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Full, non-linear general relativity predicts a memory effect for gravitational waves. For compact
binary coalescence, the total gravitational memory serves as an inferred observable, conceptually
on the same footing as the mass and the spin of the final black hole. Given candidate waveforms
for any LIGO event, then, one can calculate the posterior probability distribution functions for the
total gravitational memory, and use them to compare and contrast the waveforms. In this paper
we present these posterior distributions for the binary black hole merger events reported in the first
Gravitational Wave Transient Catalog (GWTC-1), using the Phenomenological and Effective-One-
Body waveforms. On the whole, the two sets of posterior distributions agree with each other quite
well though we find larger discrepancies for the ` = 2,m = 1 mode of the memory. This signals a
possible source of systematic errors that was not captured by the posterior distributions of other
inferred observables. Thus, the posterior distributions of various angular modes of total memory
can serve as diagnostic tools to further improve the waveforms. Analyses such as this would be
valuable especially for future events as the sensitivity of ground based detectors improves, and for
LISA which could measure the total gravitational memory directly.

I. INTRODUCTION

The detection of gravitational waves enables tests of
general relativity that were not possible using the electro-
magnetic window. For example, through observations of
compact binary mergers one can verify higher order post-
Newtonian effects in the inspiral regime, and probe the
nature of the final remnant black hole in the post-merger
regime [1–3]. Similarly, in the search for potential devia-
tions from general relativity, one can use the parameter-
ized post-Newtonian formalism as a general framework
in the inspiral regime, and black hole perturbation the-
ory in the post-merger regime. The merger itself cannot
be addressed by these approximation schemes because
non-linear effects of general relativity are especially im-
portant there. On the other hand, precisely for the same
reason, the merger provides a promising place to look for
potential deviations from general relativity.

So far, there is no generally accepted framework for
describing the merger itself analogous to the parameter-
ized post-Newtonian framework. Several tests have been
proposed in the literature which attempt to probe dif-
ferent aspects of the merger. However, to reliably test
whether predictions of general relativity are borne out in
observations, one needs to be confident that the theoret-
ical waveforms used in these tests capture predictions of
the theory to a sufficiently high degree of accuracy. Al-
though so far, there is no generally accepted framework
to test the accuracy of theoretical predictions describ-
ing the merger itself, several tests have been proposed
in the literature to probe different aspects of these pre-
dictions. These include, for example, various consistency
checks between the inspiral and the merger [4, 5], and
also tests of phenomenological waveform models for the
merger [1]. In this paper we suggest that the total grav-
itational memory can be used as a new tool in the same
direction.

General relativity predicts that memory associated
with gravitational waves emitted in compact binary co-
alescences would be generically non-zero. For the in-
terferometric gravitational wave detectors, this corre-
sponds to a permanent displacement of the test masses
due to the flux of gravitational waves across the plane
of the detector [6–10]. See also [11–17] for later work
discussing prospects for detecting memory and further
calculations of the memory within the post-Newtonian
framework. Advances in numerical relativity towards cal-
culating memory in numerical simulations of black hole
mergers are given in [18, 19]. A direct measurement of
the memory would be a probe of non-linear aspects of
general relativity, and also of the merger, since the effect
is the largest during this phase. However, thus far, we do
not have a direct measurement either for single events, or
collectively for a population of events [20–24]. But the to-
tal gravitational memory is a bonafide observable in full
general relativity, expressible as a functional of the grav-
itational wave strain in a detector. Therefore, assuming
general relativity, it is possible to infer its value.

As we now explain, this inference relies on the wave-
form model used. For a binary system, a gravitational
waveform received at a detector is parameterized by at
least 10 intrinsic parameters (without restricting oneself
to general relativity): the two component masses m1 and
m2, the individual spins of the two components S1 and
S2, and two additional parameters in case the system is
in an eccentric orbit (namely, the eccentricity and the
orientation of the elliptical orbit). The total mass is de-
noted M = m1 + m2. It is conventional to use the di-
mensionless spin parameter χi = Si · L̂/m2

i (i = 1, 2)

instead of the spin itself, where L̂ is the unit-vector in
the direction of the orbital angular momentum vector
L. Similarly, the effective spin χeff which appears in
several waveform models is a weighted sum of the indi-
vidual spins: χeff = (m1χ1 + m2χ2)/M . The dimen-
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sionless spin components perpendicular to L̂ are denoted
χ⊥1,2. In addition to the masses and spins, we will have
4 extrinsic parameters. This includes the luminosity dis-
tance to the source DL, and three additional extrinsic pa-
rameters which determine the orientation of the source.
Let us denote the intrinsic parameters collectively by ~λ,

and the 4 extrinsic parameters by ~A. If one or both of
the compact objects is a neutron star, we will have fur-
ther parameters depending on the structure of the star.
Given these parameters, we can determine the gravita-

tional waveforms h+,×(t;~λ, ~A) for the two polarizations.
Given, in addition, the orientation of the detector which

requires three additional angles collectively denoted ~Θ,

the received strain h(t;~λ, ~A, ~Θ) in a detector can be cal-
culated by a suitable projection of h+,×. One can show

that one of the angles in ~A is degenerate with an angle

in ~Θ, namely, the polarization angle (see e.g. [25]). Con-
sequently, there are only three independent parameters

in ~A: the luminosity distance DL, the inclination angle
ι which is the angle between the source axis and the line
of sight to the detector, and a phase ϕ0. The three pa-

rameters in ~Θ are the sky-location of the source in the
detector frame (θ, φ), and the polarization angle ψ.

Given the measurement of the strain in a detector, one
can match the most accurate available model and deter-
mine the values or, more precisely, the posterior proba-

bility distributions, of the intrinsic parameters ~λ. These
distributions are in fact among the most important re-
sults of the observation, providing us with the measured
values of these parameters that describe the binary. Note
that the above discussion assumes that the wavelength of
the signal is much longer than the length of the detec-
tor arms, and that the signal duration in much shorter
than a sidereal day. Thus the distinction between intrin-
sic and extrinsic parameters is more complicated for e.g.
the LISA detector, but we shall not consider this detail
here.

Once we have the probability distribution for ~λ, as-
suming general relativity, we can use it to calculate val-
ues of other important observables associated with the
binary. Following a general convention, we will refer to

the values (or rather, the probability distributions) of ~λ
as measured quantities, and those of additional observ-
ables that can then be deduced as inferred values. The
most widely used inferred observables for a binary are the
mass Mf , the spin Sf and the recoil (or kick) velocity v
of the remnant. The total gravitational wave memory is
on a similar footing as these: given the waveform param-
eters and a particular waveform model, values of various
modes in the angular decomposition of the memory can
be uniquely inferred assuming general relativity.

The first goal of this paper is to carry out this proce-
dure in detail and to obtain the posterior distributions
of the memory modes for the binary black hole merger
events reported in the first Gravitational Wave Transient
Catalog (GWTC-1) [26]. Now, the properties of the com-
monly used inferred observables – the final black hole pa-

rameters such as Mf ,Sf ,v– have important astrophysi-
cal and theoretical applications. Gravitational memory
is likely not of direct astrophysical interest. Nonethe-
less, since it is a genuine observable in general relativity,
it has interesting theoretical implications. In particular,
differences in the memory for different waveform mod-
els are significant. If for example, for a given event, the
memory turns out to be statistically different for differ-
ent waveform models, they cannot both be accurate ap-
proximations to exact general relativity. Therefore the
statistical difference would point to a difference between
the underlying physical assumptions of the models, in-
dicating that these models can be further improved. As
detectors become increasingly sensitive, these differences
might become more significant and can play a useful role
in improving waveform models. The second goal of this
paper, then, is to advocate the use of the memory as a
diagnostic tool for investigating physical differences be-
tween different waveform models.

The plan for the rest of the paper is the following. In
Sec. II we shall explain the basic formalism for calculating
the linear and non-linear parts of the memory. Sec. III
applies this to the events published by the LIGO and
Virgo collaborations and finally Sec. IV concludes with a
discussion of the results and possible future applications
of the memory.

II. CONSTRAINTS ON GRAVITATIONAL
WAVEFORMS AND THE MEMORY

We begin with a description of the gravitational wave
signal emitted by a compact binary source. The start-
ing point for understanding the behavior of gravitational
radiation in numerical relativity and gravitational wave-
form modeling is the Weyl tensor component Ψ4 =
Cabcdn

am̄bncm̄d. Here Cabcd is the Weyl tensor, and
(la, na,ma, m̄2) is a suitably chosen null-tetrad adapted
to spheres centered on the source. Thus, la and na are
respectively the outgoing and ingoing null normals to
these spheres, while the complex vector field ma is tan-
gential to the spheres and adapted to the source axis,
and m̄a is the complex conjugate of ma.1 The only non-
vanishing inner-products are m · m̄ = 1 and l · n = −1.
The notion of spin-weight plays an important role. This
refers to the behavior of quantities under ‘spin rotations’
m → eiψm. A quantity F is said to have spin-weight s
if F → eisψF under this transformation. Thus, ma itself
has spin weight +1 while m̄a has s = −1. The Weyl
tensor component Ψ4 has s = −2.

The two polarizations of the gravitational wave strain

1 For a non-precessing system, the source axis would be the di-
rection of the orbital angular momentum, while for a precessing
system the direction of the total angular momentum provides an
approximately conserved direction.
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h+,× are related to Ψ4 according to

Ψ4 = −ḧ where h := h+ − ih× . (1)

The emitted gravitational wave signal at large distances
from the source can be expanded in terms of spin-
weighted spherical harmonics:

h =
1

DL

∞∑
`=2

∑̀
m=−`

h`m(t;~λ) −2Y`m(ι, ϕ0) . (2)

Here −2Y`m is a spin-weighted spherical harmonic of spin
weight −2, and DL is the luminosity distance from the
source. See e.g. [27, 28] for a discussion of the integra-

tions in time required to go from Ψ4 to ḣ and eventually
to h+,×.

As explained in Section I , h+,× are functions of time,

and they are parameterized by (~λ, ι, ϕ0, DL). The signal
h(t) seen at a detector is

h(t;~λ, ~A,Θ) = F+(θ, φ, ψ)h+(t;~λ, ~A)

+ F×(θ, φ, ψ)h×(t;~λ, ~A) . (3)

Here F+,× are the detector beam pattern functions.

Numerical simulations provide us with the mode am-
plitudes h`m for a selected set of points in parameter
space and for a few chosen modes for which Ψ4 can be
extracted reliably. For analyzing gravitational wave sig-
nals, it is much more practical to construct analytical
models that interpolate between these chosen points in
parameter space, and then use these models for gravita-
tional wave mode amplitudes. Significant advances have
been made in addressing this interpolation problem (see
e.g. [29] for recent work in this direction). Two particu-
lar waveform models have been used extensively for inter-
preting gravitational wave data. The first is the Effective-
One-Body (EOB) framework originally suggested in [30];
see [31] for a review and e.g. [32–38] for further devel-
opments. The second commonly used models are the
so-called Phenomenological models originally proposed
in [39]; see e.g. [40–45] for further developments. It is
beyond the scope of this article to review the basic ideas
underlying these models, comparisons between them, and
their relative strengths and weaknesses. Rather, we will
use them to perform ‘null tests’ by first assuming that
they both correctly capture general relativity, with suf-
ficient accuracy for detection and parameter estimation
in binary mergers, and then comparing their predictions
for other observables as a diagnostic tool for potential
systematic errors.

Our analysis is based on an infinite tower of constraints
on gravitational waveforms, imposed by certain ‘balance
laws’ in full, non-linear general relativity. Let us begin
with the easier cases, namely the balance laws for energy
E and linear momentum Pi. Let us first note that the
total fluxes, ∆E and ∆Pi, carried away by the gravita-

tional waves are given by

∆E =
D2
Lc

3

16πG

∫ ∞
−∞
dt

∮
dΩ |ḣ|2 , (4)

∆Pi =
D2
Lc

2

16πG

∫ ∞
−∞
dt

∮
dΩ x̂i(ι, ϕ0)| ḣ|2 . (5)

Here x̂1 = sin ι cosϕ0, x̂2 = sin ι sinϕ0, x̂3 = cos ι and
dΩ = sin ι dι dϕ0. 2 Note that the fluxes ∆E and ∆Pi
are completely determined by the waveform h. Therefore,
given the initial (i.e., ADM) mass and the waveform, the
balance laws determine the energy-momentum of the fi-
nal black hole from which one can extract its mass Mf

and its recoil velocity v.
Now, since the radiated energy, the recoil velocity, and

the final mass are all parameters of direct astrophysical
interest, there is an extensive literature on calculating
these quantities as functions of the initial parameters [47–
49]. These functions are typically obtained as fits to the
results of numerical simulations. But as indicated above,
we can also calculate these quantities using the model
waveforms and the initial parameters that label them. If
these waveforms are to accurately represent general rela-
tivity, the answers must agree with the fits from numer-
ical relativity. Note that it is not obvious that the two
calculations must necessarily agree. As an example of
the gap between the two calculations, consider the mass
Mf and the spin Sf of the final black hole. In numerical
relativity, these are typically calculated using geometri-
cal fields on black hole horizons rather than waveforms
in the asymptotic regions (see e.g. [50, 51]). While one
expects the two sets of values to agree at late times, their
equality has not yet been established mathematically (be-
cause of technical issues concerning the structure at fu-
ture timelike infinity i+). Therefore, a comparison be-
tween the two would serve as a useful check on overall
consistency. In addition, as we discuss in Section III A,
one can view such comparisons as accuracy tests for the
waveforms. Any disagreements, even if not significant for
current gravitational wave data analysis purposes, might
point directions leading to improved waveform models.
Eventually, as detectors improve in sensitivity, accuracy
requirements on the waveforms become more stringent.
Thus, such improvements might be part of the various in-
gredients in waveform modeling necessary in the coming
era of high precision gravitational wave astronomy.

The main focus of this paper is on the non-trivial con-
straints on the waveforms obtained from the fluxes of
supermomenta which, as we shall now see, are closely
connected with the total gravitational memory, which is
given by

∆h(ι, ϕ0) = h|u=∞ − h|u=−∞ . (6)

2 A corresponding formula also exists for the flux of angular mo-
mentum, but it involves several subtle issues [46]; we shall not
discuss it in this article.
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In practice, h can be calculated by performing two time-
integrals of Ψ4. This procedure involves two integration
constants [27, 28]. The first vanishes in binary coales-

cences, since the Bondi news ḣ goes to zero in the dis-
tant past as well as distant future (just as Ψ4 does). The
second is generally used to set h|u=−∞ = 0. However,
since the total memory ∆h is a difference, its value is
independent of the choice of this integration constant; it
is a well-defined observable in general relativity, without
any further inputs.

The value of ∆h is governed by the supermomentum
balance laws, associated with supertranslations. More
precisely, presence of gravitational waves in the asymp-
totic region forces one to enlarge the 4 dimensional group
of translations of flat space-time to an infinite dimen-
sional group of “angle dependent translations”, called
supertranslations [52, 53]. Just as there are energy mo-
mentum balance laws associated with asymptotic trans-
lations, Einstein’s equations imply that there are super-
momentum balance laws associated with supertransla-
tions [54]. As shown in [55], under assumptions that are
normally made in the analysis of compact binary coales-
cence, they imply:

ð2∆h = − 2G

DLc2

(
M − Mf

γ3(1− v · x̂/c)3
)

+
DL

2c

∫ ∞
−∞
dt|ḣ|2. (7)

Here, M is the total initial mass of the system; Mf , the
mass of the final black hole; v, the recoil velocity; and, ð,
the angular derivative, whose action on a scalar F with
spin weight s is a spin weight s+1 scalar, given by [56, 57]

ðF := − 1√
2

(sin ι)s
(
∂

∂ι
+

i

sin ι

∂

∂ϕ0

)(
F

(sin ι)s

)
. (8)

Since ∆h is the strain, it has spin weight −2. Thus,
the left-hand-side of Eq. (7) has spin-weight 0, consistent
with the right-hand-side.

Note that both sides of Eq. (7) have a (ι, ϕ0) depen-
dence. Therefore, we can carry our a mode decomposi-
tion of this equation using spherical harmonics

C`(∆h)`,m = − 2G

DLc2

(
M − Mf

γ3(1− v
c · x̂)3

)
`,m

+
DL

2c

(∫ ∞
−∞
dt|ḣ|2

)
`,m

(9)

where

C` =
1

2
(`− 1)`(`+ 1)(`+ 2) . (10)

The ` = 0 and ` = 1 components of (9) provide us
the balance laws for energy and momentum. (Note that
C` = 0 in these cases.) Now, as we remarked above, if we
know the initial mass M , expressions (4) and (5) of the
energy and momentum flux, together with the balance
laws (9) for ` = 0, 1 can be used to determine the mass

Mf and the recoil velocity of the final black hole. Once
M,Mf and v are known, the only other field in Eq. (9)
is the waveform h. Therefore, the ` ≥ 2 modes of Eq. 9
provides an infinite tower of constraints to be tested on
the h provided by waveform models.

However, currently the models do not incorporate the
total memory ∆h that appears on the left side of (9),
whence the constraints are violated for ` ≥ 2. But the
right hand side is dominated by aspects of the waveform
that, one expects, are well modeled. For example the
leading contribution to the right hand side comes from
the (2,±2) mode of the waveform, which all waveform
models incorporate. Hence we can turn around the con-
straint, and use it to calculate the memory using the well
modeled aspects of the waveform. Thus, Eq. (9) serves as
the primary equation which determines the total memory
and its mode decomposition. (The first term on the right
side is often called the “linear” memory and the second
term the “non-linear” memory.)

III. INFERRED MEMORY FOR THE
OBSERVED EVENTS

For the observed events, parameter estimation using
EOB and Phenom models provides us with two poste-
rior distributions for the initial parameters. Given either
of them and the corresponding waveform, we can calcu-
late the probability distribution of different modes of the
memory. We can do this by taking sample points from
the posterior, and then using Eq. (9) to calculate the
memory for each sample. This would then give us two
posterior distributions of the inferred memory for any
given event. We can then check if the the differences in
the inferred memory between the two models is less than
the statistical errors. In all of the following we use the
IMRPhenomPv2 and SEOBNRv3 for events published in
the GWTC-1 catalog.

The first step in this procedure is to use the energy-
momentum flux to calculate the remnant parameters.
This procedure provides us with a posterior probability
distribution for the mass and the recoil velocity of the
final black hole. We carry out this step in Section III A.
In Section III B, we use these values in conjunction with
Eq. (9) to arrive at a streamlined procedure to calculate
the inferred values of various angular modes of the mem-
ory. In Section III C this procedure is used to obtain the
probability distributions for the leading memory modes
in the GWTC-1 events. Differences between these distri-
butions can be used as diagnostic tools to detect potential
discrepancies and further improve the waveforms.

A. The remnant mass Mf and recoil velocity v

As we discussed in Section II, given a waveform model
we can use Eq. (4) and (5) to calculate the remnant mass
Mf and recoil velocity v. One can then compare these
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FIG. 1. GW150914: distribution of the final mass using the
IMRPhenomPv2 and SEOBNRv3 models, compared with the
numerical relativity fits applied to each of the posterior dis-
tributions. Unlike the kick-velocity results shown in Fig. 3,
the results for the final mass using the two models is mostly
consistent with the numerical relativity results. The reason is
that the energy flux is dominated by the ` = 2 modes which
are accurately modeled.

FIG. 2. GW150914: Posterior distributions for the perpendic-
ular dimensionless spin components χ⊥1,2. The Phenom model
uses a single effective spin while the EOB is parameterized by
the individual spins. This gives rise to the bimodal distribu-
tion for χ⊥1,2 in the EOB model, which in turn leads to the
double hump in the posterior distribution of the final mass in
Fig. 1.

values with the fits to masses and recoil velocities pro-
vided by numerical relativity using fields at the horizon
[48] and the posterior probability for the input parame-
ters provided by the model. This comparison provides a
first check on the model waveforms. Assuming that each
waveform agrees with the corresponding numerical rela-
tivity prediction, one can compare the predictions of the
two waveform models. As we will see, this comparison
can bring out the differences between the models, thereby
providing guidance for further improvements. Determi-
nation of Mf and v will also serve a second purpose:
Knowing their values, we will be able to calculate the
` ≥ 2 components of the memory in Section III B.

To determine Mf and v, we need to use the flux expres-
sions Eq. (4) and (5). However, there is a subtlety: Since
waveforms are readily available only for finite time inter-

vals, in practice we have to truncate the time integrals in
flux expressions to finite intervals. In the distant future,
truncation can be carried out readily without incurring
excessive errors because the waveform decays exponen-
tially. However, in the past the flux falls-off slowly. For
the Phenom model the waveform is available for suffi-
ciently early times and hence the error due to truncation
can be made negligible. However for the EOB model,
we are unable to generate the waveform at sufficiently
early times; the implementation in the LAL Simulation
software library [58, 59] currently requires the reference
frequency and the starting frequency to be identical. The
reference frequency –the frequency at which time depen-
dent parameters are quoted– used in the GWTC-1 cat-
alog is 20Hz. It is somewhat more complicated to go to
lower frequencies, and we will leave this to future work.
While the lower frequencies are unimportant for detec-
tion and parameter estimation, their contribution to to-
tal radiated energy (4) is not negligible. Therefore, to
reduce this truncation error we will add the energy radi-
ated away from 0Hz to 20Hz to 0PN order. This can be
calculated analytically using the formula

∆E0PN = M
ν

2
(πGMfstart)

2/3 (11)

which describes the 0PN radiated energy ∆E0PN from re-
tarded time −∞ to when the system reaches a frequency
of fstart. Here ν = m1m2/M

2 is the symmetric mass ra-
tio. 3 Using this procedure, for each of the two models
we can calculate the remnant parameters in two different
ways: (i) using the energy and momentum fluxes for each
waveform model, and, (ii) using the numerical relativity
fits on the posterior distribution of the input parameters,
as determined from the respective model. Adding (11)
significantly improves the agreement between final mass
calculated from EOB flux and the fits.

This procedure was carried out for all events consid-
ered in this paper. Fig. 1 illustrates the results with the
posterior distribution of Mf in the case of GW150914.
This is based on the posterior samples available in the
GWTC-1 catalog [26], for both the IMRPhenomPv2 and
SEOBNRV3 waveform models; these are all described in
further detail in Sec. III C.

For each model, there is an excellent match between
(i) the final mass as calculated from the flux and (ii) the
NR fits from same posteriors. However there is a slight
disagreement between the two models. Although it is not
statistically significant, there is an interesting qualitative
difference: While the Phenom plots are a near-Gaussian,
the EOB plots show a ‘double hump’. The origin of this

3 For GW150914, ∆E0PN radiated till 20 Hz, gives a surprisingly
large value about ∼ 20% of the total radiated energy because
this phase encompasses a large number of cycles during which
the waveform amplitude is not negligible. By contrast, ∆E0PN

radiated till 1 Hz the cutoff frequency used for Phenom models
is only 3% of the total radiated energy.
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FIG. 3. GW150914: Posterior distribution for the recoil velocity (in units with c = 1) using the IMRPhenomPv2 (left panel)
and SEOBNRv3 (middle panel) models, and also accurate fits to numerical relativity calculations (right panel). We note large
discrepancies between both the models and the accurate numerical relativity results; the distribution in the left panel has the
bulk of its support for v/c ∼ O(10−16) (making it consistent with being purely numerical noise), the middle panel for O(10−6),
while the correct answer in the right panel has O(10−3). As discussed in the text, this is not surprising because neither of the
models attempt to model the higher modes necessary for the kick velocity. However, the discrepancy between the Phenom and
EOB models is also interesting to note.

difference lies in the differences in parameter estimation
of the 2 models, particularly in the way precession is
treated. This can be seen in Fig. 2 which shows the
posterior distributions of the two components of the di-
mensionless spins, perpendicular to the orbital angular
momentum. The source of the bimodality of the EOB
final mass can be traced back to that in this posterior
distribution which also shows two modes. Taking sam-
ples from each mode in Fig. 2 and comparing with the
corresponding points for the EOB distribution in Fig. 1
reveals that the peaks in each of these distributions are
correlated. The bottom right peak in Fig. 2 corresponds
to the higher peak in Fig. 1, while the top left peak in
Fig. 2 correspnds to the lower peak in Fig. 1. In the
Phenom model on the other hand, the double hump is
absent both in the posterior of spin distributions and the
posterior distribution of the inferred Mf . These differ-
ences are all within 1σ of the distributions, and therefore
they are not statistically significant. However this points
to differences that might become significant with even
louder events that we are likely to see as the sensitivity
of the detectors increases.

The recoil velocity v, on the other hand, shows com-
pletely different behavior in each model depending on
whether it is calculated using (i) the momentum flux, or
(ii) using numerical fits. In addition, the values predicted
in the two models using momentum flux are also quite
different as seen in Fig. 3. While the kicks from the flux
of Phenom are below numerical precision, in EOB the
norm of the kick is: v/c ∼ 10−6. The NR fits, by con-
trast, yield a much larger kick, v/c 10−3. However, the
disagreement between the models and NR is not surpris-
ing because neither model contains the ‘higher modes’
that are important for calculating the kick. Fortunately,

for calculation of memory (∆h)`m in Section III B, this
discrepancy does not play a role because even with a re-
coil velocity v/c ∼ 10−3, the first term on the right hand
side of (9) that contains the recoil velocity is negligible
compared to the second term. For definiteness, we will
present all results using the recoil velocity as calculated
by the fluxes of the waveform model being used.

B. Memory

For an elliptically polarized gravitational wave one can
choose a frame (aligned with the principal polarization
axes) in the plane transverse to the direction of propaga-
tion such that h+,× are given by

h+ = η(t)

(
1 + cos2 ι

2

)
cos(2ϕ0 + 2ϕ(t)) , (12)

h+ = η(t) cos ι sin(2ϕ0 + 2ϕ(t)) . (13)

Here η(t) is a slowly varying amplitude, ϕ(t) is the orbital
phase, and ϕ0 is an initial phase. Before we apply the
described procedure to get the distribution of memory
generally, consider the simple case of an absence of pre-
cession and higher modes. The waveform is dominated
by the ` = 2,m = ±2 modes. In this case, the complex
combination h = h+ − ih× is given by a combination of
the (2,±2) spin-weighted spherical harmonics:

h = e2iϕ0
(1 + χ)2

4
h0(t) + e−2iϕ0

(1− χ)2

4
h?0(t)

∝ −2Y2,2(ι, ϕ0)h0(t) + −2Y2,−2(ι, ϕ0)h?0(t) . (14)

where h0 = η(t)e−2iϕ(t) and χ := cos ι. When we calcu-

late |ḣ|2 in the right hand side of Eq. (9), we will obtain
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products of 2Y2,±2 which can be expanded in terms of
the standard spherical harmonics including in particu-
lar Y20(ι, ϕ0) and Y40(ι, ϕ0). Since the original waveform
model does not include these modes, the model waveform
does not satisfy Eq. (9) and therefore it is not consistent
with general relativity. To address this situation, an obvi-
ous approach is to modify the waveform model by adding
these specific memory modes. This process can be con-
tinued iteratively and will converge. In practice, as we
shall shortly discuss, the first iteration will suffice and we
shall not consider higher iterations in this paper.

The same procedure works for a more general model
consisting of higher modes. In general, given that |ḣ|2
has spin weight 0, it can be expanded as

|ḣ|2 =

∞∑
`=0

∑̀
m=−`

α`mY`m(ι, ϕ0) . (15)

The coefficients α`m appearing in this expansion can be
written in terms of the 3j-symbols as

α`m =

∞∑
`1,`2=2

`1∑
m1=−`1

`2∑
m2=−`2

h`1,m1h
?
`2,m2

∮
−2Y`1m1(ι, ϕ0)−2Y

?
`2m2

(ι, ϕ0)Y ?`m(ι, ϕ0) dΩ

=

∞∑
`1,`2=2

`1∑
m1=−`1

`2∑
m2=−`2

h`1,m1
h?`2,m2

(−1)m+m2

√
(2`1 + 1)(2`2 + 1)(2`+ 1)

4π

(
`1 `2 `
m1 −m2 m

)(
`1 `2 `
−2 2 0

)
.(16)

With the right hand side of Eq. (9) now understood, it is
straightforward to finally obtain the memory ∆h. This
can be projected onto a particular detector response func-
tion, though we shall not do so here.

Given any waveform model, we have thus a straight-
forward procedure to calculate the final mass and recoil
velocity, as well as the memory. An important point is
that all known waveform models are incomplete in two
respects: (i) the waveform is truncated in practice to fi-
nite time/frequency intervals; and, (ii) not all modes are
included in the model.

The truncation to finite time/frequency intervals
throws out the early inspiral region of the waveform. We
saw in Sec. III A that this can lead to significant errors
because radiated energy converges rather slowly in the
past. Similarly, certain modes of the memory converge
slowly and are thus prone to significant truncation errors.
To reduce these errors, we employ the same strategy as
in Sec. III A: we add the leading order post-Newtonian
contribution to the low frequency portion of the inte-
gral, analytically. More precisely, in the expression of
the dominant contributions to memory given in [60], we
substitute the right hand side of Eq. (11) for the radiated
energy to obtain the contribution from 0Hz to the start-
ing frequency fstart. Finally, by comparing the memory
calculated with varying points of truncation, we estimate
the corresponding error. All results reported have a start-
ing frequency of 20Hz for EOB and 1Hz for Phenom, and
errors much smaller than the standard de- viation. The
reason for the truncating EOB is at 20Hz is technical,
and already discussed in Sec. III A. The second trunca-
tion arises because the available waveforms include only
a finite number of modes. Therefore, instead of the full

summation in Eq. (2), we have a partial expression

h =
1

DL

∑′

(`,m)
h`m(t;~λ) −2Y`m(ι, ϕ) . (17)

Here the summation symbol Σ′ refers to a sum only over
the available modes for the waveform model. Thus, if
{(`1,m1), (`2,m2) . . .} is the list of available modes, then∑′

(`,m)
:=

∑
{(`,m)∈{(`1,m1),(`2,m2)...}

. (18)

The expression for |ḣ|2 is then similarly modified to be a
sum only over a subset of the modes obtained by combi-
nations of the available modes. The expressions for the
mode coefficients α`m of course remain unchanged.

In practice, the list of available modes differs for differ-
ent models. For the physically correct waveform implied
in Eq. (2) the constraint equation is, by definition, al-
ways satisfied. This is however not the case for the model
waveform of Eq. (17). Here, the constraint will generally
not be exactly satisfied and generally additional modes
need to be included in order to do so. Moreover, the
memory predicted by this procedure will differ for differ-
ent waveform approximants. If the predicted memory for
any two appxoximants turns out be significantly differ-
ent, then it is clear that either one or both approximants
can be improved.

Once the additional modes have been included, it is of
course possible to perform a further iteration and obtain
further modifications to the waveform model. In prin-
ciple, we should continue this iteration till we converge
to a waveform which exactly satisfies the constraint. In
practice, going beyond the first iteration is unnecessary
for gravitational wave observations (see e.g. [22] where
the second iteration is referred to as “the memory of the
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memory”). We shall restrict ourselves to the first itera-
tion in this paper.

This has two immediate applications as discussed pre-
viously. First, for any gravitational wave observation,
one can treat the memory as just another inferred ob-
servable on the same footing as the final mass, spin or
the recoil velocity. Thus, just as one obtains posterior
distributions for the masses and spins, we can calculate
the posterior distributions for the memory modes. The
second application, independent in principle of any detec-
tions, is to use this as a diagnostic and compare different
waveform models.

In comparing two waveform approximants following
the above procedure, there are two possible approaches.
The first is to simply compute the various memory modes
∆h`m, in a discretely sampled parameter space. In this
case, we can calculate the differences between the mem-
ory for two approximants as a function over parameter
space. This comparison would then be a property only
of the waveform independent of any features of gravi-
tational wave detectors or detections (though of course,
one could evaluate whether the resulting differences could
be directly measurable by any detectors). This proce-
dure, while straightforward and necessary, will be left
to future work. Below we shall present the results of a
different procedure which relies on the observed merger
events. Associated to each merger event and for each
waveform approximant, it is possible to calculate the pos-
terior probability distributions of the model waveform
parameters. From these posterior distributions, we can
straightforwardly calculate the posterior distribution of
the different memory modes ∆h`m. Any differences be-
tween these posterior distributions would indicate dif-
ferences between the underlying waveform models. Fur-
thermore, these differences are in a region of parameter
space that is, by construction, astrophysically relevant.
In this procedure, the original posterior distributions of
the waveform parameters depends on the gravitational
wave detectors. The more sensitive a network (either
in terms of the detector noise properties or the network
configuration) would generally imply narrower posterior
distributions.

C. Results for the GWTC-1 events

We now implement this procedure for the binary merg-
ers listed in the first Gravitational-Wave Transient Cat-
alog (GWTC-1) [26, 61]. The catalog lists binary merger
events from the first and second observational science
runs of the LIGO and Virgo observatories as reported
by the LIGO and Virgo Collaborations. The first ob-
servational run (01) covers the duration from September
12, 2015 – January 19, 2016 and three binary black hole
mergers are reported in GWTC-1 for this period. The
second observational run (O2) covers the duration from
November 30, 2016 – August 25, 2017. This period has
seven binary black hole mergers and a binary neutron star

merger as reported in GWTC-1. For each of the events,
the LIGO-Virgo Collaboration has released the results
of the parameter inference studies with different wave-
form models, in particular with different variants of the
Phenom and EOB models. Several other credible events
apart from these have been reported in the literature.
We note here in particular the events reported in [62–64]
and in the two Open Gravitational Wave Catalogs (de-
noted 1-OGC and 2-OGC) [65, 66]. The analysis of this
paper could, of course, be carried out for any of these
additional events as well. Since our goal is to compare
different waveform models, here we use the results from
GWTC-1 only because it reports posterior distributions
for both the Phenom and EOB waveform models. Specifi-
cally, the posterior distributions use the IMRPhenomPv2
[43, 44, 67] and SEOBNRv3 [68–70]. Both of these are
complete inspiral-merger-ringdown models including pre-
cession. IMRPhenomPv2 uses a single effective spin pa-
rameter while SEOBNRv3 uses individual spins for the
two black holes. Both of these models use only the ` = 2
modes, and are in fact based on applying suitable time
dependent rotations to the ` = 2,m = ±2 modes of an
underlying non-precessing model. These rotations can
lead, in principle, to all values of m, i.e. −2 ≤ m ≤ 2
(though the (2, 0) mode is generally not well modeled by
a single effective spin parameter [71]). Thus, following
the rules of addition of angular momentum, it is easy
to verify that |ḣ|2 (which leads to the dominant mem-
ory contributions) contains modes with 0 ≤ ` ≤ 4 and
potentially all values of m.

We begin with the three O1 events labeled GW150914,
GW151012, and GW151226. For each of these events,
the distributions of ∆h20, ∆h21 and ∆h40 are shown in
Figs. 4. For GW150914 and GW151226 there is mod-
erate disagreement between the Phenom and EOB re-
sults, especially for the (2, 1) mode. On the other hand,
GW151012 shows excellent agreement between the dif-
ferent models. The results for five of the O2 events
are shown in Fig. 5. While there are some minor dis-
crepancies for the (2, 0) and (4, 0) modes, it is evident
that again, as for GW150914 and GW151226, the (2, 1)
mode shows the largest discrepancies for several of the
O2 events. All of these five events have moderate mass
ratios and are consistent with the initial black holes be-
ing non-spinning, and thus the sub-dominant modes due
to precession are not likely to have large amplitudes.

It is straightforward to trace back which modes of
the waveform h`m have non-vanishing contributions to
a given memory mode ∆h`m. From Eq. (16), we see that
h`1m1

and h`2m2
can contribute to ∆h`m only if(

`1 `2 `
m1 −m2 m

)
6= 0 . (19)

From the properties of the 3j-symbols we must then have
m = m2−m1. The (2, 1) memory mode must arise from
mode combinations where m1 and m2 differ by unity. An
example of an allowed mode pair would then be products
of the (2, 2) and (2, 1) modes. On the other hand, for the
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FIG. 4. The posterior distributions for the total memory in the (2, 0), (2, 1) and (4, 0) modes for the three O1 events. The best
fit values of the individual black hole masses for GW150914, GW151012 and GW151226 are respectively (35.6M�, 30.6M�)
(13.6M�, 15.2M�) and (7.7M�, 8.9M�). As in the main text, we emphasize again that this not a direct measurement of the
memory, but these are instead histograms of the inferred values of the memory relying on waveform models and standard
general relativity. The first two events are consistent with non-spinning initial black holes while there is some evidence for
moderate spins for GW151226. The red and green vertical dashed lines show the 90% credible intervals (centered around the
median) for the corresponding distribution .

(2, 0) or (4, 0) mode, we would have m2 = −m1. This
includes for example products of the (2, 2) and (2,−2)
modes which are better modeled, unlike the (2, 1) mode
which is generated by the time dependent rotations men-
tioned above. It is then not surprising that ∆h2,1 shows
the most discrepancy (However, this argument is not en-
tirely foolproof because the (2,±1) modes contribute to

∆h20 as well, though these are presumably generally sub-
dominant). This line of reasoning points towards at least
a general direction to resolve these differences.

Shown in Fig. 6 are the remaining binary black
hole merger events from O2, namely GW170729 and
GW170832. For both of these we show only the IMRPhe-
nomPv2 result because of the technical difficulty related
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FIG. 5. Posterior distributions of the inferred values of the memory for some selected modes. This figure presents results for five
of the O2 events, namely GW170104, GW170608, GW170809, GW170814 and GW170818, in each case for both the EOB and
Phenom models. Each row of figures corresponds to a particular event, while the first, second and third columns refer to the
(2, 0), (2, 1) and (4, 0) modes respectively. These are all systems with moderate mass ratios, with the best fit individual masses
being respectively (20.0M�, 21.4M�), (11.0M�, 7.6M�), (35.0M�, 23.8M�), (30.6M�, 25.2M�) and (35.4M�, 26.7M�). All of
these are consistent with small individual spins. Note that while the posteriors of EOB and Phenom generally agree, there is
a large difference for the (2, 1) mode for GW170814.
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FIG. 6. Posterior distributions of the inferred memory for the (2, 0), (2, 1) and (4, 0) modes. The respective modes are shown
in the first, second and third columns for two of the O2 events GW170729 and GW170823, and for the IMRPhenomPv2 model.
The individual masses for these events are respectively (50.2M�, 34.0M�) and (39.5M�, 29.0M�). GW170729 has moderately
strong evidence of non-negligible spins.

to the spin definitions at a reference frequency of 20 Hz
mentioned earlier. We shall address this elsewhere and
here only present the Phenom results.

IV. DISCUSSION

Given the required input parameters (see Section I),
EOB and Phenom models provide us with a waveform
that the detector would receive. Therefore, in any LIGO-
Virgo event, the measurement of strain provides us with
posterior probability distributions for these parameters.
Using the commonly used terminology, we referred to
them as measured values. Once we have these poste-
riors, within any one theory, we can calculate the pre-
dicted probability distributions for other observables in
that theory. In particular, using general relativity, one
can calculate values of the masses, spins and the recoil ve-
locities of the remnants. We referred to these as inferred
values. Future measurements with more sensitive detec-
tors will be able to directly measure the memory. Once
this happens, comparison of these direct measurements
with the inferred values will yield tests of non-linear as-
pects of general relativity. As shown in previous studies,
this could require us to combine O(2000) events [20], or
wait for the space based LISA detector [15].

Before these direct measurements become reality, apart
from improvements in detector sensitivity, it will also be
necessary to improve the accuracy of waveform models.
We have shown that differences between predictions for
inferred observables made by different waveform models
can serve as indicators of differences in the underlying
physics. In Sec. III A we presented an example to illus-
trate this tool: GW150914. Although the expectation
value of the inferred observable Mf – the remnant mass
– in each model is within 68% confidence level of that in
the other, the posterior distribution in Phenom resem-
bles a Gaussian, while that in EOB has a double peak.
We found that this difference is most likely because of
the difference in the way precession is handled in the
two models. For the recoil velocity, both models give
inferred values that are orders of magnitude lower than
those provided by surrogate fits to numerical relativity.
This difference can be traced back directly to the fact
that, in the co-precessing frame, neither model includes
the modes that contribute to the kick. While this result
is not surprising, it provides a proof of principle that the
balance laws can be used to test accuracy of candidate
waveforms.

More importantly, the infinite tower of constraints pro-
vided by the balance laws Eq. (7) can be used to com-
pare and contrast model waveforms. In Sections III B
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and III C we used these constraints to infer the posterior
distributions for several leading modes in the spherical
harmonic decomposition of total gravitational memory.
Memory is not an observable of direct astrophysical in-
terest. However, from a fundamental general relativistic
point of view, it as a gauge invariant observable associ-
ated with the waveform. Therefore, each spherical har-
monic component of memory provides us with a new tool
to test the accuracy of waveform models. As tools, they
are on the same footing as other inferred observables such
as the remnant mass and spin. Furthermore, these new
tools can reveal discrepancies between waveform mod-
els that were not detected by the more commonly used
observables that refer only to the properties of the rem-
nant. Finally, note that this analysis is rather different
from discussions of gravitational memory in the literature
[20, 72] where the emphasis is on a definitive or direct
measurement of gravitational memory from combining
several detections. We do not address this interesting
issue. By contrast, as we have emphasized, our goal is
to regard memory as an inferred observable and use it
to probe systematic errors between different waveform
models. In particular, our analysis makes a strong use of
general relativity because our focus is on testing the ac-
curacy of the candidate waveforms vis-a-vis predictions
of exact general relativity.

There are, however, some limitations of this procedure.
Once we obtain an event for which the posterior distri-
butions between the models show clear systematic differ-
ence, we know that both models cannot be good approx-
imations to exact general relativity in a certain region
of the parameter space. As the detector sensitivity in-
creases such pointers could serve as powerful guidelines,
calling for further examination of the physics captured by
the models. However, it is not straightforward to identify
what aspects of the waveforms are causing this difference.
Thus, the evaluative role is passive in the sense that the
pointers by themselves do not provide clear-cut directions
to improve the models.

Nevertheless, some preliminary conjectures can be
made. The first is, as noted in Sec. III C, the flux contains
products of two modes. Therefore, given pairs h`1m1

and
h`2m2

, we can identify which mode pair contributes to
each ∆h`m. The second comment is that even if the dom-
inant modes (typically (2,±2)) are well modeled, there
is still a non-trivial issue, namely, that of correlations
between various modes. These are necessary to calculate
|ḣ|2 accurately according to Eq. (15) and thus greatly im-
pact the memory. Clearly, larger the precession or more
asymmetric the system, larger larger will the impact of
the other modes be. It is likely that these configurations
will also generally have larger disagreements in the in-
ferred values of the memory in different models. Note
that both the EOB and Phenom models do not directly
model precession. They both start with an underlying
non-precessing model to which the precession effects are
applied as suitable time dependent rotations [71, 73, 74]
(see also [75]). It is generally only the underlying non-

precessing models which are directly calibrated with nu-
merical relativity waveforms, and the other modes are
generated by the time dependent rotations. Thus, it is
possible that if precession effects and the higher modes
were to be directly calibrated with numerical relativity
results, the disagreements with the memory reported here
would reduced. It is worth noting that more recent pre-
cessing Phenom models for the higher modes labeled IM-
RPhenomPv3HM [40, 42] already represents an improve-
ment in this direction. In this model, the (2, 1) mode for
instance is non-vanishing even in the co-precessing frame
and is thus not determined entirely by the time depen-
dent rotations. Also noteworthy are the developments
on the EOB side regarding higher models, e.g. higher
modes for non-precessing systems have been modeled in
[76] which could form the basis for including precession
effects. Some of the more recent events reported by the
LIGO-Virgo collaboration employs these models, and it
will be interesting to repeat the analysis of this paper for
those events.

Finally, there are also systematic errors involved in
our analysis of the ten LIGO-Virgo events. The eval-
uation of the inferred memory for a waveform model in-
volves calculating the mode decomposition of the integral∫∞
−∞ |ḣ|

2 dt. However, for events considered in this paper,
the waveform models used in the publicly available anal-
yses, SEOBNRv3 and IMRPhenomPv2, only include the
(2, 2) mode in the coprecessing frame. While the physics
that is ignored may be unimportant for parameter esti-
mation, it may be very important for the inference of
certain modes of the memory. Therefore the inferred
memory we calculate may suffer from significant system-
atic errors. For example the (2, 0) mode of the memory
is typically 10% larger if higher modes are included in
the waveform, and a proper estimation of the recoil ve-
locity requires at least the (2, 1) mode. However for the
comparison of two models that are attempting to include
the same physics, these errors should be identical and a
comparison of the posterior distributions is still mean-
ingful. With these limitations in mind, we find that the
(2, 0) mode and (2, 1) mode are most significant sources
of memory. A comparison of these modes for the GWTC-
1 events we analyzed show that they largely agree across
models - indicating that the systematics are mostly under
control. However for GW170814 we see that the inferred
(2, 1) mode of the memory differs significantly between
EOB and Phenom models.

There are several interesting avenues to take this work
forward. First, there are also angular momentum balance
laws [46] analogous to those for supermomentum, used
in this paper. Following a procedure analogous to that
of Section III A, they can be used to construct posterior
probability distributions for the spin of the final remnant
for any given waveform. For any one waveform, a com-
parison of this distribution with that provided by numer-
ical relativity provides another measure of the accuracy
of that waveform. Similarly, comparisons between the
posterior distributions from two different waveform mod-
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els can serve as additional and distinct tests of the dif-
ferences between the physical underpinning. Returning
to gravitational memory, an obvious avenue is to extend
our analysis to the more recently reported merger events
from the third LIGO-Virgo observational run which in-
cludes events with higher masses and more asymmetric
mass ratios [77, 78]. These events could allow for more
stringent comparisons between the most up-to-date wave-
form models. As mentioned above, apart from looking at
particular events, it would be useful to compare wave-
form models using the memory across large parameter
space regions. Injections of gravitational waves spanning
the parameter space can be performed to learn where
the systematic differences are prominent. Alternatively
one could avoid parameter estimation results altogether
and directly compare deviations in the inferred memory
across parameter space. Additionally once we identify
the regions of parameter space where these differences
arise, such as what we see for GW170814, one can take
sample points from the region and directly compare the
waveforms and all the components that go into the infer-
ence. This should allow one to pinpoint more accurately
the source of the deviations between the models, giving
more direct input to improve future modeling.

Finally, in this paper, we focused just on total mem-
ory that involves integrals from t = −∞ to t = ∞ (see
Eq. (9)). As pointed out in [55], there are also finite time
versions of balance laws that enable one to calculate the
memory as a function of time, not just the difference be-
tween very late and very early times. This involves an
accurate calculation of, say, the (2, 0) and (4, 0) modes

and a better understanding of Ψ2 [19]. These calcula-
tions will lead to much more detailed accuracy tests on
waveforms. Longer term, over the next decade, as more
sensitive detectors are commissioned and more accurate
waveform models are developed and the memory is ob-
served directly, the most important payoff will be to com-
pare the inferred values of the memory modes with the
observed values, thereby providing a test of non-linear
general relativity.
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