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A B S T R A C T

Blindsight refers to the observation of residual visual abilities in the hemianopic field of patients without a
functional V1. Given the within- and between-subject variability in the preserved abilities and the phenomenal
experience of blindsight patients, the fine-grained description of the phenomenon is still debated. Here we tested
a patient with established “perceptual” and “attentional” blindsight (c.f. Danckert and Rossetti, 2005). Using a
pointing paradigm patient MS, who suffers from a complete left homonymous hemianopia, showed clear above
chance manual localisation of ‘unseen’ targets. In addition, target presentations in his blind field led MS, on
occasion, to spontaneous responses towards his sighted field. Structural and functional magnetic resonance
imaging was conducted to evaluate the magnitude of V1 damage. Results revealed the presence of a calcarine
sulcus in both hemispheres, yet his right V1 is reduced, structurally disconnected and shows no fMRI response to
visual stimuli. Thus, visual stimulation of his blind field can lead to “action blindsight” and spontaneous anti-
pointing, in absence of a functional right V1. With respect to the antipointing, we suggest that MS may have
registered the stimulation and subsequently presumes it must have been in his intact half field.

1. Introduction

The paradoxical term blindsight refers to the ability of patients, who
suffer from visual field defects due to damage to the primary visual
cortex, to respond above chance level to visual stimuli in the blind areas
of their visual field. The first scientific description of blindsight was
published by Pöppel et al. (1973) who demonstrated that hemianopic
patients made accurate saccades to light flashes presented in their blind
half-field. Weiskrantz and co-workers (e.g. Sanders et al., 1974;
Weiskrantz et al., 1974; Weiskrantz, 2009) took this initial observation
one step further and showed that the effects could also be demonstrated
using manual pointing and verbal forced-choice responses. Perenin and
Jeannerod (1975) extended the evidence for residual manual localisa-
tion after cortical lesions, while the effect was not found for pattern
discrimination in the impaired field of their patients.

Not surprisingly, this phenomenon attracted widespread attention,
as it has major implications for theories of mental processing in general
and consciousness in particular (e.g. Cowey, 2010), and blindsight is
now one of the hallmarks of the cognitive neurosciences, not unlike the
split-brain phenomenon (e.g. Gazzaniga, 2005). However, as is the case
with split-brain research (e.g. Pinto et al., 2017), the fine-grained de-
scription of blindsight has remained controversial. Earlier criticism (e.g.

Campion et al., 1983) focused on alternative explanations such as
scattered light and/or rudimentary near-threshold vision. Although
subsequent studies refuted most of these criticisms (see Cowey, 2010
for a review), there is still a need for a better description of the
blindsight phenomenon in different, individual patients. Apart from
blindsight for location, it has since been argued that blindsight patients
may respond to flicker, contrast sensitivity, motion and wavelength
(e.g. Weiskrantz, 2009; Stoerig and Cowey, 1992). In addition, above
chance processing of higher-order properties has been proposed (e.g.
Tamietto and Morrone, 2016). For instance, Trevethan et al. (2007)
argued for preserved categorical perception and Solcà et al. (2015) for
recognition of familiar faces presented in the blind field.

Over the years, it has become apparent that different patients may
show differences in the nature of the phenomenon. In response to dif-
ferences in the phenomenal experience of patients, two forms of it have
been proposed by Weiskrantz et al. (1995). In type 1 blindsight, the
patients experience no awareness of any kind, while patients with type
2 blindsight experience a non-visual experience that, and even where,
something occurred. In addition, Danckert and Rossetti (2005) sug-
gested three different types of blindsight. First, patients who are able to
act upon stimuli in the blind field (e.g. by pointing or saccades) are
classified as having “action-blindsight”. Second, patients who respond
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on the basis of attentional processing of blind field stimuli are thought
to have “attention-blindsight”, and third, patients who demonstrate
above-chance perceptual judgements for different stimulus character-
istics presented in the blind field are classified as having “perceptual
blindsight”.

Thus, there are good reasons for in-depth, experimentally sound,
studies of individual patients who demonstrate a form of preserved
processing in their blind field, in order to formulate a reliable taxonomy
of different forms of the blindsight phenomenon. In this paper, we
sought to explore further the characteristics of the preserved processing
in the patient MS, who has been studied in detail by Cowey and co-
workers. MS suffers from a complete left homonymous hemianopia but
can respond to visual stimulation in his blind field, notably to motion
(e.g. Alexander and Cowey, 2010; Pavan et al., 2011). Alexander and
Cowey (2009) used Transcranial Magnetic Stimulation (TMS) over the
middle temporal visual area (MT⁺ or V5) in the right hemisphere to
show that the detection of motion in the blind field was dependent on
cortical processing. The aim of the current study is to investigate the
possibility of “action blindsight” in a case of well established “percep-
tual and attentional blindsight”, employing a pointing paradigm. Also,
we perform structural and functional magnetic resonance imaging
(MRI) to evaluate the magnitude of V1 damage and the possibility of
rudimentary V1 activation in both hemispheres, since the absence of a
functional V1 is central to the definition of blindsight.

2. Materials and methods

2.1. Case history

MS is a former police cadet who contracted a febrile illness in 1970,
at the age of 23. A full case description has been given by Newcombe
and Ratcliffe (1975) and Ratcliff and Newcombe (1982), so we will only
summarize the essential details here. The presumptive diagnosis was
herpes encephalitis, but this was never confirmed by viral antibody
studies. Radiology showed that most of the ventral temporal cortex of
both hemispheres was destroyed extending to occipital cortex on the
right, leaving him with a complete left homonymous hemianopia.
However, his visual acuity in the seeing field is normal (6/6; N5 for
near vision). He suffers from achromatopsia and his colour perception
impairment has been studied extensively (Mollon et al., 1980; Heywood
et al., 1991, 1994, 1996). He also has a severe object agnosia (suc-
cessfully identifying only 8/36-line drawings) and prosopagnosia (e.g.
Newcombe et al., 1989) but remains able to read accurately. His
comprehension of what he reads is, however, affected by an impairment
of semantic memory which can also be seen in the fact that he could
only successfully name 20/36 objects from verbal descriptions of their
functions. This semantic memory impairment is more marked for living
than for non-living things (Young et al., 1989). More recently, Cowey
and co-workers have provided convincing evidence for perceptual
blindsight (e.g. Alexander and Cowey, 2009; Cowey, 2010; Pavan et al.,
2011).

2.2. Experimental set-up

This experiment was set up to evaluate immediate pointing and
reach-to-grasp movements to targets in the visual periphery. Target
positions were arranged in an arc of 55 cm radius around MS's body.
The centre of the arc was marked by a black cross and aligned with the
subject's midsagittal axis. Throughout the trials, the subject was asked
to fixate this cross. The first peripheral target position was approxi-
mately 5° from fixation with subsequent target positions at 5° intervals.
The locations were indicated by black dots printed on a large plasticised
white paper (841mm x 297mm) placed flat on the table. In addition,
the fixation cross itself was used as a target location. A blue circle
placed 5.5 cm from the table edge indicated the starting position for the
index finger, in front of the central target location. The starting position

was 27 cm apart from the fixation cross. A schematic representation of
the experimental set-up is shown in Fig. 1.

In a practice run performed the day before, MS was familiarised
with the set-up. There were 23 practice trials performed with his right
hand (9 left visual field, 9 right visual field, 5 central) and 24 practice
trials with his left hand (3 left visual field, 13 right visual field, 8
central). During the practice trials, the target object was a light wooden
cylinder (diameter: 9 mm, height: 161mm), attached to a small square
footing (w × h: 34mm × 5mm). To enhance the target's dis-
criminating features, it was replaced by a black cylinder during ex-
perimental trials.

Data were collected in two separate sessions. In the first session, the
target object was the experimenter's finger, that moved up and down at
one of the predefined target positions. In the second session, the target
object was a black cylinder (diameter: 9 mm, height: 161mm), attached
to a wooden square board (w × h: 34mm × 5mm). Performance was
monitored through two video cameras placed in front and above the
table.

2.3. Procedure

The procedure for both test sessions was identical. MS sat comfor-
tably behind a table and rested his index finger on the starting position.
Each trial started with MS fixating the central cross. After a variable
delay, the investigator moved the target object in pseudo-random order
to one of the locations along the arc. A verbal “go” signal, instructed MS
to start a movement. In both sessions, performance in the sighted field
was explored first to familiarise him with the task. MS was instructed to
make fast pointing movements to the target whilst maintaining fixation
on the central cross. For trials in the blind visual field, MS was en-
couraged to point to where he thought the target was located even
when he could not perceive it. MS responded with his left dominant
hand. Eye-fixation was monitored visually on all trials by a second in-
vestigator who sat opposite MS and confirmed using the front view
camera footage.

2.4. Movement recording

Movements were recorded using a video camera mounted on the
ceiling above the table, providing an overhead view. To be able to make
measurements from the video images, perspective distortions were
corrected using Final Cut Pro (version X) video editing software.
Further video analysis was performed on a frame-by-frame basis in

Fig. 1. Experimental set-up. The target position is depicted at 20° in the left
visual field.
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Kinovea (version 0.8.15). First, the video was calibrated to real world
units by setting the physical length of the white paper (29.7 cm). The
origin of the coordinate system was set to the starting position for the
index finger. Movement onset was defined as the frame in which the
index finger first moved to leave the starting position. End of movement
was defined as the frame in which velocity first fell back to approxi-
mately zero, and no significant changes in end position followed. The
[x, y] coordinates of the marker at the tip of the index finger in the final
frame of movement defined the end point of the reach. In a small
number of trials, the index finger touched the investigator's hand before
end of movement. In these files, the 2D coordinates of the place of
contact defined the endpoint of the reach. End point errors were com-
puted in the x- and y- direction by comparing the end point position of
the index finger with the [x, y] coordinates of the target. For each trial,
reaction time was calculated as the difference between target onset and
movement onset.

2.5. Statistical analysis

The 2D coordinates of the end points were converted to degrees of
visual eccentricity. For each trial, the directional error in degrees was
computed. All results are based on permutation testing using Matlab
(version 2014b). Performance was compared between sessions to test
for the presence of a session effect. Next, we randomly assigned the
observed end points to target locations 100,000 times. For each per-
mutation, the mean absolute error was recorded. The observed mean
absolute error was compared with the distribution of means arising
from random permutations. The P-value indicates the likelihood that
observed performance is obtained by chance. P-values< 0.05 were
considered significant.

2.6. Imaging stimuli and procedure

To evaluate V1 activity in both hemispheres, we analysed BOLD
activity from a different experiment (in prep). For this study, 96 visual
stimuli (coloured photographs, see Kriegeskorte et al., 2008; Kiani
et al., 2007) were used. To improve visibility, object size was increased
with respect to the original study. During the task, stimuli were pre-
sented foveally while the participant performed a fixation task. One run
of 96 stimuli lasted 6min and 24 s. MS participated in 4 different runs.

2.7. Image acquisition and analysis

The subject was tested using a Philips Achieva 3 T MRI scanner with
a 32-channel head coil. The subject participated in multiple recordings,
relevant for this paper are the T1-weighted anatomical 3D acquisition
(TE = 4.58ms, flip angle = 8°, FOV = 240× 256×200mm, slice-
thickness = 0.8mm, voxel size = 0.8× 0.8× 0.8mm, 250 slices ac-
quired using Turbo Field Echo) and the functional GE-EPI (TR =
700ms, TE = 27ms, flip angle = 52°, MultiBand-factor = 6, FOV =
224×142.32×224mm, slice thickness = 2.4 mm, slice gap =
.24mm, voxel size = 2.33×2.33× 2.64mm, 54 slices with ascending
acquisition).

BOLD-MRI data were preprocessed and analysed using FSL 5.0.9
(Jenkinson et al., 2012) and MATLAB (2016). Functional data were
corrected for motion. No slice-timing correction was performed. Next
we filtered the data, both spatially (1.4 mm) and temporally (Savitzky-
Golay, 200 s, 5th order polynomial). To decompose the BOLD signal
from noise, we performed an ICA denoising procedure (FIX-ICA, Salimi-
Khorshidi et al., 2014; approximately 20% of the variance in the data
was removed). After preprocessing, time series were modelled using a
double γ hemodynamic response function in a stimulus on vs. stimulus
off GLM design using FSL FEAT. Motion and average brain-activity were
used as nuisance regressors. The four runs were combined in a higher-
level fixed effects analysis. We report voxels with a p value lower
than< 0.01, uncorrected for multiple comparisons.

The experiments were approved by an ethics committee and written
informed consent was obtained.

3. Results

3.1. Central pointing

MS completed a total of 10 trials to a target located at the fixation
cross. Nine out of ten trials his directional error was less than 2°. The
median reaction time was 355 msec. For the two trials with the largest
error (1.8° and 2.9°), MS's reaction time was substantially higher (3.53 s
and 4.10 s).

3.2. Blind field pointing

We explored the extent to which MS could point accurately to tar-
gets presented in his blind field. In total, there were 20 target pre-
sentations in his blind field across both experimental sessions. No trials
were discarded because of eye movements. His median reaction time
was 5.50 s. Visual inspection of the absolute directional errors revealed
two outliers. In these files, MS demonstrated spontaneous, approxi-
mately mirror-symmetrical, responses towards the right (sighted) visual
field. We observed this type of response before, during informal testing
(practice trials), which is discussed further in paragraph 3.3. For the
main analysis and figures, we excluded these two data points as we
believe that they represent a different phenomenon.

There was no difference in performance between test sessions (M
absolute error session 1: 5.0°, M session 2: 7.2°, p=0.52). In order to
increase power, data from both sessions were combined in further
analyses. Overall, pointing performance in his blind field was sig-
nificantly above chance level (average distance between pointed loca-
tion and actual target location = 6.3°, p=0.001). Fig. 2 shows the
mean absolute directional error (degrees) for each target location. The
data suggest his performance drops for target locations beyond 25°.
Post-hoc exploratory analysis confirmed that pointing performance to
targets in far periphery (30° and 35°) was not different from chance
(p=0.80).

3.3. Qualitative observations

We did not assess whether MS experienced any kind of awareness of
the target in his hemianopic field. However, during the trials MS
commented the targets “were completely out of focus” and “out of my
range”. In two out of twenty presentations in his blind field, MS showed
spontaneous pointing responses towards the right (sighted) visual field.
Both observations were during session 1, when the target was the ex-
perimenter's moving finger. Interestingly, in practice runs, he often
pointed to his right sighted field when targets were presented in his left
field (in 9 out of 12 trials). The practice run was different from the test
sessions in three ways: (1) MS was tested without the instruction to
guess when he could not perceive the target; (2) the target was of a light
wood colour instead of black; (3) the fixation point was behind the
black cross that marked the centre of the arc. At the end of his pointing
movement on trials where he showed this behaviour, MS often seemed
uncertain about his performance, murmuring “No” or shaking his head.
Unfortunately, these runs were not filmed from above and the 2D co-
ordinates of the end points could not be extracted.

3.4. Imaging results

Anatomical scans revealed an, at least partially, intact primary vi-
sual cortex (V1) in both hemispheres. As shown in Fig. 3A/C, both the
left- and right hemisphere show the presence of a calcarine sulcus. To
indicate the transition from the left to the right hemisphere, Fig. 3B
shows the meninges between both sides. The presence of a calcarine
sulcus in both hemispheres indicates that patient MS has, at least
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partially, spared V1 in both hemispheres. Further inspection of the
anatomical scan suggests that this part of cortex in the right hemi-
sphere, that could consists of parts of V1 to V4, is disconnected from
subsequent cortical areas.

We evaluated the degree to which striate cortex responds to visual
stimulation and concluded that, at a level of p < 0.01 (uncorrected)
only the left hemisphere, presumably in or around V1, showed in-
creased activation (Fig. 3E).

4. Discussion

Our findings demonstrate that MS was able to successfully point to
targets presented in his cortically blind field. His performance was
significantly above chance level in absence of acknowledged visual
perception of the targets, which constitutes action blindsight. These
results extend the previously documented blindsight phenomena in MS
for motion detection and target localisation using a forced choice
paradigm (Alexander and Cowey, 2009, 2010), and show the possibility
of co-existence of the residual ability to localise an ‘unseen’ stimulus by
both pointing and verbal responses. Neuroimaging revealed that

Fig. 2. Mean directional error in raw (left) and absolute (right) degrees for each target location. Error bars = standard error of the mean.

Fig. 3. Anatomical T1-weighted and BOLD-MRI images of patient MS. A) Sagittal view of the right hemisphere. B) Sagittal view of the meninges between both
hemispheres C) Sagittal view of the left hemisphere D) Axial view of the occipital cortex. On these scans, the primary visual area (V1) can be seen on both sides. V1 in
the right hemisphere doesn’t connect to subsequent cortical areas. E) Striate cortex activation for patient MS in response to visual stimuli (p < 0.01, uncorrected for
multiple comparisons).
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although part of his right striate cortex is spared, it is structurally dis-
connected and not activated by visual stimuli.

There is considerable between- and within-subject variability of
blindsight properties reported in the literature (e.g. Corbetta et al.,
1990; Buetti et al., 2013). The required output (e.g. verbal, saccade,
pointing) and specific stimulus features used to explore residual func-
tion differ between studies and can be critical for performance. Most
prior studies have presented targets on a touch screen of a computer
monitor or used small light-emitting diodes (LEDs). In this study, tar-
gets were real objects that were presented in normal lightning condi-
tions. This suggests that the visual processes underlying above-chance
localisation in blindsight include some degree of object-background
segregation and are not solely depended on particular onset or illumi-
nation characteristics accompanying LEDs or on-screen targets. How-
ever, the movement of the target by the experimenter during the delay
in between trials could have had an influence on MS's perception of
target locations, though his reaction times do not suggest that he re-
sponded directly to the target displacement. Furthermore, we used
manual pointing to investigate the possibility of “action blindsight” in
MS. It has been suggested that localisation performance in blindsight
cases may be depended on or is promoted by direct visuomotor inter-
action, as opposed to discrete manual responses such as finger tapping
(Buetti et al., 2013). To what extent this is also true for MS and if he is
able to perform equally well for other types of actions, such as obstacle
avoidance or grasping remains open for further investigation.

Danckert and Rossetti (2005) proposed a taxonomy of residual be-
haviours demonstrated by blindsight patients, that separates motor
responses to blind field targets from forced-choice guessing, and posits
different neural pathways for these different types of blindsight. As
mentioned, when TMS was applied to disrupt activity in area V5/MT⁺
the motion blindsight in MS was abolished. Area V5/MT⁺ provides input
to the posterior parietal cortex (PPC) known to be important for vi-
suomotor control (Born and Bradley, 2005). MS’ spared visuomotor and
perceptual abilities may thus be mediated through the same pathway
via projections to and from MT⁺. This suggestion does not necessary
contradict the taxonomy proposed by Danckert and Rossetti (2005),
who already pointed out that the difference between “action-blind-
sight” and “attention-blindsight” might reside in the terminal region of
extrastriate cortex involved. Although the neural pathways that support
blindsight are uncertain (for a review see Cowey, 2010), intact con-
nections between the lateral geniculate nucleus (LGN) and extrastriate
areas, especially area V5/MT⁺, have been proposed to facilitate blind-
sight (Schmid et al., 2010; Ajina et al., 2015). As an alternative possi-
bility, it has been suggested that cortical areas in the undamaged
hemisphere have a role in action blindsight through compensatory in-
terhemispheric connectivity (Celeghin et al., 2017). Lastly, it is inter-
esting to look at the possible role of comorbidity, in this case whether
the fact that MS also suffers from extensive damage to his ventromedial
temporal cortex, resulting in achromatopsia and object agnosia, is re-
lated to the patterns of blindsight that he demonstrates. At this point in
time, there are too few cases in the literature to make strong claims but
it seems likely that visual function in the extrastriate areas (involving
MT) is necessary. In contrast, it looks as if intact ventromedial temporal
cortex in not a prerequisite for residual spatial abilities as demonstrated
by MS.

When targets were located more peripherally than 25 degrees from
eye fixation, eccentricity of the target was underestimated and end
points no longer appeared related to target location. This effect of target
eccentricity on spatial localisation accuracy in blindsight was also
present in earlier findings of Perenin and Jeannerod (1975) and com-
parable to what has been observed in optic ataxia. The analysis of target
eccentricity was post-hoc and the number of trials for each target po-
sition does not allow firm conclusions on the subject. However, it would
be interesting for future studies to investigate this in more detail and to
compare the effect of target eccentricity in blindsight to that described
in optic ataxia. In line with earlier reports (Perenin and Jeannerod,

1975; Corbetta et al., 1990; Whitwell et al., 2011; Danckert et al., 2003;
Ross et al., 2016), MS’ pointing errors were larger than we would expect
from normally-sighted control participants. In addition, the median
time to initiate movement was substantially higher in his blind field
than in central vision. This may be caused by uncertainty about events
occurring within the affected part of his visual field. Overall, the results
suggest input from a functional V1 is not necessary for localisation,
though accuracy and speed do suffer from its absence.

Another interesting observation to discuss here is that on several
occasions MS showed spontaneous antipointing behaviour. That is,
when targets were presented in his blind field, he responded by
pointing to his sighted field, though his pointing behaviour was not
consistently mirror-symmetrical. This suggests to us that he has regis-
tered the visual stimulation but presumes it must have been in seeing
half field (c.f. Weiskrantz et al., 1995 type 2 awareness). This type of
response was much more common during the practice runs, when the
target was a light wooden stick, and therefore, had less clear spatial
boundaries. In addition, during practice MS was not prompted to give a
response even when he could not perceive the target's location (as he
was during the experimental trials). Alexander and Cowey (2010) in-
vestigated what stimulus features are processed in blindsight and show
that performance was only successful when simple high-contrast stimuli
were used. It may be that the target used during the practice runs was
implicitly registered, but carried insufficient information about its lo-
cation to allow an accurate response. We did not add catch trials, in
which no target was actually presented in the current set-up. However,
in a previous study of the effect of catch trials in a pointing paradigm,
all hemianopics (three monkeys and one human (patient GY)) almost
always directed their responses on blank trials towards the blind field
(Cowey et al., 2008). Transpositions of stimuli to the opposite hemi-
space have been reported before in the context of allochiria (Meador
et al., 1991). Both a shift of visual stimuli from the blind field to the
intact field (Murakami et al., 2014; Walsh et al., 2012) and allochiria in
manual pointing (Joanette and Brouchon, 1984; McCloskey and
Palmer, 1996) have been descripted before but reports are scarce. As in
blindsight, the pathways that mediate the phenomenon are unknown.
Whether the antipointing behaviour exhibited by MS is indeed a variant
of visual allochiria should be further investigated through specific
testing.

Overall, the characteristics of preserved processing in patient MS
observed so far suggest residual spatial abilities in his hemianopic field
irrespective of response type (manual or perceptual). By studying dif-
ferent facets of the residual visual and visuomotor abilities in different
patients, we can uncover a reliable taxonomy of blindsight.
Subsequently, such a taxonomy can guide the search for neural path-
ways responsible for mediating blindsight.
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