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This document includes:  
1. Description of the computation of SC and CE. 
2. HDDM model comparison and convergence 
3. HDDM Regression analyses incorporating contextual factors.  
4. Behavioral analysis to evaluate a potential animal/non-animal bias across the 

complexity conditions (low, med, high). 
5. HDDM analyses evaluating response bias effects across the complexity 

conditions (low, med, high)  
    

1. Computation of SC and CE 

The following section describes the main computational steps. The code to run the model on               
an arbitrary input image is available on https://github.com/irisgroen/LGNstatistics. 
 
1.1 Natural image statistics: local contrast distribution regularities​. Natural images          
exhibit much statistical regularity, one of which is present in the distribution of local contrast               
values. It has been observed (Simoncelli, 1999; Geusebroek and Smeulders, 2002, 2005)            
that properties that are inherent to natural images, such as spatial fragmentation (generated             
by the edges between the objects in the scene) and local correlations (due to edges               
belonging to objects in the image) results in contrast distributions that range between power              
law and Gaussian shapes, and therefore conform to a Weibull distribution. This regularity             
(systematic variation in the contrast distribution of natural images) can therefore be            
adequately captured by fitting a Weibull function of the following form:  
 

(f ) c e p =  ( ) β
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Where ​c ​is a normalization constant that transforms the frequency distribution into a             
probability distribution. The parameter 𝜇, denoting the origin of the contrast distribution, is             
generally close to zero for natural images. We normalize out this parameter by subtracting              
the smallest contrast value from the contrast data, leaving two free parameters per image, 𝛽               
(​beta​) and 𝛾 (​gamma​), that represent the scale (​beta​) and shape (​gamma​) of the distribution               
(Geusebroek & Smeulders, 2002, 2005). Beta varies with the range of contrast strengths             
present in the image, whereas gamma varies with the degree of correlation between             
contrasts.  
 
1.2 LGN model of local contrast statistics: contrast energy and spatial coherence. ​In             
previous work, we found that the beta and gamma parameters of the Weibull distribution can               
be approximated in a physiologically plausible way by summarizing responses of receptive            
field models to local contrast (Scholte et al., 2009). Specifically, summing simulated            
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receptive field responses from a model of the parvocellular and magnocellular pathways in             
the LGN led to accurate approximations of beta and gamma, respectively. In subsequent             
papers (Groen et al., 2013, 2017) an improved version of this model was presented in which                
contrast was computed at multiple spatial scales and the LGN approximations were            
estimated not via summation but by averaging the local parvocellular responses (for beta)             
and by averaging and divisively normalizing the magnocellular responses for gamma (mean            
divided by standard deviation). To distinguish the Weibull fitted parameters from the LGN             
approximations, the LGN-approximated beta value was defined as Contrast Energy (CE)           
and the LGN-approximated value of gamma as spatial coherence (SC). These modifications,            
as well as specific parameter settings in the model, were determined based on comparisons              
between the Weibull fitted values and the CE/SC values, as well as model fits to EEG                
responses, in separate, previously published image sets (Ghebreab et al., 2009, Scholte et             
al., 2009). We outline the main computational steps of the model below: 
 
1.3 main computational steps of the model 
Step 1​: RGB to color opponent space. For each image, the input RGB values were               
converted to opponent color space using the Gaussian color model described in            
(Geusebroek, Van den Boomgaard, Smeulders & Geerts, 2001), yielding 3 opponent color            
values per pixel (grayscale, blue-yellow, red-green; Koenderink, Van De Grind & Bouman,            
1972).  
Step 2​: Multi-scale local contrast detection. Each color opponent layer was convolved with             
isotropic exponential filters (Zhu and Mumford, 1997) at five octave scales (Croner and             
Kaplan, 1995). Two separate filter sets were used: smaller filter sizes (0.12, 0.24, 0.48, 0.96,               
and 1.92 degrees) for CE and larger filter sizes (0.16, 0.32, 0.64, 1.28, and 2.56 degrees) for                 
SC (Ghebreab et al., 2009). Following the LGN suppressive field approach (Bonin et al.,              
2005), all filter responses were rectified and divisively normalized. 
Step 3​: Scale selection. Per parameter (CE or SC) and color-opponent layer, one filter              
response was selected for each image location from their respective filter set using minimum              
reliable scale selection (Elder and Zucker, 1998). In this MIN approach, the smallest filter              
size that yields an above-threshold response is preferred over other filter sizes. Filter-specific             
noise thresholds were determined from a separate image set (Corel database) (Ghebreab et             
al., 2009).  
Step 4​: Spatial pooling. Applying the selected filters for each image location results in two               
contrast magnitude maps: one highlighting detailed edges (from the set of smaller filter             
sizes, for CE) and the other more coarse edges (from the set of larger filter sizes, for SC) per                   
color opponent-layer. To simulate the different visual field coverage of parvo- and            
magnocellular pathways, a different amount of visual space was taken into account for each              
parameter in the spatial pooling step. For CE, the central 1.5 degrees of the visual field was                 
used, whereas for SC, 5 degrees of visual field was used. Finally, the estimated parameter               
values were averaged across color-opponent layers resulting in a single CE and SC value              
per image. 
 

  



2 HDDM model comparison and convergence  

 
First, we evaluated five models in which drift rate (v) and boundary (a) were either fixed or                 
varied across trial type (speed, accurate) and/or scene complexity (low, medium, high). 
 
Supplementary Table S1. HDDM model fits to determine whether varying across scene            
complexity was justified to account for the data. ​We evaluated five models in which drift rate (v)                 
and boundary (a) were either fixed or varied across trial type (speed, accurate) and/or scene               
complexity (low, medium, high). 

 
 
Then, to assess the trial-by-trial relationship between scene complexity and drift rate (v) and              
boundary separation (a), we fitted eighteen alternative regression models. 
 
Supplementary Table S2. HDDM Regression models.​ Drift rate ​v​ and boundary ​a ​were either 
allowed to vary across scene complexity (indexed by SC or CE) or fixed. Both linear models (SC/CE 
centered around zero), and second-order polynomial models (quadratic) were fitted to examine 
whether the relationship was curvilinear (e.g. followed an inverted U-shape).  

 
 

Supplementary Table S3. Means of the posterior distributions.  
 

 
  



3. HDDM analyses incorporating contextual factors  

The following section describes the methods for the additional analyses to evaluate potential             
contextual factors that could correlate with SC and limit the detection task. Specifically, we              
parameterized two characteristics, object size and centrality. We have focused on these two             
factors, because just like CE and SC, they were image-computable, i.e. they could be              
derived by performing calculations on the pixels in the image.  
 
3.1 Computing contextual factors  
Object size was computed by taking the percentage of the image that was covered by the                
animal (manually segmented). Object centrality was computed by taking the distance in            
pixels from the center of mass (CoM) of the animal (computed by interpreting the image as a                 
2D probability distribution) to the center of the screen (see Supplementary Figure S1).  
 

 
Supplementary Figure S4. Example of computing object (animal) coverage and centrality.           
Object size was computed by taking the percentage of the image that was covered by the animal                 
(manually segmented). Object centrality was computed by taking the distance from the center of mass               
(CoM) of the animal to the center of the screen (length of green dotted line, in pixels).  
 
3.2 Evaluating the relationship with SC and CE  
There was no correlation between SC or CE and object coverage (experiment 1; SC: r =                
0.018; CE: ​r = ​0.025) or centrality (SC: ​r = ​-0.13; CE: ​r = -0.09). To evaluate whether SC                   
explains unique variance after accounting for these properties, we included both variables in             
our HDDM regression analysis, alongside SC. 
 
For experiment 1, results showed an influence of object size (coverage) on the drift rate, with                
a higher drift rate for images with larger animals as indicated by a positive shift in the                 
posterior distribution (Supplementary Figure S2; ​P < .001). For object centrality, however, we             
found no effect, and inspection of this variable indicated a low variability: most animals were               
located quite central. In experiment 2a, as in experiment 1, larger animals were associated              
with a higher drift rate (Supplementary Figure S3; ​P ​< .001). 

Most importantly, for both experiments, the effect of SC remained. This indicates that,             
even though object size has an influence on the rate of evidence accumulation, SC              
continues to explain unique variance in the speed of information processing. In other words,              
SC contributes to perceptual decision-making independent of object size, whereas object           
centrality has no effects. 

 
 



 
Supplementary Figure S5. Effects of SC/CE (experiment 1) on drift rate, accounting for object              
size and centrality​. ​A/B) ​Bigger animals were associated with a higher rate of evidence              
accumulation. The effects of SC+SC​2 remained, indicating that, even though object size has an              
influence on the rate of evidence accumulation, SC continues to explain unique variance in the speed                
of information processing.  
 

 
Supplementary Figure S6. Effects of SC (experiment 2a) on drift rate and response boundary,              
accounting for object size and centrality. A/B) Bigger animals were associated with a higher rate               
of evidence accumulation. Again, the effect of SC​2 remained, indicating that even though object size               
has an influence on the rate of evidence accumulation, SC continues to explain unique variance in the                 
speed of information processing.  
 
Full description and code definitions can be found here:  
https://github.com/noorseijdel/2019_scenestats/blob/master/notebooks/Notebook_SceneStat
s_Context.ipynb 

 
4 Behavioral analysis evaluating animal/non-animal bias 

To investigate whether participants’ response bias (towards animal or non-animal) differed           
with scene complexity, we computed the % animal choices for each participant. Differences             
between the three conditions (low, med, high) were statistically evaluated using a            
repeated-measures ANOVA.  
 
For experiment 1, results indicated, apart from a general bias towards the non-animal option              
(animal choice < 50% for all conditions), that the % animal-responses increases with scene              
complexity, F(36) = 9.76, ​p < 0.001, ​η​2pa​r = .351 (Supplementary Figure S4). Participants              
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chose ‘animal’ more often in the high and medium complexity scenes as compared to low,               
t(18) = -5.104, p < .001; t(18) = -2.698, p = .044 (Bonferroni corrected). Similar effects were                 
found for experiment 2a (Supplementary Figure S5). There, the percentage of animal            
responses increased with SC, F(44) = 6.63, ​p = 0.003, ​η​2par = .232. Participants chose               
'animal' more often in the high scenes as compared to low, t(22) = -3.365, ​p = .008                 
(Bonferroni corrected). 

In the current experiment, half of the trials in each condition contained an animal.              
Therefore, this response bias towards animal or non-animal trials can result in an increase in               
errors in the low and high condition. Analysis of the error rates separately for animal and                
non-animal trials, indicated for both experiment 1 and experiment 2a that most errors in the               
low condition were made for animal-trials. In those trials, participants thus seem to ‘miss’ the               
animal more often. Errors in high scenes, however, were seemingly not caused by the              
response bias: while participants reported more animals on non-animal trials (compared to            
low and medium), they made as many errors on animal trials. 
 

 
Supplementary Figure S7. Response bias effects in experiment 1. A) ​apart from a general bias               
towards the non-animal option (animal choice < 50% for all conditions), the % animal-responses              
increased with scene complexity. B) ​percentage of errors from experiment 1, separately for animal              
and non-animal trials.  
 
 

 
Supplementary Figure S8. Effects of SC on animal/non-animal responses in experiment 2a. ​A)             
Similar to experiment 1, the % animal-responses increased with SC. ​B) Percentage of errors from               
experiment 2a, plotted separately for animal and non-animal trials. 
 
 



 

 

5 HDDM Regression analyses evaluating response bias effects 

Following Supplementary section 4, to assess whether SC biases the response (towards            
animal or non-animal) reflected in changes in the starting point, we fitted several             
HDDMRegressor models: 

1. one model in which we estimate only the response bias z for every complexity              
condition (low, med, high), such that the bias for animal stimuli is z and the bias for                 
non-animal stimuli is 1-z (z = 0.5 for unbiased decisions in HDDM. 

2. one model in which we estimate both v and z. This way, we could measure               
response-bias (in favor of animal or non-animal) and drift rate for the three conditions              
(low, med, high) while assuming the same drift rate for both stimuli. 

3. one model in which we estimate v, z and a for every complexity condition. 
4. one model in which we estimate v, z and a for every complexity condition and, using                

the depends_on key argument, two intercepts for a (speed, accurate) 
5. same model as 4, now using 'medium' as the intercept for z 

However, with the properties of our observations and design, models defined in this way do               
not converge, which makes the interpretation of the parameters uninformative. The traces            
are non-stationary, and the autocorrelation is high. The histograms look serrated.  

Full description and code definitions can be found here:  
https://github.com/noorseijdel/2019_scenestats/blob/master/notebooks/Notebook_SceneStat
s_ResponseBias.ipynb 

Then, we fit 

6. one model using HDDMStimCoding, in which we estimate v, z for every complexity             
condition, and a for every complexity condition + speed/accuracy instruction.  

This model converges. As shown in the figure (Supplementary figure S9) below, the             
obtained posteriors for z do not differ across our low, med, or high condition. Hence, this                
evaluation shows no effect of condition (low, med, high) on z when it is allowed to vary.  

  

 
Supplementary Figure S9. Using HDDMStimCoding to evaluate potential biases towards          
animal/non-animal across the different conditions for the data obtained in experiment 1. 
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In the DDM, effects of a response bias can be explained either by changes in starting point                 
(Δz) or by changes in drift rate (Δv; Mulder, Wagenmakers, Ratcliff, Boekel & Forstmann,              
2012)) or the starting point of the drift rate. Additional modeling suggests that a potential               
response bias was not reflected in a change in the starting point and the RT patterns for                 
correct and incorrect trials in our dataset were more in line with a drift bias account:  
 

 
Supplementary Figure S10. Possible effects of bias on choice behavior ​(following figure 2 from              
Mulder et al., 2012). A) Effects of bias explained by the drift-diffusion model. When prior information is                 
invalid ('low', 'high') for the choice at hand, subjects will have slower and less correct choices                
compared with choices where no information is provided (neutral, 'medium'). These effects can be              
explained by changes in the starting point or the drift rate of the accumulation process. B) Both                 
accounts have different effects on RT and accuracy data. C) The data from our current experiment is                 
more in line with a drift rate account of response bias.  
 


