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Abstract

Motivation: The use of genome data for diagnosis and treatment is becoming increasingly common. Researchers
need access to as many genomes as possible to interpret the patient genome, to obtain some statistical patterns
and to reveal disease–gene relationships. The sensitive information contained in the genome data and the high risk
of re-identification increase the privacy and security concerns associated with sharing such data. In this article, we
present an approach to identify disease-associated variants and genes while ensuring patient privacy. The proposed
method uses secure multi-party computation to find disease-causing mutations under specific inheritance models
without sacrificing the privacy of individuals. It discloses only variants or genes obtained as a result of the analysis.
Thus, the vast majority of patient data can be kept private.

Results: Our prototype implementation performs analyses on thousands of genomic data in milliseconds, and the
runtime scales logarithmically with the number of patients. We present the first inheritance model (recessive, dom-
inant and compound heterozygous) based privacy-preserving analyses of genomic data to find disease-causing
mutations. Furthermore, we re-implement the privacy-preserving methods (MAX, SETDIFF and INTERSECTION) pro-
posed in a previous study. Our MAX, SETDIFF and INTERSECTION implementations are 2.5, 1122 and 341 times
faster than the corresponding operations of the state-of-the-art protocol, respectively.

Availability and implementation: https://gitlab.com/DIFUTURE/privacy-preserving-genomic-diagnosis.

Contact: mete.akguen@uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of next-generation sequencing platforms has rapidly
reduced the sequencing cost of individual genomes and made the
genomic data an essential part of clinical research and diagnostics. It
has been shown that monogenic rare disease cases can greatly bene-
fit from whole genome or whole exome sequencing in both the re-
search and the clinical settings. Although there are a vast number of
rare disease patients, reaching up to 10% of the population in some
regions, it is challenging to find patients with the same phenotype
due to the dispersion of cases to more than 7000 diseases (https://
www.omim.org/statistics/entry, https://www.who.int/genomics/pub
lic/geneticdiseases). This is important in the research setting where
the causative gene is not known and more cases with the same

phenotype are needed for further analysis. In the clinical setting, it
has been shown that having genomic data of multiple individuals
from the same family, such as trio sequencing, greatly improves the
diagnostic yield (Need et al., 2012; Retterer et al., 2016; Sanders et
al., 2012; Wang et al., 2019). Evidently, sharing and comparison of
many individuals’ genomic data are crucial for rare disease cases;
however, this might also bring a significant compromise in genomic
privacy since rare disease studies require access to the rare and per-
sonal variants in the genome. Therefore, it is crucial to a have plat-
form that provides functions, enabling rare disease studies with a
high level of privacy protection.

Sharing of genome data maximizes the benefit from existing
datasets and aims to increase research efficiency. Sharing all
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sequenced genomes will increase the success of disease–gene associ-
ation studies. Several global sharing platforms have been developed
for cancer and rare disease researches by The International Cancer
Genome Consortium (ICGC) (2010), the Cancer Genome Atlas
(TCGA) (https://www.cancer.gov/tcga), the International Rare
Diseases Research Consortium (IRDiRC) (Cutillo et al., 2017) and,
the Global Alliance for Genomics and Health (GA4GH) (2016).
However, large-scale data-sharing approaches have achieved limited
success due to the risk of re-identifying participants (Clayton, 2010;
Homer et al., 2008; Jacobs et al., 2009; Sankararaman et al., 2009;
Visscher and Hill, 2009) so individuals having genetic disease phe-
notypes will be particularly resistant to sharing of such information
because of fear of discrimination and prejudices. For example,
Shringarpure and Bustamante (Shringarpure and Bustamante, 2015)
showed that the beacons in the Beacon Network (Cutillo et al.,
2017) are vulnerable to an attack in which an adversary having only
a small portion of a patient’s genome can re-identify the anonymous
patient whose genome data are shared in the Beacon Network. Re-
identification can be done using the background information that
comes with public DNA sequences (Gymrek et al., 2013). Another
example is the identification of the Personal Genome Project partici-
pants using general demographic data (Sweeney et al., 2013).
Furthermore, it is possible to identify individuals that did not under-
go genetic testing before with the genome-wide genotyping profile
obtained from their genetic relatives’ DNAs (Ellenbogen and
Narayanan, 2019; Erlich et al., 2018).

1.1 Related work
A hardware-based solution for privacy-protected rare disease ana-
lysis has been proposed in the study by Chen et al. (2017). In this
work, Intel SGX is used to perform reliable calculations on genomic
data. Transmission disequilibrium test (TDT), which is a family-
based relationship test for the presence of a genetic link between the
genetic marker and the trait, is needed for rare disease analysis.
Since SGX is a limited device in terms of memory, it is not possible
to process the whole data at the same time. For this reason, genomic
data are sent to the SGX after fragmentation, and the top N single-
nucleotide polymorphism (SNP) values are retained in a global
queue. The data coming to the SGX is decrypted, decompressed and
then used for TDT analysis.

Wang et al. (2017) proposed a solution based on differential
privacy for TDT based on test statistics, P-values and the shortest
Hamming distance scores. The privacy of an entire family participat-
ing in the study is considered as the target of the attacker. The pro-
posed solution only works for families having a single child, which
is a major drawback. Furthermore, it does not perform privacy-pre-
serving TDT on correlated SNPs.

Jagadeesh et al. (2017) proposed a solution based on secure
multi-party computation (MPC) for protecting participants’ privacy
in genomic diagnosis. They applied their solution to three real-life
scenarios which are small patient cohorts (MAX), trio analysis
(SETDDIFF) and two-hospital collaboration (INTERSECTION).
The proposed solution performs analyses while keeping all variants
and genes involved in the computation private. In the end, only can-
didate genes and variants are disclosed as output. In their study,
Jagadeesh et al. did not use pedigree and genotype information,
which allow the filtering of variants that fit inheritance patterns.

1.2 Our contributions
In this study, we propose a solution for privacy-preserving rare dis-
ease analysis via secure MPC. We show how to protect individuals’
privacy while analysing their genomic data in the presence of differ-
ent inheritance models (recessive, dominant and compound hetero-
zygous) to find possible disease-causing variants. Our solution also
enables privacy-preserving cross-institutional collaborations for rare
disease analysis. To this end, we propose secure protocols based on
the combination of arithmetic and Boolean sharing in the same com-
putation and try to evaluate the operations that have an efficient
representation as an arithmetic circuit or Boolean circuit. As stated
in the study by Demmler et al. (2015), conversion from arithmetic

shares to Boolean shares is a non-linear operation and costly in
terms of communication and computation. Our solution does not
need to use the non-linear conversion from arithmetic shares to
Boolean shares. Thus, we perform a mixed MPC protocol execution
with low communication cost and computation cost, and increase
the performance of the overall process noticeably. Furthermore, we
significantly improve the promising methods proposed by Jagadeesh
et al. (2017). Our implementation provides much better runtimes
than Jagadeesh et al.’s (2017) solution and makes it possible to
work on thousands of patient data and millions of variants. We also
show that our methods provide more accurate results than the meth-
ods in the study by Jagadeesh et al. (2017). To the best of our know-
ledge, our methods are the first providing privacy-preserving
analysis of large-scale genomic data under genetic inheritance mod-
els to find disease-causing mutations.

2 Materials and methods

In this section, we introduce preliminaries, the proposed privacy-
preserving methods and security considerations.

2.1 Frequency-based filters for diagnosing monogenic

diseases
Personalized genomics is used to diagnose many monogenic diseases
(Wenger et al., 2017). Frequency-based filters in which patient
genomes are compared with as many genomes as possible are ex-
tremely successful at the diagnosis of monogenic diseases (Rehm et
al., 2013). Jagadeesh et al. (2017) defined three frequency-based fil-
ters (MAX, INTERSECTION and SETDIFF). MAX is used to find a
gene with rare functional mutations in a large number of affected
individuals. INTERSECTION finds rare functional mutations
shared by all individuals in a cohort. SETDIFF finds rare functional
mutations shared by all affected individuals but not seen in any un-
affected individual.

In this study, we use family information to find the variants fit-
ting three autosomal Mendelian inheritance models, namely reces-
sive, dominant and compound heterozygous. In case of recessive
inheritance, both parents of the affected patient should be heterozy-
gous while the patient is homozygous for the causative variant. If
the disorder is autosomal dominant, the affected individuals from
the same family should all be heterozygous. In compound heterozy-
gosity, the affected person should have at least two distinct heterozy-
gous variants on the causative gene which are inherited from the
different parents.

2.2 Secure MPC
Secure MPC was proposed in the early 1980s (Goldreich et al.,
1987; Yao, 1986). These studies show that multiple parties can com-
pute any function on inputs without learning anything about the
inputs of the other parties. Let us assume that there are n parties
I1; . . . ; In . The Ii has a private input xi. All parties want to compute
the arbitrary function ðy1; . . . ; ynÞ ¼ f ðx1; ::; xnÞ and get the result
yi. MPC allows the parties to compute the function through an inter-
active protocol and allows Ii to learn only yi.

The security of an MPC protocol is preserved even in the pres-
ence of some adversaries that corrupt some of the participating par-
ties, modify transcripts and mimic their behaviour. There are two
types of adversaries. Semi-honest adversaries follow the protocol
definition but try to learn the secret information from the messages
that they obtained during the protocol execution. Malicious adver-
saries, on the other hand, may deviate from the protocol definition
to learn secret information.

MPC calculations may require many interaction rounds and
large data conversions between parties. For these reasons, it may be
very difficult to implement MPC in practice. Some successful works
have been done to reduce the complexity of MPC and to implement
it in practice for some problems (Bogdanov et al., 2008; Demmler et
al., 2015; Huang et al., 2011; Liu et al., 2015; Malkhi et al., 2004).
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The schemes proposed in these studies allow us to utilize the benefits
of MPC for some real-life applications.

An important building block of MPC is oblivious transfer (OT)
(Rabin, 1981). OT is a protocol where a sender transmits one of the
many pieces of information to a receiver but remains unaware of
which piece is transmitted. In 1-out-of-2 OT, the sender inputs two
l-bit strings (s 0, s 1) and the receiver inputs a bit c 2 f0;1g . At the
end, the receiver receives sc and learns no information about s1�c ,
and the sender learns no information about c.

In the rest of the article, we denote a shared value x as hxit
where t 2 fA ¼ Arithmetic;B ¼ Booleang indicates the sharing
type.

2.2.1 Arithmetic sharing

In arithmetic sharing, an l-bit value x is shared additively in the ring
Z2l as the sum of two values. For example, Z4 ¼ f�0; �1; �2; �3g and
the sum �x þ �y in Z4 are the remainder when the integer xþ y is div-
ided by 4. For l-bit secret sharing of x, we have hxiA0 þ hxi

A
1 �

xðmod 2lÞ where Ii knows only hxiAi and i 2 f0;1g . All arithmetic
operations are performed in the ring Z2l . For arithmetic sharing, we
use protocols based on Beaver’s multiplication triples (Beaver,
1991).

Addition. hziA ¼ hxiA þ hyiA . Ii locally computes hxiAi þ hyi
A
i .

To compute the addition of a shared value hxiA and a constant c, Ii

locally computes hziAi ¼ hxi
A
i þ c and I1�i locally computes

hziA1�i ¼ hxi
A
1�i

Multiplication. hziA ¼ hxiA � hyiA . Multiplication is performed
using a pre-computed multiplication triple hciAi ¼ hai

A
i � hbi

A
i

(Beaver, 1991). The computation of the multiplication triple is per-
formed via homomorphic encryption or OT. Ii cannot perform
multiplication locally. More details can be found in the study
Demmler et al. (2015).

2.2.2 Boolean sharing

In Boolean sharing, an l-bit value x is shared using an XOR-based
sharing scheme as the XOR of two values. For l-bit secret sharing of
x, we have hxiB0 �hxiB1 ¼ x where hxiB0 ; hxi

B
1 2 Z2 and Ii knows

only hxiBi where i 2 f0;1g . For Boolean sharing, we use the proto-
col of Goldreich–Micali–Wigderson (GMW) (Goldreich et al.,
1987).

XOR. hziB ¼ hxiB�hyiB . Ii locally computes hxiBi �hyiBi .
AND. hziB ¼ hxiB ^ hyiB . AND is performed using a pre-com-

puted Boolean multiplication triple hciBi ¼ hai
B
i ^ hbi

B
i . Ii cannot

perform AND locally. A Boolean multiplication triple is pre-com-
puted efficiently using random OT (R-OT) in the offline phase.
More details can be found in the studies by Asharov et al. (2013)
and Demmler et al. (2015).

2.3 Mixed protocol execution
The main purpose of the execution of the mixed secure protocol is
to combine operations that are carried out efficiently in different
protocols in a single secure application [e.g. the usage of the efficient
operations of arithmetic sharing (additions and multiplications) and
the efficient operations of Boolean sharing (comparisons and multi-
plexers) in a single secure application]. In this study, we try to re-
duce the communication load and the execution time of secure
computation as much as possible. In this context, we want to

combine efficient operations of arithmetic and Boolean sharing in
our methods.

In our study, all secret information is shared using arithmetic
sharing. Since addition is carried out locally in arithmetic sharing,
we use it to find the locations of variants that are present in either
all or none of a group of individuals. These locations are marked
with zero by subtraction in arithmetic sharing. We use the logical
OR and comparison operations in Boolean sharing to mark the
found locations with one and mark all other locations with zero. We
need to convert the arithmetic shares to Boolean shares. However,
converting arithmetic shares to Boolean shares cannot be done local-
ly and requires high communication and computation cost
(Demmler et al., 2015). In our methods, the locations of variants
that the researcher wants to find are marked with zero, and we can
convert arithmetic-shared zero values to Boolean-shared zero values
locally without any communication between two parties (see
Section 2.4).

2.4 Equality test for arithmetic-shared zero values

without bit decomposition in two-party computation
Conversion of arithmetic shares to Boolean shares is an expensive
operation in secure MPC. Share conversion is a non-linear process
and requires a lot of communication and evaluation of cryptograph-
ic operations. As the size of the processed data increases, computa-
tion time and communication cost of conversion also increase. On
the other hand, it is possible to convert the arithmetic-shared zero
values to the Boolean-shared zero values without bit decomposition
in the two-party setting. This conversion is done by taking the arith-
metic inverse of shares in one of two parties. As illustrated
inFigure 1 for l¼4, it works correctly only for zero values which is
only what we are interested in and may produce different results for
non-zero values. Thus, we can compare arithmetic-shared zero val-
ues with constant zero values known by both parties without con-
verting them to Boolean shares using bit decomposition. The
detailed description of our linear conversion method is given in
Supplementary Algorithm S1.

2.5 Representation of genomic data
To be amenable to MPC as described above, each individual’s geno-
type has to be encoded in a bit vector representation. Obviously,
there are many different possibilities for encoding this information.
In line with previous efforts (Jagadeesh et al., 2017), we chose to
represent missense and non-sense variants only. More complex
encodings are, however, possible in principle and the method is fun-
damentally not limited to this representation. To be able to distin-
guish homozygous and heterozygous variants, we extended the
model by Jagadeesh et al. In this work, we represent around 28 mil-
lion variants of the human genome by two bit vectors (Fig. 2), repre-
senting homozygous and heterozygous variants, respectively. We
also represent all genes of the human genome by a bit vector
(Fig. 2). Genes carrying one or more rare functional variants are
marked with 1 in the bit vector.

Fig. 1. A method for converting arithmetic-shared zero values to Boolean-shared

zero values without bit decomposition. The conversion is performed by inverting

Share two values. This local conversion only works for zero values. The bit-length l

is 4

(a)

(b)

Fig. 2. Individuals create a gene vector and two variant vectors
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2.6 System overview
In the proposed system, there are three types of participants: patients
P1;P2; . . . ;PN having vectors of genes and variants G1;G2; . . . ;GN

, respectively, two non-colluding proxy servers S 0 and S 1, and
researchers. Patients split their variant vectors and gene vectors into
two arithmetic shares and send them to the two proxy servers. All
genome data are hidden from the two proxy servers. This closely
matches the cloud computing paradigm where computing and data
storage are outsourced to powerful machines provided by an exter-
nal party. Our system is based on the outsourcing protocol of
Kamara and Raykova (2011). They give a general architecture and
security proof to convert the N-party MPC protocol into a secure
protocol where the data are outsourced to M non-colluding servers.
A similar architecture was used in several studies (Asharov et al.,
2017; Demmler et al., 2017; Jagadeesh et al., 2017; Schneider and
Tkachenko, 2018; Tkachenko et al., 2018). After the two proxy
servers receive a shared gene vector and two variant vectors from
each participating patient, they use a secure two-party computation
protocol to compute a function of interest. The architecture of the
proposed system is described in Figure 3. In a real-world setting,
these two servers can be managed by different government organiza-
tions. We assume that individuals have private access to their
genomes. Furthermore, hospitals or biobanks collecting individuals’
genome can also outsource their storage and computational load to
two non-colluding servers.

2.7 Protocol description
In this section, we describe the phases of our protocol and depict it
in Figure 3.

Phase 0—Offline Phase: The offline phase which is independent
of private inputs can be computed at any point before MPC comput-
ing (Phase 3) takes place. As explained in Sections 2.2.1 and 2.2.2,
multiplication triples are required in arithmetic and Boolean shar-
ing. In the offline phase, the proxy servers calculate multiplication
triples independently of private inputs. The expensive parts of MPC
are shifted into the offline phase which calculates multiplication tri-
ples based on OT. The proxy servers just need to know the size of
the actual private inputs to calculate multiplication triples in the off-
line phase. In our solution, the length of gene and variant vectors are
known by the proxy servers.

Phase 1—Outsourcing: As described in Section 2.5, a patient Pi

generates a vector of homozygous variants VH
i , a vector of hetero-

zygous variants VE
i and a gene vector VG

i from his or her genome.
Due to privacy concerns, Pi generates a random mask RH

i of the size
of VH

i , a random mask RE
i of the size of VE

i and a random mask
RG

i of the size of VG
i . Pi sends RT

i to S 1 and ðVT
i � RT

i Þ to S 0

where T 2 fH;E;Gg . This ensures that the genome data are pro-
tected against the two non-colluding servers. This phase is carried
out only once. Analyses can be performed on secret shared genomic
data multiple times.

Phase 2—Researcher Query: A researcher sends the list of identi-
fiers of individuals participating in the analyses to each proxy server.

He also sends the type of analysis, and pedigree information if
needed.

Phase 3—MPC Online Phase: The proxy servers S 0 and S 1 run
the private DOMINANT, RECESSIVE, COMPHET, MAX,
SETDIFF, or INTERSECTION protocol using MPC on the genomic
data of individuals whose identifiers are given in the researcher’s
query. After the MPC protocol execution, S 0 and S 1 hold a secret
share of the output vector.

Phase 4—Output Reconstruction: The proxy servers S 0 and S 1

hold one share of the output vector. S 0 and S 1 send their shares to
the researcher. The researcher computes the XOR of the shares and
extracts the plaintext vector representing the candidate variants or
genes.

2.8 Privacy-preserving RECESSIVE operation
In the RECESSIVE operation, we find the locations in which all
affected siblings have homozygous rare variants, and the parents
have heterozygous rare variants by getting the summation of the
homozygous variant vectors of all affected siblings and heterozygous
variant vectors of the parents. Assume that the number of affected
siblings is n, the locations found are marked with nþ2. To mark
the locations found with zero in a vector haiAt , a vector filled with
nþ2 is subtracted from haiAt . The locations in which all unaffected
siblings have non-homozygous variants and all non-family individu-
als do not have variants are found by getting the summation of het-
erozygous and homozygous variant vectors of all non-family
individuals and homozygous variant vectors of all un-affected sib-
lings. The locations found are marked with zero in a vector hoiAt .
Our local conversion method is applied to haiAt and hoiAt ; and, haiBt
and hoiBt are obtained, respectively. All transactions performed so
far are carried out locally and without any communication between
the two proxy servers. The locations we want to find in haiBt and
hoiBt are marked with zero. To mark zero-marked locations with
one and all other locations with zero, haiBt and hoiBt are compared
to a vector filled with zeros using a Boolean equality gate which is
evaluated by the GMW protocol. The common locations marked
with one in haiBt and hoiBt are found by taking logical AND of
them. The pseudo-code of the RECESSIVE operation is given in
Algorithm 1.

2.9 Privacy-preserving DOMINANT operation
In the DOMINANT operation, we find the locations in which all
affected siblings have heterozygous variants. Assume that the num-
ber of affected siblings is n, the locations are marked with n in a vec-
tor haiAt . We mark these locations with zero by subtracting a vector
filled with n from haiAt . The locations in which all unaffected sib-
lings and all non-family individuals have homozygous reference var-
iants are found by getting the summation of heterozygous and
homozygous variant vectors of all unaffected siblings and non-fam-
ily individuals. The locations found are marked with zero in a vector
hoiAt . We obtain two vectors haiAt and hoiAt as we obtain in the
RECESSIVE operation. The next steps are exactly the same as the
steps in the RECESSIVE operation. The pseudo-code of the
DOMINANT operation is given in the Supplementary Material.

2.10 Privacy-preserving COMPHET operation
In the COMPHET operation, we find the locations in which all
affected siblings and the mother have non-heterozygous variants,
the locations in which all affected siblings and the father have non-
heterozygous variants, and the locations in which all unaffected sib-
lings and non-family individuals have non-heterozygous variants are
found by getting the summation of variant vectors. These locations
are marked with zero in vectors hmiAt ; hf i

A
t and hoiAt , respectively.

These vectors are computed with local operations that do not re-
quire communication between the two proxy servers. Our local con-
version method is applied to hmiAt ; hf i

A
t and hoiAt ; and, hmiBt ; hf i

B
t

and hoiBt are obtained, respectively. We mark the locations of zeros
in hmiBt ; hf i

B
t and hoiBt with one using a Boolean equality gate

which is evaluated by the GMW protocol. By evaluating the
Boolean AND gate a few times, the operation outputs the vectors

Fig. 3. General system architecture of our solution. Patients P1 . . . PN communicate

with two non-colluding proxy servers S 0 and S 1. Researchers can perform

RECESSIVE, DOMINANT, COMPHET, INTERSECTION, SETDIFF and MAX

operations on all data through these proxy servers in a secure manner
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hmiBt and hf iBt . hmiBt is the set of heterozygous variants that appear
exclusively on the mother and transmitted to all affected siblings
and hf iBt is the set of heterozygous variants that appear on only the
father and transmitted to all affected siblings. For every gene, we
find the Cartesian product of two sets of heterozygous variants,
more specifically the sets of indices of marks in vectors hmiBt and
hf iBt , respectively.

In other privacy-preserving operations, we find the locations of
variants that are present either in all or none of a group of individu-
als using methods similar to the method we describe above. After
these locations are found, arithmetic-shared zero values are con-
verted to Boolean-shared zero values with our conversion method.
The result vector is then generated using effective operations in
Boolean sharing. The commented pseudo-codes of all secure opera-
tions are given in the Supplementary Material.

2.11 Security considerations
We discuss the security of our scheme in this section. The main pur-
pose of our protocol is to provide privacy for patients whose data
are outsourced to our service. The privacy of our scheme is based on
the proven security of the GMW protocol (Goldreich et al., 1987)
and the protocol based on Beaver’s multiplication triples (Beaver,
1991). We assume that the two proxy servers used for secure com-
putation do not collude. Genome data are shared between the two
servers using arithmetic sharing and converted to Boolean sharing
during the protocol execution. A semi-honest adversary corrupting
at most one of the two proxy servers can observe a share of patients’
data. As the data are shared with arithmetic sharing or Boolean
sharing, it looks like uniformly distributed random data and this
prevents the leakage of the patients’ data.

The researcher specifies a list of patients whose data will be used
in the analysis. If the researcher has permission for the relevant
patients’ data, they are included in the analysis. The variants or
genes obtained at the end of the analysis should be disclosed to the
researcher. Unrelated individuals in a cohort cannot learn anything
about each other more than their shared causal gene (MAX oper-
ation). In trio analysis, the researcher only learns causal variants of
the affected individual and cannot learn any definite information
about the parents or the control individuals (RECESSIVE,
DOMINANT, COMPHET and SETDIFF operations). In the
INTERSECTION operation, the researcher only learns the common
variants of participating individuals. For this reason, Jagadeesh et al.
(2017) have defined a protection quotient which is the fraction of
the number of the variants or genes that are not exposed to the re-
searcher to the total number of the variants or genes.

Confidentiality, integrity and, authentication between all parties
are provided using state-of-the-art technologies such as TLS (Dierks
and Rescorla, 2008).

3 Implementation

We have implemented the prototype of the proposed solution using
the Cþþ programming language and the ABY framework
(Demmler et al., 2015), which provides an efficient implementation
of secure two-party computation protocols. This framework works
like a virtual machine that abstracts secure computational protocols.
We use the implementation of the GMW protocol in the ABY frame-
work to perform the non-linear parts of the operations in our proto-
col. A function is represented as an arithmetic or Boolean circuit.
There are two primitive gates operations: linear gates (addition in
arithmetic circuits, XOR in Boolean circuits) and non-linear gates.
The execution of linear gates does not require communication and
the evaluation of cryptographic operations. Hence, the performance
of securely evaluating a function can be improved by reducing the
number of non-linear gates. In the ABY framework, the total execu-
tion is divided into two phases: offline and online. In the offline
phase, multiplication triples are pre-computed. The online phase
that uses pre-computed multiplication triples to compute the func-
tion in the parties’ private inputs is very effective.

We implemented our methods using mixed protocol execution.
We use both arithmetic and Boolean circuits in our implementation.
We realized our novel linear method of converting arithmetic-shared
zero values to Boolean-shared zero values (see Section 2.4). In our
implementation, we benefited from the execution speed of this
method. In Table 1, we compare our methods implemented with
both arithmetic and Boolean gates with the methods implemented
using only Boolean gates in terms of the number of linear and non-
linear gates. It shows that our methods perform much better by
decreasing the number of non-linear gates. To improve circuit evalu-
ation time, we use SIMD (single instruction on multiple data) gates.
The inputs to secure computation are vectorized. Each operation in
the secure computation processes the vectorized input of the same
length. For this reason, regardless of the input length, we give the
number of operations in Table 1.

We perform all operations on l-bit values where l¼32. This
means the ring of arithmetic sharing is Z232 . In arithmetic sharing,
we use only the addition operation that is run by two servers locally.
This implies that our implementation does not require an offline
phase, in which multiplication triples are generated, for operations
in arithmetic sharing. Our solution requires Boolean multiplication
triples, which are computed in the offline phase using OT, to evalu-
ate Boolean ANDs. The cost of the offline phase scales linearly with
the bit-length l as shown in Supplementary Tables S1–S3, S5, S7, S8
and S11.

4 Results

We evaluated the performance of the proposed solution both on real
and synthetic data. We reported the performance of the online and
offline phases of our protocol separately. We conducted our
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experiments in two Amazon EC2 instances (M4.2xlarge). Each in-
stance ran an 8-core 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) pro-
cessor and had 32 GB of memory. We used a wide-area network
(WAN) setting where the two servers are far apart. We placed one
of the servers in Frankfurt and the other in London. We ran experi-
ments on Ubuntu 16.04 with 4.13.0-36-generic kernel, compiled
our implementation with gcc v5.4.0 and used a symmetric security
level of 128 bits. The bandwidth was limited to 10Mbps and the
average round trip time is 13.64 ms. For all timing results, each ex-
periment has been repeated 20 times, and the average execution
times have been reported. We use an additional communication set-
ting to evaluate the impact, which is a local-area network (LAN) set-
ting where two identical computers that are connected via gigabit
ethernet are used. Each computer has a 3.20 GHz Intel i5-6500 CPU
and 32 GB RAM. We give the detailed results of the experiments in
the Supplementary Material.

4.1 Experiments on real data
We tested our algorithm on whole exome data of 6 patients with
cerebrofaciothoracic dysplasia (Alanay et al., 2014). We used VEP
(McLaren et al., 2016) for annotating the raw variant data which
were stored in VCF (v4.1) format. VEP was configured to output
every annotation available in the Esembl (release 91) for the hg19
human assembly. The most deleterious outcome for each variant
was selected by enabling the VEP’s pick option. To identify the var-
iants which will be used to calculate the MAX value, we developed
an in-house script to select the variants which have less than 1%
population allele frequency in any of the sub-population defined in
the gnomAD (Exome Aggregation Consortium, 2016) and have
HIGH or MODERATE impact on the protein coding genes. We also
used an in-house exome cohort (n¼182) to remove any population
specific polymorphisms and false-positive variant calls. We only
considered the variants which were homozygous in the patients for
operations because their families were consanguineous and the dis-
order was reported to be autosomal recessive. To identify the var-
iants which will be used to calculate the RECESSIVE, SETDIFF and
INTERSECTION operations, we selected the variants which have
less than 5% population allele frequency and have HIGH or
MODERATE impact on the protein coding genes. We used filter_-
vep (McLaren et al., 2016) and VCF Explorer (Akgün and Demirci,
2017) for filtering the variants. Alanay et al. (2014) reported
TMCO1 mutation as the cause of cerebrofaciothoracic dysplasia. In
this study, disease-causing variants were reported recessive so we

executed only our secure RECESSIVE operation on the data of this
study. We made computations on variant vectors with a length of
28 000 000 and gene vectors with a length of 20 633. The details of
the experiment results are given in Tables 2–5.

We tested our COMPHET operation on the pigo.vcf file (a fam-
ily with two daughters affected by Mabry syndrome) provided in the
study by Kamphans and Krawitz (2012). We used VCF Explorer
(Akgün and Demirci, 2017) for selecting the variants that have less
than 5% population allele frequency in any of the subpopulations
defined in ESP6500_MAF (NHLBI GO Exome Sequencing Project)
and 1000_Genome_MAF (The 1000 Genomes Project Consortium,
2010) and mutation type of missense, synonymous, splicing, frame-
shift and non-frameshift. Our method outputs 409 variants on 111
genes including the PIGO gene.

MAX, SETDIFF and INTERSECTION operations may be insuf-
ficient to find candidate genes and variations that cause the disease
because they assume that all participating individuals have the same
genotype. Our privacy preserving analyses based on our inheritance
models allow researchers to conduct more accurate analysis. As
shown in Table 3, MAX operation finds the disease-causing variant
and gene in third place, although variants with population allele fre-
quency of less than 1% are selected. Our RECESSIVE operation ac-
curately identifies the disease-causing recessive variant and gene,
although variants with a population allele frequency of less than 5%
are selected. We ran all experiments on real data in the WAN
setting.

4.2 Experiments on synthetic data
In Table 1, we theoretically compare our methods, which are
designed using both arithmetic and Boolean gates, and the methods
that perform the same processes but designed only with Boolean
gates in terms of the number of high-level operations. In our experi-
ments on synthetic data, we measure the performance of our meth-
ods with respect to an increasing number of variants and patients in
terms of round complexity, circuit size, computation time and com-
munication cost. Thus, we provide a more informative overview of
the actual costs of our methods as a function of the input size. In
Figure 4, we show the runtimes of the offline and online phase of
RECESSIVE, DOMINANT and COMPHET operations for varying
patient count and variant count. In Figure 5, we compare our MAX,
SETDIFF and INTERSECTION methods with those of Jagadeesh et
al. (2017). We present how the runtimes of our methods scale with
the increase in the number of patients and variants. Details of these

Table 1. Comparison of our privacy-preserving methods with the privacy-preserving methods implemented using Boolean circuits

Operation Boolean

AND

Boolean

OR

Boolean

INV

Boolean

ADD

Boolean

EQ

Boolean

MUX

Boolean

GT

Arithmetic

ADD

Arithmetic to

Boolean

conversion

Boolean RECESSIVE p þ 2 2sþ r� 1 1 0 0 0 0 0 0

Boolean DOMINANT p rþ s� 1 1 0 0 0 0 0 0

Boolean COMPHET p þ 5 rþ s� 1 3 0 3 0 0 0 0

Boolean MAX 0 0 0 n – 1 0 g – 1 g – 1 0 0

Boolean INTERSECTION n – 1 n 0 0 0 0 0 0 0

Boolean SETDIFF 1 2pþ 2rþ 2 1 0 0 0 0 0 0

Mixed RECESSIVE 1 0 0 0 2 0 0 pþ rþ 2sþ 1 2

Mixed DOMINANT 1 0 0 0 2 0 0 pþ 2rþ 2s� 1 2

Mixed COMPHET 6 2 2 0 3 0 0 pþ rþ sþ 2 3

Mixed MAX 1 0 0 0 0 g – 1 g – 1 n – 1 1

Mixed INTERSECTION 0 0 0 0 1 0 0 2n 1

Mixed SETDIFF 1 0 0 0 2 0 0 2pþ 2rþ 3 2

Note: The number of non-linear Boolean AND and OR operations in all methods implemented using Boolean circuits increase linearly with the number of

participants. In our methods implemented using both arithmetic and Boolean circuits, the number of linear arithmetic ADD operation increases linearly with the

number of participants and the numbers of all non-linear Boolean operations are fixed and independent from the number of participants. In addition, we use our

linear method for converting arithmetic shared zero values to Boolean-shared zero values. Thus our methods work faster.

p, number of affected siblings; r, number of unaffected siblings; s, number of others; n, number of participants; g, number of genes.
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Table 4. Results of secure SETDIFF operations on real patient data

T Family member #Rare variants #Revealed variants Protection quotient Offline phase Online phase

Comm. (MiB) Time (ms) Comm. (MiB) Time (ms)

1 M 860 N/R 1-385/2880¼86.6 896 11 282 18 317

F 967 N/R

P 1053 385

2 M 1062 N/R 1-336/3003¼88.8 896 11 192 18 321

F 906 N/R

P 1035 336

Note: We analysed two trios of an unaffected mother and father and an affected child.

M, Mother; F, Father; P, Proband; T, Trio.

Table 5. Results of secure INTERSECTION operation on real patient data

T Family member #Rare variants #Common variants Protection quotient Offline phase Online phase

Comm. (MiB) Time (ms) Comm. (MiB) Time (ms)

1 M 860

F 967

P 1053 29 1-174/5883¼97.0 1344 11 572 25 281

2 M 1062

F 906

P 1035

Note: We analysed six individuals in two trios. Secure INTERSECTION operation found 29 rare variants that are seen in 6 individuals. 6� 29 rare variants

were revealed while keeping the remaining 5709 variants private.

M, Mother; F, Father; P, Proband; T, Trio.

Table 2. Results of secure RECESSIVE operations on real patient data

T Family member #Rare variants #Revealed variants Gene namea Protection quotient Offline phase Online phase

Comm. (MiB) Time (ms) Comm. (MiB) Time (ms)

1 M 860 12 N/R 1-36/2880¼98.7 4480 58 347 74 1135

F 967 12 N/R

P 1053 12 TMCO1

MUC12

UBXN11

2 M 1062 7 N/R 1-21/3003¼99.3 4480 57 792 74 1088

F 906 7 N/R

P 1035 7 TMCO1

MUC12

Note: Our analysis reveals recessive mutations on TMCO1 gene which are causative mutations of cerebrofaciothoracic dysplasia.
aProven causal gene name is highlighted.

M, Mother; F, Father; P, Proband; T, Trio.

Table 3. Results of secure MAX operation on real patient data

#Patient #Rare variants

(genes) per patient (median)

#Patient with rare variant

in top three gene

Gene namea Protection

quotient

Offline phase Online phase

Comm.(MiB) Time (ms) Comm. (MiB) Time (ms)

4 228 (212) 4 MUC12 1-4/857¼99.5 10 267 12 129

3 ATXN3

2 TMCO1

Note: We analysed a small cohort of four unrelated individual. These individuals are two of affected children suffering from cerebrofaciothoracic dysplasia

(Alanay et al., 2014). Our secure MAX operation reveals TMCO1 as the third most mutated gene among patients in a cohort. TMCO1 is the proven causal gene

of cerebrofaciothoracic dysplasia.
aProven causal gene name is highlighted.
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experiments are given in the Supplementary Tables S1–S11. In all
cases, the circuit size (number of AND gates), the communication

costs and the runtimes (offline/online) increase logarithmically with
the number of patients and linearly with the number of variants.

We tested the A2B method of the ABY framework that provides
conversion from arithmetic sharing to Boolean sharing in the LAN/
WAN setting (see Supplementary Table S12). The offline and online
runtimes, the number of AND gates and communication cost in-
crease linearly with respect to the increasing number of variants and
increase logarithmically with respect to the increasing number of
patients. The number of arithmetic to Boolean conversions in
RECESSIVE, DOMINANT, COMPHET, SETDIFF and
INTERSECTION operations are 2, 2, 3, 2 and 1, respectively. The
conversion of an arithmetic share of a vector with a length of
28 000 000 representing a varying number of patients in the range
from 2 to 255 into a Boolean share takes 140 251 and 102 755 ms
for offline and online phases, respectively. If we use the A2B method
of the ABY framework instead of our linear conversion method, the
offline/online execution of the RECESSIVE, DOMINANT,
COMPHET, SETDIFF and INTERSECTION methods will take
280 502 ms/205 510 ms, 280 502 ms/205 510 ms, 420 753 ms/
308 265 ms, 280 502 ms/205 510 ms and 140 251 ms/102 755 ms
more time, respectively. The difference in the execution time of the
operations in which our conversion method is used and the opera-
tions in which the A2B method is used increases logarithmically
with the number of patients and linearly with the number of var-
iants. This shows the efficiency of our conversion method in terms
of computation and communication cost.

5 Conclusion

Today, rare disease analyses are usually carried out without taking
any security measures for participating individuals. Thus, individu-
als’ genomic data are disclosed to researchers who evaluate the ana-
lysis. In this work, we have proposed new privacy-preserving
methods to analyse multiple genomic data for finding disease-caus-
ing mutations. In our solution, secure computation is performed by
two non-colluding proxy servers and all security and privacy meas-
ures are taken for the privacy of participants. Only variants and
genes obtained at the end of the analysis are disclosed to researchers.
The performance of the proposed solution is promising for real-life
applications. We have used a special way of converting arithmetic
shared zero values to Boolean-shared zero values locally. Thus, we
have benefited from the efficient and fast operation of non-linear
gates in Boolean circuits. The performance of our methods scale
logarithmically in the number of individuals, contributing to the
analysis. Experimental results demonstrated that the execution times
of the RECESSIVE, DOMINANT and COMPHET with 1 000 000
variants and 65 536 patients are 158, 156 and 278 ms, respectively.
Furthermore, the execution times of the MAX with 20 000 genes
and 1024 patients, SETDIFF with 1 000 000 variants and 2048
patients, and INTERSECTION with 400 000 000 variants and 2
patients are 261, 149 and 1951 ms, respectively. Our methods are
the first privacy-preserving protocols for analyzing genomic data
using inheritance models to find disease-causing mutations.
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