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Augmenting Decision Competence in Healthcare Using AI-based Cognitive Models 

 

 

Abstract—In many critical decisions, such as in medicine, transparency of the underlying decision process is critical. This 

extends to decision processes that are supported by artificial intelligence. Rather than using a post-hoc explainability approach 

from explainable AI research (e.g., SHAP or LIME), we develop and test an intrinsically transparent and intuitively interpretable 

model developed from cognitive science, fast-and-frugal trees, in a comparative analysis with state-of-the-art machine learning 

models. The resultant decision support can be easily implemented as laminated pocket card, augmenting the decision 

competence of physicians rather than replacing it. 
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I. Introduction 
 

With a slow but steady shift from implementation to continuous operations, the potential of artificial intelligence (AI) for medical decision-

making is being intensively and critically discussed. Especially in medicine, the use of complex and non-transparent AI technologies 

generates various practical and ethical challenges [1, 2, 3]. An example is the question under what conditions experts find non-transparent 

algorithmic recommendations acceptable for critical decisions [4]. There are new legal frameworks, such as the General Data Protection 

Regulation (GDPR) or the European Charter of Patients' Rights which require a minimum of explainability for AI-supported decisions. 

Scepticism of AI applications in healthcare continues to grow as more organizations try to implement these tools in their decision 

processes with mixed or sometimes disconcerting results. Zech et al. found, for example, that in 3 out of 5 cases, the performance of 

neural networks for pneumonia diagnosis deteriorated significantly when applied to different sites (i.e., different hospitals) [5]. In one case, 

the AI had learned that the word “portable” on the x-ray was key predictor of risk. This is because severely ill patients or those undergoing 

surgery cannot go to the radiology department and have to be x-rayed using a portable machine. This is, of course, a pure artefact and 

has nothing to do with underlying medical predictors of pneumonia risk. Critically, with black box models such problems surface only 

accidentally or when they are particularly egregious. Often, they go unnoticed for extensive periods of time. Secondly, even if such a flaw 

is discovered, it is not clear how one should go about “debugging” the model. Simply remove the problematic feature from the model? Or 

maybe a certain piece of data and re-run the analysis? Will the issue go away? 

As a response to this and other high-stakes decisions in finance, health and judicial decision making, the field of eXplainable AI (XAI) has 

gained a lot of attention. In a nutshell, XAI uses further complex methods such as LIME [6] or SHAP [7, 8] to assess the degree to which 

different predictors contributed to a specific output of a black box algorithm for a particular decision (or generally for its decisions). These 

post-hoc explanations are thus themselves only models, i.e., approximations, of the underlying black box model. Subsequently, the 

explanation will deviate from the actual underlying decision process of the black box model. An XAI-method that delivers the “correct” 

explanation 80% of the time will provide a faulty explanation 20% of the time. As with the underlying black box model, there is no way to 

tell when this is the case, opening the potential for issues such as infinite regress, i.e., using approximations of black box models with XAI 

interpretations which may then themselves be subject to being modelled in an attempt to try to understand when deviations occur, these 

models again being approximations etc..
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Underlying all of these efforts is the widespread and fundamental assumption that complex AI models achieve a higher predictive 

performance than less complex models (see Fig. 1). Under this assumption, a compromise between transparency and accuracy 

inevitable. This compromise is also seemingly wholly accepted by the XAI community,which employs the driving principle that 

explainability is a roadblock on the way to the use of more “sophisticated” (i.e., more complex) models and, as we get better at 

explainability, we can gradually employ more and more complex models in domains in which explainability is critical (although some 

dissenting voices exist, see [1]). 

 

We propose a fundamentally different approach to the issue of transparency, or the lack thereof, in medical (and other high stakes) 

decision support: to use intrinsically interpretable models instead. Data 

scientific studies have shown that in many areas of application simple, 

intuitive models can achieve a similar or even higher predictive 

performance than complex black box models from machine learning and 

artificial intelligence (e.g. Random Forests, Support Vector Machines, 

Artificial Neural Networks; [1, 9, 10]). Specific to medicine, a recent 

systematic review of clinical prediction models based on 71 studies 

showed that models from machine learning have no performance 

advantage over statistical standard procedures such as logistic 

regression [11], which can be represented as a nomogram (Figure 2c) 

and thus used as (relatively) simple decision support. 

 

Furthermore, it has been shown in the cognitive sciences that simple, 

transparent, heuristic models that are intuitively used by humans and can 

be learned quickly, can achieve similarly high prediction performance as 

complex models (e.g. [9]). Examples are unit-weight linear models (e.g.  

"tallying", Fig. 2a) or lexicographic models (e.g. simple decision trees, 

such "fast-and-frugal trees", Fig. 1b; for an overview, see [12]. 

 

The advantages of this approach are manyfold: for one, in an iterative 

process of problem understanding and model adaptation, better 

understanding of the model and what it does can itself lead to better 

model performance. Secondly, integration with human decision making 

and expertise can further improve the output of the human-machine-

system by reducing false positives and false negatives. The expert may 

be aware of boundary conditions that impair the output or certain features 

of a model in particular situations. Or they can anticipate technological, 

structural, and procedural changes and gauge their impact on model 

performance. This also means that an intrinsically transparent model 

developed at a different site may be more safely applied out-of-

population. Relatedly, such simple tools are far less affected by 

infrastructural constraints, as they can often be implemented as 

laminated pocket cards or simply remembered after short use. Lastly, if a 

model is faulty or if it cannot be applied in a particular situation, this 

becomes obvious much more immediately than with a black box model or 

even an XAI solution. In particular, the debugging is much more 

straightforward for an intrinsically simple and intuitive model. 

 

II. The Problem 

 
In what follows, we used this approach to design a decision support for post-operative risk stratification in intensive care. A large, 

prospective investigation of post-operative mortality risk in 28 European countries found that 73% of patients that had died within a week 

of their operation had never been in contact with the intensive care tract [14]. Many of these patients would have benefitted from the 

higher level of surveillance and care the intensive care unit provides. Currently, post-operative risk stratification is done using risk scores 

such as the Charlson Comorbidity Score or Index (CCS; a logistic-regression-based risk scoring tool) or the American Society of 

Anaesthesiologists’ Physical Status Score (ASA-PS; a six-point intuitive assessment of a patient’s physical status by an expert 

anaesthesiologist). The goal of this analysis was to construct a simple, intrinsically transparent and interpretable model for the problem of 

post-operative risk stratification to the ICU or normal ward. Note that this initial analysis concerned itself only with the 

Fig. 1. The classic “effort-accuracy trade-off” assumption as presented 

by the Defence Advanced Research Projects Agency (DARPA) in their 

evaluation of the potential of AI. SVM = Support Vector Machine; 

AOG = And-Or-Graphs; CRF = Conditional Random Field; HBN = 

Hierarchical Bayesian Network; MLN = Markov Logic Networks; SLR 

= Simple Linear Regression. 

Fig. 2. Visual representation of simple cognitive models and statistical 

standard procedures. 2a: unit-weight linear model ("tally") as a 

checklist. 2b: Lexicographic model as decision tree ("Fast-and-frugal 

Tree"). 2c: Linear regression model as nomogram (adapted from [13]). 
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application of such simple, intuitive models to data. Advantages such as improved performance through more efficient iteration, reduction 

of false positives and negatives through better understanding of the model in situ, or better care provision through adaptation to and 

incorporation of patients’ wishes and preferences in a process of shared decision making, were not addressed and are not within the 

scope of this paper. 

 

III. Methods and Data 

 
A. Goal-Directed Task Analysis 

 

A goal-directed task analysis [15] of the decision environment was conducted consisting of a document review, a three-week 

observational period of the allocation process, and interviews with subject matter experts (N=5) at a large European university hospital. 

Three decision points were identified at which risk stratification decisions are made: pre-operative establishment of the patient roadmap, 

updating due to intra-operative events, and a further updating-decision in the post-operative phase for patients administered to the post-

anaesthesia care unit (PACU). Our analysis focused on pre-operative roadmap establishment. While both post-operative decision points 

contain important additional information for deciding on the appropriate level of care for a patient, pre-operative roadmap establishment is 

central for daily organizational planning and resource allocation. Every time a deviation from the pre-operative roadmap occurs, it requires 

additional corrective organizational actions to be taken by hospital staff at multiple levels. Achieving high accuracy during initial allocation 

is therefore critical to smooth organizational functioning. 

 

B. Data Selection and Pre-Processing 

 

Data from 182.886 patients prospectively recruited to the Ko-Moskau study [13] were used as the data pool for analysis. The study 

protocol was approved by the local ethics committee (EA1/007/13) and pre-registered prior to data collection (ClinicalTrials.gov identifier: 

NCT01810133). All patients with a digitalized electronic anaesthesia record between January 2006 and December 2011 who were not 

treated in the intensive care unit were eligible for inclusion. Emergency and ambulatory cases were excluded and only cases with 

complete data were analysed, leaving a final number of 130.238 case records. The dataset included the following information: ASA-PS, 

surgical discipline, priority of surgery (elective or urgent), localization of surgery, intraoperative transfusions, age, gender, and in-hospital 

death. If the patient underwent >1 surgical procedure during their hospital stay, only the data of the first surgical intervention was included 

in the analysis. Since intraoperative transfusions occur after the decision point that we studied, we ignored this information when building 

our prediction tools. Outcome criteria was in-hospital death for patients never admitted to the intensive care unit (0.1% mortality baseline). 

We used RStudio version 1.0.153 for data analysis. For some models (CART, random forest, penalized logistic regression, fast-and-frugal 

tree induction based on cross-entropy optimization) we dummy-coded all variables leaving us with an additional dummy data set. Pre-

processing was done for both data sets. From both sets, we removed all variables that had near-zero or zero variance or were highly 

correlated with other variables (pair-wise absolute correlation of >.90) or were linearly dependent on other variables [16]. Lastly, as 

mortality in the dataset was only 0.1%, the data were upsampled to account for this low base rate and resulting class imbalance after the 

pre-processing. 

 

C. Models 

 

In our model comparisons, we tested classification and regression trees (CART; [17]) using the “one-standard-error” method, support 

vector machines, three random forests, and three regression models (unpenalized and penalized logistic regression, as well as the 

Surgical Mortality Score, a regression model developed specifically for post-surgical risk stratification by Kork et al. [13]), using the R-

package caret [16]. As user-friendly models we tested different algorithms to induce fast-and-frugal trees (FFTs) using the R-package 

FFTrees [18] and not yet published FFT-algorithms. FFTs are binary classifiers that have at least one exit leaf for each node (two for the 

last). In our implementation, the FFTs were restricted to include maximally 10 nodes. FFTs are a family of very simple and easy-to-use yet 

powerful decision trees [19]. All of these models’ performances were also compared to anaesthesiologists’ assessment of the patients’ 

health status (ASA-PS) and the Charlson Comorbidity Score (CCS). Note that both the ASA-PS and the CCS could potentially be included 

as variables in the models if they were not selected out during the feature selection process. We fitted the models on the years 2006-2010 

and predicted mortality in the year 2011, optimizing the area under the receiver operating curve (AUC). We also used a 10-fold cross-

validation in the years 2006-2010 (while applying the “one-standard-error” method to the simple tree model CART as suggested in the R-

package caret and [16]). Subsequently, we used the fixed tuning parameters and fit the remaining parameters again on the same data. 

Finally, we validated the models using the year 2011 as “holdout” set. The median AUC of all models was used as a robust estimation of 

the predictability of each criterion. For the SMS model, logistic regression, penalized logistic regression, and support vector machines, the 

data was centred and scaled [15].  

 

IV. Results 

 
For each model class, we report only the variant that was most predictive in 2011 (CART, unregularized logistic regression, random forest 

with mtry = 2, and a recursive FFT algorithm using gini index for splits and ordering). The median AUC across all statistical and machine 

learning models in 2011 was 0.93 (range = 0.89 to 0.98, mean = 0.93). Logistic regression (AUC = 0.98) performed best. The tree 

resulting from the CART algorithm used only five predictors (CCS, age, whether a patient had cancer, whether the surgery was urgent, 

and whether the surgeon’s field of specialty was general surgery) and had a simple structure with one exit for each of the first four 

predictors and two for the fifth predictor, i.e., classifying as a fast-and-frugal decision tree (FFT). The CART-FFT had an AUC of

https://clinicaltrials.gov/


 

 
Originally published in: 2020 IEEE International Conference on Healthcare Informatics, 2020, p. 556 

0.89, while the “actual” FFT consisted of only three predictors (# of 

comorbidities, cardiac surgery, and the anaesthesiologist’s assessment 

of how ill a patient is (ASA-score)) and had an AUC of 0.91. 

 

V. Conclusion 

 
We have used the latest methods in machine learning to assure a high-

quality analysis, including an intrinsically interpretable, transparent class 

of algorithm, so called fast-and-frugal trees (FFT). The resulting FFT 

asks only three questions and can be easily visualized and understood. 

Decisions which align with or deviate from the algorithm can be 

transparently communicated, explained, or defended. The tool can be 

implemented in absence of any complex information technological 

infrastructure as a laminated pocket card (see fig. 4) for physicians to 

refer to before being simply remembered. While achieving a predictive 

performance of 7 percentage points below the best-performing model, 

logistic regression, this only pertains to the pure statistical performance, 

not the performance in the field. By nature of its intrinsic transparency, 

which does not rely on post hoc analyses with complex XAI-methods, 

the physician’s decision-making competence is not replaced, but 

augmented. 
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Fig. 3. Results of machine learning analysis for the best performing 

models in each model class. Error bars are bootstrapped 95% 

confidence intervals. AUC = Area Under the receiver operating Curve; 

LR = Logistic Regression; RF = Random Forest; FFT = Fast-and-

Frugal Tree; CCS Charlson Comorbidity Score; CART = Classification 

and Regression Tree; ASA = Anesthesiologist’s intuitive assessment. 

Fig. 4. Exemplary instantiation of the FFT as laminated pocket card. 

Front contains the decision algorithm, back contains additional 

information on comparative model performance and predictors 

included in the analysis to better assess the utility of the tool under 

certain boundary conditions. 
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