.98) and left crus II (1752 voxels, p = 0.043, peak
Z = 4.87).

For more information on these clusters see Supplementary Table 1 below.
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Conjunction of subjective value and inverse decision en-
tropy

Other clusters for conjunction of negative effects include left and right
LOC/occipital pole (respectively: 12027 voxels, p < 0.001, peak Z = 4.61, and
6155 voxels, p < 0.001, peak Z = 5.21), left precentral gyrus (8099 voxels,
p < 0.001, peak Z = 4.51), right inferior and middle frontal gyrus (respectively,
IFG: 4477 voxels, p < 0.001, peak Z = 4.75 and MFG: 2503 voxels, p = 0.028,
peak Z = 3.82).

For the conjunction of negative SV with positive iDE, there was another observed
cluster in the right occipital fusiform gyrus (2417 voxels, p = 0.035, peak
Z = 4.41). We provide extra details on the mentioned clusters: left postcentral
gyrus (5216 voxels, p < 0.001, peak Z = 4.54), right LOC (3359 voxels, p = 0.003,
peak Z = 4.84), and cingulate gyrus (2638 voxels, p = 0.019, peak Z = 4.18).

For more information on these clusters see Supplementary Table 2 below.
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Contrast of subjective value and inverse decision entropy

We observed cerebellar clusters where inverse decision entropy showed a stronger
negative effect than subjective value, which include: left and right Crus I
(respectively: 4265 voxels, p < 0.001, peak Z = 3.35, and 4575 voxels, p < 0.001,
peak Z = 3.35), and left Crus II (2869 voxels, p = 0.01, peak Z = 3.15).

Also, other clusters where subjective value had a significantly larger negative
effect than inverse decision entropy included: left orbitofrontal cortex (3561
voxels, p < 0.001, peak Z = 3.54), right frontal pole (3093 voxels, p < 0.001,
peak Z = 3.54), left postcentral gyrus (2719 voxels, p < 0.001, peak Z = 3.54),
right precentral gyrus (2522 voxels, p = 0.026, peak Z = 3.54), left frontal pole
(2470 voxels, p = 0.030, peak Z = 3.54), and right LOC (2397 voxels, p = 0.037,
peak Z = 3.54).

For more information on these clusters see Supplementary Table 3 below.
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Correlations of voxelwise Z statistics between subjective
value and inverse decision entropy

Here, we present the correlations of the Z statistics between SV and iDE. These
statistics have the added advantage of incorporating the variance across subjects
for each voxel — even though all statistics have been estimated with FSL’s
mixed effects model (FLAME 1). However, our conclusions remain the same.
Frontal medial cortex shows the strongest correlation, r = 0.616, p < 0.001, and
the correlation remains positive at the whole brain level, r = 0.295, p < 0.001.
Both left NA, r = 0.439, p < 0.001, and right NA, r = 0.495, p < 0.001, show
strong correlations between SV and iDE as well, followed by the left amygdala, ,
r = 0.134, p < 0.001. With this analysis we only see a change in correlation for
the right amygdala; whereas the beta weights showed a Spearman correlation
of 0.281 (p < 0.001) the correlation of SV and iDE Z statistics is dramatically
reduced, r = 0.030, p = 0.002.

Median split of SV

To address concerns that the results may be sensitive to effects of valence within
SV (negative domain vs. positive domain), we ran a GLM of the fMRI data in the
same way as described in the main text but splitting SV on participant specific
medians. We do not observe major differences in the areas that were activated
but we do observe that the sign of the betas change depending on whether SV
is below the median (middle column of Supplementary Figure 5) or above the
median (left column of Supplementary Figure 5). When SV is above the median,
it correlates positively with iDE: whole-brain Spearman correlation of 0.173
between betas (p < 0.001) and 0.169 between Z statistics (p < 0.001). The sign
is inverted when SV is below the median: whole-brain Spearman correlation of
-0.144 between betas (p < 0.001) and -0.142 between Z statistics (p < 0.001).
This is consistent with our argument that iDE better describes activations in
the brain given that iDE is lower when SV is closer to the median. We can
conclude that splitting SV in this manner is analogous to explicitly modelling the
quadratic relation of SV to iDE that is mentioned in the main text. We also do
not observe major changes for activations of iDE (right column of Supplementary
Figure 5) when compared to the results reported in the main text.
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Supplementary Figure 5: Positive and negative activations of median split SV
and iDE on the medial surface. The left and middle columns show activations
for SV above the participant specific median and below the participant specific
median, respectively. The right column shows activations for iDE. The top row
presents positive activations and the bottom row presents negative activations.
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