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Chunks of phonological knowledge play a significant role in children’s 
word learning and explain effects of neighborhood size, phonotactic 
probability, word frequency and word length☆ 
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A B S T R A C T   

A key omission from many accounts of children’s early word learning is the linguistic knowledge that the child 
has acquired up to the point when learning occurs. We simulate this knowledge using a computational model that 
learns phoneme and word sequence knowledge from naturalistic language corpora. We show how this simple 
model is able to account for effects of word length, word frequency, neighborhood density and phonotactic 
probability on children’s early word learning. Moreover, we show how effects of neighborhood density and 
phonotactic probability on word learning are largely influenced by word length, with our model being able to 
capture all effects. We then use predictions from the model to show how the ease by which a child learns a new 
word from maternal input is directly influenced by the phonological knowledge that the child has acquired from 
other words up to the point of encountering the new word. There are major implications of this work: models and 
theories of early word learning need to incorporate existing sublexical and lexical knowledge in explaining 
developmental change while well-established indices of word learning are rejected in favor of phonological 
knowledge of varying grain sizes.   

Introduction 

The input from which children acquire their cognitive representa
tions often comes via rapid and transient signals (e.g. actions, speech, 
events), which must be processed quickly, in the moment, in order to be 
utilized by the child’s learning mechanisms. The amount and type of 
knowledge already acquired at the point of learning is likely to affect 
how this input is processed, and thus, how new knowledge can be 
extracted from this input, and integrated into representations in long- 
term memory (Karmiloff-Smith, 1998). For example, words that are 
presented in familiar sentence frames are processed faster (Fernald & 
Hurtado, 2006), complex grammatical constructions that share struc
tural properties with prior learned constructions are acquired more 
easily (Abbot-Smith & Behrens, 2006), and non-words that contain 
familiar, wordlike phoneme sequences are repeated more accurately 
(Gathercole, 1995). 

Despite this, many major debates in developmental cognition have 
tended to ignore the role of the accumulating knowledge in driving 

developmental change, focusing instead on debating the role of the 
input and of innate constraints/knowledge in the learning process. For 
example, in the word learning literature, the traditional debate has 
focused on whether a simple associative learning mechanism, equipped 
with low level abilities like cross-situational statistical learning, can 
extract all the information it needs to learn words from the input (Smith 
& Yu, 2008), or whether we also need to build higher level socio- 
cognitive (e.g. Tomasello, 2003) or linguistic (e.g. Markman, 1989) 
constraints into the learning mechanisms. In these theories, the role 
played by the child’s existing linguistic knowledge at the precise 
moment that she learns a new word is static across development. 

The implications of this omission are profound, because it means that 
traditional theories effectively assume that the way in which a child 
learns a word remains the same across development. This is unlikely to 
be the case. For example, we know that different input characteristics 
have different effects on vocabulary acquisition at different stages of 
development; 18-month olds seem to learn best from input that is high in 
repetition, in which a few words are repeated often, but 30-month olds 
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benefit instead from an input that is high in variation, in which many 
different words are produced but rarely repeated (Rowe, 2012). Tradi
tional associative, socio-cognitive and linguistic models, in which each 
word is learned in the same way regardless of the model’s develop
mental stage, cannot explain this effect. Only models where learning 
occurs over developmental time and in a way that is influenced by 
current knowledge at that time can simulate effects of this type. 

Nowadays, there is increasingly more work that factors in the child’s 
knowledge at the point of learning a new word. Broadly speaking, this 
research falls under two categories: the influence of semantic charac
teristics and/or phonological characteristics. For semantic characteris
tics, research has primarily focused on network analyses, where nodes 
represent a word and links between nodes indicate some form of se
mantic relatedness between words. Hills et al. (2009) used nouns (N =
130) from the MacArthur Bates Communicative Developmental In
ventory (Dale & Fenson, 1996) together with their age of first produc
tion (from 16 to 30 months). They examined how the nouns clustered 
together semantically, creating a network for each consecutive month 
that involved all nouns produced up to that point. Nouns that entered 
the child’s productive vocabulary at a particular timepoint were best 
explained by their semantic relatedness to all possible nouns that could 
be learned across all timepoints rather than semantic relatedness 
restricted to nouns produced by the child up to the timepoint in ques
tion. The same was found when using a similar procedure but expanding 
word classes beyond nouns (N = 532) (Hills et al., 2010). Interestingly, 
in both studies, phonological characteristics were also examined: word 
frequency; neighborhood density (ND, or the number of neighbors a 
word has, with neighbour defined as the addition, deletion or substitu
tion of one sound e.g., cat has cot, cats, at etc. as neighbors); and for Hills 
et al. (2009), phonotactic probability (PP, typically defined as how often 
a biphone – or two sounds that occur sequentially – occur in a language 
corpus relative to all combinations of biphones). Word frequency and 
ND both contributed to word learning in addition to semantic factors. 
The network analysis approach suggests that the influence of semantic 
relatedness on word learning may not be dependent on those words 
known by children at the point of learning but that phonological char
acteristics also significantly contribute to word learning. However, more 
recent empirical work by Borovsky et al. (2016) examining semantic 
relatedness based on 24-month-old children’s own productive vocabu
laries found that current semantic knowledge did influence subsequent 
processing of semantically related words. 

Network analyses that describe phonological associations across 
words also use nodes to represent words, but links between nodes are 
typically based on satisfying the traditional definition of ND described 
above (e.g., bat and cat would be linked but not bat and dog). Vitevitch 
(2008) for example compared his network to one produced at random, 
showing how the adult lexicon represented a ‘small world network’: the 
number of links between words was comparable but the ND network had 
larger clusters of linked words, suggesting potential processing effi
ciencies based on ND (e.g., lexical competitors would exist within the 
cluster rather than being disparate). Siew (2013) used the same network 
but with different outcome measures, showing how each cluster of 
words differed in terms of such things as ND, PP, word length and word 
frequency (e.g., some clusters mainly involved high ND words and 
others involved low ND words). 

Work on semantic influences on word learning have primarily 
focused on such network analyses. While network analyses are useful in 
testing competing hypotheses about word learning and for describing 
how words may fruitfully cluster together to create processing effi
ciencies, these networks do not actually implement learning. Instead, 
they describe associations across words at particular points in time. 
Although this is also the case for work on phonological influences on 
word learning, there are also specific hypotheses and models that pro
pose how current phonological knowledge may influence subsequent 
word learning. 

The lexical restructuring hypothesis (e.g., Metsala & Walley, 1998; 

Walley, 1993; Walley, Metsala & Garlock, 2003) suggests that infants 
implicitly attune to the phonological segments of speech but quickly 
begin to represent words as unanalysed wholes in line with the vocab
ulary spurt that occurs around 18 months. Thereafter, phonological 
analysis of holistic word forms is primarily driven by the need to 
differentiate similar sounding words. The hypothesis suggests not only 
that the child holds greater segmental detail for words having dense 
neighborhoods but also that this process is gradual, being dependent 
upon exposure to similar sounding words. Such a view predicts that 
children will learn novel words more easily when the novel words have 
high NDs due to the greater supporting knowledge that exists for such 
novel words. This prediction has been upheld by numerous studies (e.g., 
Hollich, Jusczyk & Luce, 2002; Storkel, 2009). 

However, the direct method for examining the effect of current 
knowledge on subsequent learning is to use computational models that 
learn over time as more and more input is presented. Vitevitch and 
Storkel (2013) used a connectionist model to operationalize a similar 
view to that of the lexical restructuring hypothesis. Eighteen input units 
were used to represent consonant-vowel-consonant (CVC) word inputs, 
with 6 units per phoneme; 6 hidden units were connected to all input 
units to capture word-level knowledge associated with the input as 
training progressed; these then connected to 18 output units that 
mirrored the input units in order to test the extent to which the network 
had learned the trained words and also how the network performed for 
novel CVC words. Trained words and novel words comprised ones from 
both dense neighborhoods (sharing two phonemes) and sparse neigh
borhoods (sharing one or zero phonemes). For both trained and novel 
words, the model was more able to represent those from dense neigh
borhoods than sparse neighborhoods. The same was true when the 
training set was altered to be more developmentally plausible (i.e., 
where a small set of words began training with more words introduced 
to the set over time). Interestingly, a direct consequence of the particular 
word sets meant that dense neighbourhood words inevitably had 
biphones that were high frequency, or high PP, since they appeared 
across several words. As such, the findings do not concur with other 
work showing how young children’s vocabularies mainly contain words 
having low PP biphones, leading the authors to suggest that PP effects 
require another level of representation. 

The dominant factor in these views and analyses of phonological 
word learning is neighborhood, and neighborhood also plays a signifi
cant role in the semantic networks discussed earlier. Yet there are 
problems in explaining word learning in terms of the neighborhood 
characteristics of a particular to-be-learned word. First, ND shows sig
nificant positive correlations with PP and word frequency, while there is 
a particularly strong negative correlation with word length (e.g., Stor
kel, 2009): as word length increases, ND dramatically reduces. Second, 
the majority of words have either no neighbors or very few neighbors. 
This issue is evident in Vitevitch (2008) and Siew (2013) where out of a 
total of 19,340 words, 53% had no neighbors (e.g., obtuse) and 13% had 
few localized neighbors (e.g., converse, converge, convert), with none of 
these words contributing to their analyses. Third, there may be addi
tional factors (or different factors) involved in phonological word 
learning that drive the perceived effect of neighborhood. It has already 
been acknowledged above that PP may be one of those factors, but even 
PP is not ideal since it traditionally focuses on biphones (Auer & Luce, 
2005). 

In this paper we leave aside the influence of semantic information on 
word learning and focus instead on phonological characteristics that 
network analyses, modeling work and empirical work all suggest is 
influential for word learning. Our goal is to examine the extent to which 
word learning can be explained by appealing to phonological informa
tion; but importantly we also consider whether the observed effects of 
ND and PP (together with effects of word length and word frequency) 
can be explained by a simple chunking account of phonological word 
learning that pays no attention to definitions of ND and PP. On our view, 
chunks are created incrementally in line with the frequency of encounter 
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of a particular phoneme sequence in the input (e.g., for hand -> h, ha, 
han, hand) such that long phoneme sequences that occur often are likely 
to be represented as large chunks. This view has fruitfully been applied 
to word segmentation – locating word boundaries within continuous 
speech, a feat typically achieved by the developing infant between the 
ages of around 0;6–1;6. For example, BootLex (Batchelder, 2002) parses 
continuous speech into potential words by a combination of knowledge 
of optimal word length and selection of the (incrementally chunked) 
phoneme sequences having the highest combined frequency; while 
TRACX (French, Addyman & Mareschal, 2011) shows over a series of 
studies how recognition of previous frequently encountered phoneme 
sequences is able to mimic behavior in studies of segmentation. Similar 
to TRACX, our view records no frequency information; rather, 
frequently encountered phoneme sequences form larger and larger 
chunks. However, learning phoneme sequence chunks can be facilitated 
if there is prior knowledge of other chunks that share sequential 
phonological information (e.g., ha from hat, and nd from stand; ha + nd 
-> hand). Word learning is the learning of a chunked phonological 
sequence that corresponds to a word. This view is supported by Gold
stein and Vitevitch (2014). In their study, novel words were controlled 
for ND and other measures but differed in their clustering coefficient 
(the extent to which neighbors of a word are also neighbors of each 
other; e.g., badge -> ban, bath etc. vs. log -> dog, lawn etc.). Novel words 
with a higher clustering coefficient were learned more easily, giving 
credence to the notion that shared sublexical phoneme sequences across 
many words facilitates learning. 

Under our view, the concept of ND is fluid, since it relates to both the 
shared phoneme sequences between known words and a to-be-learned 
word and the size of the existing chunks that contain those phoneme 
sequences. The concept of PP is equally fluid since it is not related to the 
raw frequency of a phoneme or biphone but rather the size of the chunks 
in which phoneme sequences appear and whether they can be applied to 
the to-be-learned word. We also examine word length and word fre
quency effects in the model. For word length, all things being equal, 
longer words will require more exposure to be learned; however, this is 
mediated by the constituent phoneme sequences since if these are shared 
by many other words, it is likely to lead to the word being learned more 
quickly. For word frequency, highly frequent words are likely to be 
learned quickly but these in turn may facilitate the learning of words 
that rarely occur, based on shared phoneme sequences. 

The role of this kind of sublexical knowledge has been particularly 
neglected in the word learning literature. We already know that children 
and adults store sublexical chunks because they use them in non-word 
repetition tests, in which they have to repeat sequences of syllables (e. 
g. dop, te-vack, ver-zer-dut). Wordlike non-words, which contain 
phoneme sequences that are frequent in real words, are repeated much 
more accurately than non-wordlike non-words, which do not contain 
these sequences (Gathercole, 1995; Jones et al., 2010). This shows that 
both children and adults’ lexicons store sequences of phonemes (sub
lexical chunks), which can then be retrieved to help them parse, encode, 
and thus repeat non-words. Given this, it seems likely that children and 
adults also use such sequences to parse, encode and learn new real 
words. 

Our approach has been used to illustrate how children’s early vo
cabularies are shaped by current knowledge of chunked phoneme se
quences. In Jones and Rowland (2017), the model initially benefitted 
from high levels of repetition in the input, because this allowed it to 
quickly build up a store of frequently occurring lexical and sublexical 
(phoneme sequence) patterns in its lexicon. Once it had learned most of 
the frequently occurring patterns though, repetition yielded no addi
tional advantage. Instead, the model started to benefit from a more 
lexically diverse input, which allowed it to learn a large number of 
sublexical sequences which could be used to then code the input utter
ances (and the lexical items therein) more efficiently. In other words, the 
definition of optimal input changed over development, depending on 
the linguistic knowledge that the model possessed, producing effects 

that mirrored those of Rowe (2012) outlined above (see Bohannon & 
Hirsh-Pasek, 1984, for similar arguments). 

The aim of the present paper was to test whether existing phono
logical knowledge plays a role in new word learning. We implemented 
this hypothesis in the same model used by Jones and Rowland (2017; 
CLASSIC), described above, to model the changing role of the input 
throughout early development. The key parameters of the model are a) a 
chunk-based learning mechanism that learns by gradually chunking 
sequential information in the model’s internal representational system 
on the basis of incoming input and b) a probabilistic processing 
constraint that means that, on average, only a certain number of chunks 
can be encoded for any given input. 

Here we use the model to test whether existing knowledge at the 
point of learning, particularly sublexical knowledge in the form of stored 
sequences of phonemes (chunks), plays a role in new word learning. We 
first test whether the model successfully (and developmentally) simu
lates four well-established properties of word learning in human chil
dren: the effects of a word’s a) length, b) frequency, c) PP and d) ND on 
the likelihood of it being learned; the latter two of which cannot be 
explained by models and verbal theories that ignore the role of existing 
sublexical knowledge in the learning process. We then provide an even 
more robust test of the model’s ability to simulate the mechanism of 
word learning, by explicitly testing a new prediction of the model, 
derived from the model’s learning behavior, on children’s early 
productions. 

CLASSIC: A computational model that learns phonological, word, and 
multi-word knowledge 

CLASSIC (e.g., Jones, 2016; Jones & Macken, 2015; Jones & Row
land, 2017) implements a chunk-based learning mechanism that has 
become established as one of the key mechanisms of human cognition 
(Gobet et al., 2001). CLASSIC begins with one chunk for each of the 
phonemes in standard British English. It takes as input a corpus of 
phonemically-transcribed utterances, processing each utterance one at a 
time. For each utterance, the model learns via two simple processes. 
First, it encodes the input utterance into as few chunks as possible based 
on chunks that have been learned thus far. Second, it learns new chunks 
by joining together adjacent chunks from the encoded utterance. For 
example, if ‘Hello!’ is repeated three times as the first three utterances in 
the corpus, on the first presentation, the model would access the four 
phonemes that make up the word /h/, /e/, /l/, and /ow/, and chunk up 
adjacent chunks to learn three new chunks: /he/, /el/, and /low/. The 
second utterance in the corpus is then processed, and this can now be 
encoded using only two chunks: /he/ and /low/. A new chunk will then 
be learned by joining these adjacent chunks to form /helow/. The third 
presentation of ‘hello’ would therefore be encoded using only one chunk 
as the word has now been learned. 

Note that the phonemic input is word-delimited. This is a constraint 
that we have imposed in most of our modeling work examining both 
early language development and nonsense word repetition performance 
using CLASSIC (e.g., Jones, 2016; Jones & Rowland, 2017; Jones & 
Macken, 2018). While other models of word learning also use word- 
delimited inputs (e.g., Vitevitch & Storkel, 2013), as we saw above, 
models of word segmentation do not. Our rationale here is that we 
compare model performance to children of mean age 1;10–2;10, ages at 
which the word segmentation process is well-established (children are 
capable of determining word boundaries via a range of phonetic, 
phonological and distributional cues by their first birthday, see Row
land, 2014, for a review). Previous derivatives of CLASSIC that exam
ined nonsense word repetition have shown that the inclusion/exclusion 
of word boundaries only moved the fit between model and child data 
from within 7% to within 8% (Jones, 2016). For current purposes, 
removal of the word boundary information would necessitate a mech
anistic account of segmentation in order to determine whether or not a 
learned chunk constitutes a word, and this is beyond the scope of the 
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paper. 
There are also two constraints on learning. There is a limit on the 

number of chunks that can be encoded from an input utterance (on 
average 4.5 chunks) favoring those at the end of the utterance in line 
with well-established recency effects (e.g., Grenfell-Essam & Ward, 
2012). In addition, word boundaries are not crossed unless the chunks 
themselves are words, at which point a chunk corresponding to a multi- 
word sequence would be learned. Other than a 1.00 probability of 
learning (i.e., learning at every opportunity) and encoding only 4.5 
chunks of an utterance on average, there are no further parameters to 
the model. Learning occurs at every opportunity because the input to the 
model will be very small compared to the developing child who hears up 
to half a million utterances in a 3-week period (Swingley, 2007). As one 
can see in the example (learning the new chunk /helow/ from the 
encoded chunks /he/ and /low/), for a word to be learned, that word 
must be encoded using only two chunks. A detailed description of the 
model can be found in the Supplementary Materials. 

Note that phonological knowledge in the model acts as a proxy for a 
range of performance benefits as linguistic exposure increases for the 
developing child. For example, accurate production of CC and CCC 
word-onsets increases with the input frequency of those onsets in 
0;11–4;0 infants (Ota & Green, 2013) while 18-month-old infants are 
more able to detect close mispronunciations of a target referent if they 
have encountered the referent frequently as opposed to infrequently 
(Swingley, 2007). These performance differences are captured within 
the model in terms of learning increasingly larger chunks as exposure to 
the same phoneme sequence increases. Over time, this means a word 
and the utterance in which the word appears can both be represented 
using fewer chunks, with fewer chunks equating to better performance. 

Our data 

The mother (model input) and child data came from the Manchester 
corpus (Theakston, Lieven, Pine, & Rowland, 2001) on CHILDES 
(MacWhinney, 2000). The corpus consists of 12 mother-child dyads, 
each containing 34-hour transcriptions from audiotaped interactions 
between mothers and children, taken twice every three weeks over a 
period of one year. At the beginning of the study, child mean age was 
1;10 (range 1;8–2;0). The children were 6 males and 6 females, and were 
all first born monolinguals from middle-class families, half from Man
chester and half from Nottingham (both UK). Since the data is from 
CHILDES transcripts, speech errors were at the interpretation of the 
original transcriber. All utterances were converted to their phonemic 
equivalent using the CMU Pronouncing Dictionary (http://www.speech. 
cs.cmu.edu/cgi-bin/cmudict). Utterances containing words that did not 
exist in the dictionary were omitted. Information on word types and 
word tokens for each set of utterances is given in the supplementary 
materials. Each transcript was divided into 20 stages (approximately 1.7 
h of transcript for each stage) so that developmental progression could 
be examined. For each of the 20 stages, unique word types were 
extracted (i.e., word types that had not been produced in a previous 
stage). In line with other corpus analyses (e.g., Maekawa & Storkel, 
2006), child acquisition of a word type was assumed to be when the 
word was first produced in the child’s utterances. The Supplementary 
Materials provide details of the vocabularies of mothers, children, and 
models, showing not only that the models more closely match the 
children than the mothers on which they are trained, but also how both 
models and children show vocabulary effects that are consistent with 
previous findings. 

Analysis strategy 

One run of the model was undertaken for each individual set of 
maternal utterances1, resulting in a total of 12 model simulations. The 
same modeling environment was used for each simulation therefore any 
effects seen are solely attributable to differences in the linguistic input. 
The model’s vocabulary learning was examined after every 5% incre
ment of the input to enable direct comparison to the 20 stages of the 
child utterances. 

Data manipulation and analysis were carried out using the R pro
gramming language (version 3.4.3; R Core Team, 2017) and RStudio IDE 
for R (version 1.1.423; RStudio Team, 2016). At each stage, for the 
mother and child utterances, word types that had not appeared in any 
previous stage were recorded. For the model, words learned were 
recorded at every 5% increment of the input. As is often the case when 
dealing with large input samples (e.g., Hart & Risley, 2003; van Heuven 
et al., 2014), every unique word was treated as a word type (e.g., Bert, 
Bertie, ring, ringing were treated as separate word types) except for plural 
nouns which were ignored (e.g., balls, chickens)2. 

Word frequency, ND, and PP were computed using two different 
corpora: (a) the spoken part of the British National Corpus (BNC, 2007), 
transcriptions of unscripted informal conversations balanced for age, 
region, context and social class, containing approximately 10 million 
word tokens; and (b) the maternal corpus outlined above. As per the 
mother and child data, all BNC utterances were converted into their 
phonemic equivalent using the CMU Pronouncing Dictionary. We used 
two corpora because previous research examining effects of word fre
quency, ND and PP have used both adult corpora (e.g., Storkel, 2009) 
and caregiver corpora (e.g., Swingley & Humphrey, 2018). 

For both corpora, word frequency, ND, and PP were computed only 
for words that existed in the dictionary. ND and PP were computed using 
the same formulae used in the Irvine Phonotactic Online Dictionary 
(version 2.0; IPhOD, Vaden, Halpin, & Hickok, 2009). ND was consistent 
with numerous other studies (e.g., Storkel, 2009; Swingley & Hum
phrey, 2018) and defined as unstressed phonological ND, referring to the 
number of words that differ from a given word by one phoneme (i.e., by 
the addition, deletion, or substitution of one sound, e.g. pin/spin, bit/ 
bat). PP was unstressed word-average biphone probability, consistent 
with numerous previous studies (e.g., Storkel, 2003; Storkel & Lee, 
2011; Vitevitch & Luce, 1998, 1999) and defined as the weighted like
lihood of occurrence of ordered phoneme pairs that are present in a 
given word (i.e., accounting for the frequency of the biphones). 

Experiment 1 

The aim of experiment 1 was to determine whether the model can 
simulate four robust properties of human word learning; frequency, 
word length, ND and PP. The first two are well-established effects that 
many models simulate successfully, but are important to establish the 
plausibility of our simulation of word learning. With regard to fre
quency, all else being equal, young children tend to acquire high fre
quency members of a word category before low frequency members, and 
these effects are seen across a number of categories (verbs, nouns, ad
jectives, closed-class words etc.; Huttenlocher et al., 1991; Naigles & 
Hoff-Ginsberg, 1998; Goodman, Li & Dale, 2008; Swingley & Hum
phrey, 2018; for a review, see Ambridge et al., 2015). With regard to 
word length, shorter words tend to be learned before longer words 

1 Since all the inputs for the model come from the mothers of the children, 
who were also their primary caregivers, we use maternal and mother 
throughout the article. This is not intended to imply that all caregiver speech 
comes from the mother.  

2 For example, ball and balls were treated as one word type (ball). This is only 
for our analysis – the input to the model still distinguished plurals from 
singulars. 
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(Maekawa & Storkel, 2006; though note that there can be large varia
tions in phonemic length even for monosyllabic words; Coady & Aslin, 
2003). Furthermore, word length effects are seen in tasks that bear 
strong relationships with vocabulary learning, such as non-word repe
tition tasks where, even in 2–4 year old children, there is a significant 
decline in performance as length increases (Roy & Chiat, 2004). The 
same pattern is observed in almost every study, though most involve 
older children (e.g., Gathercole & Baddeley, 1989; Jones et al., 2010). 

The latter two effects constitute strong tests of our hypothesis that 
children use existing sublexical material stored in the lexicon to learn 
new words (effects that cannot be simulated by models and verbal 
theories that do not posit a role for linguistic knowledge at the sublexical 
level)3. For ND, infants are more likely to learn words with high NDs 
(words having a high number of phonologically similar words) than 
those with low NDs (Hollich, Jusczyk and Luce, 2002; Storkel, 2009). 
We first determined what ND effects need to be explained in our data (i. 
e., do the children in our sample learn high or low ND words first) and 
then tested whether our model can simulate these data. In addition, 
since words with high ND tend to be shorter than words with low ND 
(Storkel, 2009; Vitevitch & Luce, 2016) we tested both the model’s 
ability to simulate raw ND effects, and its ability to simulate the ND 
effects that emerge when we control word length, to ensure we are not 
simply modeling ND effects as a by-product of an ability to simulate 
word length effects. (Effects of ND when controlling for frequency can 
also be found in Supplementary Materials). 

Finally, we modeled PP effects. Interestingly, the literature is not 
clear-cut on whether low or high PP words are learned first. Very young 
infants (M = 38 weeks, range 37–40) prefer to listen to nonsense words 
comprised of high PP CVC sound sequences (words with sound se
quences that are high frequency in the language; Jusczyk, Luce & 
Charles-Luce, 1994), suggesting a high PP word advantage. However, 
the early productive vocabularies of infants (M = 1;11, range 1;4–2;6) 
tend to be comprised of low PP words (Storkel, 2009). We additionally 
examined PP when controlling for word length to be consistent with the 
ND data (see Supplementary Materials for PP effects when controlling 
for frequency). 

Prior to plotting the data, we first determined whether growth pat
terns for children and models for each of the four measures were better 
explained by either a linear or logarithmic fit using linear mixed-effect 
modelling. As the different proportions of word types (outcome) must 
sum to 1, this variable was recoded. We took one of the levels (e.g., 
three-syllable group in the word length analysis) as a reference level, 
calculating the natural logarithm of each remaining proportion relative 
to the proportion of the reference level. Taking the word length analysis 
as an example, the recoded predictor variable was computed as: 

ln1 = log
(

Pr(one syllable)
Pr(three syllable)

)

ln2 = log
(

Pr(two syllable)
Pr(three syllable)

)

To examine whether the data would be better represented by a linear 
or logarithmic fit, we compared two multilevel linear models using the 
bootstrap 95% confidence interval around the difference in Adjusted R2 

(ΔAdjR2). The confidence intervals were based on 1000 iterations and 

adjusted for multiple comparisons using Holm’s correction. If a confi
dence interval contained 0, we then concluded that no significant dif
ference between linear and logarithmic fit was found, indicating that a 
parsimonious linear fit better represented children and models’ growth 
patterns. 

Each multilevel linear model predicted lnk as a function of a) stage or 
log(stage), b) k (where k is 1 or 2), c) whether the data is from the child 
or model (set), and d) the interactions between these three predictors. 
We included random intercept and slope for child id, as influenced by 
stage /log(stage), set and k. As shown in Table 1, a linear fit better rep
resented the data only in the case of PP, and only when this measure was 
based on the Spoken BNC. 

Fig. 1 shows the results for children and models for all four properties 
when measures are based on the spoken BNC and Fig. 2 is when mea
sures are based on the maternal corpus. Despite the four measures being 
computed using two different corpora, the children and models are very 
similar to one another in both Figures. To examine whether growth 
patterns for children and models differ statistically from one another, we 
were specifically interested in two interaction terms of the full model 
previously described: the two-term interaction between k and set, and 
the three-term interaction between log(stage)/stage, k and set. Taking the 
word length analysis as an example, the first interaction term tells us 
whether, at each length, children and models’ proportional means of 
word types differ statistically. In other words, this term indicates 
whether, at each length, children and models’ curves differ in terms of 
average height on the y axis. Further, the second interaction term tells us 
whether children and models’ curves differ in slope. 

We compared a full model which excluded the above interaction 
terms to a full model, using the bootstrap 95% confidence interval 
around the differences in AIC (ΔAIC) and BIC (ΔBIC). Confidence in
tervals were adjusted using Holm’s correction. If the confidence interval 
contained 0, we concluded that only a negligible change in model fit was 
found between child and model data. We chose to rely on confidence 
intervals rather than p values of Chi-square difference tests applied to 
the nested models because the latter are directly affected by sample size 
(for large samples trivial differences may become significant). 

As shown in Table 2, the confidence intervals for ΔAIC and ΔBIC 
contained 0 for every measure when the Spoken BNC is used, indicating 
that adding the two interaction terms of interest did not provide a 
significantly better fit to the data. In other words, children and models’ 
growth patterns did not differ in average height and slope of the fitted 
curves/lines. The same is true when the maternal corpus is used, except 
for ND – in this instance, further examination (see Supplementary Ma
terials) shows that children and models differ only for the lowest ND 
tertile, suggesting that the significant difference found is probably of low 
practical significance. 

Having established that there is almost no difference in growth 
patterns between children and models across all four measures – 
regardless of whether the measures are computed using the spoken BNC 
or maternal input – we now examine what these growth patterns tell us. 
Since Figs. 1 and 2 show overall trends across the graphs that are broadly 
similar across all four measures, hereafter we use the spoken BNC data 
(Fig. 1). 

Table 1 
Difference in Adjusted R2 between linear and logarithmic fit, for each of the four 
measures and for each corpus that the measures were computed from.  

Linear vs. Logarithmic Corpus ΔAdjR2  

Length BNC − 0.049 [− 0.083, − 0.025] 
Frequency BNC − 0.034 [− 0.047, − 0.026] 
Neighbourhood density BNC − 0.053 [− 0.07, − 0.039] 
Phonotactic probability BNC − 0.006 [− 0.02, 0.004] 
Length Maternal − 0.049 [− 0.084, − 0.024] 
Frequency Maternal − 0.016 [− 0.03, − 0.005] 
Neighbourhood density Maternal − 0.018 [− 0.028, − 0.014] 
Phonotactic probability Maternal − 0.018 [− 0.038, − 0.001]  

3 Effects of PP require sublexical representations beyond individual pho
nemes because differences are seen between words containing relatively 
familiar sound sequences versus relatively unfamiliar sound sequences. We 
argue that effects of ND are also likely to require sublexical representations 
beyond individual phonemes. While one could determine neighbor words via a 
phoneme-by-phoneme comparison across words, this method would be highly 
inefficient. While there are some models (e.g., TRACE, McClelland & Elman, 
1986) that simulate PP and ND effects while only explicitly encoding phonemes 
and words, there has to be some form of (implicit or explicit) knowledge of 
phoneme sequences (e.g., for TRACE, “each [phoneme/word] unit stands for a 
hypothesis about a particular perceptual object occurring at a particular point 
in time defined relative to the beginning of the utterance” (p. 8). 
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Fig. 1a illustrates the effect of length: the proportion of new (unique) 
words produced at each stage (e.g., those words produced at stage 3 that 
were not present in any previous stage) that are one-syllable, two-syl
lable, and three-syllable at each stage of the child transcriptions and 
model’s learning. Fig. 1b shows the same proportions by frequency 
tertile, calculated by grouping all word types produced by children and 
models, deriving the frequency of each word from the spoken BNC, and 
then splitting the words equally into tertiles on the basis of their fre
quency (1 = lowest 33%, 2 = 33–67%, 3 = highest 33%). 

Both the models and the children show the predicted effect. Early on 
in development, the children produce and the models learn, more short 
word types than long word types, and more high frequency than low 
frequency words (e.g. at stage 1, 68% of children’s words are one syl
lable vs. 74% of the model’s). For an analysis of length in number of 
phonemes, which yields similar results, see Supplementary Materials. 

Fig. 1c and 1d show the proportion of new (unique) words produced 
at each stage by ND tertile (1c) and PP tertile (1d). To calculate the ND 
and PP tertiles, we grouped all word types produced by children and 
models, derived NDs and PPs for each word by applying the IPhod 
formulae to the spoken BNC and then split words equally into tertiles on 
the basis of their ND or PP scores (1 = lowest 33%, 2 = 33–67%, 3 =
highest 33%). Children produce a greater proportion of high ND than 
low ND word types, and a greater proportion of low PP than high PP 
word types (consistent with Storkel, 2009, and Storkel & Lee, 2011). 

The fact that the model simulates the proliferation of low PP word 
types produced by the children even though learning is incremental and 
based on exposure to the maternal input, is surprising. Although the 
model does not record word frequency per se (once a word is learned, 
the only further learning is for multi-word sequences involving the 
word), more phonological knowledge will be learned for those phoneme 

sequences that appear often, or across numerous words, in the input. 
This suggests the reverse effect should be seen – words should be more 
easily learned when they contain high PP sequences because those se
quences appear often (and/or across different words). We thus examined 
why we simulated the low PP advantage by looking at how PP changes 
with phonemic word length. 

Fig. 3a shows the PP tertile breakdown across phonemic length (we 
focus on two to six phonemes because children’s productive vocabu
laries do not contain many words of seven phonemes or more). 
Crucially, here, the proportion of word types is calculated by grouping 
all words together regardless of length, partitioning them into PP tertiles 
(T1 = lowest 33%, T3 = highest 33%), and then calculating the pro
portion of low/medium/high PP words at each phonemic length. It is 
clear that the vast majority of low PP word types are three or fewer 
phonemes in length, which explains their ease of learning in the model. 
Since the majority of early word types produced are short (see Fig. 1a) 
and the majority of short words are of low PP, the model learns low PP 
words first, not because they are low PP but because the model learns 
short words more quickly than long words. This explains why the model 
appears to learn low PP words first, even though its learning algorithm 
favors high PP words over low PP words. 

When we repeated the analysis but this time controlling for length by 
considering only words of a particular length when computing the 
proportion of low/medium/high PP words (e.g., considering only three 
phoneme words when calculating tertiles for three phoneme words), a 
different pattern emerges (Fig. 3b). Now we find a high PP advantage for 
both children and models for the majority of phonemic lengths. That is, 
the models tend to learn, and the children tend to produce, more high PP 
words than low PP words once word length is taken into account. 

Fig. 4 illustrates children’s word productions and words learned by 

Fig. 1. a-d. Children and model comparisons when measures are computed using the spoken BNC. Each graph shows the proportion of new (unique) words produced 
at each stage (i.e., those words produced at a stage that were not present in any previous stage) of the child transcriptions and model’s learning, by a) syllabic length, 
b) frequency tertile, c) ND tertile and d) PP tertile across the two groups. For tertiles, 1 = lowest 33%, 2 = 33–67%, and 3 = highest 33%. Each datapoint represents a 
different child/model, with regression lines provided as summaries for each variable and group. Proportions are calculated over the overall number of words 
produced by each subject/model at each stage. Logarithmic curves better represented length, frequency and ND growth patterns. A linear fit better represented the PP 
growth patterns. 
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the models for different ND tertiles split into different word length ter
tiles; both before and after controlling for word length. As with PP 
above, we see an interaction between ND and word length (Fig. 4a). For 
both children and models, short words tend to be from dense neigh
borhoods and long words tend to be from sparse neighborhoods. Fig. 4b 
shows that when we control for word length (e.g., considering only four 
phoneme words when computing tertiles for four phoneme words), 
there is a consistent advantage for high ND words, in both the children 
and the models. 

In sum, the aim of study 1 was to determine whether the model could 
simulate four properties of human infant word learning, two of which 
(PP and ND) cannot be simulated by models or verbal theories that do 
not implement a role for sublexical knowledge in new word learning. 
The model simulated all four effects, including an unexpected effect in 
which both children and models seemed to favor low PP words over high 
PP words early in development. However, this was due to the fact that 
low PP words also tend to be short (Fig. 3a). When we controlled for 

word length, there tended to be an advantage for high PP words in both 
children and models. There was also a change in patterns for ND: ND 
declines as length increases, but once length is controlled (i.e., sepa
rating ND tertiles when only considering words of a particular length), 
there is a general advantage for words having high NDs. In the Sup
plementary Materials we also show how the models simulate children’s 
word learning for interactions of PP and frequency and ND and 
frequency. 

Thus, the effects of word length, word frequency, PP and ND, 
together with interactions between PP/ND and word length and be
tween PP/ND and word frequency, are simulated by a model that as
sumes children gain greater phonological knowledge from their 
experience with words, and use this knowledge in new word learning. 
All four effects can be explained in terms of how phonological knowl
edge is represented as chunks of sound sequences of varying lengths in 
the model. 

Fig. 2. a-d. Children and model comparisons when measures are computed using the maternal corpus. Each graph shows the proportion of new (unique) words 
produced at each stage (i.e., those words produced at a stage that were not present in any previous stage) for the child transcriptions and model’s learning, by a) 
syllabic length, b) frequency tertile, c) ND tertile and d) PP tertile across the two groups. For tertiles, 1 = lowest 33%, 2 = 33–67%, and 3 = highest 33%. Each 
datapoint represents a different child/model, with regression lines provided as summaries for each variable and group. Proportions are calculated over the overall 
number of words produced by each subject/model at each stage. Logarithmic curves better represented length, frequency, ND and PP growth patterns. 

Table 2 
Model and child comparison of growth patterns for each of the four measures and for each corpus (BNC or maternal corpus), using the best fit (linear or logarithmic) as 
determined in Table 1.  

Child vs Model Type Fit ΔAIC ΔBIC ΔDeviance ΔAdjR2  

Length BNC Log 9 [− 3, 25] 0 [− 13, 15.025] 13 [1, 29] − 0.001 [− 0.003, 0] 
Frequency BNC Log 21 [− 3, 88.538] 11 [− 13, 79.05] 25 [1, 92.538] − 0.001 [− 0.005, 0] 
Neighborhood density BNC Log 21 [− 3, 113.025] 11 [− 13, 103.025] 25 [1, 117.025] − 0.001 [− 0.008, 0] 
Phonotactic probability BNC Lin 22 [− 3, 96.513] 13 [− 13, 86.756] 26 [1, 100.513] − 0.002 [− 0.014, 0] 
Length Maternal Log 9 [− 3, 27.513] 0 [− 13, 17.513] 13 [1, 31.513] − 0.001 [− 0.004, 0] 
Frequency Maternal Log 127 [9.325, 203.05] 117 [− 0.675, 193.375] 131 [13.325, 207.05] − 0.006 [− 0.017, − 0.001] 
Neighborhood density Maternal Log 442 [116.438, 535.294] 432 [107.194, 526.294] 446 [120.438, 539.294] − 0.012 [− 0.023, − 0.005] 
Phonotactic probability Maternal Log − 2 [− 4, 43] − 12 [− 14, 33] 2 [0, 47] 0 [− 0.006, 0]  
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Experiment 2 

In the CLASSIC model, learning is faster for those words that can be 
represented using a few long chunks (reflecting prior learned knowledge 
of long sound sequences) as opposed to many short chunks (reflecting 
only knowledge of short sound sequences), even when the words are of 
the same length. This is because there are fewer chunks involved in 
ultimately learning the whole word. Thus, the model predicts that 
children will find it easier to learn new words that can be represented by 
long sound sequences that already exist in the child’s phonological 
repertoire. Work on nonsense word repetition supports this view, at least 

for individual sounds, where performance is superior for nonsense 
words that comprise sounds that have been attested in children’s prior 
productions versus those that do not (e.g., Keren-Portnoy et al., 2010; 
Schwartz & Leonard, 1982). 

In experiment 2, we therefore tested whether the size of the phoneme 
sequences that have been previously attested in the child’s productions 
influence how likely they are to learn, and thus produce, a new word. 
The maternal input contains words that children subsequently produce 
(i.e., there is definitive proof they have been learned) and also words 
that children do not produce (i.e., from the perspective of the transcripts 
alone, we have no evidence that they have been learned). Our 

Fig. 3. Mean proportion of word types produced by children (top) and learned by models (bottom) for each PP tertile by phonemic length. In (a) Tertiles are defined 
by grouping all words together regardless of length and then partitioning them into tertiles. In (b) Tertiles are defined by grouping all words of a particular phonemic 
length and then partitioning them into tertiles. In both figures T1 = lowest 33%, T3 = highest 33%. Error bars indicate the Standard Error of the mean. 

Fig. 4. Mean proportion of words produced by children (top) and learned by models (bottom), for each ND tertile by phonemic length. In (a) tertiles are defined by 
grouping all words together regardless of length and then partitioning them into tertiles. In (b) tertiles are defined by grouping all words of a particular phonemic 
length and then partitioning them into tertiles. In both figures T1 = lowest 33%, T3 = highest 33%. Error bars indicate the Standard Error of the mean. 
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hypothesis is that the probability of a child producing a newly presented 
word in their input increases in step with the size of the phoneme se
quences that are shared between the word and other words that have 
been produced by the child; in other words, longer previously produced 
phoneme sequences should be better able to “scaffold” the production of 
new words. Our prediction, therefore, is that those words that children 
produce from their maternal input will share larger phoneme sequences 
with other words in the child’s productive vocabulary than those words 
from the maternal input that are not produced by the child. 

We used the child data described in experiment 1 above, together 
with the mother data that was previously used to train the models. We 
first extracted all nouns that were used in the maternal input. We 
selected nouns because they are the most common word type produced 
by the children and also the most concrete word category (e.g., relating 
to objects), and because they constitute a strong test of our hypothesis 
because other aspects of the communication exchange (e.g., gestures, 
eye movements, semantics) are very likely to play a role in learning. We 
split the monosyllabic, bisyllabic and trisyllabic nouns4 produced in the 
maternal input into those that the child also produced (hereafter pro
duced-nouns) and those that the child did not produce (hereafter not- 
produced-nouns). Since produced-nouns also tend to be of higher fre
quency in the input than non-produced-nouns, we removed all high 

Fig. 5. Mean proportion of unique scaffolds (y axis) sharing phoneme sequences of lengths 2–5 phonemes (x axis) with a target noun from the maternal input that 
was either produced or not produced by children (N = 12). Error bars show the standard error of the mean. Data is shown for a) monosyllabic, b) bisyllabic and c) 
trisyllabic target nouns. Note: There were too few scaffolds containing phoneme sequences of 5 phonemes for monosyllabic target nouns (5 in the produced set and 8 
in the not produced set). 

Table 3 
Comparisons between produced-nouns and not-produced-nouns of different 
syllabic lengths and for scaffolds of 2, 3, 4, and 5 phonemes in length, for scaffold 
types and scaffold tokens. A scaffold length of 5 is omitted for monosyllabic 
targets due to the low number of applicable scaffolds. Holm’s correction for 
multiple comparisons was applied. Hedges’ g was used to compute effect sizes 
due to our small sample size and was computed using the R package effsize 
(Torchiano, 2020). In this package, the magnitude of the effect size is assessed 
using the thresholds provided in Romano et al. (2006), considering the absolute 
value of g: <.15 “negligible”, <.33 “small”, <.47 “medium”, otherwise “large”).  

Syllabic 
length 

Sequence 
length 

Scaffold types Scaffold tokens 

t p G t p G 

1 2 − 1.66 .567 − .68 .00 1 .00 
1 3 1.83 .521 .75 3.11 .061 1.27 
1 4 4.51 .005 1.84 .62 1 .25 
2 2 − 1.52 .569 − .62 − .68 1 − .28 
2 3 .37 1 .15 .95 1 .39 
2 4 3.72 .015 1.52 1.44 1 .59 
2 5 4.87 .003 1.98 4.62 .006 1.89 
3 2 .43 1 .18 1.08 1 .44 
3 3 2.50 .147 1.02 1.20 1 .49 
3 4 5.60 <.001 2.29 2.04 .486 .83 
3 5 3.54 .029 1.44 2.94 .106 1.20  

4 There were very few nouns longer than three syllables. 
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frequency produced-nouns: starting from the most frequent, nouns were 
excluded from the produced set until the produced set was equal in mean 
frequency to the set of not-produced-nouns. In all analyses, noun plurals 
were excluded (e.g., ball and balls were analyzed as one word type, ball). 

For each of the produced-nouns, we extracted all possible phoneme 
sequences of lengths 2, 3, 4 and 5 phonemes, where applicable 
(henceforth phoneme sequences). We then extracted every word con
taining those phoneme sequences that was produced by the child on, or 
prior to, the stage at which the produced-noun was first produced 
(henceforth, scaffolds). For example, if Anne first produced teddy (/t/eh/ 
d/iy) at stage 5, we considered as phoneme sequences /teh/, /ehd/, 
/diy/, /tehd/, /ehdiy/, and /tehdiy/. All words produced by Anne in 
stages 1–5 that contained these phoneme sequences were then included 
as scaffolds for teddy. We include the stage at which the produced-noun 
was first produced so that we could include all relevant scaffolding 
words but we exclude every instance of the produced-noun itself. Since 
not-produced-nouns will not have a stage at which they were produced, 
we considered all scaffolds that were produced on or before the average 
stage of the first production of nouns in the produced-nouns set. 

Produced-nouns can be acquired at different stages, so we needed to 
compute the proportion of scaffolds relative to all available word types. 
We did so by dividing the number of unique scaffolds by the total 
number of word types produced up to the noun production stage and 
computing an average proportion of scaffold types across produced- 
nouns for each child. We calculated two dependent variables - the 

number of different scaffolds in which phoneme sequences appeared 
(type frequency) and the frequency of the scaffolds (token frequency) – 
to see whether the number of different words in which scaffolds were 
produced was a key driver and/or the raw frequency by which scaffolds 
were produced. Note that token frequency was not double-counted (e.g., 
car shares with card two different phoneme sequences of length 2 pho
nemes, so only one of these was used in the calculation of token fre
quency for phoneme sequences of length 2 phonemes). 

We present data divided by word length to control for word length 
effects. For reference, the mean number of produced-nouns and not- 
produced-nouns (after matching for noun frequency) was 138 and 154 
for monosyllabic nouns; 158 and 220 for bisyllabic; and 50 and 108 for 
trisyllabic; the mean phonemic word lengths were 3.3 and 3.4, 5.1 and 
5.4, and 7.5 and 7.5 for monosyllabic, bisyllabic and trisyllabic 
produced-nouns and not-produced-nouns respectively. 

Fig. 5 shows the mean proportion of unique scaffolds (number of 
scaffold types) in children’s vocabulary sharing a phoneme sequence of 
length 2–5 phonemes with the produced-nouns and not-produced- 
nouns. Table 3 shows effect sizes and statistical comparisons for these 
data. As one can see, the produced set of nouns is almost always larger 
than the not-produced set when the noun shares a phoneme sequence of 
length three or more with scaffolds (Fig. 5) and the effect size is large for 
all but one comparison (Table 3). Significant effects (noting the small 
sample size) are also seen when scaffolds shared at least a four phoneme- 
long sequence. As predicted, produced-nouns shared longer phoneme 

Fig. 6. Mean proportion of scaffold tokens (y axis) sharing phoneme sequences of lengths 2–5 phonemes (x axis) with a target noun from the maternal input that was 
either produced or not produced by children (N = 12). Error bars show the standard error of the mean. Data is shown for a) monosyllabic, b) bisyllabic and c) 
trisyllabic target nouns. Note: There were too few scaffolds containing phoneme sequences of 5 phonemes for monosyllabic target nouns (5 in the produced set and 8 
in the not produced set, see Supplementary Materials). 
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sequences with other words in the child’s productive vocabulary than 
not-produced-nouns, and this held even for short (monosyllabic) nouns 
(see Fig. 5a). 

Fig. 6 shows the same data but calculated for scaffold tokens, with 
effect size and statistical comparisons shown in Table 3. Interestingly, 
differences between the produced and not-produced sets of nouns tend 
to occur at a longer phoneme sequence length than for the word type 
data above. Indeed, large effect sizes are only seen when the phoneme 
sequences shared between nouns and scaffold tokens are long (see 
Table 3), and while there were numerical differences for the frequency 
of scaffolds, all but one were not statistically significant (see Table 3). 
This suggests the number of different scaffold words sharing a phoneme 
sequence with a produced-noun is more critical than the raw frequency 
with which the scaffolding phoneme sequence has been produced by the 
child. 

Discussion 

We have demonstrated that a model which learns words by building 
up chunks of phoneme sequences can not only model the changing role 
of the input throughout development (Jones & Rowland, 2017), but can 
also successfully simulate four key features of the word learning process 
(frequency, word length, PP and ND effects). In addition, the model – to 
our knowledge – makes a unique prediction about which words are 
likely to be produced, based on the length, and number of phoneme 
sequences that it shares with previously produced (scaffolding) words, a 
prediction that was upheld in the children’s data. Taken together, these 
results provide strong support for the hypothesis that the phoneme se
quences that already exist in a child’s phonological repertoire play an 
important part in new word learning. 

These findings advance knowledge in four important ways. First, 
they suggest that the amount and type of knowledge already acquired at 
the point of learning has a major influence on how the child’s input is 
processed, and thus how new knowledge is acquired and integrated into 
long-term memory (for similar ideas about developmental cascades, see 
Karmiloff-Smith, 1998). Thus, theories that do not incorporate a role for 
existing, accumulating knowledge in driving developmental change are 
missing an important driver of acquisition. Second, they suggest that to 
simulate developmental changes in word learning, we need models that 
store linguistic knowledge at the sublexical, as well as the lexical level. 
Models that store linguistic knowledge only at the whole word level are 
unlikely to be able to explain the PP and ND effects we simulate here. 
Third, the findings demonstrate that the model’s learning architecture 
does not need to be complex to achieve these effects. CLASSIC has a 
relatively simple architecture; its key parameters are a chunk-based 
learning mechanism that learns by gradually chunking information in 
the model’s internal representational system on the basis of incoming 
input and a probabilistic processing constraint such that, on average, 
only a certain number of chunks can be encoded for any given input. 
Fourth, our results question the utility of PP and ND as indices of 
phonological knowledge and word learning more generally, showing 
instead that it is the (varied) grain size of phonological knowledge at the 
point of learning that is important (see also Jones, 2016; Szewczyk et al., 
2018). 

All the effects we see here fall out of two simple processes: a 
sequential learning mechanism operating on natural language input and 
a constraint on the amount of information that can be learned at any one 
time. Since phonological knowledge acquisition involves the gradual 
accumulation of larger and larger chunks of phoneme sequences in the 
model, short words are more likely to be learned before long words. This 
accumulation proceeds more rapidly for highly frequent words despite 
the fact that the model does not record word frequency per se (once a 
word is learned, the only further learning is for multi-word sequences 
involving the word), because more phonological knowledge is learned 
for those phoneme sequences that appear often, or across numerous 
words, in the input. Words with high PP are learned more quickly than 

words with low PP, once we control for word length, because their 
constituent sound sequences also accumulate more rapidly with 
increasing frequency of encounter. Words with high ND share a greater 
number of sound sequences with other words than do words with low 
ND and therefore phonological knowledge is learned more quickly for 
high ND words. In addition, the model’s learning, like the child’s, is 
affected by the interaction between these effects. When we do not 
control for length, we see that words with low PP seem to be acquired 
first both by the model and the child, simply because such words tend to 
be short. This also provides an explanation for apparent contradictions 
in the literature: studies that find a high PP advantage tend to focus on 
words of a particular length (e.g., Jusczyk, Luce & Charles-Luce, 1994) 
whereas those that find a low PP advantage test words at all lengths (e. 
g., Storkel, 2009). 

Our view is broadly consistent with several other views on children’s 
phonological word learning, although it differs in the source of such 
learning. The lexical restructuring hypothesis, for example, suggests that 
early word learning is holistic with segmental detail emerging based on 
exposure to words that sound similar to one another (i.e., neighbor
hood). The same end point is reached by CLASSIC but from bottom-up 
rather than top-down learning, since segmental detail is gradually 
built up over time in the form of phoneme sequence chunks, with larger 
chunks being learned where the model has been exposed to sequences 
appearing in many words (e.g., neighbors). Our view is also consistent 
with those models of word segmentation that give chunk-based expla
nations for the identification of word boundaries. 

It is important to highlight that our view dispenses with traditional 
definitions of ND and PP5, viewing both of these as operating at the 
wrong grain size (word-level and biphone-level respectively). Rather, 
both ND and PP largely depend upon the size of chunked phoneme se
quences, which in turn depends upon the extent of exposure to such 
sequences, be it from one word or many words. Both Schwartz and 
Leonard (1982) and Keren-Portnoy et al. (2010) have shown how 
nonsense words are produced more easily by infants when the nonsense 
words comprise sounds that have been attested in the infant’s pro
ductions, while work on older children shows that prior knowledge of 
sound sequences also influences production (e.g., Gathercole, 1995; 
Jones & Macken, 2018). In order to explore our view more fully, one 
could create nonsense words that hold ND, PP, and word length constant 
while manipulating the extent to which the nonsense words share 
phoneme sequences with other words. The expectation here is that the 
greater the number of words sharing a phoneme sequence, the easier the 
nonsense word will be to learn. If our view is supported, then it follows 
that children’s vocabulary learning can be facilitated by learning 
particular words that are ‘hubs’, or words that have sound sequences 
shared by many other words, since learning these words would help to 
subsequently learn other related words. 

It is also vital to acknowledge some of the limits of our model. 
CLASSIC implements just one of many potential models of word 
learning, so future work will need compare the predictions of our model, 
in which the input interacts with a chunk-based learning mechanism, 
with models that implement other types of learning mechanisms. For 
example, Storkel and Lee (2011) have suggested that PP and ND effects 
in four-year-old children can be explained in terms of broad cognitive 
mechanisms of retention and retrieval, such as triggering (allocating a 
new representation in memory), configuration (storing form and 
meaning) and engagement (integrating new and existing representa
tions); though note that the triggering hypothesis predicts that low PP 
words will be more easily learned than high PP words, which is not the 
case when you control for word length. It will also be important to see 
how this model fares against other models that simulate development 

5 Here we refer to the well-used definitions of a neighbor being a word that 
differs by the addition/substitution/deletion of one phoneme and PP being 
calculated based on biphones. 
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dynamically (e.g. Samuelson, Spenser & Jenkins, 2013). Perhaps more 
importantly, though, CLASSIC can only simulate the acquisition of the 
phonological form of words, not the mapping of this form to its correct 
semantic representation. This is an additional complex learning task that 
is also likely to be influenced by the nature of the linguistic knowledge 
already accumulated (see Borovsky et al., 2016, for a proposal that a 
word’s position and connectivity in developing semantic networks in
fluences acquisition; but also see the work by Hills and colleagues dis
cussed earlier showing that semantic influences may not be based on the 
current semantic knowledge held by the child). In addition, it is prob
able that the child’s developing semantic and syntactic knowledge, as 
well as her phonological knowledge, will affect the acquisition of 
phonological forms in turn (see Dautriche et al., 2018, for evidence that 
children learn homophones more easily when the meanings of the two 
forms are made distinct via semantic and syntactic context). We also 
acknowledge that our analyses are based on children’s productive vo
cabularies since the Manchester corpus does not include receptive vo
cabulary checklists. Unfortunately it is not straightforward to examine 
whether phonological knowledge also influences children’s receptive 
vocabularies because it requires the linguistic input that the child re
ceives during the period for which receptive vocabulary checklists are 
taken and we are not aware of any corpus that includes this information. 
The model also focuses on how the maternal input influences children’s 
spoken words, but ignores changes in maternal speech on the basis of the 
child’s own spoken words, such as a subsequent re-naming of a dummy/ 
pacifier as a ‘beebee’ based on the child re-naming the item. 

In summary, our work shows that knowledge of phoneme sequences 
of varying sizes influence subsequent word learning. In study one, we 
showed how such learning is able to capture effects of children’s word 
learning in terms of ND, PP, word length and word frequency without 
any need for mechanisms that capture traditional definitions of ND and 
without any explicit mechanism to monitor the sorts of frequency in
formation that are involved in PP and word frequency. Rather, the 
model simply creates larger and larger phoneme sequence chunks for 
phoneme sequences that occur frequently and it is this that enables the 
model to capture all four effects. This not only questions the utility of 
measures such as ND and PP but also shows how one of the most potent 
predictors of word learning – that of a word’s frequency – can be 
simulated without any monitoring of such frequency. In study two, we 
supported our view by showing how the words produced by two-year- 
old children were more likely to contain known phoneme sequences 
than those that were not produced by the children and that this was 
more likely to occur as the size of the known phoneme sequences 
increased. All told, this shows the critical nature of phoneme sequence 
knowledge in children’s word learning. In order to simulate key features 
of child word learning, it is crucial that we build models that incorporate 
a role for the effect of developmental change on the learning process 
itself; models in which learning is influenced by the nature of the current 
lexical and sublexical knowledge stored in the child’s developing lexicon 
at the fleeting moment when learning occurs. 
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