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1 Introduction

This paper completes the work started in [1], constructing the exceptional field theory for the
Kac–Moody group E9. Exceptional field theories (ExFT) are the duality covariant formulations
of maximal supergravity built on the exceptional hidden symmetry groups En that arise in di-
mensional reduction of eleven-dimensional (or type IIB) supergravity [2–5]. En ExFT is based
on a split of the coordinates of eleven-dimensional supergravity into D external and n = 11 − D
internal coordinates. The latter are embedded into an extended space-time with coordinates
transforming in a representation of the exceptional group En. The original physical coordinates
are recovered as the solution of an En covariant section constraint that constrains the coordinate
dependence of all fields and gauge parameters. On the extended space-time, the original geomet-
ric diffeomorphisms and gauge symmetries are unified into generalised diffeomorphisms [6–18]
which provide the central symmetry structure organising and defining the theories.

Exceptional field theories have been constructed for all finite-dimensional duality groups, i.e.
for n ≤ 8, and D ≥ 3 external dimensions [19–26]. The resulting actions are modelled after
the structure of D-dimensional maximal (gauged) supergravities, with all fields living on the full
extended space-time (subject to the section contraint) and the non-abelian gauge structure of D-
dimensional supergravity replaced by the infinite-dimensional algebraic structure of generalised
diffeomorphisms. In particular, the scalar fields parametrise the coset space En/K(En) and
couple via a (gauged) sigma-model on this space, where K(En) is the maximal compact subgroup
of En.

For n = 9, the group E9 is the infinite-dimensional affine group that appears as the global
symmetry of maximal two-dimensional supergravity [27, 28], generalising the Geroch group in
the reduction of four-dimensional Einstein gravity [29–32]. The affine Lie algebra e9 of E9 is
by definition the sum of the centrally extended loop algebra ê8 over e8 and a one-dimensional
derivation algebra.1 The study of the internal sector of ExFT based on this affine algebra was
initiated in [17] with the construction of generalised diffeomorphisms acting on fields whose
internal coordinates Y M transform in the basic lowest weight representation R(Λ0)−1 of E9,
and a section constraint of the generic form

Y MN
P Q ∂M ⊗ ∂N = 0 (1.1)

where Y MN
P Q is the E9 invariant tensor (3.3). In E9 ExFT, all fields live on the full extended

space-time with two external coordinates xµ and internal coordinates Y M , subject to the section
constraint (1.1).

1We denote the derivation of e9 by d and it is related to the Virasoro generator L0 by d = L0 + h in a module

of weight h ∈ C.

2



In a first paper [1], we have constructed the internal part of the action of E9 ExFT, usually
referred to as the potential, as a scalar field Lagrangian invariant under generalised diffeomor-
phisms. More precisely, this is the truncation of ExFT obtained after dropping all dependence
on the two external coordinates xµ and truncating the gauge fields. The goal of this paper is to
extend this construction to the full E9 exceptional field theory.

With respect to its lower-rank cousins, E9 ExFT comes with a number of additional technical
challenges. First of all, the affine nature of the duality group requires all bosonic objects to
appear in infinite-dimensional representations. This is reflected by the scalar fields parametrising
the infinite-dimensional coset space

Ê8 ⋊
(
R+

L0
⋉ RL−1

)

K(E9)
, (1.2)

where Ê8 denotes the centrally extended loop group over E8, and the factor R+
L0

⋉ RL−1 is
obtained by exponentiating the Virasoro generators L0 and L−1.

Secondly, while the ExFT field content in generic dimensions is largely based on D-dimen-
sional maximal supergravity as imposed by the tensor hierarchy [33–35], closure of the gauge
algebra in general requires the introduction of additional p-forms of rank p ≥ D − 2. These
additional fields are covariantly constrained by algebraic conditions analogous to the section
contraint (1.1). For sufficiently large D, the constrained fields may not be visible at the level
of the Lagrangian, but starting from D ≤ 4, they become an inevitable part of the dynamical
equations of exceptional field theory. In particular, for D = 2, such constrained fields appear
in all sectors of the theory. Indeed, the results of [1] show that the construction of an invariant
scalar potential requires the coupling of an additional scalar field χM obeying the algebraic
constraints

Y MN
P Q χM ⊗ ∂N = 0 = Y MN

P Q χM ⊗ χN , (1.3)

analogous to (1.1). Similarly, the gauge fields

Aµ = (AM
µ , Bµ

M
N ) , (1.4)

combine vectors AM
µ transforming in the basic lowest weight (coordinate) representation R(Λ0)−1

of E9 with vector fields Bµ
M

N constrained in their last index analogously to (1.3). The set of vec-
tor fields (1.4) reflects the structure of gauge parameters of E9 generalised diffeomorphisms [17].

Thirdly, as known from the lower-rank exceptional field theories, their construction in an
even number of external dimensions D is typically hampered by the fact that in D-dimensional
supergravity only a subgroup of the duality group En is realised off-shell while the full duality
group is only realised on the equations of motion. The most straightforward construction of the
ExFT dynamical field equations thus draws on a manifestly duality invariant pseudo-Lagrangian
which must be supplemented by a set of first order (self-)duality equations, in the spirit of the
so-called democratic formulation of supergravity theories [36]. In two-dimensional maximal
supergravity, the Lagrangian only depends on the 128 propagating scalar fields parametrising
E8/Spin(16), the dilaton ρ associated to L0, and the conformal factor σ of the external metric,
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associated to the central charge K. The infinitely many fields parametrising the coset space (1.2)
are defined on-shell by virtue of an infinite set of duality relations typically formulated in terms of
a linear system [30–32,28] and its expansion in terms of a spectral parameter. In order to reflect
these structures, E9 ExFT will be based on a manifestly duality invariant pseudo-Lagrangian
which features all the scalar fields parametrising (1.2), together with duality equations relating
them to the physical ones. However, the spectral parameter of the linear system introduced
in [31,32] depends on the D = 2 space-time coordinates, a property that is a priori incompatible
with the definition of fields in E9 lowest weight modules like AM

µ in ExFT. This was not yet
an issue in the construction of the ExFT scalar potential [1] which corresponds to a truncation
of the theory in which all duality equations are consistently projected out. It will, however,
be relevant in the construction of the full dynamics, and one of the main achievements of this
paper will be to show that the ExFT duality equations reproduce the Breitenlohner–Maison
linear system.

From the above discussion and the algebra of generalised diffeomorphisms, one might expect
that the fields of E9 ExFT comprise the coset scalar fields in (1.2), the unimodular metric
g̃µν , the constrained field χM and the vector fields (1.4). We will indeed define a minimal
formulation of the theory featuring these fields (in the gauge in which the scalar fields lie in
E9/K(E9), i.e. with the L−1 scalar ρ̃ = 0), as well as a single additional one-form field χµ.
However, the relation of the E9 ExFT duality equation to the Breitenlohner–Maison linear
system cannot be unraveled in this minimal formulation. This can be resolved by adopting
a formulation of the Breitenlohner–Maison linear system that circumvents the problem of the
space-time dependent spectral parameter through the introduction of scalar fields in the negative
Virasoro group [37, 38], enlarging the scalar target coset space (1.2) to

Ê8 ⋊ Vir−

K(E9)
, (1.5)

where Vir− is the group associated to the algebra vir− = 〈Ln|n ≤ 0〉. We shall define a Virasoro-
extended formulation of E9 ExFT, in which the algebra of generalised diffeomorphisms is based
on Ê8 ⋊ Vir−. The set of vector fields is enlarged accordingly, with one vector field B(n)

µ
M

N

associated to each negative Virasoro generator L−n. The truncation of the Virasoro-extended
formulation of ExFT to D = 2 supergravity (via the trivial solution of the section constraint)
will be shown to reproduce the Breitenlohner–Maison linear system in the formulation of [37,38].

The scalar fields in (1.5) are parametrised by the coset representative

V = ΓV̂ = ρ−L0 e−φ1L−1 e−φ2L−2 · · · V̊ eY1AT A
−1 eY2AT A

−2 · · · e−σK (1.6)

upon introducing an additional infinite tower of scalar fields φn associated with the negative
half of the Virasoro algebra. The fields ρ and φn combine into the Γ-factor in (1.6) whose
presence replaces the space-time dependent spectral parameter of the standard linear system on
(1.2) [31, 32]. The E8-valued matrix V̊ in (1.6) carries the propagating scalar fields of D = 2
maximal supergravity while the negative mode generators T A

−n of the loop algebra are associated
with the infinite tower of dual potentials defined by the linear system.
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The first-order duality relations encoding the ExFT scalar field dynamics are most compactly
formulated in terms of the covariant currents

Jµ = M−1DµM = Jµ αT α =
∑

m∈Z

( Jµ
m
A T A

m + Jµ m Lm ) + Jµ K K . (1.7)

obtained from the generalised metric M = V†V, and explicitly expanded in terms of the gen-
erators of Ê8 and the full Virasoro algebra. As standard in ExFT, the covariant derivative Dµ

employs the vector fields (1.4) (and a tower of Virasoro descendants B(n)
µ

M
N of the constrained

vectors) to gauge the action of Virasoro-extended E9 generalised diffeomorphisms. Its explicit
connection is defined in (4.6) in the main text. From (1.7), one may define a tower of shifted
currents

J(m)
µ = S0

(
Γ−1Sm(ΓJµΓ−1) Γ

)
+ χγ

µ,mK , (1.8)

where the operators Sm shift the mode number of the Ê8 loop generators and the Virasoro
generators by m units and project out the component along the central charge K, while Γ is
the Vir− part of the coset representative (1.6). Covariance of the shifted currents (1.8) under
rigid Ê8 ⋊ Vir− requires the introduction of a tower of new (external) one-forms χγ

µ,m as their
K components.2 This is in complete analogy to the appearance of the constrained scalar field
χM (1.3) in the shifted current along internal derivatives which was introduced in [1] to define
the ExFT scalar potential. As a key result of this paper, we obtain the ExFT scalar twisted
self-duality equation in the form

⋆J = J(1) , (1.9)

where ⋆ denotes Hodge duality with respect to the unimodular two-dimensional metric in confor-
mal gauge g̃µν = ηµν . Upon dropping internal derivatives and gauge fields, the duality equation
(1.9) reduces to a linear system for the field equations of D = 2 supergravity. The standard form
of the linear system [31, 32] is recovered after integrating the vir− part of the duality equation
in order to obtain polynomial expressions for the additional scalar fields φm in (1.6) in terms of
the fields ρ and ρ̃ ∼ φ1 parametrising the R+

L0
⋉ RL−1 factor in (1.2).

Next, we construct in this paper a pseudo-Lagrangian which together with (1.9) determines
the full dynamics of E9 ExFT. According to the general structure of gauged supergravity in D =
2 dimensions [39], and more generally to the structure of two-dimensional gauged sigma models
with WZW terms [40], the full Virasoro-extended E9 ExFT pseudo-Lagrangian is expected
to extend the potential term of [1] by a topological term coupling the currents of the coset
space (1.5) to the gauge fields, as well as by a suitably gauged version of the linear system of
duality equations. The pseudo-Lagrangian consists accordingly of the potential term of [1] and
a topological term written as a top-form:

ρ−1Ltop = Dχγ

1 −
1
2

ωαβJα ∧ J(1)
β −

4
3

∞∑

n=2

(n3 − n)Pn ∧ (Pn+1 + Pn−1)

+
∞∑

n=1

Pn ∧ (χγ

1+n − χγ

1−n) + χγ

M,1 FM + F̂γ

1 + MF̂γ

1 . (1.10)

2The superscript γ is not an index, but rather a label related to the Γ conjugation in (1.8), see Section 4.
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The various ingredients are defined and detailed in Section 4. In particular, the covariant
derivative of χγ

1 = χγ

µ,1dxµ is defined in (4.58). The second term in (1.10) is the gauged WZW-
like term and carries the algebra cocycle ωαβ corresponding to the central charge component of
the commutator

ωαβJµ α J(1)
ν β = −[Jµ, J(1)

ν ]
∣∣
K . (1.11)

The currents Pµ n = 1
2 (DµΓΓ−1)−n for n ≥ 1 are defined as the vir− components of the Maurer–

Cartan form from (1.6). The field χγ

M,1 in (1.10) is related by the field redefinition (4.76) to the
field χM appearing the potential in [1]. Finally, the last three terms in (1.10) are proportional
to the non-abelian field strengths

Fµν = (FM
µν , G(k)

µν
M

N ) , k ∈ N+ , (1.12)

of the gauge fields (1.4) (and their Virasoro-extensions). Their precise expressions are given
in (4.42) and (4.45) below. Remarkably, the full ExFT pseudo-Lagrangian, after gauge-fixing
φn → 0 for the vir− scalar fields at n ≥ 2, is simply given by the combination

Lext = Ltop − ⋆V , (1.13)

of the topological term (1.10) with the potential V constructed in [1]. In their most explicit
form, these two terms are given in (4.81) and (4.82) below. In particular, this pseudo-Lagrangian
does not carry a traditional kinetic term for the scalar fields.

In order to make contact with the lower-rank exceptional field theories and to match the
field equations with those of eleven-dimensional (and type IIB) supergravity, it turns out to
be convenient to pass eventually from the Virasoro-extended to the minimal formulation of E9

ExFT in which not only the vir− scalar fields φn are gauge fixed to zero, but also the infinite
tower of constrained and auxiliary one-forms {B(n)

µ
M

N , χγ

µ,n} featuring in (1.10) is integrated
out in favour of the original gauge fields (1.4) and a single auxiliary one-form χµ. Although
we shall prove that the minimal and Virasoro-extended formulations of the theory describe the
same dynamics, these two formulations differ in structure and will be discussed separately. In
particular, the current J in the minimal formulation is valued in the Lie algebra of the group
Ê8 ⋊ (R+

L0
⋉ RL−1) which is not closed under Hermitian conjugation unlike the current (1.7).

In this formulation, we relax the conformal gauge and consider an arbitrary unimodular metric
g̃µν , thereby allowing for the definition of external diffeomorphisms. To distinguish the currents
in the two formulations we will use a different notation, with the minimal formulation current

Jµ = Jµ αT α =
∑

m∈Z

Jµ
m
A T A

m + Jµ 0 L0 + Jµ −1 L−1 + Jµ K K . (1.14)

In particular, Jµ K depends explicitly on the unimodular metric g̃µν , see (5.34), and Jµ −1 =
Bµ

M
M . The duality equation takes the form of a twisted self-duality

J = ρ−1 ⋆ M−1(S1(J ) + χK)†M , (1.15)

associated to an E9 invariant symmetric bilinear form. The resulting pseudo-Lagrangian, now
written as a density, takes the form

Lmin = L1 + L2 +
1
4

ρ εµνεσρg̃κλDµg̃σκDν g̃ρλ +
ρ−1

4
MMN ∂M g̃µν∂N g̃µν − V , (1.16)

6



where L2 is a topological term similar in structure to (1.10), whereas L1 depends explicitly
on the metric g̃µν and plays the role of a kinetic term. They are defined below in (5.45) and
(5.46) and their variation with respect to Bµ

M
N is the contraction of the duality equation

(1.15) with δBµ
M

N . The pseudo-Lagrangian (1.16) is a sum of terms separately invariant under
internal diffeomorphisms, whose relative coefficients are determined by external diffeomorphism
invariance, as is usually the case in ExFT. The invariance of the system of equations under
external diffeomorphisms, including the duality equation (1.15), requires us to consider the
additional equation

FM = ⋆ρ−1T αM
N MNP J −

P α , (1.17)

in its entirety while it only appears as an Euler–Lagrange equation contracted with the con-
strained variation δχM . The shifted internal current J −

M α is defined in (5.47) as in [1].
Upon partially solving the section constraint (1.1), most of the components of the duality

equation (1.15) simply determine the non-vanishing components of the vector field Bµ
M

N . All
the solutions to the constraint (1.1) can be mapped under E9 to a form compatible with the
parabolic gauge (1.6), such that the fields only depend on the D = 3 external coordinates and the
248 internal coordinates of E8 ExFT. Using this solution and integrating out the unconstrained
components of Bµ

M
N one obtains that the pseudo-Lagrangian (1.16) becomes equivalent to the

one of E8 ExFT [22]. This proves that the dynamics of the theory reproduces the one of eleven-
dimensional supergravity or type IIB supergravity depending on the choice of solution to the
section constraint, confirming the dynamical content of the pseudo-Lagrangian (1.16).

The rest of this paper is organised as follows: In Section 2, we review the algebraic struc-
tures and how they appear in two-dimensional ungauged supergravity through a (Virasoro-
extended) linear system. Section 3 describes the structure of E9 generalised diffeomorphisms
and the associated gauge fields, including their Virasoro-extensions. In Section 4, we construct
the Virasoro-extended E9 ExFT by first determining a gauge-invariant topological term. The
Virasoro-extended topological term can be gauge-fixed and combined with the potential term.
The minimal formulation is presented in Section 5 where the gauge-fixing is used to reduce the
formulation of E9 ExFT to a finite set of fields. In this formulation, we moreover study external
diffeomorphisms and show consistency with E8 ExFT. Because the two formulations of E9 ExFT
are different in structure, we have exposed them in a way that can be read independently, so
that in particular Section 4 is not a prerequisite to Section 5 from 5.2 onwards. The equivalence
of the two formulations is proved in Section 5.1. In Section 6, we discuss possible applications
and generalisations of our results. Several appendices contain additional technical details.

2 Preliminaries on D = 2 supergravity and algebraic structures

In this section, we fix our notation for E9 and its extension by Virasoro generators. We also
review the so-called linear system [29–32,28] of the bosonic part of D = 2 maximal supergravity
and how the affine symmetry arises. In Section 2.3, we discuss a less well-known extension [37,38]
of the linear system that also features the Virasoro algebra.
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2.1 E9, its Lie algebra and Virasoro extension

The split real affine Kac–Moody algebra e9 has the basis T A
m, K and d with non-trivial commu-

tation relations
[
T A

m, T B
n

]
= fAB

CT C
m+n + m ηABδm,−nK ,

[
d, T A

m

]
= −mT A

m . (2.1)

The element K is central in the Lie algebra and the indices A, B, C = 1, . . . , 248 parametrise the
adjoint of the underlying exceptional e8 Lie algebra where e8 is realised as a subalgebra by only
considering the elements T A

0 and has the Killing form ηAB . The mode number index m ∈ Z
arises from the loop algebra construction of affine Lie algebras [41, 42]. The element d is called
the derivation. We shall also encounter the centrally extended loop algebra

ê8 = 〈T A
m , K〉 (2.2)

that differs from e9 by the omission of the derivation d.
Lowest weight representations, denoted by R(Λ)h, are determined by giving a weight Λ of ê8

and a conformal weight h. The latter corresponds to the eigenvalue under d while Λ summarises
the eigenvalues under the Cartan subalgebra of ê8, that consists of the Cartan subalgebra of e8

and K. The most relevant instance for us is the so-called basic representation R(Λ0)h that is
constructed in Fock space notation from an e8-invariant ground state |0〉

T A
0 |0〉 = 0 , K|0〉 = |0〉 , d|0〉 = h|0〉 . (2.3)

The lowest weight condition means that T A
n |0〉 = 0 for n > 0 and the module is the unique

irreducible quotient obtained by acting with T A
n for n < 0 on the ground state.

The Kac–Moody group associated with e9 will be denoted by E9 and we refer to Appendix F
for a discussion of some of the subtleties arising when defining this infinite-dimensional group.
The subgroup that is generated by only T A

m and K is the centrally extended loop group and
denoted by Ê8 in this paper.

The Sugawara construction [43,42] provides an infinite set of additional Virasoro generators
Lm (m ∈ Z) acting on any lowest weight module R(Λ)h. These generators satisfy the Virasoro
algebra

[Lm, Ln] = (m − n)Lm+n +
cvir

12
m(m2 − 1)δm,−nK (2.4)

where the Virasoro central charge is determined by Λ. For the basic representation we have
cvir = 8. The commutation relations with the ê8 generators in this representation are

[
Lm, T A

n

]
= −nT A

m+n , [Lm, K] = 0 , (2.5)

and we see that the action of L0 agrees with that of d and they can be related in the lowest
weight representation as d = L0 + h.

Denoting the Virasoro algebra by vir = 〈Lm | m ∈ Z〉, we can form the extended algebra

ê8 h vir , (2.6)
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where the symbol h indicates a semi-direct sum of Lie algebras since the Virasoro algebra acts
on ê8 according to (2.5). We shall denote the generators of ê8 h vir collectively as T α, so that
this index runs over ê8 and vir. For any fixed m ∈ Z we define an ê8-invariant bilinear form by

ηm αβT α ⊗ T β =
∑

n∈Z

ηABT A
n ⊗ T B

m−n − Lm ⊗ K − K ⊗ Lm . (2.7)

For m = 0, this form coincides with the standard non-degenerate bilinear form e9 when identi-
fying L0 with d. In this case we simply write ηαβ ≡ η0 αβ .

We shall also use the so-called shift operators Sm for m ∈ Z that are defined on ê8 h vir by

Sm(K) = 0 , Sm(Ln) = Lm+n , Sm(T A
n ) = T A

m+n , (2.8)

which implies that

η(n+m) αβT α ⊗ T β = ηn αβT α ⊗ Sm(T β) − Ln+m ⊗ K . (2.9)

The shift operators are not invariant under ê8 and their properties are discussed in more detail
in [1] and in Appendix B. Therefore, when we define a shifted object we may want to introduce
its K completion, such that the completed expression transforms as an algebra-valued object.
This will be explained in Section 4. Notice that the definition for S0 differs from that in [1].
There, we defined S0(K) = K while in this paper we find it convenient to use S0(K) = 0.

Finally, we define the Hermitian conjugates of the generators of ê8 h vir in the basic repre-
sentation R(Λ0)h by

L†
n = L†

−n , K† = K , T A†
n = ηABT B

−n . (2.10)

Writing the Kac–Moody group as E9, this defines a unitary subgroup K(E9) consisting of the
elements k that satisfy kk† = k†k = 1 when acting on R(Λ0)h. Under Hermitian conjugation
the shift operators transform as

Sm(X†) =
(
S−m(X)

)† , X ∈ ê8 h vir . (2.11)

2.2 D = 2 supergravity and the linear system

In this section we review how the infinite-dimensional algebras presented above appear as
symmetries of two-dimensional supergravity [29–32, 28]. The entire discussion applies to two-
dimensional gravity coupled to a dilaton and scalars in a non-linear sigma model on a coset
space G/H based on a simple Lie group G. This includes the dimensional reduction to two
dimensions of pure D = 4 General Relativity, with G/H = SL(2)/SO(2), as well as reduc-
tions of many supergravity theories. For definiteness, we will take G/H = E8/Spin(16) as it
appears in maximal supergravity, but all the results are easily generalised to the other cases.
We thus begin with (ungauged) maximal supergravity in three dimensions, whose bosonic field
content comprises a metric and scalar fields parametrising the symmetric space E8/Spin(16).
Dimensionally reducing to two dimensions, the metric decomposes as3

ds2
3D = e2σ g̃µνdxµdxν + ρ2(dϕ + wµdxµ)2 (2.12)

3Notice that there is no notion of Einstein frame in two-dimensional gravity. The metric we present is thus

just the dimensional split of the three-dimensional Einstein frame metric.
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where g̃µν is the two-dimensional unimodular metric with det g̃ = −1, e2σ is the conformal factor,
ϕ is the Kaluza–Klein coordinate, and all fields only depend on the two-dimensional space-time
coordinates xµ. The vector field wµ is non-dynamical and we set it to zero in this section. The
field ρ is a scalar in two dimensions and referred to as the dilaton. The E8/Spin(16) scalar fields
are encoded in a coset representative V̊ (x) which transforms as

V̊ (x) → h̊(x)V̊ (x)̊g , g̊ ∈ E8 , h̊(x) ∈ Spin(16) . (2.13)

The equations of motion are phrased in terms of the coset and Spin(16) components of the
Maurer–Cartan form

dV̊ V̊ −1 = P̊ + Q̊ , P̊ = (P̊ )T , Q̊ = −(Q̊)T . (2.14)

The symbol T denotes transposition in e8, i.e. the anti-involution that singles out the maximal
compact subalgebra so(16) and it agrees with restriction of the Hermitian conjugation defined
in (2.10) to T A

0 . The scalar field ρ is free:

d ⋆ dρ = 0 , (2.15)

where ⋆ denotes Hodge duality with respect to the unimodular metric g̃µν .4 The equations of
motion for the E8 scalars are

d ⋆ (ρ V̊ −1P̊ V̊ ) = 0 (2.16)

and finally the conformal factor is entirely specified by the Virasoro constraint which is most
easily written in conformal gauge g̃µν = ηµν and light-cone coordinates x± such that η+− =
η−+ = 1 and η±± = 0:

∂±σ ∂±ρ −
1
2

∂±∂±ρ −
1
2

ρ ηAB P A
± P B

± = 0 . (2.17)

There is also a second-order equation for σ, which is implied by the other ones

∂+∂−σ +
1
2

ηABP A
+ P B

− = 0 . (2.18)

Equation (2.15) implies that we can define a dual scalar field ρ̃ such that

dρ̃ = ⋆dρ . (2.19)

Combining this relation with (2.16) we can construct infinitely many scalar fields dual to the
currents P̊ . The first of these duality relations reads

dY1 = 2ρ V̊ −1 ⋆P̊ V̊ , (2.20)

and the whole tower is best encoded into a linear system which we now describe in the form
given in [32, 28].

4We use conventions such that ⋆1 = dx0 ∧dx1. For one-forms we have (⋆ω)µ = g̃µνενρωρ with ε01 = 1 = −ε01.
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We introduce a (constant) spectral parameter w ∈ C and define an E8 valued function V̂ (w)
with the requirement that it reduces to V̊ as w → ∞:5

V̂ (w) ∈ E8 , lim
w→∞

V̂ (w) = V̊ . (2.21)

Then, equations (2.15) and (2.16) imply integrability of the linear system6

dV̂ (w)V̂ −1(w) = Q̊ −
1 + γ

2

1 − γ2 P̊ −
2γ

1 − γ2 ⋆P̊ . (2.22)

In order to reproduce the ρ factor in (2.16), γ must be a space-time dependent function of ρ and
ρ̃ and satisfy

dγ

γ
=

1 + γ
2

1 − γ2 ρ−1dρ +
2γ

1 − γ2 ρ−1dρ̃ , (2.23)

which is solved by

γ± =
1
ρ

(
s(w) − ρ̃ ±

√
(s(w) − ρ̃)2 − ρ

)
, γ = γ+ =

1
γ−

. (2.24)

Here, s(w) is an integration constant through which γ depends on the spectral parameter. The
simplest choice compatible with the asymptotics described below is

s(w) = w , (2.25)

which we will use in the remainder of this section. More general choices are possible and we will
make use of this fact later.7 Because of the square root, the function γ then defines a double
covering of the w plane. The two sheets correspond to two solutions of (2.22) that are analytic
continuations of each other and are captured by writing

V̂ (w) = V
(

γ(w)
)

. (2.26)

It is then straightforward to see that if V
(

γ(w)
)

satisfies (2.22), so does V −T(1/γ(w)
)
, where

V −T = (V T)−1. We then have that the monodromy matrix

M(w) = V T(1/γ(w)
)
V
(

γ(w)
)

(2.27)

is symmetric, single-valued in w and constant, i.e. independent of the space-time coordinates
xµ as a consequence of (2.22). The monodromy matrix entirely specifies a solution of the linear
system. It can be acted upon by constant elements of the loop group over E8, namely E8-valued
functions of the spectral parameter:

M(w) → gT(w) M(w) g(w) , g(w) ∈ E8 . (2.28)
5Dependence on the space-time coordinates xµ is understood.
6The negative signs in (2.22) may appear unusual compared to the expression in [32]. The explanation is that

the γ parameter we use here corresponds to 1/t there.
7The meaning of the symbols s and w here is changed with respect to [32]. Also notice that [32] is in Euclidean

signature, which causes some further sign flips with respect to our discussion here.
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This defines the global Ê8 symmetry of the model. For compatibility with (2.21), we require
V
(

γ(w)
)

to be expandable as a series in γ and reduce to V̊ as γ → ∞. Then, the right Ê8

action on V
(

γ(w)
)

must be compensated on the left by a local transformation that preserves its
regularity properties:

V
(

γ(w), x
)

→ h
(

γ(w), x
)

V
(

γ(w), x
)

g(w) , h
(

γ(w), x
)

= h−T(1/γ(w), x
)

. (2.29)

where we have denoted explicitly which objects are space-time dependent (and γ itself is space-
time dependent through ρ and ρ̃). The compensating transformation belongs to one K(E9) =
K(Ê8) subgroup of Ê8 and leaves the monodromy matrix invariant. It is defined in terms of a
field-dependent anti-involution which acts by inversion of γ(w) and differs from the Hermitian
conjugation we introduced in (2.10) which, in the spectral parameter representation, acts by
inversion of w. This distinction will become relevant in the next section. We see that V

(
γ(w)

)

is a coset representative for Ê8/K(E9). The conformal factor eσ also transforms under Ê8,
compatibly with (2.17), in terms of a group cocycle that defines the central extension of Ê8.

An infinite tower of dual fields and the associated duality equations generalising (2.20) are
obtained by expanding (2.22) around w → ∞ with8

V
(

γ(w)
)

= V̊ eY1AT A
−1 eY2AT A

−2 eY3AT A
−3 · · · . (2.30)

Where we have defined
T A

m = wmT A (2.31)

with T A a basis of generators for e8. We then see that the generators T A
m with m < 0 correspond

to shifts of the dual Ym potentials that do not affect the physical fields in V̊ . Positive loop level
generators T A

m with m > 0, instead, correspond to hidden symmetries that mix V̊ with the dual
potentials.

There are three more global symmetry generators manifest in the linear system: a rescaling
of ρ combined with appropriate rescalings of the Ym fields, captured by the action of the L0

generator

L0 = −w
∂

∂w
, (2.32)

a shift of ρ̃ corresponding to the choice of integration constant in (2.19) combined with a redef-
inition of the Ym fields captured by the Virasoro generator

L−1 = −
∂

∂w
, (2.33)

and finally a constant shift of σ corresponding to the choice of integration constant in (2.17),
corresponding to K. Notice that the generators L0, L−1 do not commute with the loop algebra
but normalise it.

8We provide more details on the definitions of Kac–Moody groups associated to a give Kac–Moody algebra in

Appendix F.
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2.3 Extended coset and twisted self-duality

In order to make contact with exceptional field theory, it is desirable to rewrite the linear
system in a form that is manifestly covariant under all the global symmetries described above
and independent of the K(E9) gauge. Such a form should also incorporate the duality equation
between ρ and ρ̃ on the same footing as the ones for the Ym fields. Furthermore, we will
need to write our coset representatives and currents in a lowest weight representation of E9.
The natural definition of the maximal unitary subgroup K(E9) will then be in terms of the
Hermitian conjugation (2.10) — corresponding here to the inversion w → 1/w combined with
E8 transposition, rather than the field-dependent involution defined in (2.29). These issues are
addressed by extending the group theoretical structures found so far and rephrasing the linear
system as a twisted self-duality constraint on an enlarged set of dual fields.

This approach follows [37,38] with several adaptations. It is based on the similarity between
(2.23) and (2.22) and the association of ρ and ρ̃ with the Virasoro generators L0 and L−1. The
basic idea is to regard γ(w) as a diffeomorphism on the w plane. Infinitesimally, such changes
of variables are generated by the Virasoro elements

Lm = −wm+1 ∂
∂w

. (2.34)

There are some issues with such an interpretation, because the naive exponentiation of the
Virasoro algebra does not form a group [44]. This is reflected for instance in the fact that (2.24)
with s = w defines a double covering of the w plane and hence while γ

−1(w) is well defined, the
double inverse is not unique. To circumvent these issues, we shall focus only on the behaviour
of fields and group elements around w → +∞. We shall consider redefinitions of the spectral
parameter that preserve the asymptotics at +∞, namely we consider only transformations of
the form

w → f(w) = f−1w + f0 + f1w−1 + f2w−2 + . . . (2.35)

with real coefficient and with f−1 > 0. It is not necessary for the power series to converge
(i.e., we accept formal power series). Group multiplication is given by composition of two such
transformations, and the coefficients of the inverse of (2.35) are finite expressions, uniquely
determined order by order in terms of the fi. There is a one-to-one correspondence between
(2.35) and (formal) products of exponentials of the non-positive part of the Virasoro algebra:

F −1w = f(w) , F −1 = · · · e− f1
f−1

L−2 e− f0
f−1

L−1 (f−1)−L0 , (2.36)

where each exponent is a rational function of finitely many fi, whose explicit expression we will
not need. We shall denote vir− the algebra generated by Lm with m ≤ 0 and by Vir− the group
we just described. The function (2.24) belongs to this set when expanded around w → +∞, so
that we can write close to w → +∞

1
ρ

(
s(w) − ρ̃ ±

√
(s(w) − ρ̃)2 − ρ

)
=

2s(w)
ρ

−
2ρ̃
ρ

−
ρ

2s(w)
−

ρ ρ̃
2s(w)2 + . . . (2.37)
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where we now also allow the integration constant s(w) to take a more general form than just
s(w) = w, compatibly with the regularity properties of V̂ (w) stated above, so that

s(w) = s−1w + s0 + s1w−1 + s2w−2 + . . . (2.38)

with s−1 > 0.9 Namely, s(w) is itself a (constant) element of Vir−.
The key point of this reformulation is to regard γ(w) as an arbitrary space-time-dependent

element of Vir−, which we shall write as

Γ−1 = · · · eφ3L−3 eφ2L−2 eφ1L−1 ρL0 , γ(w) = Γ−1w =
w
ρ

−
φ1

ρ
−

φ2

ρ w
−

φ3

ρ w2 + . . . (2.39)

where φm(x), m > 0 are infinitely many scalar fields generalising the dual potential ρ̃(x). The
natural action of Vir− elements on V̂ (w) can be used, in particular, to rephrase (2.26) as

V̂ (w) = V
(

γ(w)
)

= Γ−1V (w)Γ , (2.40)

where expansion at w → +∞ is understood and we must now regard γ(w) as the arbitrary series
(2.39) rather than the expression that appears in the linear system. We therefore see that we
may define an extended coset representative which includes the Vir− group element above:

V = ΓV
(

γ(w)
)

= V (w)Γ . (2.41)

We can then combine this expression with the transformation property of V
(

γ(w)
)

in (2.29) to
deduce how V transforms under the loop group. One finds that the compensating transformation
in (2.29) is brought to the left of V after conjugation by Γ and therefore it depends on w directly,
rather than through γ(w):

V = ΓV
(

γ(w)
)

→ h(w) V g(w) , h(w) = h−T(1/w) =
(
h−1(w)

)† . (2.42)

The compensating element h(w) belongs again to a K(E9) subgroup of the loop group but now,
crucially, it is defined by a field-independent involution that acts by inversion of w rather than
γ. Indeed this is the spectral parameter representation of the Hermitian conjugation (2.10)
that we were seeking. The extended coset representative also transforms under rigid Vir−

transformations such as (2.36):

V = ΓV
(

γ(w)
)

→ ΓV
(

γ(w)
)
F = ΓF V

(
γ
(
f(w)

))
. (2.43)

In this case no compensating transformations are required. We conclude that we have found an
extended set of fields parameterising the coset space

Ê8 ⋊ Vir−

K(E9)
(2.44)

where K(E9) is defined in terms of the field independent Hermitian conjugation (2.10). This
allows us to define the coset representative V in arbitrary representations of Ê8. At this point

9In the linear system, the choice of s(w) amounts to a redefinition of the Ym fields with m ≥ 2.
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we remind the reader that in the spectral parameter representation K is represented trivially.
The field associated to the central charge is σ and we will include it in V later when we work in
a faithful representation of the algebra.

We can now introduce the twisted self-duality constraint equivalent to (2.22) and (2.23). We
introduce the Hermitian and anti-Hermitian parts of the Maurer–Cartan form

(dVV−1)(w) = P (w) + Q(w) , P T(1/w) = P (w) , QT(1/w) = −Q(w) . (2.45)

Notice that while dVV−1 ∈ ê8 h vir−, P and Q take values also along the positive part of vir.
The twisted self-duality constraint takes the form10

⋆P (w) = S1
(
P (w)

)
= wP (w) . (2.46)

Under the symmetries of the extended coset space, P (w) only transforms by conjugation with the
local K(E9) transformation defined in (2.42). The shift operator does not commute with K(E9),
but one can see that the commutator is again proportional to (2.46) and hence the twisted self-
duality constraint is invariant. In Lorentzian signature ⋆2P (w) = P (w). The right-hand side of
(2.46) does not apparently square to P , but taking into account (2.11) and Hermiticity of P it
can be easily shown to define a Z2 action. On the other hand, (2.46) also implies a cascade of
duality relations

⋆|m|P (w) = Sm

(
P (w)

)
, m ∈ Z . (2.47)

We now show that (2.46) is equivalent to the linear system in the triangular K(E9) gauge
of (2.21) and (2.30). Let us first focus on the loop components of the extended Maurer–Cartan
form. We define the components of P (w):

P (w) =
∑

m∈Z

P m
A T A

m +
∑

m∈Z

PmLm , (2.48)

where P 0
AT A

0 = P̊ is the e8 coset element and does not depend on w. Equation (2.47) implies

P m
A = ⋆|m|P 0

A , (2.49)

which in turn gives

(
dVV−1)(w)

∣∣∣
loop

= Γ
(
dV̂ V̂ −1)(w) Γ−1 = Q̊ +

1 + w−2

1 − w−2 P̊ +
2w−1

1 − w−2 ⋆P̊ (2.50)

where it is understood that the denominators are expanded in a geometric series for |w| > 1.
Because P̊ and Q̊ are w independent, we see that by conjugating this expression with Γ−1, (2.22)
is reproduced in a geometric expansion for |γ(w)| > 1. We now only have to show that the vir

10We stress that we have so far defined P (w) in the spectral parameter representation so that P (w)|K = 0 by

construction. The twisted self-duality constraint introduced here must be modified when written in a faithful

representation of ê8 h vir to take into account the central charge sector. This will be done in Section 4.
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components of (2.46) restrict the a priori arbitrary γ(w) to solve (2.23). Following the same
steps as above we find for the vir components of the Maurer–Cartan form

dΓΓ−1 = −ρ−1dρ
(

L0 + 2
∞∑

n=1

L−2n

)
− ρ−1 ⋆dρ

(
2

∞∑

n=1

L−2n+1

)
(2.51)

= ρ−1dρ
1 + w−2

1 − w−2 w
∂

∂w
+ ρ−1 ⋆dρ

2w−1

1 − w−2 w
∂

∂w
. (2.52)

Observing that d
(
Γ−1w

)
= dγ(w) = −Γ−1dΓΓ−1w, we see that it is sufficient to apply the

expression above to w, multiply by Γ−1 from the left and substitute (2.19) to reproduce (2.23),
which concludes our proof. This relation can also be reinterpeted as defining duality equations
for all the φm fields. Expanding dΓΓ−1 in the first few orders and using twisted self-duality we
find

dφ1 = 2 ⋆dρ , dφ2 = d(ρ2) , dφ3 − φ1dφ2 = 2ρ2 ⋆dρ , . . . (2.53)

We see that φ1 is the same as ρ̃ up to a factor of 2 and in fact, contrary to the loop case where
all dual potentials are non-locally related to each other, the whole tower of duality relations
can be integrated to algebraic expressions in ρ and ρ̃ (or φ1) exclusively, so that the only truly
non-local relation is (2.19):

φ1 = 2ρ̃ − 2s0 , φ2 = ρ2 − 2s1 , φ3 = 2ρ2(ρ̃ − s0) − 2s2 , . . . (2.54)

The integration constants si are those appearing in (2.38) and we have set s−1 = 1/2 using the
rigid L0 symmetry included in (2.43), as was already implied by the parameterisation (2.39).
We stress that there is no solution of twisted self-duality such that the vir− scalar fields vanish
unless dρ = 0.

We conclude this section by rewriting (2.46) in terms of the K(E9) invariant and E8 ⋊ Vir−

covariant current
J = 2V−1P V . (2.55)

Dressing (2.46) with V, we find

⋆J(w) = γ(w)J(w) = Sγ

1(J(w)) . (2.56)

The operators Sγ

m act as multiplication by γ(w)m. Their definition in a lowest weight represen-
tation will be presented in Section 4 and Appendix B.

3 Gauge structure of E9 exceptional field theory

In this section, we exhibit the E9 ExFT gauge structures, beginning with a review of E9 gen-
eralised diffeomorphisms and defining a Dorfman structure for E9. In Section 3.2 we then
introduce a minimal set of vector fields that are needed to covariantise external derivatives, and
we define their field strengths. We also define a natural set of transformation properties for
these fields in terms of the Dorfman product. However, some modifications to these structures
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will be required in order to construct the dynamical theory. As a necessary step to introduce the
Virasoro-extended formulation of the theory, in Section 3.3 we extend the definition of gener-
alised diffeomorphisms so that they gauge the larger algebra ê8 h vir−. The vector field contents
and their transformations are extended as well. In Section 5, when considering the minimal
formulation of E9 exceptional field theory, we will amend the (non-extended) gauge transforma-
tions of the vector fields and of their field strengths by a different choice of trivial parameters
compared to this section, and also introduce extra terms dependent on the external metric g̃µν .

3.1 Generalised diffeomorphisms and Dorfman structure

The internal space of E9 exceptional field theory has coordinates Y M transforming according to
the R(Λ0)−1 and the generalised Lie derivative was introduced in [17]. It has a gauge parameter
ΛM that lies in the R(Λ0)−1 representation of E9 and an ancillary parameter ΣM

N lying in the
representation R(Λ0)0 ⊗R(Λ0)−1. Due to the Fock space structure of the R(Λ0)h representation
introduced in (2.3) we write the parameter ΛM as a ket vector |Λ〉 and the ancillary parameter
ΣM

N as an operator Σ in this space that also changes the d weight. The two notations are
related by expanding out the ket vector in a basis and writing |Λ〉 = ΛM |eM 〉. The coordinates
Y M arise in this way and the derivatives 〈∂| = 〈eM |∂M transform in the conjugate representation
R(Λ0)−1.

The generalised Lie derivative acting on a vector |V 〉 belonging to R(Λ0)−1 is given by

L(Λ,Σ)|V 〉 = 〈∂V |Λ〉|V 〉 − ηαβ〈∂Λ|T α|Λ〉T β |V 〉 − 〈∂Λ|Λ〉|V 〉 − η−1 αβTr(T αΣ)T β|V 〉 . (3.1)

Here, 〈∂| is the derivative with respect to the internal coordinates written as a bra vector and
the subscript indicates which object the derivative is acting on. Thus, the first term in (3.1) is
the transport term, the second the rotation term and the third a weight term. The final term
realises the ancillary transformations. In index notation, (3.1) reads

L(Λ,Σ)V M = ΛN ∂N V M − ∂N ΛM V N + Y MN
P Q∂N ΛP V Q − η−1 αβT αP

QΣQ
P T βM

N V N , (3.2)

where the Y tensor defining the section constraint in (1.1) is defined as

Y MN
P Q = δM

N δN
Q − δM

Q δN
P − ηαβT αM

QT βN
P . (3.3)

More generally, the action of the generalised Lie derivative on a generic field Φ, with respect to
the pair of parameters Λ = (|Λ〉, Σ), takes the form

LΛΦ = 〈∂Φ|Λ〉Φ + [Λ]α δαΦ , (3.4)

where we defined the linear combination [ · ]α for any pair of parameters

[Λ]α ≡ ηαβ〈∂Λ|T β|Λ〉 + η−1 αβTr(T βΣ) , (3.5)

and where δα denotes an infinitesimal rigid e9 h L−1 variation. We insist that this includes the
variation with respect to d and not L0. For a vector |V 〉 in the R(Λ0)−1 representation, as in

17



(3.1), the weight term that appears then follows from the infinitesimal scaling associated with
the action d|V 〉 = (L0 − 1)|V 〉.

Covariance of the generalised Lie derivative under rigid e9 h L−1 transformations requires
the combination [Λ]α to be a projection onto the adjoint representation. This implies that the
parameters |Λ〉 and Σ must transform separately as

Xα δα|Λ〉 = −XαT α|Λ〉 + X0|Λ〉,

Xα δαΣ = −Xα[T α, Σ] − X0Σ + X−1|Λ〉〈∂Λ| , (3.6)

where here by definition

XαT α = X0L0 + XKK +
∑

n∈Z

XA
n T n

A + X−1L−1 . (3.7)

The last term in (3.6) indicates that the parameters |Λ〉 and Σ transform together in an inde-
composable representation under L−1. In the following, the ‘doubled notation’ Λ = (|Λ〉, Σ) will
be consistently used for other indecomposable pairs of fields.

As is usual in ExFT, the algebra of generalised Lie derivatives closes only when an appropriate
(strong) section constraint is fulfilled. The section constraint (1.1) is written explicitly in terms
of e9 generators [17]

ηαβ〈∂1|T α ⊗ 〈∂2|T β + 〈∂1| ⊗ 〈∂2| − 〈∂2| ⊗ 〈∂1| = 0 , (3.8)

where 〈∂1| and 〈∂2| denote two partial derivatives acting on any objects in the theory. It moreover
implies that

η−k αβ〈∂1|T α ⊗ 〈∂2|T β = 0 , for all k ∈ N+ ,

η+1 αβ

(
〈∂1|T α ⊗ 〈∂2|T β + 〈∂2|T α ⊗ 〈∂1|T β

)
= 0 . (3.9)

The ancillary parameter Σ is also section constrained [17], in the same way as happens for
E8 [22, 45]. This can be expressed by writing it out in bases as Σ = ΣM

N |eM 〉〈eN | = |Σ〉〈πΣ|,
where we have introduced a suggestive notation involving the bra vector 〈πΣ|.11 The constrained
nature of Σ corresponds to replacing either 〈∂1| or 〈∂2| in (3.8) by it. The constraint on Σ also
ensures that the trace operation in (3.1) is well-defined even though we are acting on an infinite-
dimensional space. As an operator Σ has finite rank.

Any solution of the section constraint can be brought to the following form by an E9 trans-
formation:

〈∂| = 〈0| ∂ϕ + 〈0|T A
+1∂A , (3.10)

where ∂A must satisfy the section constraint of E8 exceptional field theory [22].
The generalised Lie derivative closes according to

[LΛ1 , LΛ2 ] = L[Λ1,Λ2]E , (3.11)

11Σ is not factorised, but the notation |Σ〉〈πΣ| helps to describe the section constraint for Σ.

18



with Λ1 = (|Λ1〉, Σ1) and Λ2 = (|Λ2〉, Σ2), and where the the exceptional Lie bracket is given by

[Λ1, Λ2]E = (|Λ12〉, Σ12) (3.12)

with [17]

|Λ12〉 =
1
2
(
L(Λ1,0)|Λ2〉 − L(Λ2,0)|Λ1〉

)
,

Σ12 = L(Λ1,0)Σ2 −
1
2

η−1 αβTr(T αΣ1)T βΣ2 (3.13)

−
1
4

η1 αβ

(
〈∂Λ2 |T α|Λ2〉T β |Λ1〉 − 〈∂Λ2 |T α|Λ1〉T β |Λ2〉

)
〈∂Λ2 | − (1 ↔ 2) ,

The action of the generalised Lie derivative on a pair of parameters is given by

LΛ1Λ2 =
(

LΛ1 |Λ2〉 , L(Λ1,0)Σ2 − η−1 αβTr(T αΣ1)
(

T βΣ2 − Σ2T β
)

− Tr(Σ1)|Λ2〉〈∂Λ2 |
)

=
(

LΛ1 |Λ2〉 , 〈∂Σ2 |Λ1〉Σ2 − ηαβ〈∂Λ1 |T α|Λ1〉T βΣ2 + Σ2|Λ1〉〈∂Λ1 |

− η−1 αβTr(T αΣ1)T βΣ2 − Tr(Σ1)|Λ2〉〈∂Λ2 |
)

, (3.14)

where the term Tr(Σ1)|Λ2〉〈∂Λ2 | is due to the indecomposable structure of the pair Λ2 under L−1

transformations. In the second step of (3.14) we have used the section constraint to simplify a
few terms.

In order to bring out the covariance properties of the gauge fields and field strengths in the
next section, it is convenient to introduce a generalised Dorfman structure [46]. This is defined
via the following (non-commutative and non-associative) product which involves exclusively
pairs of parameters

Λ1◦Λ2 =
(

LΛ1Λ2 , LΛ1Σ2 + η1 αβ〈∂Λ1 |T α|Λ1〉T β |Λ2〉〈∂Λ1 |

+ ηαβTr(T αΣ1)T β|Λ2〉〈∂Σ1 | − |Λ2〉〈∂Σ1 |Σ1

)
. (3.15)

A key property of the Dorfman product, which is not satisfied by the generalised Lie derivative,
is that it obeys the Leibniz property

Λ1 ◦
(
Λ2 ◦ Λ3

)
=
(
Λ1 ◦ Λ2

)
◦ Λ3 + Λ2 ◦

(
Λ1 ◦ Λ3

)
. (3.16)

This relation can be proved by showing that the Dorfman product closes according to the anti-
symmetric Dorfman bracket [Λ1, Λ2]D ≡ 1

2 (Λ1 ◦ Λ2 − Λ2 ◦ Λ1), and that the symmetric bracket
{Λ1, Λ2} ≡ 1

2 (Λ1 ◦ Λ2 + Λ2 ◦ Λ1) is trivial (with respect to ◦ itself). These properties respectively
correspond to the projections of (3.16) onto its antisymmetric and symmetric parts in Λ1 and
Λ2, and are discussed in more detail in Appendix A. Let us simply note here that, on the first
entry of a pair of parameters, they imply that under the generalised Lie derivative

L[Λ1,Λ2]D = L[Λ1,Λ2]E , L{Λ1,Λ2} = 0 , (3.17)

where the E-bracket was defined in (3.13).
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3.2 Covariant derivatives and field strengths

Using the Dorfman structure we can conveniently deduce the form and properties of the covariant
field strengths associated to a pair of ‘vector fields’

Aµ = (AM
µ , Bµ

M
N ) = (|Aµ〉, Bµ) . (3.18)

The first component |Aµ〉 is the usual vector field in two external dimensions, and it gauges the
|Λ〉-diffeomorphisms. It is thus valued in the basic representation of E9 and it carries weight −1
under d. Its second component partner Bµ is associated to Σ-diffeomorphisms and is therefore
constrained on its lower index and carries weight +1. This means the two components of Aµ

behave as their respective parameters under an infinitesimal e9 h L−1 variation (3.6) and, in
particular, also transform in an indecomposable representation under L−1.

We define a covariant derivative as

Dµ = ∂µ − LAµ . (3.19)

As usual, its covariance under generalised diffeomorphisms is ensured if, acting on any vector
V M , one has

δΛDµV M = LΛDµV M , (3.20)

where Λ = (|Λ〉, Σ). Using (3.11), we find that this can be achieved by the transformation

δΛAµ = ∂µΛ − [Aµ, Λ]E + trivial parameters

= ∂µΛ − Aµ ◦ Λ + trivial parameters

= ∂µΛ + Λ ◦ Aµ + trivial parameters , (3.21)

in terms of the E-bracket (3.13) and the Dorfman product (3.15). We have given three equivalent
ways of writing the transformation and they differ by trivial parameters according to (3.17). This
is consistent since the transformation of Aµ is only defined up to trivial parameters, as Aµ only
appears as the parameter of a generalised Lie derivative in (3.20).

In exceptional field theory, one typically chooses to work with the second transformation
in (3.21) (without trivial parameters), which can be written in more compact form as

δΛAµ = DµΛ , (3.22)

in terms of the Dorfman covariant derivative

Dµ = ∂µ − Aµ ◦ . (3.23)

However, for the purpose of Section 5, we will consider in this paper the third version of the
transformation in (3.21) (without trivial parameters). For the components of Aµ we then get
explicitly

δΛ|Aµ〉 = ∂µ|Λ〉 + LΛ|Aµ〉 , (3.24)
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and

δΛBµ = ∂µΣ + LΛBµ

+ η1 αβ〈∂Λ|T α|Λ〉T β |Aµ〉〈∂Λ| + ηαβTr(T αΣ)T β|Aµ〉〈∂Σ| − |Aµ〉〈∂Σ|Σ , (3.25)

that we have written without displaying internal space indices. We also recall that the second
term contains a term of the form Tr(Σ)|Aµ〉〈∂A| which is due to the indecomposable structure
of the pair of gauge fields Aµ.

Using the covariant derivative (3.19) or its Dorfman version (3.23), we can introduce a pair
of field strengths

Fµν = (FM
µν , G M

µν N ) = (|Fµν〉, Gµν) (3.26)

by

[Dµ, Dν ] = −LFµν , [Dµ, Dν ] = −Fµν ◦ , (3.27)

where the former expression is implied by the latter. Note that these relations only define the
field strengths up to trivial parameters. Under rigid e9 h L−1 transformations the pair of field
strengths behaves as the pairs of gauge parameters and gauge fields, namely is transforms in
an indecomposable representation like in (3.6). As is customary in exceptional field theory,
covariance of the field strengths under generalised diffeomorphisms requires us to introduce
higher (external) forms which enter in their expressions as trivial parameters. Once again, for
the purpose of Section 5, we can choose to write

Fµν = 2 ∂[µAν] − [Aµ, Aν ]E + ̟Cµν , (3.28)

where Cµν denotes the set of two-forms defined in (A.24), while ̟Cµν is the Dorfman doublet
of associated trivial parameter using (A.11). The parts of the field strength components that
are independent of the two-forms will be denoted by |Fµν〉 and Gµν . In form notation, their
expressions follow from (3.13) and thus read12

|F 〉 = d|A〉 − 1
2〈∂A|A′〉|A〉 + 1

2ηαβ〈∂A|T α|A〉T β|A′〉 + 1
2 〈∂A|A〉|A′〉 ,

G = dB − 〈∂B |A〉B + ηαβ〈∂A|T α|A〉T βB + B|A〉〈∂A| +
1
2

η−1 αβTr(T αB)T βB

− 1
4η1 αβ〈∂A|T α|A〉T β |A′〉〈∂A| − 1

4η1 αβ〈∂A|T α|A′〉T β|A〉〈∂A| , (3.29)

The explicit dependence on two-forms in (3.28) as well as their transformations under generalised
diffeomorphisms are given in detail in Appendix A, and are tuned to cancel the non-covariant
variations of (3.29). This ultimately ensures that the field strengths transform covariantly as

δΛF = Λ ◦ F . (3.30)
12We use the notation |A′〉 to distinguish the vector field that is not derived by the bra 〈∂A|, so that 〈∂A| ⊗

|A〉 ⊗ |A′〉 means in components ∂M AN AP .
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We stress that these are not the final transformation properties for the field strengths of E9 ex-
ceptional field theory, for several reasons. In the extended formulation of Section 4, an extended
◦ product is necessary to capture the gauge transformations of a larger set of vector fields. This
is explained in the next subsection. In the minimal formulation of Section 5, the transformation
properties of both the B field and its field strength G are modified by extra terms involving the
external unimodular metric g̃µν . Furthermore, both formulations of E9 exceptional field the-
ory imply an Euler–Lagrange equation for |F〉 that appears with a projection. This projected
equation is gauge-invariant by construction. If one wants to extend the duality equation to
be unprojected and gauge-invariant, the gauge transformation of F must be modified by triv-
ial parameters. This applies to both formulations, and we shall see explicitly in the minimal
formulation in Section 5 that external diffeormorphism invariance requires the inclusion of the
unprojected duality equation.

We finish this section by presenting a set of Bianchi identities. Using (3.27) to formally
evaluate the action of three antisymmetrised Dorfman covariant derivative on a generic pair
V = (|V 〉, V ) leads to the relation D(F ◦ V) = F ◦ DV, which means that

(DF) ◦ V = 0 . (3.31)

On the first component of V this relation reduces to LDF|V 〉 = 0, and implies the following two
identities

〈∂|DF〉 = 0 , [DF]α = 0 , (3.32)

where the projection in the second equation was defined in (3.5).

3.3 Extended gauge structure

The extension of the group theoretical structure discussed in Section 2.3 in the context of two-
dimensional supergravity suggests the existence of an extended gauge structure for exceptional
field theory. In this section, we show that one can indeed consistently enlarge the algebra that
is gauged by generalised diffeomorphisms to ê8 h vir−. Many of the identities and results of
the previous section still hold in this extended setting and we will allow ourselves to be more
schematic.

We start by considering an extension of the generalised Lie derivative (3.4) in which the
rotation term now involves an infinitesimal ê8 h vir− variation. The set of gauge parameters is
thus also enlarged, and now consists of

Λ = (|Λ〉 , Σ(k)) k ∈ N+ . (3.33)

On a vector |V 〉 that lies in R(Λ0)−1, we have

LΛ|V 〉 = 〈∂V |Λ〉|V 〉 + [Λ]αδα|V 〉

= 〈∂V |Λ〉|V 〉 − ηαβ〈∂Λ|T α|Λ〉T β|V 〉 − 〈∂Λ|Λ〉|V 〉 −
∞∑

k=1

η−k αβTr(T αΣ(k))T β|V 〉 , (3.34)
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where the parameter Σ(1) corresponds to Σ in the previous section, and where we have defined
[Λ]α as the natural extension of the projection (3.5) onto ê8 h vir−

[Λ]α ≡ ηαβ〈∂Λ|T β|Λ〉 +
∞∑

k=1

η−k αβTr(T βΣ(k)) . (3.35)

We recall that the weight term in (3.34) is due to the fact that δα includes a variation with
respect to d and not L0. Acting on a generic field, we use (3.4) together with (3.35).

In order for the projection [Λ]α to transform in the adjoint, the set of gauge parameters must
transform under rigid ê8 h vir− variations as

Xα δα|Λ〉 = −XαT α|Λ〉 + X0|Λ〉,

Xα δαΣ(k) = −Xα[T α, Σ(k)] +
∑

0≤p<k

(2p − k)X−pΣ(k−p) + k X−k|Λ〉〈∂Λ| , (3.36)

for all k ∈ N+, where

XαT α =
∞∑

p=0

X−pL−p + XKK +
∑

n∈Z

XA
n T n

A . (3.37)

The parameters Σ(k) thus carry weight k under d. Note that, similarly to the unextended case, the
gauge parameters Λ = (|Λ〉, Σ(k)) transform in an indecomposable representation under L−p for
all p > 0. Let us also point out that a further extension of generalised diffeomorphisms to include
gaugings of the full Virasoro algebra would not be compatible with the section constraints.
The set of constraints (3.8) and (3.9) are indeed invariant under vir− transformations, but
not under any of the transformations generated Lk with k > 0, for instance an infinitesimal
L1 transformation applied to (3.8) maps ηαβ to η1 αβ , but the symmetrisation in (3.9) is not
reproduced.

The generalised Lie derivative (3.34) still closes as in (3.11), but according to an extended
E-bracket [Λ1, Λ2]E = (|Λ12〉, Σ(k)

12 ) which reads explicitly

|Λ12〉 =
1
2
(
L(Λ1,0)|Λ2〉 − L(Λ2,0)|Λ1〉

)
,

Σ(k)
12 = L(Λ1,0)Σ

(k)
2 −

1
2

∞∑

p=1

η−p αβTr(T αΣ(p)
1 )T βΣ(k)

2 −
1
2

∑

0<p<k

(2p − k)Tr(Σ(p)
1 )Σ(k−p)

2 (3.38)

−
1
4

δk
1 η1 αβ

(
〈∂Λ2 |T α|Λ2〉 T β|Λ1〉 − 〈∂Λ2 |T α|Λ1〉 T β|Λ2〉

)
〈∂Λ2 | − (1 ↔ 2) .

The proof of closure only relies on the use of the section constraints (3.8) and (3.9) which
were already necessary for consistency of the unextended gauge algebra, and is presented in
Appendix A. Note that Σ(k)

12 is still correctly on section.
The gauge parameters Σ(k) are highly degenerate. The only new gauge transformations

introduced by Σ(k) with k ≥ 2 are those generated by L−k with k > 1, associated to Tr(Σ(k))
and acting as shifts on the dual potentials φk introduced in Section 2.3. The ê8 transformations
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generated by Σ(k) can all be reabsorbed into Σ(1) up to trivial parameters. To see this, we take
the Σ components of (3.35) and apply (2.9) to write

∞∑

k=1

η−k αβTr(T αΣ(k))T β =
∞∑

k=1

(
ηαβTr(Σ(k)T α)S−k(T β) − Tr(Σ(k)L−k)K

)
. (3.39)

By rigid E9 covariance we can assume that the Σ(k) solve the section constraint as in (3.10).
Substituting into the above expression and focussing on the gauging of loop generators, one finds
that Σ(1) gauges some e8 generators T A

0 , a larger set of T A
−1 generators, and all T A

−n for n ≥ 2.
Higher Σ(k) then gauge the same algebra shifted by 1 − k along the negative loop levels. Hence,
each Σ(k) for k ≥ 2 gauges a loop subalgebra of the one gauged by Σ(1). The only new generators
gauged by Σ(k) for k ≥ 2 are then L−k, associated with Tr(Σ(k)). Rigid E9 covariance of [Λ]α
then guarantees that this conclusion holds for any other solution of the section contraint.

In order to simplify the definition and transformation properties of the vector fields and their
field strengths, we introduce a ◦ product naturally extending (3.15)

Λ1◦Λ2 =
(

LΛ1Λ2, LΛ1Σ(k)
2 + δk

1 η1 αβ〈∂Λ1 |T α|Λ1〉T β|Λ2〉〈∂Λ1 | + ηαβTr(T αΣ(k)
1 )T β|Λ2〉〈∂Σ1 |

− |Λ2〉〈∂Σ1 |Σ(k)
1 − (k − 1)

(
Tr(Σ(k)

1 )|Λ2〉〈∂Σ1 | − Σ(k)
1 〈∂Σ1 |Λ2〉

))
. (3.40)

This expression satisfies (3.17), meaning that it is equivalent to the extended E-bracket (3.38)
up to the addition of trivial parameters. However, this extended ◦ product does not satisfy
the Leibniz identity (3.16). More precisely, it fails to satisfy it by a trivial parameter. We can
nevertheless use it to define the transformation properties of the vector fields and their field
strengths in direct analogy with Section 3.2. We then introduce additional constrained gauge
fields B(k)

µ , and their field strengths G(k)
µν , associated to the new generalised diffeomorphisms

generated by L−k. Our notations are thus naturally extended as follows

Aµ = (|Aµ〉, B(k)
µ ) , Fµν = (|Fµν〉, G(k)

µν ) , (3.41)

with k ∈ N+. Under rigid ê9 h vir− variations these sets of gauge fields and field strengths
form indecomposable pairs and transform as the set of parameters Λ = (|Λ〉, Σ(k)) in (3.36).
The extended gauge connection still transforms according to (3.21) and the field strengths are
defined according to the first expression in (3.27) which we reproduce here:

[Dµ, Dν ] = −LFµν . (3.42)

The second expression in (3.27) now only holds up to a trivial parameter. The extended field
strengths contain a trivial combination of two-form fields as discussed in the previous section,
but now including the novel extended trivial parameters described in Appendix A.4. Then,
combining (3.11) with (3.42) we find that the transformation property (3.30) still holds in the
extended setting, with any trivial parameter that may arise on the right-hand side absorbed into
the two-form transformation.13 Finally, the Bianchi identities (3.32) still hold in the extended

13As stressed after (3.30) and discussed in Section 5, invariance under external diffeomorphisms requires to

introduce an unprojected duality equation for |F〉 which in turn requires to amend (3.30) by a trivial parameter.

We will not discuss external diffeomorphisms in the extended formulation, so (3.30) will suffice in this setting.
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setting, as they can be also deduced by formally evaluating the action of three D differentials
on a covariant field.

4 Virasoro-extended E9 exceptional field theory

We are now equipped to introduce the field content of E9 exceptional field theory and build a
pseudo-Lagrangian to determine its dynamics. The approach we follow in this section is based on
the formalism introduced in Section 2.3. In particular, the twisted self-duality constraint will be
the natural covariantisation of (2.46) and (2.56). This makes the connection to two-dimensional
supergravity and to the linear system straightforward, and has the further advantage that scalar
field currents covariant under generalised diffeomorphisms can be naturally defined in terms of a
gauge connection A transforming according to (3.21) and (3.40). We will however only develop
this formalism in the conformal gauge g̃µν = ηµν . We refer to this approach as ‘extended’
because of the presence of the vir− scalar fields φn, their associated symmetries and gauge fields
B(n). The ‘minimal’ approach to E9 exceptional field theory and its dynamics is introduced in
Section 5.

In this section we always leave wedge products as understood, writing for instance J J in
place of J ∧ J.

4.1 Covariant currents and twisted self-duality

We begin by introducing the (Ê8 ⋊ Vir−)/K(E9) coset representative

V = ΓV̂ = ρ−L0 e−φ1L−1 e−φ2L−2 · · · V̊ eY1AT A
−1 eY2AT A

−2 · · · e−σK (4.1)

where we work now in a faithful representation of the algebra so that K 6= 0. We will regard
e−σK as contained in V̂ .

These expressions involve products of infinite products. However, the coefficients of any
generator T A

−m or L−m in the Maurer–Cartan form are finite expressions that can be computed
by truncating the infinite products to the first m factors. We then define the generalised metric
(of weight 0)14

M = V†V , (4.2)

that transforms under g ∈ Ê8 ⋊ Vir− as

M → g†Mg . (4.3)

14Because Hermitian conjugation does not map Vir− nor the completed loop group to themselves, expressions

like M need qualification. One way is to first identify the K(E9) singlet element in R(Λ0)0 ⊗sym R(Λ0)0, which

we denote as ∆MN (the underlined indices transform under the local K(E9) symmetry), and then regard the

generalised metric as a field dependent element of R(Λ0)0⊗symR(Λ0)0, which we write as MMN = ∆P QVP
M VQ

N .

However, it will turn out to be more convenient to treat M as a group element. All manipulations we encounter

are then justified by switching to the Unendlichbein formulation in terms of the Hermitian and anti-Hermitian

projections P and Q of the Maurer–Cartan form, see (4.26) and Section 4.4. We provide more details on the

definitions of the group E9 and its representations in Appendix F.

25



We will always take V and M in the R(Λ0)0 representation and write explicitly the ρ factors
when they act on representations of non-zero conformal weight h.

Taking an internal derivative of M we define the internal current

JM αT α = M−1∂M M , (4.4)

which satisfies the section constraint along the index M . Translating this index to braket nota-
tion we shall write JM αT α〈eM | = 〈Jα| ⊗ T α with 〈eM | a basis for R(Λ0)−1. Under generalised
diffeomorphisms M transforms covariantly, namely δΛM = LΛM with

M−1LΛM = 〈Jα|Λ〉 T α +
[

ηαβ〈∂Λ|T β|Λ〉 +
∞∑

r=1

η−r αβTr
[
Σ(r)T β

] ] (
T α + M−1(T α)†M

)
,

= 〈Jα|Λ〉 T α + [Λ]α
(

T α + M−1(T α)†M
)

, (4.5)

Notice that compared to [1], we now include the action of infinitely many Virasoro generators
in both the gauge parameters (through Tr(Σ(m)) ) and in the conjugation by M. In the second
line we have used the shortcut expression [Λ]α introduced in (3.35). We can then define the
external current that is covariant under rigid Ê8 ⋊ Vir− transformations as well as generalised
diffeomorphisms

J = M−1DM = M−1dM − 〈Jα|A〉 T α + [A]α
(

T α + M−1(T α)†M
)

. (4.6)

We expand the algebra components of J as follows:

J = JαT α =
∑

m∈Z

( Jm
A T A

m + Jm Lm ) + JK K . (4.7)

The twisted self-duality constraint of exceptional field theory will essentially be the covari-
antisation of the two-dimensional expression (2.56), but we now need to take into account the K
component of the current which was trivially represented in Section 2.3. The shift operators Sm

and Sγ

m introduced in (2.8) and at the end of Section 2.3 can be interpreted as multiplication
by wm and γ(w)m respectively, and we can thus relate them by Γ conjugation using (2.39):

Sγ

m(X) = S0
(

Γ−1Sm(ΓXΓ−1) Γ
)

(4.8)

for any X ∈ ê8 h vir. Any Sγ

m can be expanded as a series in Sk operators, with k ≤ m and ρ
and φm dependent coefficients. For instance, (2.39) is reproduced as

Sγ

1 =
1
ρ

[
S1 − φ1 S0 − φ2 S−1 − φ3 S−2 −

(
φ4 +

1
2

φ2
2

)
S−3 + . . .

]
. (4.9)

The S0 operator on the right-hand side of (4.8) is only necessary to remove any spurious K
component that might be generated by Γ conjugation because of the vir central charge. Several
properties of these Vir− field dependent shift operators Sγ

m are described in Appendix B. In
particular, notice that because of the factors of ρ generated by Γ conjugation all Sγ

m operators
carry weight 0, whereas Sm carry weight m.
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Consider now the shift Sγ

m(J) of the covariant current. The transformation properties of J
and Γ imply that under a rigid transformation X ∈ ê8 h vir−

δXSγ

m(J) = −[X , Sγ

m(J)] − ωαβXα

(
Sγ

m(J)
)

β
K , (4.10)

where we are varying both J and the Γ implicit in the definition of the shift operator. The
expression ωαβ is the algebra cocycle corresponding to (minus) the central charge component of
the ê8 h vir commutator: given X, Z ∈ ê8 h vir with components

X = XαT α =
∑

m∈Z

(Xm
A T A

m + XmLm) + XKK , (4.11)

and similarly for Z, we define

ωαβXαZβ = −[X, Z]
∣∣
K = −ηAB

∑

n∈Z

n Xn
A Z−n

B −
cvir

12

∑

n∈Z

(n3 − n) Xn Z−n . (4.12)

To compensate for this cocycle term in (4.10) we follow the same strategy as in [1] and define
covariant shifted currents

J(m) = Sγ

m(J) + χγ

mK , (4.13)

where the new one-form fields χγ

m satisfy the indecomposable transformation property

δXχγ

m = ωαβXα J(m)
β , (4.14)

where we have used ωαK = 0 to write J(m) in place of Sγ

m(J). This transformation property guar-
antees that the shifted current transforms as an algebra element (of ê8hvir) under X ∈ ê8 h vir−:

δXJ(m) = −[X, J(m)] . (4.15)

More generally, for any Z ∈ ê8 h vir transforming as an algebra element under ê8 h vir−, we
may define a K completion Ẑγ

m of Sγ

m(Z) such that

Z(m) = Sγ

m(Z) + Ẑγ

mK , δXZ(m) = −[X, Z(m)] . (4.16)

When the K completion of an object can be expressed entirely in terms of other fields of the
theory, we will use the notation introduced above. If the K completion is an independent field,
we use a new symbol for it, as we did for J and χγ

m.
We define the χγ

m fields to be covariant of weight 0 under generalised diffeomorphisms.
Namely, their transformation descends from (4.14):

δΛχγ

m = 〈∂χ|Λ〉χγ

m + ωαβ[Λ]αJ(m)
β . (4.17)

This implies in turn that the J(m) are covariant, their transformation under generalised diffeo-
morphisms follows from (3.4) and (4.15):

δΛ J(m) = 〈∂J|Λ〉J(m) − [Λ]α
[
T α, J(m)] . (4.18)
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Notice that (4.12) depends implicitly on the representation in which we write J, through the
vir central charge cvir. This means that we must specify in which representation we write J in
order to define the χγ

m fields. We have defined J in the R(Λ0)0 representation and hence cvir = 8
as this is the natural choice for E9 exceptional field theory, because its internal derivatives,
gauge parameters and generalised metric all sit in (tensor products of) R(Λ0)h representations
and their duals. Our construction applies to loop groups over any other simple Lie group, and in
each case cvir will take a different value. Hence it will be more convenient to leave cvir unspecified
in (4.12) to keep track of where it appears.

The current satisfies J = M−1J†M. This allows us to relate the action of opposite shifts by
bringing M through a shift operator

Sγ

m(J) = M−1(Sγ

−m(J)
)†M + ωα(M) J(−m)

α K , (4.19)

where we have introduced the (group) cocycle

ωα(M) = M−1S0(T α)†M − S0(M−1(T α)†M) = M−1(T α)†M
∣∣
K − δα

K . (4.20)

Several properties of such cocycles are collected in Appendix B. We then see that we can identify
χγ fields associated to opposite shifts up to a cocycle, by imposing

M−1 (J(m))† M = J(−m) (4.21)

so that
χγ

−m = χγ

m + ωα(M) J(m)
α = χγ

m − ωα(M) J(−m)
α . (4.22)

Finally, we obviously want J(0) = J and hence identify χγ

0 = JK.
With the definitions and transformation properties above we can state the covariant twisted

self-duality equation of exceptional field theory

⋆J = J(1) , (4.23)

which reduces to (2.56) along the loop and vir components for 〈∂| = 0 and B(m) = 0. The K
component of this equation reads

⋆JK = χγ

1 , (4.24)

which is not a duality equation for σ but rather shows that χγ

1 is an auxiliary field that does not
carry any on-shell degrees of freedom. While ⋆2J = J, the shift operator on the right-hand side
does not square to S0.15 This means that by iterating (4.23) along the loop and vir components
we recover a cascade of duality relations analogous to (2.47). In order to complete the K sector
of such relations we then introduce the appropriate χγ

m fields for every shift, obtaining

⋆|m| J(n) = J(m+n) , m, n ∈ Z . (4.25)

We stress that the loop and vir components of these relations are simply linear combinations of
the components of (4.23) and are therefore redundant. On the other hand, the K component

15We can also rewrite (4.23) in the equivalent form ⋆J = M−1(J(1))†M so that the operator on the right-hand

side is involutive.
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reads ⋆|m|χγ

n = χγ

m+n which relates all χγ fields to each other and to JK. The relations (4.23)
and (4.25) are manifestly invariant under rigid Ê8 ⋊ Vir− and generalised diffeomorphisms, and
compatible with (4.22).

We can also introduce the covariant versions of the Hermitian and anti-Hermitian projections
of the Maurer–Cartan one-form

DVV−1 = P + Q , P† = P , Q† = −Q . (4.26)

The relation to the currents J is conjugation by V:

J = 2V−1P V , (4.27)

and we can require a similar relation for the shifted currents which, using (B.10), leads to the
definitions

P(m) = Sm(P) + χ̃mK , χ̃m = χ̃−m =
1
2

χγ

m −
1
2

ωα(V)J(m)
α (4.28)

so that J(m) = 2V−1P(m)V. The one-forms χ̃m complete the K component of Sm(P) so that P(m)

transforms with a commutator under K(e9), analogously to the K completions of Sγ

m introduced
in (4.16).

With these definitions we can rewrite twisted self-duality (4.23) and (4.25) as

⋆P = P(1) , ⋆|m|P(n) = P(m+n) . (4.29)

We shall expand P and Q similarly to (4.7):

P =
∑

m∈Z

(Pm
A T A

m + PmLm) + PK , Q =
∑

m∈Z

(Qm
A T A

m + QmLm) . (4.30)

In terms of these components, twisted self-duality implies in particular

Pm
A = ⋆|m|P0

A , Pm = ⋆|m|P0 . (4.31)

4.2 Shifted Maurer–Cartan equations

We will now construct a topological pseudo-Lagrangian for vir− extended E9 exceptional field
theory. The Euler–Lagrange equations obtained by varying this pseudo-Lagrangian must be sup-
plemented with the twisted self-duality constraint (4.23) (or (4.29)) to reproduce the equations
of motion. In particular, in analogy with lower-rank exceptional field theories, we will require
that the Euler–Lagrange equations for the χγ

m fields as well as the B(m) fields vanish upon using
twisted self-duality, reflecting the fact that these fields do not encode any physical degrees of
freedom. We will work only in conformal gauge with the two-dimensional unimodular metric
fixed to the Minkowski metric: g̃µν = ηµν . From the point of view of Kaluza–Klein decomposi-
tion of a higher-dimensional metric, it is always possible to partially gauge fix higher-dimensional
diffeomorphisms so that a 2 × 2 non-degenerate block on the diagonal of the higher dimensinoal
metric is reduced to ηµν (or δµν). In other words, even when g̃µν depends on the Y M coordinates
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subject to the section constraint, reflecting that our theory is in fact a higher-dimensional su-
pergravity, it is still possible to switch to conformal gauge without loss of generality. As a result,
however, the equations of motion obtained from the pseudo-Lagrangian and twisted self-duality
must be supplemented with the covariantised version of the Virasoro constraint (2.17). We will
come back to this in Section 4.6. We will restore g̃µν in Section 5.

The two-dimensional current (2.55) satisfies the Maurer–Cartan equation dJ + 1
2 [J, J ] = 0,

where the wedge product is understood and the commutators are implicitly graded with the
rank of the p-forms, namely for A and B any ê8 h vir valued forms, [A, B] = Aα ∧ Bβfαβ

γT γ .
For the covariant current J this expression becomes

DJ +
1
2

[J, J] + 〈Jα|F〉 T α + [F]α
(
T α + M−1(T α)†M

)
= 0 , (4.32)

which is deduced from (4.6) and the first equation in (3.27). We will apply this identity to
a shifted current J(m) in order to construct a candidate topological term for exceptional field
theory. The idea is that while all components of J satisfy the above integrability condition, the
central charge component of J(m) is χγ

m which is a fundamental field. Thus, we will be able
to write a set of two-forms based on J(m) and its derivatives that transform by conjugation
under rigid Ê8 ⋊ Vir− and such that, because of the identity (4.32), only their K components
are non-vanishing. As a consequence, these expressions are automatically invariant under rigid
Ê8⋊Vir−. We will then find that only one such expression is compatible with twisted self-duality,
covariant under generalised diffeomorphisms and independent of the two-form fields appearing
in the covariant field strengths F. That will be the main part of our pseudo-Lagrangian.

We begin by taking a covariant derivative of J(m):

DJ(m) = DSγ

m(J) + Dχγ

m K

= S0

(
D
(
Γ−1Sm(ΓJΓ−1)Γ

))
+ Dχγ

m K

= S0

(
Γ−1(Sm([DΓΓ−1, ΓJΓ−1]) − [DΓΓ−1, Sm(ΓJΓ−1)]

)
Γ
)

+ Sγ

m(DJ) + Dχγ

m K

= m
∞∑

q=0

(DΓΓ−1)−q Sγ

m−q(J) + Sγ

m(DJ) + Dχγ

m K . (4.33)

In the last line (DΓΓ−1)−q is the L−q component of the Maurer–Cartan form and we used (B.2).
We now apply (4.32) to the second term and use (B.12) to arrive at the identity

DJ(m) +
1
2

[J, J(m)] +
m
2

∞∑

q=1

(DΓΓ−1)−q

(
Sγ

m+q(J) − Sγ

m−q(J)
)

+ 〈Jα|F〉 Sγ

m(T α)

+ [F]α Sγ

m

(
T α + M−1(T α)†M

)
+
(

1
2

ωαβ Jα J(m)
β − Dχγ

m

)
K = 0 . (4.34)

This expression contains several shift operators which we now want to complete by adding
terms proportional to K, as described in (4.16), so that the completed expression transforms
as an algebra-valued object under rigid ê8 h vir−. For each shift of J we will of course add
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the associated χγ one-form. The shift of the internal current 〈Jα| is completed in analogy with
the external one and with [1] by introducing and internal scalar field 〈χγ

m| in the R(Λ0)−1

representation, defining

〈J (m)
α | ⊗ T α = 〈Jα| ⊗ Sγ

m(T α) + 〈χγ

m| ⊗ K , (4.35)

and imposing the rigid transformation property

δX〈χγ

m| = 〈χγ

m|X − X0〈χγ

m| + ωαβXα〈J (m)
β | , X ∈ ê8 h vir− . (4.36)

The internal index of the internal current (represented by 〈 |) comes from an internal derivative
and satisfies the section constraint (3.8), therefore 〈χγ

m| must satisfy the section constraint, too.
Eventually we will find that only one such scalar appears in the pseudo-Lagrangian and that it
is related to the 〈χ| field introduced in [1].

Finally, we need to construct the K completion of the expression [F]αSγ

m

(
T α +M−1(T α)†M

)

as in (4.16). For reference let us write down

[F]α = ηαβ〈∂F |T β |F〉 +
∞∑

n=1

η−n αβTr(G(n)T β) . (4.37)

This expression transforms covariantly under Ê8 ⋊ Vir−. In particular, the rigid indecompos-
able transformation (3.36) of (F , G(m)) guarantees Vir− covariance. When we apply the shift
operator, Vir− covariance of [F]αSγ

m(T α) still holds because Sγ

m commutes with Vir− thanks to
the transformation of Γ in (4.8), and because [F]α does not take values along the positive vir
generators, so that no central charge term is generated. The same holds true when we apply M
conjugation before the shift operator. Hence, we simply have

δL−k

(
[F]α Sγ

m

(
T α + M−1(T α)†M

))
= −[F]α

[
L−k , Sγ

m

(
T α + M−1(T α)†M

) ]
. (4.38)

In order to look at the loop transformation, we first focus on [F]αSγ

m(T α) and use the fact that
Sγ

m can be written as a series of constant Sm operators such as (4.9), and the coefficients are Ê8

invariant:
Sγ

m =
∑

k≤m

ak
m(ρ, φ) Sk (4.39)

Thus, we look at a single Sk operator acting on [F]α and perform a finite g ∈ Ê8 transformation.
Using (B.14) we find

[F]α Sk(g−1T αg) = [F]α
(
g−1Sk(T α)g − ωα

−k(g−1)K
)

(4.40)

Opening up the cocycle term using (B.7), (B.15) and (2.9), it reads

−[F]α ωα
−k(g−1) = −ωα(g−1)

(
ηk αβ〈∂F |T β |F〉 +

∞∑

n=1

ηk−n αβTr(G(n)T β)
)

= 〈∂F |(gLkg−1 − Lk)|F〉 +
∞∑

n=1

Tr
(

G(n)(gLk−ng−1 − Lk−n)
)

(4.41)
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Where we used (B.16) in the second line. Recalling that this is just the transformation of one
term in the series of shifts defining Sγ

m and that of course Lk−n = Sk(L−n), we are led to the
definition

F̂γ

m = −〈∂F |Sγ

m(L0)|F〉 −
∞∑

n=1

Tr
(

G(n)Sγ

m(L−n)
)

, (4.42)

such that in the loop variation of the combination

[F](m)
α T α = [F]αSγ

m(T α) + F̂γ

m K (4.43)

the cocycle terms coming from (4.40) cancel out. Furthermore, one can see that due to the
indecomposable Vir− transformation of the field strengths, (4.42) is Vir− invariant. This guar-
antees that (4.43) transforms as an algebra element. In order to define the K completion of the
term [F]αSγ

m

(
M−1(T α)†M

)
, we observe that the M conjugate of (4.43) also transforms as an

algebra element. Sending m → −m and writing M = Γ†M̂Γ with M̂ † = M̂ ∈ Ê8, conjugating
(4.43) with M and applying Hermitian conjugation gives us

[F]α M−1(Sγ

−m(T α)
)†M + F̂γ

−mK

= [F]α

(
MS0

(
Γ−1S−m(ΓT αΓ−1)Γ

)
M−1

)†
+ F̂γ

−mK

= [F]α

(
S0

(
Γ†M̂S−m(ΓT αΓ−1)M̂−1Γ−†

))†
+
(

F̂γ

−m + ωα(M)[F](−m)
α

)
K

= [F]α Sγ

m

(
M−1(T α)†M

)
+
(

F̂γ

−m + ωα(M)[F](−m)
α

)
K

= [F]α Sγ

m

(
M−1(T α)†M

)
+ MF̂γ

m K , (4.44)

where in the third line we brought M through S0 generating a cocycle term (written in terms
of (4.43) using ωK(M) = 0), and in the fourth line we brought M̂ through S−m, which does
not generate cocycles because of the overall S0 projection. We then propagated Hermitian
conjugation through S0. The K component of the third and fourth line is the expression we are
looking for. In the last line, for later convenience, we defined

MF̂γ

m = F̂γ

−m + ωα(M)[F](−m)
α . (4.45)

We can now complete each shift operator in (4.34) with the appropriate central charge term
arriving at the identity

DJ(m) +
1
2

[J, J(m)] + m
∞∑

n=1

Pn(J(m+n) − J(m−n))

+ 〈J (m)|F〉 + [F](m)
α T α + [F]α Sγ

m

(
M−1(T α)†M

)
+ MF̂γ

mK

=
(

Dχγ

m −
1
2

ωαβJαJ(m)
β + m

∞∑

n=1

Pn(χγ

m+n − χγ

m−n) + 〈χγ

m|F〉 + F̂γ

m + MF̂γ

m

)
K

=: X(m) K . (4.46)
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In the first line we have used that the vir− components of the Maurer–Cartan form are propor-
tional to the vir components of P: P±n = 1

2 (DΓΓ−1)−n for n 6= 0. The internal shifted current
〈J (m)| is defined in (4.35). Because the left-hand side of this equation transforms by conjugation
under rigid Ê8 ⋊ Vir−, so does the right-hand side, which is therefore invariant.

4.3 Gauge invariant topological term

We will now show that only X(1) can be used to construct a pseudo-Lagrangian. First, we notice
that by M conjugation X(m) = X(−m) and hence we focus on m > 0 (X(0) = 0 identically). Then,
we stress that all X(m) have weight 0 under the generalised Lie derivative:

LΛX(m) = 〈∂X|Λ〉X(m) . (4.47)

Even assuming a covariant transformation property for X(m) under generalised diffeomorphisms
(so that their variation equals the generalised Lie derivative, which we will prove for X(1) below),
we need objects of weight 1 to be able to integrate out the transport term above. Our candidate
pseudo-Lagrangians are therefore of the form ρX(m). Knowing this, we must check that the
Euler–Lagrange equations for the χγ forms and the B fields vanish upon imposing twisted self-
duality. The B-field variation is more involved and will in fact require an extra correction to
the action, but the χγ variation is straightforward. Using (4.22) to relate χγ forms associated to
opposite shifts and then variying with respect to χγ

m, m > 0, we find

δ(ρX(m)) ∝ P0 δχγ

m + m
( ∑

p>m

Pp−m δχγ

p −
m−1∑

p=1

Pm−p δχγ

p −
∑

p>0

Pm+p δχγ

p

)
(4.48)

and one sees for instance that the δχγ

1 term is proportional to Pm−1 + Pm+1 for any m ≥ 2,
which does not vanish under (4.29). Instead, for m = 1 this expression simplifies to

∞∑

p=1

(Pp−1 − Pp+1)δχγ

p , (4.49)

which vanishes upon imposing twisted self-duality. This indicates that the correct topological
term should be based on X(1).16

We now prove gauge invariance of ρX(1) (up to a total internal derivative). The first three
terms in (4.46) are manifestly covariant under generalised diffeomorphisms. Let us focus on F̂γ

1
and compute its non-covariant variation

∆Λ = δΛ − LΛ . (4.50)
16Rewriting the Euler–Lagrange equations (4.49) in terms of DΓΓ−1 one finds an expression analogous to

(2.51), with covariantised derivatives and Dρ̃ in place of ⋆Dρ (and φ1 ≡ 2ρ̃). This shows that the one-forms

χγ

m are Lagrange multipliers imposing that γ(w), as defined in (2.39), reduces to (2.37) and hence essentially to

the function used in the Breitenlohner–Maison linear system. Lagrangian mechanics does not generally allow

integrating out one field using the Euler–Lagrange equations of another, hence we cannot naively substitute the

relations descending from (4.49) directly into the pseudo-Lagrangian.
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Because the field strengths transform with the extended ◦ product (3.40) as in (3.30), one has
∆ΛF = Λ ◦ F − LΛF. Substituting into (4.37), (4.42) and (4.45), after some work we find

∆Λ[F]α = −[Λ]α〈∂Λ|F〉 , (4.51)

∆ΛF̂γ

1 = − Λ̂γ

1 〈∂Λ|F〉 + ρ−1〈∂Σ|Σ(1)|F〉 − ρ−1Tr(Σ(1))〈∂Σ|F〉 , (4.52)

∆Λ
MF̂γ

1 = −MΛ̂γ

1〈∂Λ|F〉 (4.53)

where Λ̂γ

1 and MΛ̂γ

1 are defined as in (4.42) and (4.45) but with (|Λ〉, Σ(k)) in place of (|F〉, G(k)).
We prove these results in Appendix C.1. Notice that in the last two lines the partial derivatives
act on Λ = (|Λ〉, Σ(k)) contained within Λ̂γ

1 and MΛ̂γ

1, but not on the scalar fields. We arrive at
the result

∆ΛX(1) =
(

∆Λ〈χγ

1| −
(
Λ̂γ

1 +MΛ̂γ

1
)
〈∂Λ| + ρ−1〈∂Σ|Σ(1) − ρ−1Tr(Σ(1))〈∂Σ|

)
|F〉 . (4.54)

Notice that the entire expression in the parenthesis satisfies the section constraint. This means
that we can define the generalised diffeomorphism transformation of 〈χγ

1| to cancel the above
variation:

∆Λ〈χγ

1| =
(
Λ̂γ

1 +MΛ̂γ

1
)
〈∂Λ| − ρ−1〈∂Σ|Σ(1) + ρ−1Tr(Σ(1))〈∂Σ| . (4.55)

With this definition, we have that ρX(1) is Ê8 ⋊ Vir− invariant and generalised diffeomorphism
invariant up to a total internal derivative. If we follow the same approach for ρX(m), m > 1,
we find that ∆ΛF̂γ

m contains terms that cannot be reabsorbed into the variation of 〈χγ

m|, and
therefore ρX(m) is not invariant under generalised diffeomorphisms. This is also described in
Appendix C.1. We again conclude that only ρX(1) is a suitable candidate for our topological
term.

One last cross-check on the suitability of ρX(1) as a candidate pseudo-Lagrangian is that the
two-forms appearing in the covariant field strengths (3.28) must not contribute. These terms can
potentially appear in the F̂γ

±1 contributions to X(1), but a direct computation shows that they
vanish up to a total internal derivative. To see this, we start by recalling the definition (4.42)
and use (4.39) to write Sγ

m(Ln) as a series of vir generators Lk with k ≤ m + n. Then, we see
that F̂γ

−1 (which appears through (4.45)) only involves contractions with negative vir generators
and hence no trivial parameters contribute (such traces appear in the K component of [F]α and
therefore anything that contributes to them is by definition not trivial). A similar argument
shows that the two-forms included in G(k), k ≥ 2 do not contribute to F̂γ

1, and that contributions
from the |F〉 dependent term drop out as total derivatives. One is then left with evaluating the
two-form contributions of Tr

(
G(1)L0

)
. One immediately sees that the two-forms associated to

the trivial parameters (A.5a) to (A.5c) appear only through a total derivative and hence are
discarded. The parameters (A.5d) to (A.5f) do not involve any derivative and direct calculation
shows their contribution vanishes. We exemplify this for (A.5d). Using the symmetries of the
U parameter, its contribution to F̂γ

1 is proportional to

η1 αβ

(
〈π1|[L0, T α]|U1〉〈π2|T β|U2〉 + 〈π1|T α|U1〉〈π2|[L0, T β]|U2〉

)
= −η1 αβ〈π1|T α|U1〉〈π2|T β|U2〉

(4.56)
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which vanishes by the section constraint since U is symmetric in 〈π1| and 〈π2|. The general
result can be deduced from equations (5.18), (A.13) and (A.14). Again, it is straightforward to
see that two-form independence does not hold for ρX(m) for any m ≥ 2.

The expression ρX(1) is not the final topological term. The vir components of P defined in
(4.27) are invariant under rigid Ê8 ⋊ Vir− and transform as scalars under generalised diffeo-
morphisms, hence any bilinear in these components (times ρ) defines an invariant action. This
apparent ambiguity is fixed by computing the Euler–Lagrange equations of ρ and the B fields,
which we will do in Section 4.6. For now, we just claim that one such contribution is necessary
to reproduce the correct equations of motion, giving

Ltop = ρX(1) − ρ
cvir

6

∞∑

n=2

(n3 − n)Pn(Pn+1 + Pn−1) ,

so that explicitly

ρ−1Ltop = Dχγ

1 −
1
2

ωαβJαJ(1)
β −

cvir

6

∞∑

n=2

(n3 − n)Pn(Pn+1 + Pn−1)

+
∞∑

n=1

Pn(χγ

1+n − χγ

1−n) + 〈χγ

1|F〉 + F̂γ

1 + MF̂γ

1 . (4.57)

There are several cvir dependent couplings in this pseudo-Lagrangian. Beyond the explicit
term we have just added in the first line, the ωαβ cocycle contains a vir component, and a similar
cocycle is contained within Dχγ

1:

Dχγ

1 = (d − 〈∂χ|A〉)χγ

1 + ωαβ[A]αJ(1)
β . (4.58)

This reflects the fact that the definition of χγ

m depends on the choice of representation in which
we write J. We will see in the next section that all cvir dependent couplings cancel out when we
rewrite the pseudo-Lagrangian in terms of χ̃m defined in (4.28), whose transformation properties
are cvir independent.

4.4 Unendlichbein formulation

We can reformulate (4.57) in terms of the Hermitian projection P of the Maurer–Cartan form
and the χ̃m forms introduced in (4.28). In order to do so, we first provide more details on how
several objects we need are defined and how they transform. The coset representative (4.1)
transforms as follows under infinitesimal rigid Ê8 ⋊ Vir− transformations

δαV = VT α + hαV , hα ∈ K(e9) , (4.59)
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where hα is a local compensating transformation. The Maurer–Cartan form and its projections
(4.26) are then expanded as17

DVV−1 = dVV−1 −
(
〈∂V |A〉V

)
V−1 − [A]α

(
VT αV−1 + hα

)
, (4.60)

P =
1
2
(
dVV−1 + h.c.

)
− 〈Pα|A〉 T α − [A]α

1
2
(
VT αV−1 + h.c.

)
, (4.61)

Q =
1
2
(
dVV−1 − h.c.

)
− 〈Qα|A〉 T α − [A]α

1
2
(
VT αV−1 − h.c.

)
− [A]αhα , (4.62)

where 〈Pα| and 〈Qα| are the projections of the internal Maurer–Cartan form (∂M V)V−1〈eM |
which appears in the first line contracted with |A〉. Taking the differential of the above expres-
sions we find the gauged Maurer–Cartan equations18

DP − [Q, P] = −〈Pα|F〉 T α − [F]α
1
2
(
VT αV−1 + h.c.

)
, (4.63)

DQ −
1
2

[Q, Q] −
1
2

[P, P] = −〈Qα|F〉 T α − [F]α
1
2
(
VT αV−1 − h.c.

)
− [F]αhα . (4.64)

With this information we can in principle repeat the computation of the shifted Maurer–
Cartan equation of the previous section in terms of P rather than J. More simply, we can take
the left-hand side of (4.46) (with m = 1), conjugate the expression with V and use (4.27) and
(4.28) to find

X(1) = 2Dχ̃1 + 2ωαβQαP(1)
β + 2

∞∑

n=1

Pn(χ̃n+1 − χ̃n−1)

+ 2〈χ̃1|F〉 + F̂γ

1 + F̂γ

−1 + ωα(V)
(
[F](1)

α + [F](−1)
α

)
, (4.65)

where 〈χ̃1| is the internal equivalent of the one-form χ̃1 and completes the K component of
〈Pα| ⊗ S1(T α). It is related to 〈χγ

1| just like its one-form siblings in (4.28). The last three terms
in the second line are the K completions of [F]αS±1(VT αV−1). It is important to notice that in
this expression the hα compensator cancels out. To see this, we expand the covariant derivative
of χ̃1:

Dχ̃1 = dχ̃1 − 〈∂χ̃|A〉χ̃1 − [A]α (hα)β ωβδP(1)
δ (4.66)

where hα = (hα)βT β. This reflects the fact that χ̃ transforms under K(E9) such that

(hα)βδβ
K(e9)P

(1) = [hα, P(1)] . (4.67)

17Notice that the local compensating transformation hα satisfies (hα)† = −hα and does not take values along

vir. On the other hand, Q also takes values in the anti-Hermitian part of vir.
18Notice that the rigid ê8hvir− variation of hα cannot be entirely specified without reference to the specific gauge

choice of V and associated Killing vectors. Only the antisymmetrised part admits a covariant algebraic expression

2δ[αhβ] = fαβ
γhγ + [hα, hβ ]. This can be used for instance to compute δα(DVV−1) = Dhα + [hα, DVV−1] as

expected, and hence the second covariant differential acting on DVV−1 is well-defined. On the other hand, to

derive (4.64) we simply use D2 = −LF so that no Dhα term appears and we do not need knowledge of δαhβ . This

is of course standard in computing gauged Maurer–Cartan equations on coset spaces.
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The cocycle term in Dχ̃1 then cancels out with the hα contained in the Q connection in the second
term. In fact, the entire first line of (4.65) can be identified with the generalised diffeomorphism
and local K(E9) covariant derivative of χ̃1. To see this, we can rewrite the last term of the
first line as −2

∑
n∈Z Qnχ̃1+n, using the relation Qn = −sgn(n)Pn, which is valid because the

Maurer–Cartan form does not take values along the positive levels of the vir algebra.19

We anticipated in (4.57) that in order to write the full topological Lagrangian we need to
subtract a cvir dependent term quadratic in the vir components of P. We can now give a better
description of such a subtraction. The algebra cocycle in the first line of (4.65) contains a
Virasoro component according to the definition (4.12), and using again that Qn = −sgn(n)Pn

we can rewrite it as a term quadratic in P:

−
cvir

12

∑

n∈Z

(n3 − n) Qn Pn+1 =
cvir

12

∞∑

n=2

(n3 − n) Pn (Pn+1 + Pn−1) . (4.68)

As stated in (4.57) and proved below in Section 4.6 this is exactly the term that must be
removed from the pseudo-Lagrangian in order to reproduce the correct equations of motion. We
can therefore rewrite (4.57) as follows

ρ−1Ltop = 2Dχ̃1 − 2ηAB
∑

n∈Z

n Qn
A P−n−1

B + 2
∞∑

n=1

Pn(χ̃n+1 − χ̃n−1) (4.69)

+ 2〈χ̃1|F〉 + F̂γ

1 + F̂γ

−1 + ωα(V)
(
[F](1)

α + [F](−1)
α

)
.

Notice that in this expression there are no cvir dependent couplings. The group cocycle in the
second line does not generate cvir dependent terms because the Virasoro components of [F]α only
run along vir−. Hence, the pseudo-Lagrangian is independent of the representation in which P
is defined. This reflects the fact that the χ̃m only transform under local K(E9) transformations
and so their transformation does not include any vir cocycle. This must be contrasted with the
cvir dependent transformation of χγ

m. In fact, the whole first line of (4.69) can be regarded as
the generalised diffeomorphisms and K(E9) covariant derivative of χ̃1 at cvir = 0, a fact that will
greatly simplify the computation of the scalar field equations of motion. The reason cvir does
not cancel out from (4.57) is that the relation (4.28) between χ̃1 and χγ

1 is based on a group
cocycle that is itself cvir dependent. Such a dependence also disappears if we use generalised
diffeomorphisms to gauge fix φn → 0 for n ≥ 2. This is proved explicitly in Appendix C.2.

4.5 Vir− gauge fixing and full pseudo-Lagrangian

The coset representative (4.1) contains exponentials of all the negative Virasoro generators. By
contrast, the E9 exceptional field theory scalar potential we constructed in [1] only includes
exponentials of L0 and L−1. We will not attempt here to generalise the scalar potential of [1] to

19Such sum over Qn appears in the K(E9) covariant derivative of χ̃1 because constant shift operators Sm do not

commute with vir and hence the K completions of Sm(P) must transform equivalently to wm under the Virasoro

components of Q.
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include the other Virasoro fields. Instead, we will use the gauge freedom associated to Tr(B(n))
to set

φn → 0 , n ≥ 2 . (4.70)

We have stressed in Section 2.3 that (4.70) does not solve the two-dimensional twisted self-
duality constraint. In exceptional field theory, this is remedied by the Stückelberg coupling of
φn to Tr(B(n)) through the covariant derivative. This means that we can impose (4.70) at the
price of keeping Tr(B(n)) 6= 0 in order to respect the vir components of (4.23), as each and all
vir components of J must be dual to Dρ and hence generally non-zero. This has an important
consequence. The gauge-fixed residual generalised diffeomorphisms are generated by |Λ〉 and Σ(1)

(because traceless Σ(n), n ≥ 2 parameters can be reabsorbed into Σ(1) up to trivial parameters),
taking the form described in Section 3.1 and familiar from the previous papers [17,1]. However,
the B(n) fields and their field strengths G(n) are non-vanishing for any n > 0.

We choose to keep φ1 6= 0. In fact, we shall substitute φ1 → ρ̃ in the rest of this section,
arriving at the coset representative

V = ρ−L0 e−ρ̃L−1 V̊ eY1AT A
−1 eY2AT A

−2 · · · e−σK , (4.71)

which matches the one we used in [1]. The duality equation between ρ and ρ̃ as it descends from
(4.23) reads, expanding the covariant derivatives,

2 ⋆(d − 〈∂ρ|A〉 − 〈∂A|A〉)ρ = (d − 〈∂ρ̃|A〉 − 〈∂A|A〉)ρ̃ − Tr(B(1)) . (4.72)

The factor of 2 on the right-hand side does not match the two-dimensional relation (2.19) if we
drop internal derivatives and B fields, reflecting the fact that this is really the covariantisation
of the duality relation between ρ and φ1 given in (2.53), but again this is remedied here by
Tr(B(1)) which trivialises the relation between ρ and ρ̃ and hence also the distinction between ρ̃
and φ1.

The gauge fixing reduces γ(w) to the finite expression

γ(w) →
w − ρ̃

ρ
. (4.73)

Comparing with the expression (2.24) appearing in the two-dimensional linear system, we see
that the gauge-fixed function is missing the square root. Reproducing the square root in terms
of exponentials of Virasoro generators is what had made it necessary to introduce the φn fields
and their duality relations, but again this is now compensated for by the presence of the B fields.
We can use (4.73) to expand Sγ

m in terms of the constant Sm as binomial series. In particular,

Sγ

1 → ρ−1 (S1 − ρ̃ S0) , Sγ

−1 → ρ
∞∑

n=0

ρ̃nS−1−n . (4.74)

Notice that the series on the right-hand side appears in the scalar potential we found in [1],
acting on the internal current 〈Jα|. We thus see that Sγ

−1 is the vir− generalisation of that
expression (up to an overall factor of ρ).
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In order to match the expression of the scalar potential and its field content we also need to
relate 〈χγ

1| to the 〈χ| field appearing in [1]. Up to a factor of ρ (which is just due to different
weight assignments), the latter gives the K completion of the (gauge fixed) Sγ

−1 shift of the
internal current, written in terms of the series (4.74). Indeed we defined there

〈J −
α | ⊗ T α = 〈Jα| ⊗

∞∑

n=0

ρ̃nS−1−n(T α) + 〈χ| ⊗ K , (4.75)

which equals ρ−1〈J (−1)
α | and transforms as an algebra valued object under rigid ê8 h 〈L−1〉. To

match this relation we perform the field redefinition

〈χγ

1| = ρ〈χ| − 2〈P1| − ρ ωα(M)〈J −
α | . (4.76)

where 〈P1| = −1
2ρ−1〈∂|ρ̃. The presence of 〈P1| has no effect on rigid ê8 h 〈L−1〉 covariance,

instead it is motivated by matching the transformation properties of 〈χ| under generalised dif-
feomorphisms as found in [1]. The non-covariant variation of 〈χγ

1| is given in (4.55). Those of
〈P1| and 〈J | were derived in [1] and we reproduce them here:

∆Λ〈Jα| ⊗ T α = [Λ]α
(
T α + M−1(T α)†M

)
〈∂Λ| , (4.77)

∆Λ〈P1| = −
ρ̃
2ρ

〈∂Λ|Λ〉〈∂Λ| −
1

2ρ
Tr(Σ(1))〈∂Σ| . (4.78)

Combining these relations with ∆Λωα(M) = 0 and using relations and definitions analogous to
(4.42), (4.44) and (4.45) for Λ, we then find

∆Λ〈χ| =
1
ρ
(
Λ̂γ

−1 + MΛ̂γ

−1
)
〈∂Λ| −

1
ρ2 〈∂Σ|Σ(1) −

ρ̃
ρ2 〈∂Λ|Λ〉〈∂Λ| . (4.79)

We show in Appendix C.2 that this transformation property matches the one we derived in [1].
The final pseudo-Lagrangian density, in form notation, gauge-fixed to (4.70), reads

Lext = Ltop − ⋆V (4.80)

with the topological term expanded as follows20

ρ−1Ltop = dχγ

1 − 〈∂χ|A〉χγ

1 +
1

2ρ
ηAB

∑

n∈Z

n (Jn
A + 2[A]nA) (J−n−1

B − ρ̃J−n
B )

−
1
2

ρ−1Dρ̃ (χγ

2 − JK) +
1
2

∞∑

n=2

ρ−n
n−2∑

k=0

(
n − 2

k

)
(−ρ̃)k Tr(B(n−k))(χγ

1+n − χγ

1−n)

+ 〈 ρ χ − 2P1 − ρ ωα(M)J −
α |F 〉 + F̂γ

1 + MF̂γ

1 , (4.81)

where Jn
A are the loop components of the covariant current (4.7), [A]mA are the loop components

of [A]α defined analogously to (3.35), Dρ̃ = dρ̃ − 〈∂|(ρ̃ |A〉) − Tr(B(1)), the cocycle ωα(M) is
20Alternatively, one can use the more compact Unendlichbein formulation (4.69), together with equation (4.116)

of [1]. In this case, notice that 〈χ̃| as defined there equals 2〈χ̃1| + 2〈P1| as defined here.
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defined in (4.20), the internal shifted current 〈J −
α | is defined in (4.75), and finally F̂γ

1 and MF̂γ

1
are defined in (4.42) and (4.45). The cvir dependent couplings in (4.57) cancel out with the
gauge fixing as argued at the end of the previous section and proved explicitly in Appendix C.2.
The scalar potential V comes from [1]:

V =
1

4ρ

∑

n∈Z

∞∑

k=0

ρ̃kηAB〈Jk−n
A |M−1|Jn

B〉 −
1
ρ

〈P0|M−1|JK〉

−
2
ρ

〈P1|M−1|ρ χ − P1〉 − ωα(M)〈P1|M−1|J −
α 〉

−
1

2ρ
〈Jα|T βM−1T α†|Jβ〉 +

ρ
2

〈J −
α |T βM−1T α†|J −

β 〉 +
1
ρ

〈P0|T αM−1|Jα〉 . (4.82)

We used |Jα〉 = (〈Jα|)† (and similarly for other objects) to simplify the notation, thus regarding
|Jα〉 as an element of R(Λ0)+1. The expression ωα(M)〈J −

α | read instead ρ−2Ωα(M)〈Jα| in [1].
We define Ωα(M) and prove equivalence of the two expressions in Appendix B.

Note that the topological term and the potential are both invariant under (internal) gener-
alised diffeomorphisms. The relative coefficient between the two in (4.80) is fixed by requiring
that, when partially soving the section constraint as in (3.10), the field equations for the various
scalar fields reproduce those of E8 exceptional field theory. This can for instance be verified
by using the field equation (4.99) obtained by varying with respect to 〈χ|. We expect that the
coefficient could be alternatively fixed by imposing invariance under conformal external diffeo-
morphisms. In the minimal formulation of Section 5, where the conformal gauge is relaxed, the
relative coefficient between the topological term and the potential will be fixed (and confirmed)
explicitly by requiring invariance under external diffeomorphisms.

4.6 Equations of motion

We shall now take a look at the equations of motion of Virasoro-extended E9 exceptional field
theory. These are obtained as the Euler–Lagrange equations of the pseudo-Lagrangian con-
structed in the previous sections, combined with the twisted self-duality condition (4.23) (or
equivalently (4.29)) and with the covariantisation of the Virasoro constraint (2.17)

D±σD±ρ −
1
2

D±D±ρ −
1
2

ρ ηAB(P±)0
A(P±)0

B = 0 , (4.83)

written here in light-cone coordinates. Up to twisted self-duality it is invariant under rigid Ê8 ⋊
Vir− transformations and, by covariance, under generalised diffeomorphisms. This constraint
must be imposed because we only wrote the covariant action in conformal gauge. We will
relax conformal gauge and see the Virasoro constraint arise as an Euler–Lagrange equation in
Section 5. The equivalence of this Euler–Lagrange equation with (4.83) is shown in Appendix D.
In Appendix C.4 we will exemplify how the equations of motion derived here reproduce those
of E8 exceptional field theory, by matching the equations of motion for the E8 scalar fields. A
complete matching at the level of the action will be given in the minimal formalism of Section 5.
In computing the equations of motion we will not explicitly vary the scalar potential, which was
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already shown to match E8 exceptional field theory in [1], and instead focus on the variation of
the topological term. These explicit computations are also meant to clarify some details of the
Vir− extended formalism, such as the need for the regularisation of certain series induced by
the cocycle term in the action and motivating the addition of the extra invariant term in (4.57)
compared to ρX(1).

The trivial variations

We have already addressed the Euler–Lagrange equations for the one-forms χγ

m (or equivalently
χ̃m) in (4.49), which shows that these fields appear as Lagrange multipliers for a subset of the
relations imposed by twisted self-duality, and hence their equations of motion are trivialised
once the latter is imposed. Let us now look at the field variations with respect to the B(k) fields,
which should also trivialise upon imposing twisted self-duality. Without loss of generality we
will also gauge fix

φn → 0 , ∀ n ≥ 1 , (4.84)

just like we did in the previous section, but now also setting ρ̃ → 0. The scalar potential of course
does not contribute to the variation and we will use (4.69) as a starting point. We therefore
consider the variation

δA = (0, δB(k)) . (4.85)

(We will consider the variation with respect to |A〉 below, starting from (4.123).)
We have already stressed that the K(E9) compensator hα appearing in (4.60)–(4.62) and

other expressions cancels out in the topological term. To simplify the exposition, in this section
we will then use the definitions (4.60)–(4.62) and (4.66), but removing by hand the compensator

hα → 0 , (4.86)

since it is guaranteed to cancel out anyway. With this in mind, we write the B field variation
of the Maurer–Cartan form, of P and of Q as21

δ(DVV−1) = −[δA]αVT αV−1 = −2[δA]αT α , (4.87)

δP = −[δA]α(T α + h.c.) , (4.88)

δQ = −[δA]α(T α − h.c.) , (4.89)

where we have used (4.86) and we introduced the underlined notation to denote dressing by V:

[Λ]αT α =
1
2

[Λ]αVT αV−1 . (4.90)

To further simplify the exposition, we shall use rigid E9 invariance to assume that the
solution of the section contraint is of the form (3.10). This guarantees that [A]α takes values in
vir− and the non-positive loop levels only, the ones whose exponentials appear in our choice of

21Because we are ignoring the compensator, DVV−1 is formally no longer valued in a parabolic subalgebra of

ê8 hvir− but gains positive loop components proportional to [A]α. This is reflected in the following computations.
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coset representative (4.1), except for an [A]+1
A component. In particular, the B(k) fields do not

contribute to the K component, namely

Tr(B(k)L−k) = 0 . (4.91)

Furthermore, the A index of [A]+1
A satisfies the E8 section constraint and reads explicitly

[A]+1
C = ∂C〈0|A〉 = ∂Cw , (4.92)

where in a reduction from three to two dimensions w corresponds to the Kaluza–Klein vector,
see (2.12).

Looking at (4.69), the variation of the last term of the first line clearly vanishes upon imposing
(4.29). The only other contribution from the first line comes from the loop cocycle:

−2ρ ηAB δ

(
∑

n∈Z

n Qn
A P−n−1

B

)

= 4ρ ηAB [δA]0A(⋆P0
B + [A]+1 B) + 4ρ ηAB [δA]−2

A
[A]+1

B , (4.93)

where we have repeatedly used twisted self-duality and also used the fact that [δA]0A satisfies
the E8 section (because of the section constraint on δB(k)) to remove a contraction with a term
[A]+1

A (the coset dressing reduces to conjugation by V̊ which cancels out in the contraction).
The [A]+1

B components appear when converting Q±1
A to P±1

A in order to use twisted self-duality
on the latter. Explicitly,

Q1
A = −P1

A − 2[A]1
A

, Q−1
A = −P−1

A + 2[A]1 A , Qn
A = −sgn(n)Pn

A , |n| ≥ 2 , (4.94)

where the position of the e8 index in the middle equation is due to the e8 transposition [A]1 A =
ηAB [A]1

B
and we could write more explicitly Q−1

A = −P−1
A + 2δABηBC [A]1

C
. We will use this

notation throughout this section and in Appendix C.
We now look at the variation of the second line of (4.69). The 〈χ̃1|F〉 term does not contain

any B fields so we can ignore it. The other terms can be rewritten in a more compact form
thanks to the gauge fixing (4.84), which allows us to reinterpret the ωα(V) terms as arising from
dressing a vir generator with the coset representative, as discussed in Appendix B. This gives
the convenient expression

ρ F̂γ

1 + ρ F̂γ

−1 + ρ ωα(V)
(
[F](1)

α + [F](−1)
α

)

(4.84)
= −ρ 〈∂F |V−1(L1 + L−1)V|F〉 −

∞∑

k=1

ρ1−k Tr
(

G(k)V−1(L1−k + L−1−k)V
)

. (4.95)

In order to vary this expression we use closure of the generalised Lie derivative, (3.17), and
(3.42) to deduce the natural relation22

δF = DδA + trivial parameters . (4.96)
22We still use the definition (3.23) for D even if the extended ◦ product does not satisfy the Leibniz identity.

The trivial parameters on the right-hand side of (4.96) would vanish in the non-extended case.
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In our case the right-hand side reduces to (0, DδB(k)) using (4.85) and noticing that the difference
between the extended ◦ product and the generalised Lie derivative vanishes when the first
component of a doubled object is zero. The trivial parameters can be ignored as we know they
at most contribute by a total derivative (equivalently, they can be set to vanish by combining the
B field variations with an ad-hoc two-form gauge transformation). Using now the fact that the
right-hand side of the expression V(DδB(k))V−1 still satisfies the section constraint in the form
(3.10), hence traces with negative Virasoro generators vanish, we find that the B field variation
of (4.95) reduces to

− Tr
(

V(DδB(1))V−1L0

)
= Tr

(
VδB(1)V−1[L0, DVV−1]

)
(4.97)

up to total (internal and external) derivatives. We are again using (4.86) to simplify the notation.
Only the loop components of the Maurer–Cartan form contribute. Furthermore, because V ∈ E9

by (4.84) and η−1 αβ is E9 invariant up to a weight term, one can easily combine (3.35), (4.85)
and (4.90) to find

2ρ[δA]nA = ηABTr
(

VδB(1)V−1T B
−n−1

)
, n ≥ −2 , (4.98)

where we are restricting to n ≥ −2 so that higher δB(k) contributions can be removed by
trivial parameters (for smaller n, the V conjugation implies a contribution from Tr(δB(2)) and
higher, which are not trivial). Opening up the commutator one then quickly deduces that (4.97)
exactly cancels out (4.93). The B field Euler–Lagrange equations vanish upon imposing twisted
self-duality as required.

It is now straightforward to check that the B field variation of the extra term we included
in (4.57) (compared to ρX(1)) does not vanish, and hence its inclusion in the pseudo-Lagrangian
is essential for the above result to hold.

The scalar field variations

In varying the constrained scalar field 〈χ| (equivalently 〈χγ

1| or 〈χ̃1|) we include explicitly the
contribution from the scalar potential. From (4.81) and (4.82) we find the equation

〈δχ|: 〈δχ|
(

|F〉 + 2 ⋆ ρ−1M−1|P1〉 − ⋆ T αM−1|J −
α 〉
)

= 0 . (4.99)

This result does not rely on any specific solution of the section constraint, but is based on the
gauge-fixing (4.70) in order to display the variation of the scalar potential explicitly. Recall
that 〈δχ| satisfies the section constraint, hence the equation above only arises from the pseudo-
Lagrangian when contracted with a constrained object.

From now on we no longer rely on a gauge-fixing for the Virasoro scalar fields and we do not
commit to a specific solution of the section constraint. We also do not vary the scalar potential
explicitly. Nevertheless, all computations displayed below hold if we impose the gauge-fixing
(4.70), and therefore the complete equations of motion can be derived by varying (4.82) and
combining it with the results in this section.
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The variation of the topological term with respect to σ is also straightforward, because it
only appears in (4.69) through χ̃0 = PK = −Dσ. Up to twisted self-duality we then get the
equation of motion

δσ: D ⋆ Dρ −
1
2

⋆
δV
δσ

= 0 . (4.100)

The extended Virasoro fields φn are pure gauge, hence their equations of motion are redun-
dant and we do not need to compute them. We then focus on the variation of the scalars ρ,
V̊ ∈ E8 and Y A

n , n ≥ 1. We can encode their variation in terms of an Hermitian algebra element
π:

π = π† = δVV−1 ∈ e9 . (4.101)

This means that the variation above is a combination of a field variation and a K(E9) transfor-
mation:

δV = δfieldsV + ζV , ζ ∈ K(e9) , ζn
A = sgn(n)πn

A . (4.102)

Recall now that at the end of Section 4.4 we noticed that the first line of (4.69) corresponds
to the generalised diffeomorphism and K(E9) covariant derivative of χ̃1, with Q as composite
connection, except for the substitution cvir → 0 which removes a piece of the cocycle (4.68). It
is then convenient to include the composite connection Q in D:

D̂Φ = DΦ + Qαδα
K (̂e8hvir)Φ , (4.103)

where the second term denotes the transformation of a field Φ under the local K(e9), extended
by the anti-Hermitian part of vir, where Q takes values.23 With this definition, for instance, the
first of (4.64) reads D̂P = 0 and the variation of P and Q then reads

δP = D̂π = Dπ − [Q, π] , δQ = [π, P] , (4.104)

with Dπ = dπ − 〈∂π|A〉 − [A]α
[
hα, π

]
. Notice that as usual the compensator hα cancels out

between the covariant derivative and the Q commutator.
It turns out to be convenient to combine the scalar field variations with a special choice

of variation for the χ̃m forms. Since the latter contribute trivially to the equations of motion
once twisted self-duality is imposed, this choice will not affect our results. We then introduce a
spurious object π̃m meant to complete the K component of Sm(π), just like χ̃m does for Sm(P):

π(m) = Sm(π) + π̃mK . (4.105)

We then choose δχ̃m = D̂π̃m so that the variations of the shifted P take the simple form

δP(m) = D̂π(m) = Dπ(m) + Qαδα
K (̂e8hvir)π

(m) , (4.106)

23The presence of K(vir) can appear strange since only vir− are global symmetries of the theory and they

do not require compensating local transformations. This is due to the fact that the ungauged theory is in fact

also invariant under infinitesimal positive vir transformations and the decomposition of the Maurer–Cartan form

into P and Q reflects this. Most objects we use have therefore natural transformation properties under K(vir)
obtained by extension of their K(e9) transformation and standard commutation relations, which simplifies many

manipulations in the following.
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where δα
K (̂e8hvir)π

(m) includes a sum over Virasoro shifts just like the last term of the first line in
(4.65). Explicitly,

Qαδα
K (̂e8hvir)π

(m) = −[Q, π(m)] + m
∑

k∈Z

Qkπ(m+k) . (4.107)

After several manipulations, we will set π̃m → 0 without loss of generality.
With this setup, in order to compute the variation of the first line in (4.69), we can equiva-

lently compute
δ
(
2ρ D̂χ̃1

)
= δ
(
2ρ D̂P(1)

)∣∣
K (4.108)

and set cvir → 0 in the cocycle. We then expand to find

δ
(
2ρ D̂P(1)

)
= 2δρ D̂P(1) − 2ρ [δQ, P(1)] + 2ρ D̂δP(1) , (4.109)

where we have already used twisted self-duality to remove a series over the vir components of Q.
Let us look at the middle term. Projecting onto K and using (4.104) we find that it vanishes.
For instance, using twisted self-duality the loop components of π contribute as follows (recalling
that we are keeping wedge producs as understood)

fABC
∑

n,q

(−1)nn πq
A ⋆q+1P0

BP0
C − ηAB

∑

n,q

(−1)nn q π−q
A ⋆q+1 P0P0

B = 0 . (4.110)

A similar computation applies to the L0 component of π and since we set cvir → 0, that is all
we need.

Let us then look at the last term in (4.109), which is proportional to D̂2π(1). The square of
the covariant differential has the general form

D̂2 = −LF +
(

DQ −
1
2

[Q, Q]
)

α

δα
K (̂e8hvir) , (4.111)

and we recognise the last term as the covariant field strength of the composite Q connection. We
can use the Maurer–Cartan equations (4.64) to further manipulate this expression. In order to
do so, notice that twisted self-duality implies [P, P] = 0. The K component is straightforward.
For the rest, we use S0(P) = Sm(S−m(P)) for any m 6= 0 so that

S0
(
[P, P]

)
= S−m

(
[P, Sm(P)]

)
+ m

∞∑

p∈Z

Pp Sp(P) . (4.112)

Let us now take m odd. By twisted self-duality, the first term of the right-hand side vanishes.
The second term flips sign under m → −m while the left-hand side does not, hence they both
vanish. We can then substitute into (4.111) the left-hand side of the Maurer–Cartan equation
(4.64) for the curvature of Q, and apply it to π(1). We find (setting hα → 0 as usual as it cancels
out anyway)

D̂2π(1) = − 〈∂π|F〉 π(1) +
(1

2 〈Qα|F〉 + [F]
α

)[
T α − T α† , π(1)

]

+
∞∑

n=1

(1
2〈Qn|F〉 + [F]

n

)(
π(1+n) − π(1−n)

)
. (4.113)
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Projecting this expression on K and setting to zero the central charge component π̃1 of π(1), we
find that only the middle term contributes and arrive at the result

2ρ D̂δP(1)∣∣
K = 2ρ ηAB

∑

n∈Z

n
(

〈Qn
A|F〉 + [F]n

A
− [F]−n A

)
π−n−1

B . (4.114)

Notice that the variation of ρ does not contribute to this expression.
Let us now look at the variation of the second line of (4.69). Using (B.4) one finds that the

ρ variation of ωα(V) vanishes. Furthermore, from the definition (B.11) one easily sees that both
F̂γ

m and [F](m)
α depend on ρ only through an overall ρ−m factor. Therefore, the ρ variation of the

second line of (4.69) reads

2δρ
(

〈χ̃1|F〉 + F̂γ

−1 + ωα(V) [F](−1)
α

)
. (4.115)

Looking now at the Ê8 scalars variation, we must take into account that 〈χ̃1| transforms under
the K(e9) transformation ζ we introduced in (4.102) to make π Hermitian, so that

δ〈χ̃1|F〉 = ηAB
∑

n∈Z

|n| πn
A〈P −n−1

B |F〉 , (4.116)

while the variation of ωα(V) gives

δωα(V) = [π, VT αV−1]
∣∣
K . (4.117)

We can now put these results together. The ρ variation of the topological term is the sum
of the first term in (4.109) and of (4.115). Applying twisted self-duality, we find the equation
of motion

δρ: D̂ ⋆ PK + 〈χ̃1|F〉 + F̂γ

−1 + ωα(V) [F](−1)
α =

1
2

⋆
δV
δρ

, (4.118)

where we need to keep in mind that cvir → 0 in the cocycle contained in the first term. We can
in fact further apply twisted self-duality to it, in order to make contact with the second order
equation for σ for two-dimensional supergravity (2.18). To do so, we shall temporarily assume
a solution of section of the form (3.10) and write

D̂ ⋆ PK = D ⋆ PK − ηAB
∑

n∈Z

n Qn
A ⋆ P−n

B

= −D ⋆ Dσ + ηAB
∑

n∈Z

|n| Pn
A ⋆ P−n

B + 4ηAB [A]+1
A

⋆ P−1
B

= −D ⋆ Dσ + 2ηABP0
A ⋆ P0

B

( ∞∑

n=1

(−1)nn
)

+ 4ηAB [A]+1
A

P0
B

= −D ⋆ Dσ −
1
2

ηABP0
A ⋆ P0

B + 4ηAB [A]+1
A

P0
B , (with hα → 0) (4.119)

In the second line we have converted Qn
A to Pn

A and we stressed that we set hα → 0 everywhere as
usual, because it would cancel out between Q and the covariant derivative anyway. In the third
line we have used twisted self–duality and in the last step we have regularised the divergent sum
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as
∑∞

n=1(−1)nn → −1
4 . This is achieved for instance by taking the z → 1 limit of a geometric

series
∑∞

n=1(−z)np(n) which converges for |z| < 1 and p(n) any polynomial in n. We motivate
this choice of regularisation in Appendices C.3 and C.4. We then see that if we reduce to two-
dimensional supergravity by setting 〈∂| = 0 and B(k) = 0, this equation of motion reduces to
(2.18). Notice how this result hinges on the removal of the cvir dependent terms of the cocycle
in D̂ ⋆ PK. Had we not removed the term (4.68) from the pseudo-Lagrangian, it would have
contributed here through a term proportional to (Dρ)2 (with a regularisation similar to the one
above).

Let us now look at the variation of the loop scalar fields. Using the Maurer–Cartan equation
(4.64) for P combined with twisted self-duality (4.29), we find the convenient identity

D̂ ⋆|n| P0
A = −〈P n+1

A |F〉 − [F]n+1
A

− [F]−n−1 A , n ∈ Z , (4.120)

which implies in particular that all the even components of the right-hand side are equal to each
other, and the same holds for the odd ones. Combining this expression with (4.114), (4.116) and
(4.117), the latter contracted with 2ρ([F](1)

α + [F](−1)
α ), writing 〈Qn

A| = −sgn(n)〈P n
A | and using

that π is Hermitian we then find the equation of motion

δV̊ , δYn: 2ρ π0 A
(
D̂ ⋆ P0

A + 2[F]+1
A

)
− 4ρ

∞∑

k=1

π−k A
(
[F]k−1

A
− [F]k+1

A

)
= ⋆ δV . (4.121)

The π0
A component of this equation still contains infinitely many dual fields within the covariant

derivative. Using twisted self-duality to express it only in terms of physical fields, we are led
to a regularisation analogous to the one used for (4.119). In analogy to that computation we
temporarily choose a section solution of the form (3.10) to simplify the vector field dependence
and write explicitly

D̂ ⋆ P0
A = D ⋆ P0

A − fCD
A

∑

n∈Z

Qn
C ⋆ P−n

D +
∑

n∈Z

n
(
Q−n ⋆ Pn

A − Qn
A ⋆ P−n

)
(4.122)

= D ⋆ P0
A − fCD

AQ0
C ⋆ P0

D − 2
∞∑

n=1

n
(
Qn

A ⋆ P−n + Qn ⋆ P−n
A

)

+ 2fCD
A([A]1

C
− [A]1 C)P0

D − 2P0([A]1
C

+ [A]1 C)

= D ⋆ P0
A − fCD

AQ0
C ⋆ P0

D + 2P0 ⋆ P0
A

∞∑

n=1

(−1)nn

+ 2fCD
A([A]1

C
− [A]1 C)P0

D − 2P0([A]1
C

+ [A]1 C)

= ρ−1D(ρ ⋆ P0
A) − fCD

AQ0
C ⋆ P0

D + 2fCD
A([A]1

C
− [A]1 C)P0

D − 2P0([A]1
A

+ [A]1 A) .

We check in Appendix C.4 that the π0
A equation of motion correctly reproduces the equation

of motion of the scalar fields in E8 exceptional field theory. As a further cross-check, we can
reduce to two-dimensional supergravity by setting 〈∂| → 0 and check that the equations of
motion derived so far are then compatible with setting the B(k) fields to 0 as follows. The vector
fields |A〉 and 〈χγ

1| decouple when 〈∂| = 0, and the field equation for ρ reduces to d ⋆ dρ = 0.
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Extending then (4.120) also along the vir components and using the Maurer–Cartan equations
as well as the π0

A equation above, we find that all vir− components of [F]α, as well as the coset
projection of [F]n

A
must vanish. Plugging these results into the rest of equation (4.121), we then

have that all non-trivial components of the B(k) field strengths must vanish, hence without loss of
generality we can set B(k) → 0 as claimed. Together with the fact that (4.23) correctly reduces to
two-dimensional twisted self-duality when 〈∂| = 0 = B(k), this guarantees that two-dimensional
supergravity is reproduced from Virasoro-extended E9 ExFT.

The |A〉 vector field variation

The starting point is again the pseudo-Lagrangian (4.69), which we will vary with respect to
the vector field |A〉. We recall that we work in the ungauged-fixed setting where φm 6= 0 for all
m > 0. We also re-use the notation introduced in (4.85), but this time with

δA = (|δA〉, 0) . (4.123)

The variations of P and Q follow directly from their expressions (4.61) and (4.62). They read

δP = −〈P|δA〉 − [δA]α
(
T α + h.c.

)
, (4.124)

δQ = −〈Q|δA〉 − [δA]α
(
T α − h.c.

)
, (with hα → 0) , (4.125)

where [δA] = [δA]αT α takes values in ê8 h vir−. As explained previously, we consistently ignore
the hα contributions as they ultimately cancel out in the pseudo-Lagrangian.

Let us start by focusing on the variation of the first term of the first and second line in
(4.69). With (4.66) and (4.96), we find

2ρ δ (Dχ̃1 + 〈χ̃1|F〉) = 2ρ (〈∂χ̃|χ̃1 − D〈χ̃1| + P0〈χ̃1|) |δA〉 , (4.126)

up to internal and external total derivatives. For the cocycle term of the first line, one computes

−2ρ ηAB δ

(
∑

n∈Z

n Qn
A P−n−1

B

)

= 2ρ ηAB
∑

n∈Z

n
(

Qn
A〈P−n−1

B | − P−n−1
A 〈Qn

B|
)

(4.127)

+ 4ρ ηAB
∑

n∈Z

(n + 1)(Q + P)n
A [δA]−n−1

B
,

where we used twisted self-duality in writing the last line. For the third term of the first line
in (4.69), the variation of Pn does not contribute since (χ̃n+1 − χ̃n−1) vanishes by twisted self-
duality. The only contribution comes from the variation of χ̃0 = PK , and we then simply
have

2ρ δ

( ∞∑

n=1

Pn(χ̃n+1 − χ̃n−1)

)

= 2ρ P1(〈PK|δA〉 + 2[δA]K) . (4.128)

The variation of the remaining terms in the second line of the pseudo-Lagrangian (4.69)
requires more care. To derive the variation of F̂γ

1 and F̂γ

−1, which are defined in (4.42), we use
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the following property which holds exactly for n < 1 and up to a total derivative for n = 1:

δ F̂γ

n = (̂DδA)
γ

n = (d − δA)δ̂A
γ

n − n
∞∑

q=0

(
DΓΓ−1)−q δ̂A

γ

n−q

= D δ̂A
γ

n − ∆Aδ̂A
γ

n − n
∞∑

q=0

(
DΓΓ−1)−q δ̂A

γ

n−q , ∀n ≤ 1 , (4.129)

where we used (4.96) in the first step. Note that the double object δA transforms with the
extended ◦ product under a gauge variation, and is therefore treated on the same footing as F.
This allows, in the second step, to extract the differential operator (d − δA) out the combination
δ̂Aγ

n. In the process we however generate the last term of the first line, which substracts the
action of the gauge variation on the Virasoro scalars contained in δ̂Aγ

n. This is described in
Appendix C.1. The expression of the latter takes the same form as in (4.42). The non-covariant
part of its gauge variation with respect to A, defined in (4.50) and denoted by ∆A, can be
deduced from (C.14). We thus find

δ(ρ F̂γ

−1) = ρ Dδ̂A
γ

−1 + ρ
∞∑

q=0

(
DΓΓ−1)−q δ̂A

γ

−1−q + ρ Âγ

−1〈∂A|δA〉 , (4.130)

δ(ρ F̂γ

1) = ρ Dδ̂A
γ

1 − ρ
∞∑

q=0

(
DΓΓ−1)−q δ̂A

γ

1−q + ρ Âγ

1〈∂A|δA〉

−
(
〈∂B |B(1) − Tr(B(1))〈∂B |

)
|δA〉 , (4.131)

where Âγ

n is again of the same form as (4.42). The second equation holds only up to a total
derivative. To treat the last terms in the pseudo-Lagrangian (4.69) which involve the ωα(V)
cocycle, let us first consider [F](n)

α defined in (4.43). Up to a K component, the latter can be
written as Sγ

n([F])α, where in order to simplify the notation in the next few steps, we will write
[F] = [F]αT α and similarly for other objects such as [A], their derivatives and their variation.
Taking into account that ωK(V) = 0, we then have for n ≤ 1,

δ
(

ωα(V)[F](n)
α

)
= ωα(V)Sγ

n([DδA])α (4.132)

= ωα(V)
(

DSγ

n([δA])α − ∆ASγ

n([δA])α − n
∞∑

q=0

(
DΓΓ−1)−q Sγ

n−q([δA])α

)
.

We used the same arguments as in (4.129) in order to extract the differential operator out of
the shift operator. At this point, observe that according to (B.10), we can write

ωα(V)Sγ

n([δA])α = VSγ

n([δA])V−1∣∣
K = V[δA](n)V−1∣∣

K − δ̂A
γ

n , (4.133)

where [δA](n) is, in analogy with (4.43), the K-completed version of Sγ

n([δA]) and therefore
transforms with a commutator under rigid ê8 h vir−. Bearing this in mind we get, after an
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integration by parts,

δ
(

ρ ωα(V)[F](n)
α

)
= D

(
ρ V[δA](n)V

)∣∣
K − ρDδ̂A

γ

n + ρ P0

(
δ̂A

γ

n + ωα(V)Sγ

n([δA]
)

− nρ
∞∑

q=0

(
DΓΓ−1)−q ωα(V)Sγ

n−q([δA])α − ρ ωα(V)∆ASγ

n([δA])α

− ρ
[
(P + Q), V Sγ

n([δA])V−1]∣∣
K , (4.134)

where the non-covariant variation of [δA]α takes the same form as in (4.51). The first term can
be dropped as it reduces to total internal and external derivatives. Combining this result with
(4.130) and (4.131) we find, after rearranging the sums of the (DΓΓ−1) terms and using twisted
self-duality,

δ
(

ρ F̂γ

1 +ρ F̂γ

−1 + ρ ωα(V)
(
[F](1)

α + [F](−1)
α

))

= ρ
∑

n=1,−1

(
Âγ

n + ωα(V) Sγ

n([A])α

)
〈∂A|δA〉 −

(
〈∂B |B(1) − Tr(B(1))〈∂B |

)
|δA〉

− 2ρ P1

(
δ̂A

γ

0 + ωα(V) Sγ

0([δA])α

)
− 2ρ

∑

n=1,−1

[
(P + Q), Sn([δA])

]∣∣
K . (4.135)

Using (4.133) and δ̂A
γ

0 = [δA]K, the parenthesis in the last line can be written as 2[δA]K and
will therefore cancel against the last term in (4.128). Note also that, in writing the last term
of (4.135), we have pulled the conjugation by V inside of the the shift operator and used the
notation (4.90). The loop contribution of this commutator will cancel against the last line of
(4.127), while its Virasoro contribution should vanish by itself since the pseudo-Lagrangian we
vary does not depend on cvir. This is indeed the case because both the Maurer–Cartan form
(P + Q) and [δA] only take values in ê8 h vir−.

Adding up all the variations, we then obtain the following final form for the field equation

|δA〉: 〈∂χ̃|χ̃1 − D〈χ̃1| + P0〈χ̃1| + P1〈PK| + ηAB
∑

n∈Z

n
(

Qn
A 〈P−n−1

B | − P−n−1
A 〈Qn

B |
)

+
1
2

∑

n=1,−1

(
Âγ

n + ωα(V) [A](n)
α

)
〈∂A| −

1
2ρ

〈∂B |B(1) +
1

2ρ
Tr(B(1))〈∂B | = 0 , (4.136)

where we divided by an overall factor of 2ρ and removed the projection on |δA〉. Note that
the terms in the bracket of the second line correspond to the K completion of [A]αSn(VT αV−1),
analogously to how χ̃m completes Sm(P) in (4.28). We also emphasise that 〈∂A| only acts on
the vector fields |A〉, B(k) and not on the scalar fields.

While it is not manifest, one can verify that the complete set of field equations is invariant
under rigid E9. The equation (4.136) is separately invariant and one way of checking this is by
using the invariance of the K-completion of a shifted Maurer–Cartan equation, such as (4.34),
but now with one internal and one external derivative.
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5 Minimal E9 exceptional field theory

In this section, we shall show that there is a formulation of E9 exceptional field theory with
a finite set of fields, i.e. M ∈ E9, |A〉, B, χ, 〈χ|, even though they are in infinite-dimensional
representations of E9. As explained in Section 4.5, one can gauge-fix all the Virasoro fields φn

to zero. The price to pay is that the truncation to two-dimensional supergravity, with fields not
depending on the internal coordinates, must necessarily involve non-zero constrained fields B(k).
This obscures the relation to the linear system in two dimensions. But it has the advantage
that this allows us to eliminate the infinite set of constrained one-forms B(k) and one-forms χγ

k

in favour of a single constrained one-form B ∼ Bµ
M

N and a single one-form χ ∼ χµ (that still
transforms indecomposably with the current) as we shall demonstrate in this section. Moreover,
the twisted self-duality equation for the scalar fields can be written using a E9 invariant bilinear
form, and the pseudo-Lagrangian takes a form that is more similar to lower-rank ExFTs. In
particular, we relax the conformal gauge and define external diffeomorphisms in this minimal
formulation. We will exhibit that the complete pseudo-Lagrangian is determined by internal and
external diffeomorphism invariance, similar to En ExFT for n ≤ 8. For the appropriate choice of
solution to the section constraint, we will finally show that the Euler–Lagrange equations of the
pseudo-Lagrangian (combined with the duality equation), reproduce the known field equations
of E8 exceptional field theory. All expressions will be finite and we shall not need to resort to
formal geometric series summation as in the Virasoro-extended formulation.

5.1 Integrating out the auxiliary fields

At vanishing Virasoro fields φn, i.e. for Γ = ρ−L0 , one can eliminate the constrained fields B(k)

and the scalar fields χγ

k in favour of a single constrained field B and a single scalar field χ. Notice
that we also gauge-fix φ1 = ρ̃ = 0, unlike in Section 4.5. In this case, the coset representative
V in (4.1) and the generalised metric M belong to E9. In order to obtain the minimal duality
equation from (4.25), it will be convenient to first rewrite (4.23) as

J = ρ−1 ⋆
(
M−1S1(J)†M + ρχγ

1K
)

. (5.1)

To analyse the duality equation (5.1) we decompose the current (4.6) as

Jα = J ♭
α −

∞∑

k=1

(
η−k αβTr[T βB(k)] + ρ−2kηk αβTr[M−1T β†MB(k)]

)
, (5.2)

where

J ♭ = M−1D♭M = M−1(d − 〈∂M|A〉)M − ηαβ〈∂A|(T α + M−1T α†M)|A〉T β , (5.3)

is expressed using a ‘bare’ covariant derivative

D♭ = d − L(A,0) (5.4)

that does not contain the B(k) terms.
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It will be convenient to similarly redefine the fields χγ

k in terms of bare fields χ♭
k by separating

out the B(k) components according to

χγ

k = ρ−kχ♭
k + ρ−k

∞∑

q=0

Tr
[(

L−1+k−q + ρ−2−2qM−1L−k−1−qM
)
B(1+q)

]
. (5.5)

The field χ♭
k is the K-completion of Sk(J ♭) and the terms involving B play a similar role for the

B-terms in (5.2). We also recall from the text under (4.25) that for k ≥ 1

χγ

1+k = ⋆kχγ

1 . (5.6)

The components of (5.1) along the Virasoro generators give that

Tr[B(1+k)] = ρk ⋆k Tr[B(1)] , (5.7)

relating the traces of all higher B(k) to that of B(1). Therefore we can rewrite the current J as

J = J ♭ − η−1αβTr
[ ∞∑

k=0

S−k(T α)B(1+k)
](

T β + M−1T β†M
)

+
∞∑

k=0

ρk ⋆k Tr[B(1)]
(
L−1−k + M−1L1+kM

)
(5.8)

in which the constrained fields B(1+k) only appear through

Tr
[ ∞∑

k=0

S−k(T α)B(1+k)
]

= Tr
[
T α

∞∑

k=0

Ŝ−k(B(1+k))
]

. (5.9)

The operation Ŝ−k(B(1+k)) is defined implicitly such that the relation (A.41) holds for any
T α ∈ ê8 h vir− as explained in Appendix A.4. This implies that one can choose a particular
gauge for the one-form gauge transformations defined in Appendix A.4 such that (5.7) extends
to the whole constrained fields and fixes for all k ≥ 0

B(1+k) = ρk ⋆k B . (5.10)

Note that, although B(1) = B according to this equation, B does not transform in the same
way as B(1) under internal diffeomorphisms so they should not be understood as being the
same constrained fields. This is because the fields B(k) only appear through the combination∑∞

k=0 Ŝ−k(B(1+k)) above, and the identification (5.10) only holds for this combination traced
with a generator T α ∈ e9 h 〈L−1〉. To define the gauge transformation of the field B one
identifies the gauge transformation of this combination

δΛ

∞∑

k=0

Ŝ−k(B(1+k)) = L(Λ,0)

∞∑

k=0

Ŝ−k(B(1+k)) − η1 αβ〈∂Λ|T α|A〉T β |Λ〉〈∂Λ| , (5.11)
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and defines the gauge transformation of the constrained field B consistently with it, i.e. such
that

∞∑

k=0

ρk ⋆k Ŝ−k(δΛB) =
∞∑

k=0

ρk ⋆k Ŝ−k(L(Λ,0)B) − η1 αβ〈∂Λ|T α|A〉T β|Λ〉〈∂Λ| + . . . (5.12)

where the ellipses correspond to terms that vanish upon tracing with T α. Inverting the geometric
series, one obtains the gauge transformation of the constrained field B up to a trivial parameter

δΛB = L(Λ,0)B +
(
1 − ρ ⋆ Ŝ−1

)(
η1 αβ〈∂Λ|T α|Λ〉T β |A〉〈∂Λ|

)
+ . . .

= L(Λ,0)B + η1 αβ〈∂Λ|T α|Λ〉T β|A〉〈∂Λ|

− ρ ⋆
(
ηαβ〈∂Λ|T α|Λ〉T β |A〉 + 〈∂Λ|Λ〉|A〉 − 〈∂Λ|A〉|Λ〉

)
〈∂Λ| . (5.13)

Note that although we inverted the formal geometric series to obtain this formula from the
Virasoro-extended gauge transformation, it is well defined and E9-covariant. The final line is
the definition of the gauge transformation of B.

Writing χ♭ ≡ χ♭
1 for short and substituting (5.10) on both sides of the duality equation (5.1),

one obtains

J ♭ −
∞∑

k=0

⋆k
(

ρkη−1−k αβTr[T αB] + ρ−2−kη1+k αβTr[M−1T α†MB]
)

T β (5.14)

= ρ−1⋆
(
M−1S1(J ♭)†M + χ♭K

)
−

∞∑

k=1

⋆k
(

ρ−kηk−1αβTr[M−1T α†MB] + ρkη−1−kαβTr[T αB]
)

T β.

One finds that most of the terms cancel and the remaining equation is

J ♭ − η−1αβTr[T αB]T β = ρ−1 ⋆
(
M−1S1(J ♭)†M − ηαβTr[T αB]M−1T β†M + χ♭K

)
. (5.15)

This equation can be written as

J = ρ−1 ⋆
(
M−1S1(J )†M + χK

)
, (5.16)

for the current J and the field χ defined as

J = J ♭ − η−1αβTr[T αB]T β , χ = χ♭ + Tr[L0B] , (5.17)

distributing the B dependence. This provides an alternative formulation of the theory that we
refer to as the minimal formulation and discuss in detail in the remainder of this section.

Because J 6= M−1J †M, this duality equation does not imply an infinite chain of relations
between J and its shifts Sn(J ) as in equation (4.25) of the Virasoro-extended formulation.
Rather, (4.25) translates in the minimal formulation into finite linear combinations of the dual-
ity equation (5.16) and its Hermitian conjugate where some of the J ♭ components cancel out.
We will see that (5.16) is invariant under internal diffeomorphisms with the gauge transforma-
tion (5.13).
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Let us now consider similar consequences for the the pseudo-Lagrangian. The potential
term is not modified so we only need to discuss the topological term at vanishing Virasoro fields
φn = 0 for n ≥ 1. We will then rearrange the terms in (4.81) in the case M ∈ E9, i.e. for ρ̃ = 0.
By the definition (4.42), we have

ρ F̂γ

1 = −〈∂F |L1|F〉 −
∞∑

k=0

Tr
[
L−kG(1+k)

]

= −〈∂F |L1|F 〉 −
∞∑

k=0

Tr
[
L−kG(1+k)

]

+〈∂|
(

1
2η1 αβT α|C[1〉〈πC |T β|C2]〉 + |C+

1 〉Tr[C+
2 ] − C+

2 |C1〉
)

, (5.18)

where the two-forms (which enter the field strengths as discussed in Appendix A.2) appear
through a total derivative that we will neglect in the following. For M ∈ E9, one also computes

M−1(F̂γ

−1K + [F]αSγ

−1(T α)
)†M

= ρ
(

η−1 αβ〈∂F |T α|F〉 +
∞∑

k=1

η−1−k αβTr[T αG(k)]
)

M−1T β†M

= ρ−1
(

η1 αβ〈∂F |M−1T α†M|F〉 +
∞∑

k=1

ρ−2kη1+k αβTr[M−1T α†MG(k)]
)

T β , (5.19)

and because MF̂γ

1 is defined as the K component of this expression according to (4.44), one
obtains

ρ MF̂γ

1 = −〈∂F |M−1L−1M|F 〉 −
∞∑

k=1

ρ−2kTr[M−1L−1−kMG(k)] , (5.20)

where the fact that F̂γ

−1 does not depend on the two-forms was used to replace |F〉 and G(k) by
|F 〉 and G(k), respectively.

Moreover, one has ρ−1Dρ̃ = −Tr[B(1)] at ρ̃ = 0 and one can therefore rearrange the following
terms in (4.81) according to

ρ dχγ

1 − ρ〈∂χ|A〉χγ

1 + ηAB
∑

n∈Z

n[A]nA (J−n−1
B − ρ̃J−n

B )

= D♭(ρχγ

1) −
∑

n∈Z

(n + 1)
∞∑

k=0

Tr[T A
n−kB(1+k)]Jn

A + 1
2J0ρχγ

1 , (5.21)

where we used the bare covariant derivative introduced in (5.4). For M ∈ E9 it will be convenient
to introduce the shifted cocycles ωα

−k(M) defined in (B.14), that satisfies

M−1LnM = ρ−2nLn − ρ2k−2nηn−k αβωα
−k(M)T β , (5.22)

such that ωα
0 (M) = ω(M). Using (B.15), the expression (4.22) for χγ

−k can be simplified to

χγ

−k = χγ

k + ρkωα
−k(M)Jα . (5.23)
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Combining all these terms, one finally obtains the following form of the topological term (4.81)
at ρ̃ = 0, up to the total derivative in the two-form fields in (5.18) that we do not include for
brevity,

Ltop = D♭(ρχγ

1) −
∑

n∈Z

(n + 1)
∞∑

k=0

Tr[T A
n−kB(1+k)]Jn

A + 1
2JKTrB(1) + 1

2ηAB
∑

n

nJn
AJ−1−n

B

+ 1
2J0ρχγ

1 + 1
2

∞∑

k=1

ρ1−kTrB(k)χγ

1+k + 1
2

∞∑

k=0

(
ρ−1−kχγ

1+k + ωα
−1−k(M)Jα

)
TrB(2+k)

+ ρ〈χγ

1|F 〉 − 〈∂F |
(
L1 + M−1L−1M|F 〉 −

∞∑

k=0

Tr
[(

L−k + ρ−2−2kM−1L−2−kM
)
G(1+k)

]
. (5.24)

With the split (5.2) and (5.5), the above topological term can be written as

Ltop = D♭χ♭
1 + 1

2ηAB
∑

n

nJ ♭n
AJ ♭−1−n

B + 1
2η1 αβ〈∂A|T α|A〉〈∂A|

(
L0 + ρ−2M−1L−2M

)
T β|A′〉

+ ρ〈χγ

1|F 〉 − 〈∂F |
(
L1 + M−1L−1M|F 〉

+ 1
2J ♭

0 χ♭
1 + 1

2 Tr[J ♭B(1)] + 1
2Tr
[(

S−1(J ♭) + ρ−2χ♭
1 + ωα

−1(M)J ♭
α

)
B(2)

]

+ 1
2

∑

k≥1

Tr
[(

S−1−k(J ♭) + ρ−2−2kχ♭
1+k + ωα

−1−k(M)J ♭
α

)(
B(k+2) − ρ2B(k)

)]

+ 1
2

∑

k≥1

∑

q≥1

ρ−2kη1+k−q αβTr[T αB(q)]Tr[M−1T β†MB(k)] , (5.25)

where we used the explicit expression of G(k)

G(k) = D♭B(k) − 1
2δk

1 η1 αβ〈∂A|T α|A〉T β|A′〉〈∂A| + 1
2

∞∑

q=1

η−q αβTr[T αB(q)]T βB(k)

+ 1
2

k∑

r=1

(2r − 1 − k)Tr[B(r)]B(1+k−r) (5.26)

and the fact that the covariant derivative of χγ

1 compensates the one of these field strengths
using

D♭(ρχγ

1) −
∞∑

k=0

Tr
[(

L−k + ρ−2−2kM−1L−2−kM
)
D♭B(1+k)

]

= D♭χ♭
1 +

∞∑

k=1

Tr
[
D♭
(
ρ−2kM−1L−1−kM

)
B(k)

]
. (5.27)

The Euler–Lagrange equations of motion of the fields B(k) and χγ

k do not imply the duality
equation (5.1), so one cannot integrate them out in the usual sense. In fact, integrating them out
näıvely gives rise to inconsistencies due to formal indefinite sums that appear in the topological
term once one substitutes the solutions to their Euler–Lagrange equations. However, it turns out
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to be consistent to set them to the values in (5.6) and (5.10). In general, one cannot substitute
a solution to a duality equation (like (5.6) and (5.10)) into a pseudo-Lagrangian. In the present
case, the Euler–Lagrange equations of motions for the fields M, |A〉 and 〈χ| are automatically
preserved, but the Euler–Lagrange equations for B(1) and χγ

1 are not. We shall see nonetheless
that the latter are consistent with the duality equation. Indeed, after the substitution of (5.6)
and (5.10) in the pseudo-Lagrangian, the B field and χ field Euler–Lagrange equations become
projected components of the duality equation (5.16), which is itself by construction consistent
with the original duality equation (5.1). Therefore we obtain that the two pseudo-Lagrangians
together with their respective duality equations define the same set of equations. Note that the
use of the pseudo-Lagrangian was always to determine the Euler–Lagrange equations of motions
for the fields M, |A〉 and 〈χ| only, whereas the Euler–Lagrange equations of the constrained
fields B(k) and χγ

k were redundant with the duality equations. So it may not be that surprising
that this manipulation turns out to be consistent.

Because (5.6) and (5.10) involve the Hodge star operator, their substitution in the topological
term (5.25) gives the sum L1 + L2 of a kinetic term

L1 = 1
2ρ Tr

[(
S−1(J ♭) + ρ−2χ♭ + ωα

−1(M)J ♭
α

)
⋆ B
]

− 1
4ρ−1ηαβTr[T αB] ⋆ Tr[M−1T β†MB] ,

(5.28)

and a topological term

L2 = D♭χ♭ + 1
2ηAB

∑

n

nJ ♭n
AJ ♭−1−n

B + 1
2η1 αβ〈∂A|T α|A〉〈∂A|

(
L0 + ρ−2M−1L−2M

)
T β|A′〉

+ ρ〈χγ

1|F 〉 − 〈∂F |
(
L1 + M−1L−1M|F 〉 + 1

2J ♭
0 χ♭ + 1

2Tr[J ♭B] . (5.29)

To obtain this result we have used in particular

1
2

∞∑

k=1

∞∑

q=1

ρ−2kη1+k−q αβTr[T αB(q)]Tr[M−1T β†MB(k)]

= 1
4

∞∑

k=1

∞∑

q=1

(ρ−2kη1+k−q αβ − ρ2−2kηk−1−q αβ)Tr[T αB(q)]Tr[M−1T β†MB(k)]

= −1
4ρ−2ηαβTr[T αB(1)]Tr[M−1T β†MB(2)]

− 1
4

∞∑

k=1

η−k αβ

(
Tr[T αB(k)]Tr[M−1T β†MB(1)] + ρ−2Tr[T αB(k+1)]Tr[M−1T β†MB(2)]

)

+ 1
4

∞∑

k=1

∞∑

q=1

ρ−2kη1+k−q αβTr[T αB(q)]Tr[M−1T β†M(B(k) − ρ−2B(k+2))] . (5.30)

This last equation involves indefinite formal sums that we have regularised using geometric
series regularisation as in (4.119) such that both the second and the last line cancel after the
substitution (5.10).

Now one can easily verify that the Euler–Lagrange equations of B and χ♭ derived from the
pseudo-Lagrangian L1 + L2 in (5.28) and (5.29), are proportional to the duality equation (5.16)

δ(L1 + L2) = 1
2 Tr
[
δB
(

ρ−1 ⋆ M−1(S1(J ) + χK
)†M − J

)]
+ 1

2δχ♭
(
ρ−1 ⋆ Tr[B] − J0

)
. (5.31)
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This concludes the consistency of the substitution of (5.6) and (5.10) in (5.25). Note that
although the relation between the topological term (5.25) and L1 + L2 requires a regularisation,
the two terms (5.28) and (5.29) are well defined and E9 invariant. We shall use them to define
the pseudo-Lagrangian in the next section. In this minimal formulation we will see that the
Euler–Lagrange equations are finite and do not require any regularisation.

5.2 Internal diffeomorphisms invariance and pseudo-Lagrangian

We introduce now the unimodular metric g̃µν such that det g̃ = −1 and the two-dimensional
metric is gµν = e2σ g̃µν . Because this formulation of the theory is not manifestly covariant under
Σ gauge transformations, it will be useful to use the bare covariant derivative that was defined
in (5.4) as D♭ = d − L(A,0) instead of D = d − L(A,B). For a non-constant unimodular metric
g̃µν , the definition of the current J ♭ has to be generalised from (5.3) to

J ♭
µαT α = M−1D♭

µM + g̃νσ(∂ν − 〈∂g̃|Aν〉)g̃µσK . (5.32)

This additional central component is necessary for the covariance of the duality equation under
external diffeomorphisms as we shall see later. It can also be understood by identifying this
central component written in terms of the two-dimensional metric gµν

J ♭
µαT α = M̃−1D♭

µM̃ + gνσ(D♭
νgµσ − D♭

µgνσ)K , (5.33)

as the gravitational flux (see e.g. [47, Eq. 4.13a]), where M̃ does not include the conformal
factor σ. According to (5.17), the current J = JαT α involves only the M-independent B term
as

JµαT α = M−1D♭
µM − η−1 αβTr[T βBµ]T α + g̃νσ(∂ν − 〈∂g̃|Aν〉)g̃µσK , (5.34)

and therefore J is not equal to M−1J †M. It does not transform covariantly under generalised
diffeomorphisms either, but the duality equation (5.16), that we reproduce here for convenience

JµαT α = ρ−1g̃µσεσνM−1(S1(JναT α) + χνK)†M , (5.35)

is invariant under internal diffeomorphisms, as we prove below. The Hodge star operator is
written out with respect to the unimodular metric g̃µν with the convention εµν = g̃µσ g̃νρεσρ and
ε01 = −ε01 = 1.

We define the gauge transformations of parameter |Λ〉

δΛg̃µν = 〈∂g̃µν |Λ〉 ,

δΛM = 〈∂M|Λ〉M + ηαβ〈∂Λ|T β|Λ〉
(
T α†M + MT α

)
,

δΛ|Aµ〉 = ∂µ|Λ〉 + 〈∂A|Λ〉|Aµ〉 − ηαβ〈∂Λ|T α|Λ〉T β |Aµ〉 − 〈∂Λ|Λ〉|Aµ〉 , (5.36)
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and

δΛBµ = 〈∂B |Λ〉Bµ − ηαβ〈∂Λ|T α|Λ〉[T β , Bµ] + 〈∂Λ|Λ〉Bµ + η1αβ〈∂Λ|T α|Λ〉T β |Aµ〉〈∂Λ| (5.37)

− ρg̃µσεσν
(
ηαβ〈∂Λ|T α|Λ〉T β |Aν〉 + 〈∂Λ|Λ〉|Aν〉 − 〈∂Λ|Aν〉|Λ〉

)
〈∂Λ|

δΛχµ = 〈∂χ|Λ〉χµ + 〈∂Λ|Λ〉χµ +
∑

n

n〈∂Λ|T A
n |Λ〉Jn−1

µA − ηαβ〈∂Λ|T α|Λ〉〈∂Λ|M−1L−1MT β|Aµ〉

− 〈∂Λ|Λ〉〈∂Λ|M−1L−1M|Aµ〉 + 〈∂Λ|Aµ〉〈∂Λ|M−1L−1M|Λ〉

− ρg̃µσεσν
(
ηαβ〈∂Λ|T α|Λ〉〈∂Λ|L0T β|Aν〉 + 〈∂Λ|Λ〉〈∂Λ|L0|Aν〉 − 〈∂Λ|Aν〉〈∂Λ|L0|Λ〉

)
.

Note that the gauge transformation of the gauge field is not Dµ|Λ〉 as usual in exceptional
field theory, but it differs by a trivial diffeomorphism as shown in (3.21). In particular, the parts
of the gauge fields transformations which are independent of the Hodge dual match with (3.24)
and (3.25). The Hodge dual terms in the variations of B and χ follow directly from (5.13). They
can also be derived from the gauge transformations in [47], in which the Hodge dual terms and
the gauge field transformation (5.36) appear naturally.

To prove that the duality equation (5.35) is invariant under internal diffeomorphisms one
computes the gauge transformation of the current

δΛJ = 〈∂J |Λ〉J + ηαβ〈∂Λ|T α|Λ〉[J , T β] (5.38)

+ ηαβ

(
ηγδ〈∂Λ|T γ |Λ〉〈∂Λ|T αT δ|A〉 + 〈∂Λ|Λ〉〈∂Λ|T α|A〉 − 〈∂Λ|A〉〈∂Λ|T α|Λ〉

)
M−1T β†M

+ η−1 αβρ ⋆
(
ηγδ〈∂Λ|T γ |Λ〉〈∂Λ|T αT δ|A〉 + 〈∂Λ|Λ〉〈∂Λ|T α|A〉 − 〈∂Λ|A〉〈∂Λ|T α|Λ〉

)
T β ,

and we identify the first line with its covariant transformation, while the two last lines are found
to project out in the duality equation, up to a central element that is compensated by the gauge
transformation of χ.

The duality equation (5.35) is a twisted self-duality equation that can be obtained from a
truncation of the E11 twisted self-duality equation defined in [47]. Twisted self-duality in D = 2p
dimensions can normally be written as an equality between a p-form field strength dressed with
the scalar matrix M ∈ G and its Hodge star contracted with a G-invariant bilinear form. For E9,
the one-form field strength combines the current J together with the one-form χ in the module
〈L1〉∗ h e9 h 〈L−1〉, where 〈L1〉∗ h e9 is the module conjugate to e9 h 〈L1〉 that describes the
indecomposable representation of the field χ with the current J . The symmetric E9-invariant
bilinear form is

ρ〈(χµ, Jµ), (χν , Jν)〉 =
∑

n∈Z

ηABJµ
n
AJν

−n−1
B − Jµ −1Jν K − Jµ KJν −1 − Jµ 0χν − χµJν 0 . (5.39)

This bilinear form, together with the action of E9 on the module 〈L1〉∗ h e9 h 〈L−1〉, define the
twisted self-duality equation in 〈L1〉∗ h e9 h 〈L−1〉.

(χ, J ) = (I1[χ], I1[J ]) , (5.40)
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with the involution24

I1[J ] = ρ−1 ⋆ M−1(S1(J ) + χK)†M , I1[χ] = ρ ⋆ JK − ρ2ωα
−1(M) I1[J ]α . (5.41)

The equation χ = I1[χ] follows from the central component of (5.35)

JK = ρ−1 ⋆ χ + ρ ωα
−1(M) ⋆ Jα . (5.42)

One checks indeed that

I1[I1[J ]] = ρ−1M−1 ⋆
(

S1
(
ρ−1M−1 ⋆ (S1(J ) + χK)†M

)
+ χK

)†
M + ρ−1 ⋆ I1[χ]K

= J , (5.43)

and I1[I1[χ]] = χ. Although (5.40) is manifestly involutive, it is more convenient to write it as
an equation in the Lie algebra e9 h 〈L−1〉 as (5.35).

The pseudo-Lagrangian of the theory for a non-constant unimodular metric g̃µν is defined as

Lmin = L1 + L2 +
1
4

ρεµνεσρg̃κλDµg̃σκDν g̃ρλ +
ρ−1

4
〈∂g̃µν |M−1|∂g̃µν〉 − V , (5.44)

where the kinetic term

L1 = 1
2ρ−1g̃µν

(
Tr
[(

M−1S1(Jµ)†M + χµ

)
Bν

]
+ 1

2ηαβTr[T αBµ]Tr[M−1(T β)†MBν ]
)

(5.45)

and the topological term25

L2 dx0∧ dx1 = Dχ + 1
2J0χ + 1

2J−1JK + 1
2ηAB

∑

n

nJn
AJ−1−n

B + ρ2〈χ − ωα
−1(M)Jα|F 〉 (5.46)

− 〈∂F |(L1 + M−1L−1M)|F 〉 − Tr[L0G] + 1
2ρ−2η1αβ〈∂A|T α|A〉〈∂A|M−1L−2MT β|A′〉 ,

are the direct generalisations of (5.28) and (5.29) with a unimodular metric g̃µν . Note that we
wrote explicitly 〈χγ

1| = ρ〈χ − ωα
−1(M)Jα| in terms of the field 〈χ| that appears in the potential

term V [1]. We recall that the (internal) 〈χ| transforms as the central component of

〈J −
α | ⊗ T α = 〈Jα| ⊗ S−1(T α) + 〈χ| ⊗ K , (5.47)

whereas the (external) vector field χ instead transforms as the central component of S1(J )+χK.
In addition to the dependence in the general unimodular metric g̃µν , (5.45) and (5.46) differ from
(5.28) and (5.29) in that we have included (most of) the dependence in the field Bµ in the current
(5.35), the covariant derivative Dχ and the field strength G, using similar steps as in passing
from (5.24) to (5.25).

24The conjugation by M uses the K(E9) invariant bilinear form defined at M = 1 as

(
(χµ, Jµ), (χν , Jν)

)
=

∑

n∈Z

δABJµ
n
AJν

n
B − Jµ 0Jν K − Jµ KJν 0 − Jµ −1χν − χµ Jν −1 .

25In this expression we extracted the top-form factor on the left, with the convention that AB = εµνAµBνdx0∧
dx1 and A ⋆ B = g̃µνAµBνdx0∧dx1 for one-forms in the two-dimensional external space.
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In (5.44), the first two terms L1+L2 together, the two terms involving the derivative of the
unimodular metric and the potential V are individually invariant under internal diffeomorphisms
up to a total derivative. We shall see that their relative coefficients are determined by external
diffeomorphisms.

In order to study the invariances of the proposed pseudo-Lagrangian (5.44), we recall a few
definitions. The field strength F and G are defined as in (3.29), while the covariant derivative

Dχ = dχ−〈∂χ|A〉χ−〈∂A|A〉χ−
∑

n

n〈∂A|T A
n |A〉Jn−1

A −
∑

n

(n+1)Tr[T A
n B]Jn

A −Tr[B]JK , (5.48)

follows from the indecomposable representation of the field χ under e9 h 〈L−1〉.26 One derives
the Bianchi identity for J

DJ + J 2 + 〈J |F 〉 + ηαβ〈∂F |(T α + M−1T α†M)|F 〉T β + η−1 αβTr[T αG]T β

= 1
2η−1 αβη1 γδ〈∂A|T γ |A〉〈∂A|T αT δ|A′〉M−1T β†M . (5.49)

The non-covariance of the right-hand-side follows from the property that J does not include the
term in −η−1 αβTr[T αB]M−1T β†M in its definition. One can also derive the rigid E9 invariant
topological term using the same construction as in (4.46). One can indeed write a Bianchi
identity for the shifted current that transforms under e9 by a commutator with the e9 generators
T α. This Bianchi identity is satisfied up to a central element that is equal to the topological
term L2

D
(
S1(J ) + χK

)
+ 1

2J0
(
S1(J ) + χK

)
+ 1

2J−1J + 1
2J
(
S1(J ) + χK

)
+ 1

2
(
S1(J ) + χK

)
J

+ 〈Jα|S1(T α)|F 〉 + 〈ρ2(χ − ωα
−1(M)Jα)|F 〉 + η1αβ〈∂F |

(
T α + M−1T α†M

)
|F 〉T β

+ ηαβTr[T αG]T β − 1
2ρ−2η2 αβη1 γδ〈∂A|T γ |A〉〈∂A|M−1T α†MT δ|A′〉T β = L2K , (5.50)

which implies that L2 is rigid E9 invariant. The term L1 is manifestly invariant under rigid
E9 and can be determined such that the Euler–Lagrange equation for B is a projection of the
duality equation.

Let us now show that L1+L2 transforms as a density under internal generalised diffeomor-
phisms. The non-covariant variation of L1 gives

∆ΛL1 = 1
2ρg̃µν

(
ηγδ〈∂Λ|T γ |Λ〉〈∂Λ|T αT δ|Aµ〉 + 〈∂Λ|Λ〉〈∂Λ|T α|Aµ〉

− 〈∂Λ|Aµ〉〈∂Λ|T α|Λ〉
)(

Jνα + I1[Jνα]
)

(5.51)

To vary L2 we must first derive the transformation of the field strengths. To avoid a cumbersome
computation one first observes that the gauge transformation of G is mostly determined from the
gauge transformation of the field strength F by the Dorfman product (3.15) according to (3.30).
Therefore writing δΛ|F 〉 as L(Λ,0)|F 〉 plus an explicit trivial parameter allows to determine the
gauge transformation of G, up to doubly constrained trivial parameters (A.5d)–(A.5f) that only
affects G and the non-covariant piece of the B field gauge transformation (i.e. the second line

26Note that Dχ differs from Dχγ

1 in Section 4, because χγ

1 is invariant under L0 and L−1, while χ transforms

respectively into itself and JK under these two generators.

60



in (5.37)) that must be computed separately. But because the terms in the doubly constrained
parameters leave invariant Tr[L0G] in the pseudo-Lagrangian (see Appendix A.1), we do not
need to compute them. One computes in this way

δΛ|F 〉 = L(Λ,0)|F 〉 + 1
2
(
Ld|Λ〉|A〉〉−L|A〉d|Λ〉

)
+ 1

2η−1αβη1γδ〈∂Λ|T γ |A〉〈∂Λ|T αT δ|Λ〉T β|A〉 (5.52)

δΛG = L(Λ,0)G + η1 αβ〈∂Λ|T α|Λ〉T β|F 〉〈∂Λ|

+ 1
2η1 αβ〈∂Λ|T α|A〉T βd|Λ〉〈∂Λ| − 1

2η1αβ〈∂A|T α|A〉T βd|Λ〉〈∂A|

− 1
2η1 γδ〈∂Λ|T γ |A〉

(
ηαβT α|A〉〈∂Λ|T βT δ|Λ〉〈∂| − |A〉〈∂|T δ |Λ〉〈∂Λ| + T δ|Λ〉〈∂|A〉〈∂Λ|

)

+ D
(

ρ ⋆
(
ηαβ〈∂Λ|T α|A〉T β |Λ〉 + 〈∂Λ|A〉|Λ〉 − 〈∂Λ|Λ〉|A〉

)
〈∂Λ|

)
+ . . . , (5.53)

where the first line in δΛG directly follows from the Dorfman product (3.15), the second and
third lines keep track on the trivial parameter with one constrained index in the transformation
of |F 〉, the last line is computed directly and the ellipses stand for a trivial parameter with two
constrained indices.

With this we can now study the gauge transformation of the topological term (5.46). When
varying 〈∂F |L1|F 〉 + Tr[L0G], one obtains that all the contributions cancel up to a total deriva-
tive, except for the one obtained by commuting 〈∂F | with L|Λ〉 on δΛ|F 〉 and the last term
(involving the Hodge star) in the variation of δΛG. To understand this cancellation, one notes
that 〈∂F |L1|F 〉+ Tr[L0G] is invariant under all one-form gauge transformations up to a total in-
ternal derivative (A.14), and therefore, the trivial parameter components of the variations (5.52)
and (5.53) cancel up to a total derivative in the variation of 〈∂F |L1|F 〉 + Tr[L0G]. Eventually
one obtains

∆Λ
(
−2〈∂F |L1|F 〉 − 2Tr[L0G]

)

= 2ηαβ〈∂Λ|T α|Λ〉〈∂Λ|L1T β|F 〉 + 2〈∂Λ|Λ〉〈∂Λ|L1|F 〉 + 2η1αβ〈∂Λ|T α|F 〉〈∂Λ|L0T β|Λ〉

−2D
[
⋆ρ
(
〈∂Λ|Tα|Λ〉〈∂Λ|L0T α|A〉 + 〈∂Λ|A〉〈∂Λ|L0|A〉 − 〈∂Λ|Λ〉〈∂Λ|L0|A〉

)]

= 2〈∂Λ|L1|Λ〉〈∂Λ|F 〉

−2(d − 〈∂|A〉)
[
⋆ρ
(
〈∂Λ|Tα|Λ〉〈∂Λ|L0T α|A〉 + 〈∂Λ|A〉〈∂Λ|L0|A〉 − 〈∂Λ|Λ〉〈∂Λ|L0|A〉

)]

−2ρ
(
〈∂A|[L0, Tα]|A〉 + η−1 αγTr[[L0, T γ ]B]

)

⋆
(
〈∂Λ|Tβ|Λ〉〈∂Λ|T αT β|A〉 + 〈∂Λ|A〉〈∂Λ|T α|A〉 − 〈∂Λ|Λ〉〈∂Λ|T α|A〉

)
, (5.54)

where the second line is a total derivative. We also have after some algebra

∆Λ
(
−2〈∂F |M−1L−1M|F 〉 + ρ−2η1αβ〈∂A2 |T α|A1〉〈∂A2 |M−1L−2MT β|A2〉

)
(5.55)

= 2〈∂Λ|Tα|Λ〉〈∂Λ|M−1L−1MT α|F 〉+2〈∂Λ|Λ〉〈∂Λ|M−1L−1M|F 〉+2〈∂Λ|A〉〈∂Λ|M−1L−1M|dΛ〉

+ 2〈∂Λ|dΛ〉〈∂Λ|M−1L−1M|A〉 + 2〈∂Λ|Tα|A〉〈∂Λ|M−1L−1MT α|dΛ〉

+ 〈∂Λ|Tα|Λ〉
(
〈∂Λ|TβT α|A1〉〈∂A2 |M−1L−1MT β|A2〉 − 〈∂A1 |TβT α|A1〉〈∂Λ|M−1L−1MT α|A2〉

)

− 〈∂Λ|T α|Λ〉
(
〈∂Λ|A1〉〈2∂Λ+∂A1+2∂A2 |M−1L−1MT β|A2〉 + 〈∂A2 |A1〉〈∂Λ|M−1L−1MT α|A2〉

)

+ 〈∂A2 |Λ〉〈∂Λ|Tα|A1〉〈∂Λ|M−1L−1MT α|A2〉 + 〈∂Λ|Λ〉〈∂A1 |A1〉〈∂Λ|M−1L−1M|A2〉

+ 〈∂A2 |Λ〉〈∂Λ|A1〉〈∂Λ|M−1L−1M|A2〉 − 2〈∂Λ|Λ〉〈∂Λ|A1〉〈∂Λ+∂A1+∂A2 |M−1L−1M|A2〉
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where we have written Tα = ηαβT β for the e9 generators and one should not forget that the
transport term in the Lie derivative of |A〉 does contribute to the non-covariant variation of the
second term when two derivatives act on the parameter |Λ〉. One also computes

∆Λ
(
2〈ρ2(χ − ωα

−1(M)Jα)|F 〉
)

= −2〈∂Λ|(L1 + M−1L−1M)|Λ〉〈∂Λ|F 〉 , (5.56)

and finally that

∆Λ
(
2Dχ + J0χ + J−1JK + ηAB

∑

n

nJn
AJ−1−n

B

)
(5.57)

= 〈∂Λ|Tα|A〉〈∂Λ|M−1S1(J)†MT α|Λ〉 + 〈∂Λ|A〉〈∂Λ|M−1S1(J)†M|Λ〉

+〈∂Λ|Λ〉〈∂Λ|M−1S1(J)†M|A〉+2〈∂Λ|Tα|F 〉〈∂Λ|M−1L−1MT α|Λ〉+2〈∂Λ|F 〉〈∂Λ|M−1L−1M|Λ〉

−2〈∂Λ|Λ〉〈∂Λ|M−1L−1M|F 〉−2〈∂Λ|Tα|A〉〈∂Λ|M−1L−1MT αd|Λ〉

−2〈∂Λ|A〉〈∂Λ|M−1L−1Md|Λ〉+2〈∂Λ|dΛ〉〈∂Λ|M−1L−1M|A〉
)

−〈∂Λ|Tα|Λ〉
(
〈∂Λ|TβT α|A1〉〈∂A2 |M−1L−1MT β|A2〉−〈∂A1 |TβT α|A1〉〈∂Λ|M−1L−1MT β|A2〉

)

+〈∂Λ|Tα|Λ〉
(
〈∂Λ|A1〉〈2∂Λ+∂A1+2∂A2 |M−1L−1MT α|A2〉+〈∂A2 |A1〉〈∂Λ|M−1L−1MT α|A2〉

)

−〈∂A2 |Λ〉〈∂Λ|Tα|A1〉〈∂Λ|M−1L−1MT α|A2〉−〈∂Λ|Λ〉〈∂A1 |A1〉〈∂Λ|M−1L−1M|A2〉

−〈∂A2 |Λ〉〈∂Λ|A1〉〈∂Λ|M−1L−1M|A2〉+2〈∂Λ|Λ〉〈∂Λ|A1〉〈∂Λ+∂A1+∂A2 |M−1L−1M|A2〉 .

Combining all terms one gets eventually

∆Λ(L1 + L2) = 0 , (5.58)

such that L1+L2 is indeed invariant under internal diffeomorphisms. Moreover, one checks that
in L1+L2 is invariant under the Σ and 1-form gauge transformations defined in Appendix A.5.

The potential V was shown to be invariant under internal diffeomorphisms in [1], and the
two additional terms in g̃µν are manifestly invariant under internal diffeomorphisms up to a total
derivative. Therefore the pseudo-Lagrangian (5.44) consists of three pieces that are separately
invariant under internal diffeomorphisms.

We shall see in the next section, that external diffeomorphism invariance also requires to
introduce one additional duality equation in the theory. Just like the B field Euler–Lagrange
equation, obtained by varying the pseudo-Lagrangian with respect B, gives a projection of
the duality equation (5.35), the Euler–Lagrange equation for the constrained field 〈χ| gives a
projection of the duality equation27

|Fµν〉 = −ρ−1εµνT αM−1|J −
α 〉 , (5.59)

where

|F〉 = |F 〉+〈∂C |Tα|C(1〉T α|C2)〉+〈πC |Tα|C[1〉T α|C2]〉+2〈πC |C[1〉|C2]〉+η−1αβTr[T αC+
2 ]T β|C+

1 〉 ,
(5.60)

27This equation follows from the duality equations in [47] upon branching to E9.
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where we use the same notation as in (A.5a), (A.5b) and (A.5c) and the shifted internal current
〈J −

α | is defined in (5.47). These two-forms can be written in components

|C(1〉 ⊗ |C2)〉 ⇔ C(MN) , |C[1〉 ⊗ |C2]〉 ⊗ 〈πC | ⇔ C [MN ]
P , |C+

1 〉 ⊗ C+
2 ⇔ C+M ;N

P , (5.61)

where C(MN) is symmetric, C [MN ]
P antisymmetric in MN , and C [MN ]

P and C+M ;N
P are both

constrained on their index P . Note in particular that |C1〉 ⊗ |C2〉 represents a unique field that
does not factorise, so 〈∂C | ⊗ |C1〉 ⊗ |C2〉 ⇔ ∂P CMN is a total derivative. As trivial parameters,
they are defined such that they drop out when |F〉 is contracted with a constrained bra, as in the
equation of motion of 〈χ| for example. One checks using (5.52) that this duality equation (5.59)
is indeed invariant under internal diffeomorphisms provided one defines the (inhomogeneous)
transformation of the two-form potentials as28

∆̃Λ|C1〉 ⊗ |C2 µν〉 =
1
2
(
∂[µ|Λ〉 ⊗ |Aν]〉 − |A[µ〉 ⊗ ∂ν]|Λ〉

)
, (5.62)

∆̃Λ|C[1〉 ⊗ |C2]µν〉 ⊗ 〈πC | =
1
2
(
∂[µ|Λ〉 ⊗ |Aν]〉 + |A[µ〉 ⊗ ∂ν]|Λ〉

)
⊗ 〈∂Λ − ∂A| ,

∆̃Λ|C+
1 µν〉 ⊗ C+

2 = −ρ−1εµνM−1|∂Λ〉 ⊗ |Λ〉〈∂Λ| − η1αβ〈∂Λ|T α|A[µ〉|Aν]〉 ⊗ T β|Λ〉〈∂Λ| .

Note that the two-form indices can be placed on any Ci since they are representing the same field
according to our notation (5.61). The first term in the non-covariant variation of |C+

1µν〉 ⊗ C+
2

does not follow from the Dorfman structure and does not appear in (A.30), but is defined to
compensate the non-covariant transformation of the shifted current [1, Eq. (4.30)]

∆ΛT αM−1|J −
α 〉 = 〈∂Λ|T α|Λ〉

(
η−1 αβT βM−1|∂Λ〉 + ρ−2η1 αβM−1T β†|∂Λ〉

)

= η−1 αβ〈∂Λ|T α|Λ〉T βM−1|∂Λ〉 , (5.63)

where we used that the second term vanishes according to the section constraint. Therefore
the field strength does not transform covariantly as in (3.30), but includes moreover the same
non-covariant variation as the internal current.

We shall see in the next subsection that we need to include (at least a projection of) this
duality equation in order to obtain a system of equations invariant under external diffeomor-
phisms.

5.3 External diffeomorphisms invariance

Similarly as in [22], we define the external diffeomorphisms as

δξM = ξµD♭
µM − DµξµM ,

δξ g̃µν = ξσDσ g̃µν + 2D(µξσ g̃ν)σ − g̃µνDσξσ ,

δξ|Aµ〉 = ρ−1εµνξνT αM−1|J −
α 〉 + ρ−2g̃µνM−1|∂ξν〉 , (5.64)

where

Dµξν = ∂µξν − 〈∂ξν |Aµ〉 . (5.65)

28Here the inhomogeneous transformation ∆̃Λ is defined in (A.29). It is the C-independent component of δΛC.
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Note that we do not use the full covariant derivative DµM because Σ gauge invariance is not
manifest and we have gauge fixed the L−1 gauge symmetry by setting ρ̃ = 0. Writing the duality
equation (5.59) as |Eµν〉 = 0 with

|Eµν〉 ≡ |Fµν〉 + ρ−1εµνT αM−1|J −
α 〉 , (5.66)

one finds that this transformation of the vector potential indeed corresponds to a covariant
diffeomorphism modulo the duality equation (5.59), i.e.

δξ|Aµ〉 = ξν |Fνµ〉 + ρ−2g̃µνM−1|∂ξν〉 + ξν |Eµν〉 . (5.67)

This is the same argument that is used to define [22, Eq. (3.40)].
We will determine the transformation of the fields χµ and Bµ such that the twisted self-

duality equation (5.35)

Eµ ≡ Jµ − ρ−1M−1 ⋆ (S1(Jµ) + χµK)†M (5.68)

transforms into itself and other equations of motion under external generalised diffeomorphisms.
We will show below that these transformations can be defined such that

δξEµ = ξνD♭
νEµ + DµξνEν + ξν

(
− M−1L(Eµν ,0)M + ρ−1g̃µσεσρM−1S1

(
M−1L(Eρν ,0)M

)†M
)

,

(5.69)

so that we find that external diffeomorphism invariance requires to consider

ηαβ〈∂E |T β|Eµν〉 = 0 (5.70)

as an equation of motion. This equation is more constraining than the Euler–Lagrange equation
〈δχ|Eµν〉 = 0.

One may be used to the property that exceptional field theories can usually be defined
without being forced to introduce the duality equations for the non-propagating higher form
fields, as is the case e.g. in [20–22]. For E9 one may expect that the Euler–Lagrange equation
for the coset scalar fields would imply an equation of the form

ηαβ〈∂E |T β|Eµν〉 + η−1 αβTr[T βEµν ] ?= 0 (5.71)

for a Eµν involving the two-form field strength Gµν such that this equation would not depend
explicitly in the two-form potential C. However, the scalar fields Euler–Lagrange equations only
give a projection of the S1 shift of such an equation to e9 ⊖ K(e9), which does not imply that it
holds.

To compute the variation of (5.68) under external diffeomorphisms, it will be convenient to
define the non-covariant component of an external diffeomorphism as

δξ = Lξ + ∆ξ (5.72)
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such that

LξJµ = ξνD♭
νJµ + DµξνJν , (5.73)

and similarly for any vector field. Using this definition, one computes that

∆ξJ ♭
µ = ξνη−1 αβη1 γδ〈∂A|T γ |A′

[µ〉〈∂A|T αT δ|Aν]〉(T β + M−1T β†M) (5.74)

− ξν
(
〈Jα|Eµν〉 + ηαβ〈∂E |(T β + M−1T β†M)|Eµν〉

)
T α − ξν g̃σρ〈∂g̃µσ |Eρν〉K

− ρ−2g̃µν〈∂ξν |M−1|Jα〉T α − ρ−1εµν〈∂ξν |TαT βM−1|J −
β 〉(T α + M−1T α†M)

− ρ−2〈∂g̃µν |M−1|∂ξν〉K +
(

DνDµξν − 2DµDνξν + g̃µρg̃νσDνDσξρ
)

K

− ρ−2ηαβ g̃µν〈∂|(T βM−1 + M−1T β†)|∂ξν〉T α − ρ−2g̃µν〈∂ξν |[Tα, T β]M−1|Jβ〉T α ,

where 〈∂| in the last line indicates that this term is a total internal derivative and

|Eµν〉 = |Fµν〉 + ρ−1εµνT αM−1|J −
α 〉 , (5.75)

is the component of equation (5.59) that does not include the two-form gauge fields. The first
term 〈Jα|Eµν〉 = 〈Jα|Eµν〉, but to get the two-form dependence in the second term, we need
to define ∆ξB and ∆ξχ to depend explicitly on the two-forms. One computes that (5.69) is
satisfied if one defines the variations

∆ξBµ = η1 αβξν〈∂A|T α|A′
[µ〉T β|Aν]〉〈∂A|

− ρg̃µρερσξν
(
ηαβ〈∂A|T α|A′

[σ〉T β|Aν]〉 + 〈∂A|A′
[ρ〉|Aν]〉 + 〈∂A|A[ρ〉|A′

ν]〉
)
〈∂A|

+ ρ−1εµν

(
2ξνM−1|∂ξ〉〈∂ξ | + g̃νσM−1(|∂ξρ〉〈∂g̃ρσ | + |∂g̃ρσ〉〈∂ξρ|

)

− T αM−1(|∂ξν〉〈Jα| + |Jα〉〈∂ξν |
)

+ M−1|∂ξν〉〈J0|
)

+ g̃µν

(
M−1T α†|∂ξν〉〈J −

α | + T αM−1|J −
α 〉〈∂ξν |

)
+ ξνδCσν Bµ ,

∆ξχµ = −ξν
(

ηαβ〈∂A|T α|A′
[µ〉〈∂A|M−1L−1MT β|Aν]〉 + 〈∂A|A′

[µ〉〈∂A|M−1L−1M|Aν]〉

+ 〈∂A|A[µ〉〈∂A|M−1L−1M|A′
ν]〉
)

− ξν g̃µρερσ
(
ηαβ〈∂A|T α|A′

[σ〉〈∂A|L0T β|Aν]〉+〈∂A|A′
[σ〉〈∂A|L0|Aν]〉+〈∂A|A[σ〉〈∂A|L0|A′

ν]〉
)

− ρεµρξν〈∂g̃ρσ |Eσν〉 + ρεµρg̃σρ(DνDσξν − 2DσDνξν) + ρεµν g̃σρDσDρξν

+ ρ−2g̃µν

(
〈∂|(L1M−1 + M−1L−1)|∂ξν〉 + 〈∂ξν |[L1, T α]M−1|Jα〉

+ 〈∂ξν |(L0T αM−1 + T αM−1L0)|J −
α 〉 + ρ2〈∂ξν |M−1S1T α†|Jα〉

)

+ ρ−1g̃µρερσ〈∂g̃σν |(L0M−1 + M−1L0 − M−1)|∂ξν〉

+ ρ−1εµν

(
〈∂ξ + ∂M|(M−1L0 + L0M−1)|∂ξν〉 + 〈∂ξν |M−1L0|J0〉 + 〈∂ξν |T αM−1|Jα〉

+ 〈∂ξν |(L1 + M−1L−1M)T αM−1|J −
α 〉
)

+ ξνδCσν χµ , (5.76)
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where ξνδCσν is the one-form gauge transformation of parameter Cσν where σ is the index of
the vector parameter whereas ν is contracted with ξν , i.e.29

ξνδCσν B = −1
2 ιξη1αβT α|C[1〉

(
〈πC |T β|C2]〉〈∂C | + 〈∂C |T β|C2]〉〈πC |

)
(5.77)

+ ιξηαβTr[T αC+
2 ]T β |C+

1 〉〈∂C+| − ιξ|C+
1 〉〈∂C+ |C+

2 + ιξ〈∂C+|C+
1 〉C+

2

+ ρ ⋆ ιξ

(
ηαβT α|C[1〉〈πC |T β |C2]〉 + 2|C[1〉〈πC |C2]〉

)
〈∂C | − ρ ⋆ ιξη−1αβTr[T αC+

2 ]T β|C+
1 〉〈∂C+| ,

ξνδCσν χ = −ιξηαβ〈πC |T α|C[1〉〈∂C |M−1L−1MT β|C2]〉 − 2ιξ〈πC |C[1〉〈∂C |M−1L−1M|C2]〉

− ρ ⋆ ιξ

(
ηαβ〈πC |T α|C[1〉〈∂C |L0T β|C2]〉 + 2〈πC |C[1〉〈∂C |L0|C2]〉

)

− η−1 αβιξTr[T αC+
2 ]〈∂C+|M−1L−1MT β|C+

1 〉 − ρ ⋆ ιξη−1 αβTr[T αC+
2 ]〈∂C+|L0T β|C+

1 〉 .

Because we consider |Eµν〉 = 0 as an equation of motion, invariance of the system also requires
to compute its own transformation under external diffeomorphisms. On computes that |Eµν〉
varies into

δξ|Eµν〉 = −ρ−2εµν g̃σλελρEρM−1|∂ξσ〉 , (5.78)

with the definitions

δξ〈χ| = −〈∂ξµ|
(

ρ−1g̃µσεσνJν0 + ρ−2(χµ + Tr[M−1L0MBµ] + Bµ − Tr[Bµ]
)

+ ωα
−1(M)Jµα

)

−
∑

n

nξµ〈∂A|T A
n+1|Aµ〉〈Jn

A| + ξµ〈∂A|(L−1 + M−1L1M)|Aµ〉〈∂A| , (5.79)

and

∆ξ|C〉 ⊗ |Cµν〉 =
1
2
(
δξ|A[µ〉 ⊗ |Aν]〉 − |A[µ〉 ⊗ δξ|Aν]〉

)
, (5.80)

∆ξ|C[1〉 ⊗ |C2]µν〉 ⊗ 〈πC | =
1
2
(
δξ|A[µ〉 ⊗ |Aν]〉 + |A[µ〉 ⊗ δξ|Aν]〉

)
⊗ 〈∂δξA − ∂A| ,

∆ξ|C+
1µν〉 ⊗ C+

2 = ρ−1εµνM−1
(

|∂A〉 ⊗ ξσ|Aσ〉〈∂A| − ρ−1g̃ρσεσν |∂ξρ〉 ⊗ Bν

)
.

The duality equations (5.35) and (5.59) therefore transform into themselves under external
diffeomorphisms. The minimal set of duality equations transforming into each others under
external diffeomorphisms is

Eµα = 0 , ηαβ〈∂E |T β|Eµν〉 = 0 . (5.81)

One may be worried that the external diffeomorphisms variations of the ancillary fields B and
χ depend on the two-form potentials while the pseudo-Lagrangian does not. The resolution is
that the pseudo-Lagrangian is only invariant under external diffeomorphisms up to bilinear terms
in the duality equations, including equation (5.59) that depends on the two-form potentials. To
see this we observe that varying B and χ only in the pseudo-Lagrangian one obtains that the
dependence in the two-form potentials can be absorbed into field strengths terms, i.e. that

Tr[EδιξCB] + E0διξCχ♭ + 〈∂F |
(

S1(E) − E0L1 − E0M−1L−1M − Eρ⋆
)

ιξ|F〉 (5.82)

29where ιξdxµ = ξµ.
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does not depend on the two-form potential and so we expect the non-covariant variation of the
pseudo-Lagrangian to give

∆ξL = −1
2〈∂|E〉|

(
S1(E) − E0L1 − E0M−1L−1M − Eρ⋆

)
ιξ|E〉 + dBξ − 〈∂|Bξ〉 (5.83)

for some specific boundary terms Bξ and |Bξ〉. We stress here that it is enough for the pseudo-
Lagrangian to be invariant under a symmetry up to terms quadratic in the duality equations for
its Euler–Lagrange equations to transform into themselves and the duality equations under that
symmetry. On the contrary, it would not be sufficient for the pseudo-Lagrangian to be invariant
up to terms linear in the duality equations. A symmetry of the equations of motion only require
that they transform into themselves under the symmetry variations. If the Euler–Lagrange
equations of a pseudo-Lagrangian transform under the symmetry into duality equations, then one
finds that the pseudo-Lagrangian is only invariant under that symmetry up to terms quadratic
in the duality equations. This is discussed in detail in Appendix E.

As a consistency check, one can verify that the relation between the quadratic terms in
the duality equation in (5.83) are consistently related to the terms proportional to the duality
equations in the external diffeomorphism variation of the B fields according to the general
discussion of Appendix E. This can easily be verified, because the equation of motion EB = 0 of
the constrained field B is simply the projection of (5.68) upon tracing with δB, so its variation
under external diffeomorphisms follows directly from (5.69) as 30

Tr[δBδξEB ] = −1
2Tr[δBδξE ] (5.84)

= −1
2Tr[δBLξE ] − 1

2 Tr[T αδB]ιξ〈Jα|E〉 + 1
2Tr[M−1S1T α†MδB]ρ−1 ⋆ ιξ〈Jα|E〉

− 1
2 〈∂|E〉|δBιξ |E〉 + 1

2Tr[δB]ιξ〈∂|E〉|E〉 − 1
2Tr[M−1L−1MδB]ρ−1 ⋆ ιξ〈∂|E〉|E〉

+ 1
2ηαβTr[M−1T β†MδB]〈∂|E〉|

(
ρ−1⋆

(
S1(T α) − δα

0 (L1+M−1L−1M)
)

− T α
)

ιξ|E〉

where the two first lines are proportional to Euler–Lagrange equations whereas the last line is
proportional to the duality equation (5.59). Assuming (5.83) we can vary the right-hand side
with respect to B to obtain

δ∆ξL = 1
2〈∂|E〉|δBιξ|E〉 − 1

2Tr[δB]ιξ〈∂|E〉|E〉 + 1
2 Tr[L0δB]ιξ〈∂|E〉|E〉 (5.85)

+ 1
2ηαβTr[M−1T β†MδB]〈∂|E〉|

(
ρ−1⋆

(
S1(T α) − δα

0 (L1 + M−1L−1M)
)

− T α
)

ιξ|E〉 ,

where again the first line is proportional to Euler–Lagrange equations whereas the second
matches precisely the term above in Tr[δBδξEB] proportional to the duality equation (5.59),
consistently with (E.5) in Appendix E.

We have not fully derived the invariance of the pseudo-Lagrangian up to quadratic terms in
the duality equations. We shall only check that external diffeomorphism invariance fixes all free
coefficients in the pseudo-Lagrangian.

We check this in steps. Let us start with external diffeomorphisms that do not depend on
the internal coordinates and with |A〉 = 0 for simplicity. We denote the corresponding transfor-
mation by δ(0)

ξ . To check the invariance of the pseudo-Lagrangian under such diffeomorphisms,

30We vary δB at δχ♭ = 0, not δχ = 0.

67



we only need to consider the terms involving JµK and χ in L1 + L2, as well as the third term
in (5.44). The terms linear in the field Tr[Bµ] transform together covariantly by construction
since they are proportional to the duality equation (5.42). The term that remains is Dχ + 1

2J0χ
in L2. One computes that

δ(0)
ξ (L1 + L2) = 1

2∂µ(ξµ(L1 + L2)) + ρ εµν(∂µ − 〈~∂|Aµ〉)(εσλ g̃λρ∂ν∂σξρ) . (5.86)

To compute the variation of the third term we found useful to use

1
4

εµνεσρg̃κλ∂µg̃σκ∂ν g̃ρλ = ∂µ

(
εµν g̃01g̃−1

11 ∂ν g̃11
)

, (5.87)

and vary instead

δ(0)
ξ g̃11 = ξµ∂µg̃11 + g̃11(∂1ξ1 − ∂0ξ0) + 2g̃01∂1ξ0

δ(0)
ξ

g̃01

g̃11
= ξµ∂µ

g̃01

g̃11
+ ∂0ξ1 +

g̃01

g̃11
(∂0ξ0 − ∂1ξ1) +

g̃00

g̃11
∂1ξ0 (5.88)

from which one computes that

δ(0)
ξ

( g̃01

g̃11
∂µg̃11

)
= ξν∂ν

( g̃01

g̃11
∂µg̃11

)
+ ξν∂µξν

( g̃01

g̃11
∂ν g̃11

)
− ενσ g̃σρ∂µ∂νξρ

+ ∂µ

(
g̃11∂0ξ1 +

(
g̃00 +

2
g̃11

)
∂1ξ0

)
, (5.89)

where the total derivative in the second line will drop out in the variation of the pseudo-
Lagrangian. Using this formula one obtains

δ(0)
ξ

(1
4

ρ εµνεσρg̃κλ∂µg̃σκ∂ν g̃ρλ

)
= ∂ϑ

(
ξϑ 1

4
ρ εµνεσρg̃κλ∂µg̃σκ∂ν g̃ρλ

)
− ρ εµν∂µ(εσλg̃λρ∂ν∂σξρ) .

(5.90)

Thus, the pseudo-Lagrangian is invariant under purely external diffeomorphisms, i.e. at |A〉 = 0
for ξµ(x).

Now if we take the second order derivative terms in the unimodular metric and the vector
field ξµ(x, y), we obtain from L1 + L2

δξ(L1 + L2) = · · · + ρ−1
(

〈∂ξ |M−1|∂ξσ〉g̃µνDµg̃νσ − 〈∂g̃µσ |M−1|∂ξσ〉Dν g̃µν
)

= · · · + 〈∂|
(
ρ−1M−1|∂ξσ〉g̃µνDµg̃νσ

)
− ∂µ

(
ρ−1〈∂g̃νσ|M−1|∂ξσ〉g̃µν

)

+ ρ−1
(

〈∂gνσ |M−1Dµ|∂ξσ〉g̃µν − 1
2〈∂g̃µν |M−1|∂ξσ〉Dσ g̃µν

)
(5.91)

which cancels the non-covariant variation of ρ−1

4 〈∂g̃µν |M−1|∂g̃µν〉.
The variation of the potential gives the terms

∆ξV = −1
2ρ−1〈∂ξµ|

(
T αJ ♭

µ + J ♭
µT α

)
M−1|Jα〉

+ 1
2ρ−1〈∂ξµ|

(
T αS1(J ♭

µ) + S1(J ♭
µ)T α

)
M−1|J −

α 〉 + . . . (5.92)
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which are compensated by the terms

∆ξL1 = 1
2ρ−1〈∂ξµ|

(
T αS1(J ♭

µ) + M−1S1(J ♭
µ)†MT α

)
M−1|J −

α 〉 + . . . (5.93)

∆ξL2 = −1
2ρ−1〈∂ξµ|

(
T αJ ♭

µ + J ♭
µT α

)
M−1|Jα〉

+ 1
2ρ−1〈∂ξµ|

(
S1(J ♭

µ) − M−1S1(J ♭
µ)†M

)
T αM−1|J −

α 〉 + . . .

in the variation of L1 and L2, fixing in this way their relative coefficients in Lmin.
We conclude therefore that the invariance of the pseudo-Lagrangian (5.44) under external

diffeomorphisms, up to total derivatives and terms quadratic in the duality equations, fixes the
relative coefficients of all the terms in (5.44). In this section we have proved that the duality
equations (5.35) and (5.59) transforms into each others under external diffeomorphisms, and
verified several consistency checks for the invariance of the Euler–Lagrange equations. The
complete invariance under external diffeomorphisms will be confirmed in the next section, by
showing that upon partially solving the section constrained one obtains the E8 exceptional field
theory [22]. Because the latter is invariant under three-dimensional external diffeomorphisms,
we conclude that the E9 exceptional field theory pseudo-Lagrangian (5.44) must indeed satisfy
(5.83).

5.4 Embedding of E8 exceptional field theory

The most convenient way to prove that the E9 exceptional field theory does describe supergravity
solution is to show that it reproduces E8 exceptional field theory upon choosing the partial
section solution

〈∂| = 〈0|(∂ϕ + T A
1 ∂A) , (5.94)

where ∂A is the internal E8 derivative that still satisfies itself the E8 exceptional field theory
section condition [11, 22]

∂A ⊗ ∂B + ∂B ⊗ ∂A + fAE
CfDE

B∂C ⊗ ∂D = 0 . (5.95)

In (5.94) and below we use ϕ to denote the circle coordinate in the Kaluza–Klein ansatz, which
is an internal coordinate (5.94) in E9 exceptional field theory and an external S1 coordinate
in E8 exceptional field theory with three-dimensional external space-time involving a local S1

fibration, see (2.12).

Semi-flat current and Kaluza–Klein ansatz

We use the E8 parabolic gauge

V = (ρ−L0e−σKV̊ ) U (5.96)

with V̊ ∈ E8 and U =
∏∞

k=1 exp(YkAT A
−k) the negative mode component in E9. Then one defines

the semi-flat current [47]

U−1J̃ ♭U = J ♭ , U−1J̃ U = J , χ = χ̃ − ωα
−1(U)Jα = χ̃ + ωα

−1(U−1)J̃α . (5.97)
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This gives rise to well-defined finite expressions, because the action of U−1 on a constrained bra
is finite

〈∂|U−1 = 〈0|(∂ϕ − ηABY1A∂B + T A
1 ∂A) . (5.98)

The duality equation (5.16) then reduces to

J̃ = ρ−1 ⋆
(
M−1

0 S1(J̃ )†M0 + χ̃
)

(5.99)

where we define M0 = e−2σρ−2L0M ∈ R+ × R+ × E8, the mode 0 component of M (i.e.
commuting with L0), not to be confused with M that denotes the E8 matrix (written MAB in
the adjoint representation of E8). Since

U · M−1dM · U−1 = M−1
0 dM0 + dU · U−1 + M−1

0 (dU · U−1)†M0 (5.100)

we have similarly

J̃αT α = M−1
0 (d − 〈∂M0 |A〉)M0 + (d − 〈∂U |A〉)U · U−1 + M−1

0 ((d − 〈∂U |A〉)U · U−1)†M0

− ηαβ〈∂A|U−1T βU |A〉(T α + M−1
0 T α†M0) − η−1αβTr[T βUBU−1]T α . (5.101)

The semi-flat current components are then finite by construction and we have in particular the
components along L0 and K

J̃0 = −2ρ−1(dρ − 〈∂A + ∂ρ|A〉ρ) = −2ρ−1Dρ ,

J̃K = −2(dσ − 〈∂σ|A〉) + 2〈∂A|U−1L0U |A〉 + g̃νσ(∂ν g̃µσ − 〈∂g̃µσ |Aν〉)dxµ

= −2Dσ + g̃νσDν g̃µσdxµ . (5.102)

Because the pseudo-Lagrangian involves infinitely many dual fields, we will need to eliminate
them in order to reproduce the E8 exceptional field theory Lagrangian. For this we shall add
terms to the pseudo-Lagrangian quadratic in the duality equations, which by construction do not
modify the equations of motion since their variation vanishes upon using the duality equation.
The duality equation along the loop algebra generators from (5.16) are

J̃−n
A = ρ2n−1HB

A ⋆ J̃n−1
B , (5.103)

where we introduced the E8 matrix HB
A = ηBCMCA that defines the conjugation HA

BT B
0 =

M−1(T A
0 )†M and

J̃ ♭−n
A = ρ2nHB

AJ̃ ♭n
B . (5.104)

We also need the explicit form of the ancillary and constrained field B in the E8 solu-
tion (5.94) of the E9 section constraint. As a constrained derivative decomposes as (5.94), one
can write the general ansatz for B

B = |b〉〈0| + |bA〉〈0|T A
1 , (5.105)
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with |bA〉 constrained on its A index according to the E8 section constraint (5.95). Writing out
the various ways in which B occurs in the pseudo-Lagrangian, this gives the components

Tr[B] = 〈0|b〉 + 〈0|T A
1 |bA〉 ≡ bK

Tr[L0B] = 〈0|T A
1 |bA〉 ≡ CA

A

Tr[L−kB] = 0 ∀k ≥ 1

Tr[T A
−1−kB] = 0 ∀k ≥ 1

ηABTr[T B
−1B] = 〈0|bA〉 ≡ −BA

ηABTr[T B
0 B] = fAB

C〈0|T B
1 |bC〉 ≡ fAB

CCB
C

ηABTr[T B
k B] = ηAB〈0|T B

k |b〉 + ηAB〈0|T C
1 T B

k |bC〉 ≡ B−1−k
A ∀k ≥ 1 (5.106)

where BA and CB
A are constrained on their A indices while bK and B−1−k

A are arbitrary. We
shall see that BA is the vector field in the Kaluza–Klein ansatz of the contrained field in three
dimensions, while CB

A is the component of a two-form potential in three dimensions. For the
vector field |A〉 we use the similar ansatz

|Aµ〉 =
(
wµ + ηABAA

µ T B
−1 + ηACηBDCA;B

µ T C
−1T D

−1 + . . .
)
|0〉 , (5.107)

where wµ is the Kaluza–Klein vector of the three-dimensional external metric (2.12). The vector
AA

µ in (5.107) is the Kaluza–Klein component of the three-dimensional vector (in the adjoint of
E8), and CA;B, valued in 3875 ⊕ 1 ⊕ 248 with

〈0|T A
1 T B

1 |A〉 = 2C(A;B) + fCE
BfAE

DCC;D , (5.108)

comes from the two-forms in three dimensions [22].31 To describe the Kaluza–Klein ansatz for
the vectors we note from [1] that Y A

1 = AA
ϕ , while the constrained field

〈χ| = ρ−1〈χ̃| + ωα
1 (U−1)〈J̃α| = ρ−1〈0|

(
χ̃ϕ + ρ−1BϕA

)
+ ωα

1 (U−1)〈J̃α| . (5.109)

The Kaluza–Klein ansatz is defined such that the three-dimensional vector fields take the form

A3DA = AA
ϕ (dϕ + w) + AA

µ dxµ , B3D
A = BϕA(dϕ + w) + BµAdxµ + ρg̃µσεσν∂Awνdxµ .

(5.110)

The additional term in the Kaluza–Klein Ansatz of the constrained vector B3D
A is consistent with

the E8 section constraint, and can be ascribed to the non-covariant transformation of the field
under external diffeomorphisms [22]. The three-dimensional covariant derivatives

D3D = dxµDµ + dϕDϕ = d3D − L3D
(A3DA,B3D

A) , (5.111)

of the metric components are defined in form notations as

D3Dσ = d3Dσ − A3DA∂Aσ − ∂AA3DA , D3Dρ = d3Dρ − ∂A(A3DAρ) ,

D3Dg̃µν = d3Dg̃µν − A3DA∂Ag̃µν , D3Dwµ = d3Dwµ − A3DA∂Awµ , (5.112)

31The antisymmetric 248 component C[A;B] = − 1
60 fAB

EfCD
ECC;D was not considered in [22] because it could

be absorbed in a redefinition of constrained two-form CB
A in the E8 theory.
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and the E9 covariant derivative decomposes as

Dµ = Dµ − wµDϕ (5.113)

on σ, g̃µν and wµ, whereas there is an additional term for ρ

Dµρ = Dµρ − wµDϕρ − ρDϕwµ . (5.114)

Since the field B appears in the pseudo-Lagrangian through Tr[T αUBU−1], we shall also
introduce the shorthand notation ηABTr[T B

k UBU−1] = B̃−1−k
A for the loop components with

k ≥ 1. For example, B̃−2
A expands as

B̃−2
A = B−2

A + fAB
EfEC

DAB
ϕ CC

D + ηABAB
ϕ bK − 1

2fAB
EfEC

DAB
ϕ AC

ϕ BD − fAB
CY B

2 BC . (5.115)

We also have for the (mode 0) E8 component

ηABTr[T B
0 UBU−1] = fAB

CC̃B
C = fAB

C(CB
C − AB

ϕ BC) . (5.116)

The duality equations (5.103) for n ≥ 2 give

B̃−n
A = J̃ ♭−n

A − ρ2n−1HB
A ⋆ J̃ ♭n−1

B , (5.117)

and since the fields B̃−n
A are arbitrary, one can integrate them out in the pseudo-Lagrangian by

setting them to this value.

Expansion of the pseudo-Lagrangian

We are now ready to analyse the pseudo-Lagrangian (5.44). We will first show that L1 + L2

can be written as a finite set of terms plus an infinite sum of terms quadratic in the duality
equations (5.103). For this purpose one computes that L1 decomposes as

L1 =
ρ−1

2
g̃µν
(

Tr
[
B̃µM−1

0

(
S1(J̃ ♭

ν) + χ̃νK
)†M0

]
− 1

2ηαβTr[T αB̃µ]Tr[M−1
0 T β†M0B̃ν ]

)
(5.118)

=
ρ
2

MAB g̃µν
(

−J̃ ♭
µ

0
ABνB + ρ−2J̃ ♭

µ
−1
A fBC

DC̃C
ν D +

∞∑

n=2

ρ−2nJ̃ ♭
µ

−n
A B̃ν

−n
B

)
+

ρ−1

2
g̃µν(χ̃♭

µ + C̃A
µ A)b̃νK

−
ρ
4

MAB g̃µν
(

BµABνB + ρ−2fAC
DC̃C

µ DfBE
F C̃E

ν F +
∞∑

n=2

ρ−2nB̃µ
−n
A B̃ν

−n
B

)

= −
ρ
4

MAB g̃µν
∞∑

n=2

ρ−2n
(
J̃µ

−n
A − ρ2n−1HC

A(⋆J̃)µ
n−1
C

)(
J̃ν

−n
B − ρ2n−1HD

B(⋆J̃)ν
n−1
D

)

+
ρ−1

2
g̃µν(χ̃µ − ρ(⋆J̃)µK)(bνK − ρ(⋆J̃)ν0)

−
ρ−1

4
MAB g̃µν

(
J̃µ

−1
A − ρHC

A(⋆J̃)µ
0
C

)(
J̃ν

−1
B − ρHD

B(⋆J̃)ν
0
D

)

−
ρ
4

ηAB g̃µν
(
ηAC J̃µ

0
C + MACBµC

)(
ηBDJ̃ν

0
D + MBDBνD

)
+ ρg̃µν J̃µKJ̃ν0

+ 1
2εµνηAB

∞∑

n=0

J̃µ
n
AJ̃ν

−1−n
B − 1

2εµν J̃µKJ̃ν−1 − 1
2εµν J̃µ0χ̃ν ,
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where we have used in particular that

g̃µν(⋆J̃)µ
0
C(⋆J̃)ν

0
D = −g̃µν J̃µ

0
C J̃ν

0
D , ηABBµABνB = 0 . (5.119)

For the topological term L2, we note in the first place that a rigid E9 transformation g (not
to be confused with the metric gµν) in the centrally extended loop group Ê8, i.e. with ρ(g) = 1,
gives

Dχ → Dχ + ωα
−1(g−1)(DJ )α . (5.120)

One computes that

Dχ = dχ̃ − 〈∂|(|A〉χ̃) − ωα
−1(U)(DJ )α + ηAB

∞∑

n=1

nJ̃−n
A J̃n−1

B − Tr[UBU−1]J̃K

+ 〈∂A|U−1T A
−1U |A〉J̃−2

A + 〈∂A|U−1M−1
0 (T A

1 )†M0U |A〉J̃0
A , (5.121)

where we used

dωα
−1(U) = R(U−1)α

βδωβ
−1(dU · U−1) , ωβ

−1(exp(X)) = δωβ
−1(X) + O(X2) , (5.122)

and the property that 〈∂A|U−1T A
−n = 0 for n ≥ 2 in the E8 partial section solution.

The first line of (5.121) gives together with the other terms of L2

− 2ωα
−1(U)(DJ )α + 2ηAB

∞∑

n=1

nJ̃−n
A J̃n−1

B − 2Tr[UBU−1]J̃K

+ J0χ + J−1JK + ηAB
∑

n

nJn
AJ−1−n

B + 2〈ρ2(χ − ωα
−1(M)Jα)|F 〉

− 2〈∂F |(L1 + M−1L−1M)|F 〉 − 2Tr[L0G] + ρ−2η1 αβ〈∂A|T α|A′〉〈∂A|M−1L−2MT β|A〉

= J̃0χ̃ − Tr[B̃]J̃K − ηAB
∞∑

n=0

J̃n
AJ̃−1−n

B + 2ρ〈χ̃|F 〉 − 2Tr[L0UGU−1]

− 2〈∂F |U−1(L1 + M−1
0 L−1M0)U |F 〉 (5.123)

+ ρ−2η1 αβ〈∂A|U−1T αU |A′〉〈∂A|U−1M−1
0 L−2M0T βU |A〉 , (5.124)

where we used the rigid E9-invariance of L2. Note that the last line and the second term of the
next-to-last vanish when using the partial solution to the section constraint (5.94) associated to
E8. We therefore have in total

L2 = dχ̃ − 〈∂|(U−1|Ã〉χ̃) + 1
2 J̃0χ̃ − 1

2Tr[B]J̃K − 1
2ηAB

∞∑

n=0

J̃n
AJ̃−1−n

B + ρ〈χ̃|F 〉 − Tr[L0UGU−1]

− 〈∂F |U−1L1U |F 〉 + 〈∂A|U−1T A
−1U |A〉J̃−2

A + 〈∂A|U−1M−1
0 (T A

1 )†M0U |A〉J̃0
A . (5.125)

Combining this with L1 from (5.118), we have

L1 + L2 = Z −
ρ
4

ηAB g̃µν
(
ηAC J̃µ

0
C + MACBµC

)(
ηBDJ̃ν

0
D + MBDBνD

)
+ 1

2ρg̃µν J̃µKJ̃ν0

+ ρ〈χ̃|F 〉 − Tr[L0UGU−1] + 〈∂U |U−1L1U |F 〉 + 〈∂A|U−1T A
−1U |A〉J̃−2

A

+ 〈∂A|U−1M−1
0 (T A

1 )†M0U |A〉J̃0
A , (5.126)
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where

Z = −
ρ
4

MAB
∞∑

n=2

ρ−2n
(
J̃−n

A − ρ2n−1HC
A ⋆ J̃n−1

C

)
⋆
(
J̃−n

B − ρ2n−1HD
B ⋆ J̃n−1

D

)

+ 1
2ρ−1(χ̃ − ρ ⋆ J̃K) ⋆ (bK − ρ ⋆ J̃0) + dχ̃ − 〈∂|

(
U−1|Ã〉χ̃ + U−1L1U |F 〉

)

−
ρ−1

4
MAB

(
J̃−1

A − ρHC
A ⋆ J̃0

C

)
⋆
(
J̃−1

B − ρHD
B ⋆ J̃0

D

)
(5.127)

does not contribute to the equations of motion, as it is composed out of bilinear terms in the
components of the duality equations (5.103) and total derivatives.

The before to last term in the pseudo-Lagrangian (5.44) becomes

ρ−1

4
〈∂g̃µν |M−1|∂g̃µν〉 =

ρ−1

4
e2σDϕg̃µνDϕg̃µν +

1
4

ρe2σMAB∂Ag̃µν∂B g̃µν . (5.128)

We recall from [1] that the E9 potential decomposes as

− V = −eV 3D −
1
4

ρe2σMAB∂Ag̃µν∂B g̃µν +
ρ3

2
MAB g̃µν∂Awµ∂Bwν

−
1
4

ρ−1e2σηABjA
ϕ jB

ϕ − 2ρ−1e2σDϕσDϕσ

− 1
2ρ−3e2σ

(
ρχ̃ϕ − AA

ϕ BϕA + ∂AY A
2 + 1

2fAB
CAA

ϕ ∂CAB
ϕ

)2 (5.129)

where the derivative of the three-dimensional metric in the first line does not appear in the E9

potential,32 but is part of the E8 potential in [22], so must be subtracted. We also recall that

〈χ̃| = 〈0|(χ̃ϕ + ρ−1BϕAT A
1 ) . (5.130)

To analyse the pseudo-Lagrangian we recombine the various terms coming from the five compo-
nents of (5.44) into the new five components

Lmin = Z + L3D
kin + L3D

EH + L3D
CS + L3D

KK − eV 3D , (5.131)

with

L3D
kin = −

ρ
4

ηAB g̃µν
(
ηAC J̃µ

0
C + MACBµC

)(
ηBDJ̃ν

0
D + MBDBνD

)
−

1
4

ρ−1e2σηABjA
ϕ jB

ϕ

+ 〈∂A|U−1M−1
0 (T A

1 )†M0U |A〉J̃0
A +

ρ3

2
MAB g̃µν∂Awµ∂Bwν , (5.132a)

L3D
EH = 1

2ρg̃µν J̃µKJ̃ν0 − 2ρ−1e2σDϕσDϕσ − 1
4ρ3√

−ggµσgνρfµνfσρ − ρg̃µν∂AwµF 3DA
ϕν

+
1
4

ρεµνεσρg̃κλDµg̃σκDν g̃ρλ +
ρ−1

4
e2σDϕg̃µνDϕg̃µν , (5.132b)

L3D
CS = ρ〈χ̃|F 〉 − Tr[L0UGU−1] + 〈∂U |U−1L1U |F 〉 + 〈∂A|U−1T A

−1U |A〉J̃−2
A

−
(
ρχ̃ϕ − AA

ϕ BϕA + ∂AY A
2 + 1

2fAB
CAA

ϕ ∂CAB
ϕ

)
f + ρg̃µν∂AwµF 3DA

ϕν , (5.132c)

L3D
KK = −1

2ρ−3e2σ
(
ρχ̃ϕ − AA

ϕ BϕA + ∂AY A
2 + 1

2fAB
CAA

ϕ ∂CAB
ϕ

)2

+
(
ρχ̃ϕ − AA

ϕ BϕA + ∂AY A
2 + 1

2fAB
CAA

ϕ ∂CAB
ϕ

)
f01 + 1

4ρ3√
−ggµσgνρfµνfσρ . (5.132d)

32Note that [1, Eq. (5.34)] is written in the conformal gauge ds2
3D = e2σηµνdxµdxν + ρ2dϕ2 and the internal

derivatives of g̃µν and wµ do not appear in the E9 potential as defined in [1].
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Here, we have added by hand the last lines in L3D
CS and L3D

KK and subtracted the same terms from
the first line in L3D

EH. We have also introduced the Kaluza–Klein field strength

f = dw − AA∂Aw − w∂ϕw = 〈0|F 〉 = dxµDµw − wDϕw . (5.133)

Let us start with L3D
kin. One checks that the combination

ηAC J̃µ
0
C + MACBµC = jA

µ − ρg̃µσεσν (ηAB + MAB)∂Bwν

= j3DA
µ − wµjA

ϕ − ρg̃µσεσν(ηAB + MAB)∂Bwν . (5.134)

where

j3DA = jA
ϕ (dϕ + w) + jA

µ dxµ , (5.135)

is the covariant E8 current [22]. One computes moreover that

〈∂A|U−1M−1
0 (T A

1 )†M0U |A〉 = ρ2MAB∂Bw (5.136)

so that (5.132a) gives indeed the scalar field kinetic term of the E8 exceptional field theory

L3D
kin = −

ρ
4

ηAB g̃µν(j3DA
µ − wµjA

ϕ )(j3DB
ν − wνjB

ϕ ) −
1
4

ρ−1e2σηABjA
ϕ jB

ϕ . (5.137)

For the Einstein–Hilbert term we first use that

[Dϕ, Dµ]wν = −F 3DA
ϕµ ∂Awν − DϕwµDϕwν , (5.138)

and then compute that33

L3D
EH = ρ

(
−

1
4

g̃µν g̃σρg̃κλDµg̃σκDν g̃ρλ +
1
2

g̃µρg̃νσ g̃κλDµg̃σκDν g̃ρλ

)
(5.139)

+ g̃µνDµρ(2Dνσ − g̃σρDσ g̃νρ) + ρg̃µν [Dϕ, Dµ]wν + ρg̃µνDϕwµDϕwν

− 2ρ−1e2σDϕσDϕσ − 1
4ρ3√

−ggµσgνρfµνfσρ +
ρ−1e2σ

4
Dϕg̃µνDϕg̃µν

= Dϕ(ρg̃µνDµwν) − Dµ(ρg̃µνDϕwν)

+ ρ
(

−
1
4

g̃µν g̃σρg̃κλDµg̃σκDν g̃ρλ +
1
2

g̃µρg̃νσ g̃κλDµg̃σκDν g̃ρλ

)
− 1

4ρ3√
−ggµσgνρfµνfσρ

+ (Dµ − wµDϕ)ρ(2g̃µν Dνσ + Dν g̃µν) − 2ρg̃µνDϕwµDνσ − ρDµwνDϕg̃µν

+ g̃µν(Dϕwµ(Dν − wνDϕ)ρ − DµwνDϕρ) − 2ρ−1e2σDϕσDϕσ +
ρ−1e2σ

4
Dϕg̃µνDϕg̃µν

=
√

−g3DR̂3D − Dµ

(
ρg̃σρg̃µν

(
Dσ g̃ρν − Dν g̃σρ

))
,

33We used here the following formula for the Einstein–Hilbert term in D dimensions

√
−gR̂ =

√
−g

(
− 1

4 gµνgσρgκλDµgσκDνgρλ + 1
2 gµσgνρgκλDµgρκDνgσλ + 1

4 gµνgσρgκλDµgσρDνgκλ

− 1
2 gµσgνρgκλDµgκλDνgσρ

)
+ Dµ

(√
−ggσρgµν(

Dσgρν − Dνgσρ
))

with Dσgµν = ∂σgµν − AA
σ ∂Agµν − 2

D−2 gµν∂AAA
σ .
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where on all individual terms the E9 covariant derivative Dµ gives Dµ − wµDϕ, except when it
acts as a total covariant derivative, in which case it is a true total derivative.34

The identification of the Chern–Simons term requires more work and we shall first simplify
some of the expressions appearing in (5.132c). Using (5.98) and 〈0|L1 = 0 one gets

〈∂|U−1L1U = 〈0|T A
2 U∂A = 〈0|(T A

2 + fBC
AY B

1 T C
1 + 2Y A

2 )∂A ,

〈∂|U−1T A
−1U = ηAB〈0|∂B , (5.140)

so that

〈∂U |U−1L1U |F 〉 + 〈∂A|U−1T A
−1U |A〉J̃−2

A = 2∂AY A
2 f + fBC

A∂AAB
ϕ 〈0|T C

1 |F 〉 + ηAB∂AwJ̃−2
B .

(5.141)
One computes moreover

〈0|T A
1 |F 〉 = dAA −

1
2

AB∂BAA −
1
2

fEC
DfEB

A∂CADAB −
1
2

∂BABAA

− w
(
∂ϕAA + ∂BC(A;B) + 1

2fCE
AfBE

D∂BCC;D)+ ∂Bw(C(A;B) + 1
2fCE

BfAE
DCC;D) ,

ηABTr[T B
−1G] = −dBA + AB∂BBA + ∂BABBA − BB∂AAB +

1
2

fCD
BAC∂A∂BAD

+ w
(
∂ϕBA − 1

2fCD
B∂A∂BCC;D)+ (bK − CB

B)∂Aw + ∂BwCB
A + 1

2fCD
BCC;D∂A∂Bw ,

Tr[L0G] = dCA
A − ∂A(AACB

B) − ∂ϕ(wCA
A) − ∂ϕAABA −

1
2

fBC
AAB∂ϕ∂AAC

+ ηABB−2
A ∂Bw + 1

2wfCD
A∂ϕ∂ACC;D + 1

2∂ϕ∂AwfCD
ACC;D , (5.142)

where we recognise the components of the three-dimensional field strengths [22]

F 3DA = dA3DA −
1
2

A3DB∂BA3DA −
1
2

fEC
DfEB

A∂CA3DDA3DB −
1
2

∂BA3DBA3DA ,

G3D
A = dB3D

A − A3DB∂BB3D
A − ∂BA3DBB3D

A + B3D
B ∂AA3DB −

1
2

fCD
BA3DC∂A∂BA3DD . (5.143)

In particular, we have

〈0|U−1T A
1 U |F 〉 = F A − w∂B

(
C(A;B) + 1

2fCE
AfBE

DCC;D)

+ ∂Bw
(
C(A;B) + A(A

ϕ AB) + 1
2fCE

BfAE
D(CC;D + AA

ϕ AB)
)

, (5.144)

where F A is the Kaluza–Klein component of the three-dimensional field strength

F 3DA = ηAB J̃ ♭−1
B (dϕ + w) + F A . (5.145)

We also need the expression

ηAB∂AwJ̃−2
B (5.146)

= ηAB∂AwJ̃ ♭−2
B − ηAB∂AwB−2

B + AA
ϕ

(
(bK − CB

B)∂Aw + ∂BwCB
A

)
+ AA

ϕ AB
ϕ BA∂Bw

34For total derivatives Dµ(ρXµ) = ∂µ(ρXµ) − ∂ϕ(wµρXµ) − ∂A(AA
µ ρXµ) using (5.114).
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where the bare current expands as

ηAB J̃ ♭−2
B =

(
d − w∂ϕ − AB∂B − 2∂BAB − 2∂ϕw

)
Y A

2 − fCE
AfBE

D(Y C
2 ∂BAD + AC

ϕ Y D
2 ∂Bw)

+ 1
2fBC

AAB
ϕ (d − w∂ϕ − AD∂D)AC

ϕ − 1
2fF G

DfCF
AfEG

BAC
ϕ AD

ϕ ∂BAE

− fBC
AAB

ϕ ∂ϕAC − 1
6fF G

CfDF
AfEG

BAC
ϕ AD

ϕ AE
ϕ ∂Bw

− fBC
A∂ϕCB;C − 2fCD

AAC
ϕ ∂BC(D;B) − fF G

DfCF
AfEG

BAC
ϕ ∂BCD;E

− 〈0|T B
1 T A

2 ∂B |A〉 + fAB
CY C

3 ∂Bw . (5.147)

The last term with the degree 3 fields simplify to a total derivative when contracted with ∂Aw
as

− ∂Aw〈0|T B
1 T A

2 ∂B |A〉 = −∂B

(
∂Aw〈0|T B

1 T A
2 |A〉

)
(5.148)

using that the L0 degree 3 component of the basic representation does not contain a generic
symmetric representation.

We can now recombine all these terms in (5.132c). We first observe that the dependence in
B−2

A and bK cancels between −Tr[L0UGU−1] and 〈∂A|U−1T A
−1U |A〉J̃−2

A . With more work one
obtains that the dependence in the three-dimensional two-form components also combine to a
total derivative. We compute (where A3DA, F 3DA and B3D

A are the forms in two dimensions)

L3D
CS (5.149)

= (BϕA + fBC
A∂AAB

ϕ )F 3DC + ∂ϕA3DAB3D
A + 1

2fBC
AA3DB∂ϕ∂AA3DC

+ AA
ϕ

(
dB3D

A − A3DB∂BB3D
A − ∂BA3DBB3D

A + B3D
B ∂AA3DB − 1

2fCD
BA3DC∂A∂BA3DD

)

− 1
2fF G

(EfC|F
AfD)G

B∂A

(
1
3AC

ϕ AD
ϕ AE

ϕ w∂Bw + wAC
ϕ ∂B(AD

ϕ AE)
)

+
1
2

fCD
A
(

−∂[A
(
wAC

ϕ ∂B]AD
ϕ AB

)
+ ∂(A

(
AB

ϕ AC
ϕ ∂B)(wAD)

)
+ ∂B

(
AB

ϕ ∂AAC
ϕ wAD

))

− dCA
A + ∂A(AACB

B) + ∂ϕ(wCA
A) − 1

2∂A

(
wfCD

A∂ϕCC;D)− 1
2∂ϕ

(
∂AwfCD

ACC;D)

− 1
2
(
fF G

DfCF
[AfEG

B] + 2fCD
[AδB]

E

)
∂A

(
2wAC

ϕ ∂BC(D;E) + w∂BAC
ϕ C(D;E))

+ 1
2fCD

(A∂A

(
AB)

ϕ ∂B(wCC;D)
)

+ (2 − 1)∂AY A
2 (dw − AA∂Aw − w∂ϕw)

+ ∂Aw
((

d − w∂ϕ − AB∂B − 2∂BAB − 2∂ϕw
)
Y A

2 − fCE
AfBE

D(Y C
2 ∂BAD + AC

ϕ Y D
2 ∂Bw)

)

= BϕAF 3DA + B3D
A

(
dAA

ϕ − ∂ϕA3DA + AB
ϕ ∂BA3DA − A3DB∂BAA

ϕ

)

− 1
2fBC

A
(
dA3DB∂AAC

ϕ − dAB
ϕ ∂AA3DC + ∂ϕA3DB∂AA3DC

)

− 1
3fCD

A(AB
ϕ A3DC∂A∂BA3DD − A3DBAC

ϕ ∂A∂BA3DD + A3DBA3DC∂A∂BAD
ϕ

)

− 1
6fF G

CfF D
AfGE

B
(
AC

ϕ ∂AA3DD∂BA3DE − 2A3DC∂AAD
ϕ ∂BA3DE

)
+ ∂A(. . .) + d(. . .) ,
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where we have used repeatedly the section constrained and identity [22, Eq. (A.1)] to get for
example

1
2

fF G
CfF D

AfGE
BAC∂AAD

ϕ ∂BAE

= −1
6fF G

CfF D
AfGE

B
(
AC

ϕ ∂AAD∂BAE − 2AC∂AAD
ϕ ∂BAE

)

+ 1
6fCD

A(AB
ϕ AC∂A∂BAD + 2ABAC

ϕ ∂A∂BAD + ABAC∂A∂BAD
ϕ

)

+ 1
6fCD

(A∂A

(
AC∂B(AD

ϕ AB)) − ∂BACAD
ϕ AB)) (5.150)

and to cancel the terms symmetric the derivatives indices involving C(D;E). We recognise there-
fore L3D

CS as the Chern–Simons term obtained in [22] up to total derivative terms.35

Finally, we compute for the Kaluza–Klein term (5.132d) that

L3D
KK = −1

2ρ−3e2σ
(
ρχ̃ϕ − AA

ϕ BϕA + ∂AY A
2 + 1

2fAB
CAA

ϕ ∂CAB
ϕ − ρ3e−2σf01

)2 . (5.151)

This last term does not appear in [22], but one can integrate out the auxiliary field χ̃ϕ to
eliminate it. By construction this term is quadratic in the contraction with 〈0| of the duality
equation (5.59)

U |Fµν〉 = −ρ−1εµνT αM−1
0 U−1†|J̃ −

α 〉 . (5.152)

We have therefore identified

L3D = L3D
kin + L3D

EH + L3D
CS − eV 3D (5.153)

as the E8 exceptional field theory Lagrangian of [22] up to total derivative terms. The E9 excep-
tional field theory pseudo-Lagrangian (5.44) on the partial section (5.94) decomposes according
to (5.131) as the E8 exceptional field theory Lagrangian plus an infinite sum of terms quadratic
in the components of the duality equations (5.35) and (5.59).

Additional duality equations

The E8 decomposition of the duality equation (5.35) does not only give the E8 Euler–Lagrange
equations, but also an infinite set of duality equations. The duality equations (5.103) for n ≥ 2
determine the auxiliary fields B̃−n

A , and do not give any non-trivial new equation. The n = 1
component of (5.103) gives however the non-trivial equation

F 3DA
µϕ = ρg̃µσεσνηAB

(
j3D

νB − B3D
νB − wν(jϕB − BϕB)

)
(5.154)

with

F 3DA
µϕ = F 3DA

µϕ − ∂B

(
2C(A;B)

µ + fCE
AfBE

DCC;D
µ + A(A

µ AB)
ϕ + 1

2fCE
(AfB)E

DAC
µ AD

ϕ

)

+ fAB
C

(
CC

µ B − 1
2wµfEF

CAE
ϕ ∂BAF

ϕ

)

= F 3DA
µϕ + ∂B

(
2C 3D(A;B)

µϕ + fCE
AfBE

DC 3DC;D
µϕ

)
+ fAB

CC 3DC
µϕ B . (5.155)

35And up to a sign misprint in the third term in [22].
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One recognises therefore a component of the three-dimensional duality equation

F 3DA + ηAB ⋆3D (j3D
B − B3D

B ) = 0 . (5.156)

This equation is consistent with the three-dimensional equation Euler–Lagrange equation

δBA

(
F 3DA + ηAB ⋆3D j3D

B

)
= 0 . (5.157)

since the last term in BB vanishes using the section constraint.
Note that in the equivalent equation in the Virasoro-extended formulation (4.23), the com-

ponent J−1
A of the current J includes an additional term in ηABTr[T B

−1B(2)] with respect to J−1
A

in (5.34). The component of B(2) can be used to eliminate the term in B3D
B in (5.156). This term

can also be reabsorbed in a redefinition of C 3DC
µϕ B in the minimal formulation of the theory, but

only if one breaks explicitly the covariance of the Ansatz to e.g. GL(1) × E7. So we may define
instead of (5.156), the three-dimensional duality equation

F ′3DA + ηAB ⋆3D j3D
B = 0 . (5.158)

Similarly, one can compute the component of the duality equation (5.59) coming from
〈0|T A

1 U |E〉 = 0 to get

F 3DA
µν + 2w[µFν]ϕ = −ρ−1e2σηAB(jϕB − BϕB) (5.159)

with

F 3DA
µν = F 3DA

µν + ∂B

(
2C(A;B)

µν + fCE
AfBE

DCC;D
µν − w[µ(2C(A;B)

ν] + fCE
AfBE

DCC;D
ν] )

+ w[µ(A(A
ν] AB)

ϕ + 1
2fCE

(AfB)E
DAC

ν]A
D
ϕ

)

+ fAB
C

(
CC

µνB + 1
4fEF

CAE
ϕ AF

[µ∂Bwν] + 2w[µCC
ν B + ρ−1e2σεµν∂BAC

ϕ

)

= F 3DA
µν + ∂B

(
2C 3D(A;B)

µν + fCE
AfBE

DC 3DC;D
µν

)
+ fAB

CC 3DC
µν B , (5.160)

where CA;B
µν and CB

µνA come from the E9 two-forms. Since external and internal diffeomorphisms
in E9 both contain the E8 external diffeomorphisms, it is to be expected that these two equations
transform into each other, so that we need to consider (5.59). This is in fact the only non-trivial
component of equation (5.70), because all other components can be solved trivially by fixing an
unconstrained two-form.

The duality equation (5.59) includes one more duality equation that can be interpreted as
the three-dimensional three-form field strength equation. It gives

〈0|T A
1 T B

1 U |Eµν〉 = (δ(A
C δB)

D + 1
2fCE

AfBE
D)
(
−GC;D

ϕµν + 2ρ εµνMCF JF ;
D
)

, (5.161)

for a three-form field strength GA;B in E8 exceptional field theory. The antisymmetric component
〈0|T A

2 |Fµν〉 includes an unconstrained two-form CA
ϕµν , so this equation can be solved by fixing

CA
ϕµν . The only non-trivial component of (5.161) is therefore in the 3875 ⊕ 1 of E8, as expected

from the tensor hierarchy. The field strength 〈0|T A
1 T B

1 T C
1 |Fµν〉 also includes an unconstrained
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two-form in the same E8 representation, and similarly does 〈0|T A1
1 T A2

1 · · · T An
1 |Fµν〉 for any

number n of generators T A
1 greater than three, so all the other components of (5.59) can be

solved by fixing the corresponding two-form components.
We conclude therefore that the duality equations (5.35) and (5.59) on section give all the

duality equations expected from the E8 tensor hierarchy, and all other components are tauto-
logical equations that can be solved by fixing unconstrained auxiliary fields in function of the
other fields.

6 Conclusion

In this paper, we have constructed the complete dynamics of E9 exceptional field theory in two
different formulations.

The Virasoro-extended formulation in Section 4 is based on the Ê8 ⋊ Vir− symmetry, where
the Virasoro generators Lm for m ≤ 0 originate in the extended linear system for D = 2
supergravity [37, 38] discussed in Section 2.3. Indeed, this formulation of E9 exceptional field
theory allows us to naturally reproduce D = 2 supergravity and its linear system by setting to
zero the internal derivative 〈∂| as well as all constrained fields B(k) and 〈χγ

1|. In this formulation,
a proper gauge connection for generalised diffeomorphisms can be defined, allowing for instance
the construction of covariant external currents for the scalar fields, and the vector fields and
their field strengths transform in a manner familiar from lower-rank ExFTs. This also makes
the construction of the topological term more intuitive. The field content of the Virasoro-
extended formulation includes the field ρ̃ ∼ φ1 dual to the D = 2 dilaton ρ. This field plays an
important role when using Weyl coordinates for studying D = 2 solutions, and the gauging of
its shift symmetry is central to the construction of D = 2 gauged supergravities in [39]. The
formulation that we have presented is only phrased in the conformal gauge g̃µν = ηµν of the
D = 2 external metric. This gauge can be imposed for any higher-dimensional solution that
one may want to describe in ExFT, but it would nonetheless be interesting to generalise the
Virasoro-extended formulation to arbitrary external metrics. Even keeping conformal gauge,
one should be able to define conformal external diffeomorphisms and we expect that they will
fix all relative coefficients in the pseudo-Lagrangian. Furthermore, we have only presented a
manifestly Ê8 ⋊ Vir− invariant formulation of the topological term, while the expression for
the scalar potential we have constructed in previous work [1] is based on internal currents
gauge-fixed to φn = 0 for n ≥ 2. Because these fields are pure gauge, we do not lose any
information on the dynamics by this gauge choice, but it would also be interesting to construct
the manifest Vir− extension of the scalar potential. Since we know the transformation properties
of all fields under ê8 h vir− extended generalised diffeomorphisms, one can achieve this goal by
appropriately acting with local L−n transformations on the known expression for the potential.
We have derived all the equations of motion implied by our pseudo-Lagrangian. One may verify
that these are compatible with the E8 ExFT equations and we have shown this explicitly for
the scalar equation in Appendix C.4.

The second, minimal, formulation of E9 exceptional field theory was given in Section 5. It
involves finitely many fields (in infinite-dimensional representations of E9) and can be obtained
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from the Virasoro-extended formulation by gauge-fixing all the negative Virasoro fields to zero,
including the field ρ̃ associated to L−1. The pseudo-Lagrangian takes a slightly more conven-
tional form, as the sum of a kinetic, a topological and a potential term and is defined for an
arbitrary unimodular metric g̃µν . We have defined the external diffeomorphisms and have shown
that they leave the duality equations (5.35) and (5.59) invariant, and fix all free coefficients in
the pseudo-Lagrangian in a way familiar from En ExFT for n ≤ 8. We have verified that E8

exceptional field theory, including the Einstein equation, follows correctly from the minimal for-
mulation. In particular one obtains the E8 exceptional field theory Lagrangian from the minimal
pseudo-Lagrangian up to terms quadratic in the duality equations. All the expressions are finite
in the minimal formulation, and no infinite series regularisation is involved. It is noteworthy
that the field content and the duality equations in the minimal formulation are consistent with
E11 exceptional field theory [48, 47], and could in principle be derived from it upon branching
E11 under its SL(2) × E9 subgroup.36 Even though the field ρ̃ is gauged-fixed to zero in the
minimal E9 ExFT of Section 5, it seems plausible that an intermediate formulation including
ρ̃ exists. First investigations show that one can write the duality equation at ρ̃ 6= 0 provided
one introduces one additional constrained vector field B(2) in such a ‘next-to-minimal’ formu-
lation. The field ρ̃ will be crucial for supersymmetrising E9 ExFT, see [28, 54, 55] for work on
supersymmetry in ungauged D = 2 supergravity and fermionic representations of K(e9).

Both the minimal and the Virasoro-extended formulation are based on pseudo-Lagrangians
that are supplemented by a set of first-order self-duality equations for the scalar fields. In
order to render the model accessible to canonical tools, it may be useful to further extend this
framework into a genuine Lagrangian formulation presumably upon sacrificing manifest two-
dimensional Lorentz invariance, along the lines of [56], see also [57,58] for earlier work on chiral
scalars.

It should be stressed that the formalisms developed in this paper can be directly applied to
construct extended field theories based on duality groups Ĝ that are the affine extensions of any
finite-dimensional, simple Lie group G. This is simply achieved by exchanging E8 in this paper
by G, since we have not used detailed information about the structure constants fAB

C in (2.1)
anywhere. The fact that the structure of generalised diffeomorphisms and the section constraint
is the same for any simple Lie group G was proved in [17, Sec. 6]. For appropriate choices of
G, our results define “half-maximal” exceptional field theories along the lines of [59,46], as well
as extended field theories based on any symmetric space in three space-time dimensions that
lifts at least to four dimensions, irrespective of supersymmetry [60, 61]. For instance, taking
G = SL(2) we expect that the matching to E8 ExFT discussed in Section 5 would instead
provide a matching to the SL(2)-covariant theory of [16]. Our results then provide a description
of D = 4 general relativity formally covariant under the Geroch group.

There are a number of potential applications of E9 exceptional field theory. As with other
ExFTs, one use of E9 exceptional field theory is to study in more detail gauged supergravity

36The E11 ExFT duality equations were given in [48,47], and a pseudo-Lagrangian, sharing some features with

the E9 minimal formulation, will be presented in [49]. A concrete conjecture for E11 and an associated extended

space-time in the context of maximal supergravity was first made in [50,51] and further developed in [52,53].
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in D = 2. Gaugings of E9 have been investigated in [39], but the general scalar potential is
not known. It will be very interesting to construct this in an E9 covariant form from E9 ExFT
using a generalised Scherk–Schwarz reduction similar to [62–64]. This would lead for instance
to theories with AdS2 vacua, generalising [65], and that could be of interest in the AdS2/CFT1

correspondence. The gaugings defined in [39] always involve, beyond some subalgebra of ê8,
the L−1 generator,37 and possible non-Lagrangian gaugings involving the L0 generator were
discussed in [17]. The Virasoro-extended formulation of E9 exceptional field theory suggests
the existence of D = 2 supergravities that gauge more general subalgebras of vir− involving
arbitrarily negative Virasoro generators. It would certainly be interesting to study this possibility
via a generalised Scherk–Schwarz ansatz. It would moreover be interesting to study generalised
Scherk–Schwarz reductions with mild violations of the section constraint to describe for example
massive type IIA consistent truncations. This would require to check the invariance under
generalised diffeomorphisms in the presence of such a mild violation, or to define a deformed
version of E9 ExFT as in [66] (see also [67]).

Supergravity in D = 2 is the natural habitat of exotic branes that are characterised by
having co-dimension at most two and thus sufficiently many isometries to be describable in two
dimensions [68, 69]. The truly exotic branes (with tension scaling like g−α

s for α > 2 in terms
of the string coupling) are related by discrete duality transformations to (smeared versions of)
the more conventional D- and NS-branes [70, 71]. E9 ExFT can then provide a framework for
studying uplifts of these exotic objects and a unified description of their duality orbits [72, 73].

Another interesting avenue of research might be to explore the fate of the known integrable
structure of D = 2 ungauged maximal supergravity [28, 74] within ExFT. The integrable struc-
ture arises when the trivial solution 〈∂| = 0 to the section constraint is chosen, which corresponds
to the toroidal reduction. Whether or not there are any remnants of this integrable structure
for more general backgrounds with a non-trivial dependence in the internal coordinates is an
open problem, and one may hope that E9 ExFT could shed some light on this question.
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A On trivial parameters and generalised diffeomorphisms

In this appendix, we collect some details on trivial parameters for the E9 generalised Lie deriva-
tive (3.1) and its Virasoro extension (3.34). These are by definition the non-vanishing pairs
Λ = (|Λ〉, Σ), respectively the non-vanishing Λ = (|Λ〉, Σ(k)), that satisfy

LΛ|V 〉 = 0 for any |V 〉. (A.1)
37This is denoted L+1 in [39].
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The existence of such trivial parameters is possible due to the section constraint (3.8) as usual
in exceptional geometry. We first define the (non-extended) trivial parameters in Appendix A.1,
show the closure of the algebra of generalised diffeomorphisms (3.21) on the one-form gauge
fields and describe the two-form gauge fields and their gauge transformations in Appendix A.2.
Closure of the Virasoro-extended generalised diffeomorphims (3.34) is explicitly checked in Ap-
pendix (A.3). Finally, in Appendix A.4, we discuss the trivial parameters of these extended
diffeomorphisms, which include the previous ones and an infinite set of additional trivial param-
eters.

A.1 Trivial parameters

The commutator of two generalised Lie derivatives gives a generalised Lie derivative according
to (3.11), but the commutator of two generalised diffeomorphisms acting on the Dorfman pair
of gauge fields A produces an additional one-form gauge transformation δRA, which is a trivial
parameter for the Lie derivative, i.e.

LδRA|V 〉 = 0 (A.2)

for any |V 〉. It is standard in gauged supergravity that the gauge algebra only closes on the
one-form gauge field up to a one-form gauge transformation of the two-form gauge field in the
tensor hierarchy [33]. The En gauged supergravity two-forms are valued in the symmetric tensor
product of the one-form gauge field representation that we denote R(Λn) (in Bourbaki labelling
for n ≤ 8), in the orthogonal complement of the generic irreducible representation R(2Λn).
Continuing this structure to E9, this gives a two-form gauge field CMN

µν valued in38

|C(1〉 ⊗ |C2)〉 ∈ R(Λ0)−1∨R(Λ0)−1 ⊖ R(2Λ0)−2 , (A.3)

and the corresponding one-form gauge parameter RMN
µ . In exceptional field theory in dimension

D ≤ 4, the gauge invariance of the theory requires also the inclusion of an additional two-form
field with one constrained index in R(Λn), and the others in the antisymmetric tensor product∧4−D R(Λn) [21, 22]. For E9, this gives a two-form gauge field CP Q

µν M valued in

|C[1〉 ⊗ |C2]〉〈πC | ∈ R(Λ0)−1∧R(Λ0)−1 ⊗ R(Λ0)−1 , (A.4)

and the corresponding one-form gauge parameter RP Q
µ M . In E9 exceptional field theory, there

is moreover an additional one-form gauge parameter with one constrained index and one-form
gauge parameters with two constrained indices. We expect that D-forms with two constrained
indices should similarly appear in the field strength of the constrained (D − 1)-form in lower
rank exceptional field theories.

38This also follows from a level decomposition of E11 (T. Nutma, unpublished).
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One computes that the following Dorfman pairs of parameters δRA = (δR|A〉, δRB) are
trivial when acting on any |V 〉 according to (A.2)

(
ηαβ〈∂R|T α|R(1〉T β|R2)〉, 0

)
, (A.5a)

(
ηαβ〈πR|T α|R[1〉T β |R2]〉 + 2〈πR|R[1〉|R2]〉,

1
2

η1 αβT α|R[1〉
[
〈πR|T β|R2]〉〈∂R| + 〈∂R|T β|R2]〉〈πR|

] )
, (A.5b)

(
η−1 αβTr[T αR+

2 ]T β|R+
1 〉,

− ηαβTr[T αR+
2 ] T β|R+

1 〉〈∂R+ | + |R+
1 〉〈∂R+ |R+

2 − 〈∂R+ |R+
1 〉R+

2

)
, (A.5c)

(
0, 1

2η1 αβ〈πU1 |T β|U(1〉T α|U2)〉〈πU2 | + 1
2η1 αβ〈πU2 |T β|U(1〉T α|U2)〉〈πU1 |

)
, (A.5d)

(
0, ηαβTr[T αX(1] T βX2) + Tr[X(1] X2) − X(1X2)

)
, (A.5e)

(
0, η−1 αβTr[T αW(1] T βW2)

)
. (A.5f)

The notation here for one-form parameters is such that

|R(1〉 ⊗ |R2)〉 ⇐⇒ RP Q = R(P Q) , (A.6a)

|R[1〉 ⊗ |R2]〉〈πR| ⇐⇒ RP Q
N = R[P Q]

N constrained in N , (A.6b)

|R+
1 〉 ⊗ R+

2 ⇐⇒ RP ;Q
+ N constrained in N , (A.6c)

|U1〉〈πU1 | ⊗ |U2〉〈πU2 | ⇐⇒ UP
M

Q
N = U (P

(M
Q)

N) constrained in both M and N , (A.6d)

X1 ⊗ X2 ⇐⇒ XP
M

Q
N = XQ

N
P

M constrained in both M and N , (A.6e)

W1 ⊗ W2 ⇐⇒ W P
M

Q
N = W Q

N
P

M constrained in both M and N (A.6f)

and in (A.5e) the notation X1X2 is the product of operators, which corresponds to the trace
XM

P
P

N . The notation |R(1〉 ⊗ |R2)〉 denotes a single one-form, so that |∂R〉 acts on all of it,
and similarly for |R[1〉⊗ |R2]〉〈πR| and |R+

1 〉⊗R+
2 . The semi-colon for RP ;Q

+ N is used to separate
the two tensor factors.

Because the parameter (A.5a) vanishes when |R(1〉 ⊗ |R2)〉 ∈ R(2Λ0)−2, we can indeed
interpret it as the one-form gauge parameter expected from the tensor hierarchy, consistently
with (A.3). For simplicity we never write the projection to the orthogonal complement of
R(2Λ0)−2, but this component will always be projected out in the relevant expressions.

In order to show that these parameters are trivial one has to use the section constraints as
well as the invariance of the bilinear forms ηn αβ under the action of ê8 and

ηn αβ [Lm, T α] ⊗ T β + ηn αβT α ⊗ [Lm, T β] = (m−n)ηn+m αβT α ⊗ T β

−
cvir

6
m(m2−1)δm,−nK ⊗ K . (A.7)
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To illustrate this, we look at the example where δRA is the second parameter (A.5b). The
transport and weight terms can be shown to vanish easily using (3.8), so that we are left with

LδRA|V 〉 = −ηαβηγδ〈πR|T γ |R[1〉〈∂R|T αT δ|R2]〉T β|V 〉 − 2ηαβ〈πR|R[1〉〈∂R|T α|R2]〉T β|V 〉

+ 1
2η−1 αβη1 γδ

(
〈∂R|T γ |R[1〉〈πR|T αT δ|R2]〉 + 〈πR|T γ |R[1〉〈∂R|T αT δ|R2]〉

)
T β|V 〉

= −1
2ηαβηγδ

(
〈πR|T γ |R[1〉〈∂R|[T α, T δ]|R2]〉 − 〈πR|[T α, T γ ]|R[1〉〈∂R|T δ|R2]〉

)
T β|V 〉

− ηαβ

(
〈πR|R[1〉〈∂R|T α|R2]〉 + 〈∂R|R[1〉〈πR|T α|R2]〉

)
T β|V 〉

+ 1
2η−1 αβη1 γδ

(
〈∂R|T γ |R[1〉〈πR|[T α, T δ]|R2]〉 + 〈πR|T γ |R[1〉〈∂R|[T α, T δ]|R2]〉

)
T β|V 〉

= 0 , (A.8)

where in the second step we have used (3.8) and (3.9) to write commutators as well as invariance
of ηγδ to split the first term into two. In the last step we have used the following identity [17,
Eq. (2.26)] for any two operators X and Y

ηn αβηm−n γδTr[T γX]Tr
[
[T α, T δ]Y

]
T β − ηp αβηm−p γδTr[T γX]Tr

[
[T α, T δ]Y

]
T β

= (n − p)ηm αβ

(
Tr[T αX]Tr[Y ] − Tr[X]Tr[T αY ]

)
T β − (n − p)ηm αβTr[T αX]Tr[T βY ]K

+
cvir

12
(
n(n2 − 1) − p(p2 − 1)

)
δm,0Tr[X]Tr[Y ]K , (A.9)

with m = n = 0 and p = −1.
We will now show that these trivial parameters are all the ones we need to close the algebra

of generalised diffeomorphisms and define the field strength. In particular we can use these
trivial parameters to verify (3.17). For this purpose we define the sextuplet of one-form gauge
parameters Rµ as

R =
(

|R(1〉 ⊗ |R2)〉 , |R[1〉 ⊗ |R2]〉〈πR| , |R+
1 〉 ⊗ R+

2 ,

|U(1〉〈πU1 | ⊗ |U2)〉〈πU2 | , X(1 ⊗ X2) , W(1 ⊗ W2)

)
. (A.10)

The trivial parameters (A.5) can be written with the linear map ̟ that maps a sextuplet of
parameters R to a Dorfman doublet as follows

̟R =
(

ηαβ〈∂R|T α|R(1〉T β|R2)〉 + ηαβ〈πR|T α|R[1〉T β|R2]〉 + 2〈πR|R[1〉|R2]〉 (A.11)

+η−1 αβTr[T αR+
2 ]T β|R+

1 〉 ,
1
2η1 αβT α|R[1〉

[
〈πR|T β |R2]〉〈∂R| + 〈∂R|T β|R2]〉〈πR|

]

−ηαβTr[T αR+
2 ] T β|R+

1 〉〈∂R+ | + |R+
1 〉〈∂R+ |R+

2 − 〈∂R+ |R+
1 〉R+

2

+ 1
2η1 αβ〈πU1 |T β|U(1〉T α|U2)〉〈πU2 | + 1

2η1 αβ〈πU2 |T β|U(1〉T α|U2)〉〈πU1 |

+ηαβTr[T αX(1] T βX2) + Tr[X(1] X2) − X(1X2) + η−1 αβTr[T αW(1] T βW2)

)
.

By definition we have that L̟R vanishes on any field, and one checks moreover that

̟R ◦ Λ = 0 (A.12)
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for any parameter Λ. One also computes that
(

〈∂A|Ln|A〉 + Tr[Ln−1B]
)∣∣∣

A=̟R

=
n
2

ηn αβ〈∂R|T α|R(1〉〈∂R|T β|R2)〉 +
n
2

ηn αβ〈πR|T α|R[1〉〈∂R|T β|R2]〉

+ ηn−1 αβ〈∂R+ |T α|R+
1 〉Tr[T βR+

2 ] +
n − 2

2
ηn αβ〈π1|T α|U(1〉〈π2|T β|U2)〉

+
n − 1

2
ηn−1 αβTr[T αX(1]Tr[T βX2)] +

n
2

ηn−2 αβTr[T αW(1]Tr[T βW2)] , (A.13)

which does not vanish for n ≥ 1. For n = 1 this term simplifies to
(

〈∂A|L1|A〉 + Tr[L0B]
)∣∣∣

A=̟R
= 1

2η1 αβ〈πR|T α|R[1〉〈∂R|T β|R2]〉 + ηαβ〈∂R+ |T α|R+
1 〉Tr[T βR+

2 ]
(A.14)

and is a total derivative. For n ≥ 2 it is not a total derivative. This implies for example that
F̂γ

m in (4.46) depends exlicitly on the two-form fields for m ≥ 2, so that only X(1) defines an
appropriate topological term.

Since the map (A.11) acts only on the internal indices, it applies regardless of whether R
are space-time p-forms or scalars. To prove (3.17) we now define the bilinear map ι that gives
for any two Dorfman doublets Λ1 and Λ2 the sextuplet of parameters

ι(Λ1, Λ2) =
(

−1
2 |Λ(1〉 ⊗ |Λ2)〉 , −1

2 |Λ[1〉 ⊗ |Λ2]〉〈∂Λ1 − ∂Λ2 | , −|Λ2〉 ⊗ Σ1 ,

|Λ(1〉〈∂Λ1 | ⊗ |Λ2)〉〈∂Λ1 | , −Σ1 ⊗ |Λ2〉〈∂Λ2 | − |Λ2〉〈∂Λ2 | ⊗ Σ1 , −Σ(1 ⊗ Σ2)

)
. (A.15)

With this definition one checks that

Λ1 ◦ Λ2 − [Λ1, Λ2]E = ̟ι(Λ1, Λ2) , (A.16)

which proves (3.17) by taking respectively the antisymmetric and the symmetric components in
Λ1 and Λ2. More generally, one can show

(Λ(1 ◦ Λ2)) ◦ Λ3 = 0 , (A.17)

2 Λ[1 ◦ (Λ2] ◦ Λ3) = [Λ1, Λ2]D ◦ Λ3 , (A.18)

where the first equation follows in fact directly from (A.12) and (A.16). These relations cor-
respond respectively to the triviality of the symmetric bracket {Λ1, Λ2} = Λ(1 ◦ Λ2) and to the
closure of the Dorfman product according to the antisymmetric bracket [Λ1, Λ2]D = Λ[1 ◦ Λ2].
As argued in Section 3.1, they together imply the Leibniz identity (3.16).

Using the Leibniz identity and (A.16), one then computes that the gauge transformation

δΛA = dΛ + Λ ◦ A (A.19)

closes as
δΛ2δΛ1A − δΛ1δΛ2A = δ[Λ1,Λ2]E A + ̟

(
ι(Λ1, dΛ2) − ι(Λ2, dΛ1)

)
. (A.20)
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In summary, we write the one-form gauge transformation of the gauge fields as

δRA = ̟R , (A.21)

such that
δΛ2δΛ1A − δΛ1δΛ2A = δ[Λ1,Λ2]E A + δR12A , (A.22)

with
R12 = ι(Λ1, dΛ2) − ι(Λ2, dΛ1) . (A.23)

Note that the Leibniz property is only satisfied up to a trivial parameter in the Virasoro-
extended formulation introduced in Section 3.3. This is nonetheless sufficient for the algebra of
generalised diffeomorphisms to close on the gauge field A. In this case the same construction
applies, but R12 is modified by the corresponding violation of the Leibniz identity.

A.2 Covariant field strengths and two-forms

The E9 field strength (3.28) depends on a sextuplet of two-form fields C defined as in (A.10) as

C =
(

|C(1〉 ⊗ |C2)〉 , |C[1〉 ⊗ |C2]〉〈πC | , |C+
1 〉 ⊗ C+

2 ,

|C−
(1〉〈π1| ⊗ |C−

2)〉〈π2| , C(1 ⊗ C2) , C+
(1 ⊗ C+

2)

)
, (A.24)

with the same symmetries as for R in (A.6). The two-form CMN is the one expected in the
tensor hierarchy according to (A.3). The two-forms CMN

P and CM ;N
+ P carry one constrained

index, and are similar to the two-forms introduced in [21,22] that extend the tensor hierarchy in
exceptional field theory. The two-forms CM

− P
N

Q, CM
P

N
Q and CM

+ P
N

Q carry two constrained
indices P and Q, and appear in the field strength G of the one-form B, but not in |F〉.

Using (A.16), one can write the field strength (3.28) as

F = dA − 1
2 [A, A]E + ̟C = dA − 1

2A ◦ A + ̟
(
C + 1

2 ι(A, A)
)

, (A.25)

which is convenient to prove (3.30). Using Leibniz (3.16) and (A.16) one computes the gauge
transformation of the field strength

δΛF = Λ ◦ F

+̟
(

δΛC+ι(dΛ, A)+ 1
2 ι(Λ◦A, A)+ 1

2 ι(A, Λ◦A)−ι
(
Λ, ̟(C+ 1

2 ι(A, A))
)
−ι
(
̟(C+ 1

2 ι(A, A)), Λ
))

.

(A.26)

Therefore there exists a gauge transformation of C such that (3.30) is satisfied. This gauge
transformation is only defined up to an element in the kernel of ̟. It is convenient to chose a
particular element in the kernel to simplify the gauge transformation, so we define

δΛC = ι
(
Λ, ̟(C + 1

2 ι(A, A))
)

+ ι
(
̟(C + 1

2 ι(A, A)), Λ
)

− ι(dΛ, A) − 1
2 ι(Λ ◦ A, A) − 1

2 ι(A, Λ ◦ A) − 1
2κ(Λ, A, A) , (A.27)
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where ̟κ(Λ, A, A) = 0 and we choose

κ(Λ, A, A) =
(

|Λ〉 ⊗ η−1 αβTr[T αB]T β|A〉 + η−1 αβTr[T αB]T β|A〉 ⊗ |Λ〉 ,
(

|Λ〉 ⊗ η−1 αβTr[T αB]T β|A〉 − η−1 αβTr[T αB]T β|A〉 ⊗ |Λ〉
)

〈∂Λ − ∂A − ∂B | ,

−|Λ〉 ⊗
(

Tr[TαB]T α|A〉〈∂B | + |A〉〈∂B |B − 〈∂B |A〉B

+〈∂A|Tα|A〉T αB + B|A〉〈∂A| − Tr[B]|A〉〈∂A|
)

−LΛ(|A〉 ⊗ B) + η−1 αβTr[T αB]T β|A〉 ⊗ Σ − Tr[Σ]|A′〉 ⊗ |A〉〈∂A|

−1
2 |Λ〉 ⊗ η1 αβ

(
〈∂A|T α|A〉T β |A′〉〈∂A| − 〈∂A|T α|A′〉T β|A〉〈∂A|

)
,

. . . , . . . , . . .
)

, (A.28)

where we have not computed the expression of the three doubly constrained parameters because
they are not needed anywhere.

The homogeneous part in C is not the Lie derivative of C, but mixes the various components
of C. We define the inhomogeneous variation of C

∆̃ΛC = δΛC − ι
(
Λ, ̟C

)
− ι
(
̟C, Λ

)
, (A.29)

that defines the piece depending explicitly on the vector fields A. One finds

∆̃Λ|C(1〉 ⊗ |C2)〉 = 1
4
(
d|Λ〉 ⊗ |A〉〉 − |A〉 ⊗ d|Λ〉

)
, (A.30)

∆̃Λ|C[1〉 ⊗ |C2]〉 ⊗ 〈πC | = 1
4
(
d|Λ〉 ⊗ |A〉 + |A〉 ⊗ d|Λ〉

)
⊗ 〈∂Λ − ∂A| ,

∆̃Λ|C+
1 〉 ⊗ C+

2 = −1
2η1 αβ〈∂Λ|T α|A〉|A〉 ⊗ T β|Λ〉〈∂Λ|

− |A〉 ⊗ dΣ − 1
2ηαβTr[T αΣ]|A〉 ⊗ T β|A〉〈∂Σ|

+ 1
2 |A〉 ⊗ |A〉〈∂Σ|Σ + 1

2Tr[Σ]|A′〉 ⊗ |A〉〈∂A| .

Note nonetheless that this is not the gauge transformation that is relevant in minimal E9 excep-
tional field theory, because the invariance of the duality equation (5.59) requires |F〉 to transform
as the internal current, and the gauge transformation of |C+

1 〉 ⊗ C+
2 in exceptional field theory

includes an additional term (5.62).39

A.3 Closure of extended generalised diffeomorphisms

The Virasoro-extended generalised diffeomorphisms (3.34) close according to the extended E-
bracket (3.38). In order to show this, we only need to consider the commutators [L(Λ1,0), L(0,Σ (k)

2 )]
and [L(0,Σ (p)

1 ), L(0,Σ (k)
2 )], where Σ(p)

1 and Σ(k)
2 denote two complete sets of extended gauge param-

eters. Closure of the |Λ〉-diffeomorphisms onto themselves follows directly from the closure of
the unextended generalised diffeomorphisms according to (3.13).

39We only introduced this equation in the minimal formulation, but invariance under conformal diffeomorphisms

would require to include this equation in the Virasoro-extended formulation as well.
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Evaluating the first commutator on a generalised vector |V 〉 in R(Λ0)0, we find using (3.36)
and the section constraints,

[L(Λ1,0), L(0,Σ (k)
2 )]|V 〉

= −
∞∑

k=1

η−k αβTr
(

T α
(
〈∂Σ|Λ1〉Σ(k)

2 − ηγδ〈∂Λ|T γ |Λ1〉[T δ , Σ(k)
2 ] + k〈∂Λ|Λ1〉Σ(k)

2
))

T β|V 〉

= L(0, L(Λ1,0)Σ (k)
2 )|V 〉 . (A.31)

This confirms the first term in the expression (3.38) of Σ12. Let us now consider the second
commutator

[L(0,Σ (p)
1 ), L(0,Σ (k)

2 )]|V 〉

=
∞∑

k,q=1

η−k αβ η−q γδ Tr(Σ(k)
1 T α)Tr(Σ(q)

2 T γ) [T β, T δ]|V 〉

=
∞∑

k,q=1

(
− η−k αβη−q γδ Tr(Σ(k)

1 T α)Tr(Σ(q)
2 T δT β) + (k − q)η−k−q αγTr(Σ(k)

1 )Tr(Σ(q)
2 T α)

)
T γ |V 〉

= −
∞∑

q=1

η−q γδTr(Σ̃(q)
12 T δ) T γ |V 〉 = L(0,Σ̃(q)

12 )|V 〉 , (A.32)

where in the second line we used (A.7), and with

Σ̃(q)
12 = −

∞∑

k=1

η−k αβTr(Σ(k)
[1 T α) T βΣ(q)

2] −
∑

0<k<q

(2k − q)Tr(Σ(k)
[1 )Σ(q−k)

2] . (A.33)

In writing the above expression, we used the antisymmetry of the commutator in Σ(p)
1 and Σ(k)

2 .
This reproduces correctly the ΣΣ terms of Σ(k)

12 in (3.38).

A.4 Extended trivial parameters

The Virasoro-extended generalised diffeomorphisms (3.34) include by construction the trivial
parameters (δR|A〉, δRB(1)) defined in (A.5), as well as an infinite sequence of parameters, with
δR|A〉 = 0,

δRB(1) =
∞∑

k=2

(
η2−k αβ〈π(1|T α|U (k)

2 〉T β |U (k)
1 〉〈π2)| + η1−k αβTr[T αX(k)

2 ]T βX(k)
1

+ η−k αβTr[T αW (k)
2 ]T βW (k)

1

)
+ 〈π(1|U (2)

2 〉|U (2)
1 〉〈π2)| − 〈π(1|U (2)

1 〉|U (2)
2 〉〈π2)| , (A.34)

and for k ≥ 2

δRB(k)= η1 αβ〈π(1|T α|U (k)
1 〉T β |U (k)

2 〉〈π2)| + k〈π(1|U (k+1)
2 〉|U (k+1)

1 〉〈π2)| − k〈π(1|U (k+1)
1 〉|U (k+1)

2 〉〈π2)|

+ Tr[TαX(k)
1 ]T αX(k)

2 − (k − 2)Tr[X(k)
1 ]X(k)

2 + (k − 1)Tr[X(k)
2 ]X(k)

1 − X(k)
2 X(k)

1 (A.35)

+ (k − 2)Tr[W (k−1)
2 ]W (k−1)

1 − (k − 2)Tr[W (k−1)
1 ]W (k−1)

2 + η−1 αβTr[T αW (k)
1 ]T βW (k)

2 .
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As in (A.6), all bra covectors are constrained, but no additional symmetry is assumed

|U (k)
1 〉〈π(1| ⊗ |U (k)

2 〉〈π2)| ⇐⇒ U (k) P
M

Q
N = U (k) P

(M
Q

N) constrained in both M and N ,

X(k)
1 ⊗ X(k)

2 ⇐⇒ X(k) P
M

Q
N constrained in both M and N ,

W (k)
1 ⊗ W (k)

2 ⇐⇒ W (k) P
M

Q
N constrained in both M and N . (A.36)

These constrained parameters are very redundant, and it is in principle sufficient to only consider
the parameters W (k)

1 ⊗ W (k)
2 and X(2)

1 ⊗ X(2)
2 to obtain a complete basis of trivial parameters.

One can in particular eliminate the traceless component of all δRB(k) with k ≥ 3 using trivial
parameters W (k−1)

1 ⊗ W (k−1)
2 = |0〉〈0| ⊗ W (k−1). By construction the traces Tr[δRB(k)] cannot be

eliminated, since they appear independently multiplying the Virasoro generator L−1−k in the
Lie derivative (3.34). For any k ≥ 3 one can indeed always find W (n) such that

δRB(k) = −(k − 2)W (k−1) + (k − 2)Tr[W (k−1)] |0〉〈0| − L−1W (k) + Tr[Σ(k)] |0〉〈0| . (A.37)

One can also eliminate the traceless component of δRB(2) using an appropriate trivial parameter
X(2)

1 ⊗ X(2)
2 , but not with an E8 invariant ansatz as above for k ≥ 3. If one uses the E8 solution

to the section constraint (3.10), there is a gauge parameter

X(2)
1 ⊗ X(2)

2 = |0〉〈0| ⊗ X(2) + XC
B;AT−1C |0〉〈0|T A

1 ⊗ |0〉〈0|T B
1 (A.38)

with XC
B;A satisfying (5.95) for its indices A and B, such that40

δRB(2) = −L0X(2) − X(2)|0〉〈0| + Tr[X(2)] |0〉〈0| − XB
B;A|0〉〈0|T A

1 − L−1W (2) + Tr[Σ(2)] |0〉〈0| .
(A.39)

This proves, as noted in Section 3.3, that any loop transformation generated by Σ(k) can be
reabsorbed into Σ(1). To write this systematically, we use (2.9) to rewrite (3.35) as

[Λ]α = ηαβ〈∂Λ|T β |Λ〉 +
∞∑

k=1

(
η−1 αβTr

[
Σ(k)S1−k(T β)

]
− δL−k

α Tr(Σ(k))
)

. (A.40)

The first term only contributes to the gauging of ê8 generators. The fact that any loop transfor-
mation generated by Σ(k) can be reabsorbed into Σ(1) then means that we can implicitly define
shift operators Ŝ−k acting on any Σ parameter rather than on algebra-valued objects, with

Tr
(

Ŝ−k(Σ) T α
)

= Tr
(

Σ S−k(T α)
)

, ∀ k ∈ N , T α ∈ ê8 h vir− . (A.41)

For instance, (3.35) may be rewritten as

[Λ]α = ηαβ〈∂Λ|T β |Λ〉 +
∞∑

k=1

(
η−1 αβTr

[
Ŝ1−k(Σ(k))T β

]
− δL−k

α Tr(Σ(k))
)

. (A.42)

40The only traceless δRB(2) that cannot be obtained from X(2) are such that L0
[
δRB(2)

]
= 0 and δRB(2)|0〉 = 0,

which gives δRB(2) = δRB(2)
A |0〉〈0|T A

1 . To prove that all constrained vector δRB(2)
A can be written as XB

B;A for

a doubly constrained tensor XC
B;A, one can use the E7 solution to the constraint (5.95).
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The operators Ŝ−k do not admit an explicit E9 covariant expression. They are defined only up
to the addition of trivial parameters of the types U , X and W in (A.5d)–(A.5f) and (A.36) and
we have used this freedom to make (A.41) valid also for T α = L0.

Using these formal shift operators, a basis for the extra trivial parameters appearing in the
Virasoro-extended formalism is implicitly given by traceless δRB(k) parameters satisfying for
fixed p ≥ 2

Tr(δRB(p)) = 0 , δRB(1) = −Ŝ1−p(δRB(p)) , δRB(n) = 0 for n /∈ {p, 1} . (A.43)

A.5 One-form gauge transformations in the minimal formulation

In the minimal formulation the gauge transformations of the field B are not (3.25) and ̟R,
but must instead be modified for the duality equation (5.35) to be invariant. The Σ gauge
transformations of the fields that leave (5.35) invariant are

δ(0,Σ)g̃µν = 0 , (A.44)

δ(0,Σ)M = η−1 αβTr[T βΣ]
(
T α†M + MT α

)
,

δ(0,Σ)|A〉 = − η−1 αβTr[T αΣ]T β|A〉

δ(0,Σ)B = dΣ + ηαβTr[T αΣ]T β|A〉〈∂Σ| − |A〉〈∂Σ|Σ + η−1 αβTr[T αΣ]T βB

− ρ ⋆ Ŝ−1
(
dΣ + ηαβTr[T αΣ]T β|A〉〈∂Σ| − |A〉〈∂Σ|Σ

)

δ(0,Σ)χ =
∑

n

(n + 1)Tr[T A
n Σ]Jn

A − 2ρ ⋆ η−1 αβTr[T αΣ]〈∂Σ|T β|A〉

− Tr
[
(ρ−1L−1 + ρ−2M−1L−2M)(dΣ + ηαβTr[T αΣ]T β|A〉〈∂Σ| − |A〉〈∂Σ|Σ)

]
,

where Ŝ−1 is defined implicitly from (A.41). The ambiguity in the definition of Ŝ−1 can be
absorbed in a redefinition of the one-form gauge parameters U, X and W . The one-form gauge
transformations of |A〉, B and χ are defined as

δR|A〉 = 〈∂R|Tα|R(1〉T α|R2)〉 + 〈πR|Tα|R[1〉T α|R2]〉 + 2〈πR|R[1〉|R2]〉 + η−1αβTr[T αR+
2 ]T β|R1〉

δRB = 1
2η1 αβT α|R[1〉

[
〈πR|T β |R2]〉〈∂R| + 〈∂R|T β|R2]〉〈πR|

]
(A.45)

− ηαβTr[T αR+
2 ] T β|R+

1 〉〈∂R+ | + |R+
1 〉〈∂R+ |R+

2 − 〈∂R+ |R+
1 〉R+

2

− ρ ⋆
(
Tα|R[1〉〈πR|T α|R2]〉 + 2|R[1〉〈πR|R2]〉

)
〈∂R| + ρ ⋆ η−1 αβTr[T αR+

2 ]T β|R+
1 〉〈∂R+|

+ 1
2η1 αβ〈πU1 |T β|U(1〉T α|U2)〉〈πU2 | + 1

2η1 αβ〈πU2 |T β|U(1〉T α|U2)〉〈πU1 |

+ ηαβTr[T αX(1] T βX2) + Tr[X(1] X2) − X(1X2) + η−1 αβTr[T αW(1] T βW2)

δRχ = ηαβ〈πR|T α|R[1〉〈∂R|M−1L−1MT β|R2]〉 + 2〈πR|R[1〉〈∂R|M−1L−1M|R2]〉

+ ρ ⋆
(

ηαβ〈πR|T α|R[1〉〈∂Λ|L0T β|R2]〉 + 2〈πR|R[1〉〈∂R|L0|R2]〉
)

+ η−1 αβTr[T αR+
2 ]〈∂R+|M−1L−1MT β|R1〉 + ρ ⋆ η−1 αβTr[T αR+

2 ]〈∂R+|L0T β|R1〉 ,

where the only modification of δRB with respect to ̟R are the terms involving ⋆. These
additional terms are defined such that the duality equation (5.35) is invariant under these one-
form gauge transformations. One moreover checks that the pseudo-Lagrangian (5.44) is invariant
under Σ and R gauge transformations, up to a total derivative.
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B Shift operators and cocycles

We summarise here some details on the shift operators and cocycles encountered in the text
and on their transformation properties. First, we stress that our definition of S0 in this paper
projects out K, contrary to S0 in [1] which acts as the identity:

S0(K)[here] = 0 , S0(K) [1] = K , S [here]
k = S [1]

k ∀ k 6= 0 . (B.1)

For generic algebra elements X, Z ∈ ê8 h vir, the shift operator Sm defined in (2.8) has the
commutation property

Sm

(
[X, Z]

)
= [X, Sm(Z)] + m

∑

n∈Z

XLnSm+n(Z) + ωαβXα

(
Sm(Z)

)
β

K , (B.2)

where
ωαβXαZβ = −[X, Z]

∣∣
K = −ηAB

∑

n∈Z

n Xn
A Z−n

B −
cvir

12

∑

n∈Z

(n3 − n) Xn Z−n (B.3)

is the Lie algebra cocycle in any highest/lowest weight representation of ê8. Notice that ωαβ =
−ωβα. For a finite Ê8 ⋊ Vir− element g we define

ωα(g) K = gS0(T α)g−1 − S0(gT αg−1) , g ∈ Ê8 ⋊ Vir− , (B.4)

which we may also write as ωα(g) = gT αg−1
∣∣
K − δα

KK. This identity can also be used to define
a cocycle for the generalised metric (4.2):

ωα(M) K = M S0(T α)M−1 − S0(M T αM−1) . (B.5)

Using K† = K, one can easily show

ωα(M)(M−1X†M)α = −ωα(M)Xα , (B.6)

which implies for instance ωα(M)J(m)
α = −ωα(M)J(−m)

α and ωα(M)Jα = 0. It is also useful to
note that

ωαK = 0 = ωK( · ) . (B.7)

Any finite Ê8 ⋊ Vir− element can be decomposed as follows:

g = Fℓ , F ∈ Vir− , ℓ ∈ Ê8 . (B.8)

Recall that Sm in the spectral parameter representation acts as multiplication by wm. Then,
taking into account F −1w = f(w) as in (2.36), it is natural to define a shift operator Sf

m that
acts as multiplication by f(w)m. This is obtained by conjugating Sm with F , then projecting
out any K component generated by vir cocycles by means of S0:

Sf
m(X) = S0

(
F −1Sm(F X F −1)F

)
= S0

(
g−1Sm(g X g−1)g

)
. (B.9)

Then, we can write the finite transformation properties of the standard shift operator as

g−1 Sm(gXg−1) g = Sf
m(X) − ωα(g)

(
Sf

m(X)
)

α
K . (B.10)
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The ρ and φm dependent shift operator Sγ

m is defined as in (B.9):

Sγ

m(X) = S0
(
Γ−1Sm(Γ X Γ−1)Γ

)
= S0

(
V−1Sm(V X V−1)V

)
, (B.11)

which reproduces (4.8). We can commute Sγ

m with an ê8 h vir element to get

Sγ

m

(
[X, Z]

)
= [X, Sγ

m(Z)] + m
∑

n∈Z

(ΓXΓ−1)LnSγ

m+n(Z) + ωαβXα

(
Sγ

m(Z)
)

β
K . (B.12)

This is used for instance in computing the shifted Maurer–Cartan equation (4.34).
There are several other useful definitions and properties of the cocycles introduced in [1] that

are only valid for g ∈ E9. In this case the decomposition (B.8) is rewritten as

g = ρ(g)−2L0 ℓ , (B.13)

where ρ(g) is a constant element of the monoparametric subgroup generated by L0 and is not
to be confused with the scalar field ρ. We can generalise (B.4) to Sk and define shifted cocycles

ωα
−k(g)K = ρ(g)−2k gSk(T α)g−1 − Sk(gT αg−1) , g ∈ E9 , (B.14)

and we write ωα
0 (g) = ωα(g) for simplicity. The shift can be moved from the cocycle to the

object it contracts:

ωα
−k(g)Xα = ρ(g)−2kωα(g)

(
Sk(X)

)
α

, X ∈ ê8 h vir , g ∈ E9 . (B.15)

This shows that expressions like ωα(g)
(
Sγ

k(X)
)

α
can be expanded as series of shifted cocycles if

g ∈ E9. These shifted cocycles also appear in the conjugation of a Virasoro generator by a loop
transformation:

g−1Lkg = ρ(g)−2k Lk − ωα
−k(g)ηαβT β = ρ(g)−2k (Lk − ωα(g)ηk αβT β) , g ∈ E9 . (B.16)

In the second equality we moved the shift from the cocycle to ηαβ and used (2.9). All the
definitions and properties of the shifted cocycles also apply when we substitute g → M (and
ρ(M) = ρ) provided we gauge-fix φm = 0 (including φ1 = ρ̃ = 0) so that (formally) M ∈ E9.

In [1] we also defined a generalisation of ωα
1 (M) to ρ̃ 6= 0, using the fact that in this case

M ∈ Ê8 ⋊ SL(2) and the SL(2) component acts on w as fractional linear transformations:41

Ωα(M)K = M−1

(

ρ2
∞∑

n=0

ρ̃n S1+n(T α†) + ρ̃S0(T α†)

)

M − S1(M−1T α†M) . (B.17)

We will now prove that
Ωα(M) 〈Jα| = ρ2 ωα(M) 〈J −

α | . (B.18)
41Recall that we are using S0(K) = 0 as in the rest of this paper, which differs from [1] where we were defining

S0 to be the identity. This slightly affects how we are writing Ωα(M) here.
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To show this, we use (B.5) on the S0 term so that we can use the first of (4.74), and bring
Hermitian conjugation out of the shift operators in the ρ̃ series so that we can also use the
second of (4.74). This gives us

Sγ

1(M−1(T α)†M) +
ρ̃
ρ

ωα(M) K = M−1
(

Sγ

−1(T α)
)†

M −
1
ρ

Ωα(M) K . (B.19)

Contracting with 〈Jα| and using 〈Jα|⊗M−1(T α)†M = 〈Jα|⊗T α, we find that the cocycle on the
left-hand side does not contribute. On the other hand, we already know from the computation
in (4.44) that

Sγ

1(M−1X†M) = M−1
(

Sγ

−1(X)
)†

M − ωα(M)
(
Sγ

−1(X)
)

α
K , (B.20)

for any X ∈ ê8 h vir. Substituting Xα → 〈Jα|, we find that the K components of the last two
expressions must coincide and using the definition (4.75) we conclude.

C Details on the Virasoro-extended formalism

This appendix contains additional details for some of the calculations and aspects of the Virasoro-
extended formulation of E9 ExFT presented in Section 4.

C.1 Field strength variations

The variation of the field strengths under generalised diffeomorphisms was stated in (4.51)–
(4.53) that we prove here, beginning with the first equation. The field strength F = (F , G(k))
transforms with the extended ◦ product (3.40) under generalised diffeomorphisms. This means
that their non-covariant variation (4.50) reads ∆ΛF = Λ ◦ F − LΛF and in particular ∆Λ|F〉 = 0.
In order to substitute into (4.37), we then compute

∆Λ〈∂F |T λ|F〉 = − 〈∂Λ|Λ〉〈∂Λ|T λ|F〉 − [Λ]α〈∂Λ,Σ|T λT α|F〉 , (C.1)

∆ΛTr(G(k)T λ) = δk
1η1 αβ〈∂Λ|[T λ, T α]|F〉〈∂Λ|T β|Λ〉 + ηαβTr(Σ(k)T α)〈∂Σ|[T λ, T β]|F〉

− kTr(Σ(k))〈∂Σ|T λ|F〉 + (k − 1)Tr(Σ(k)T λ)〈∂Σ|F〉 , (C.2)

where in the second equation we used the section constraint (3.8) to introduce the commutators
in the first line. Substituting into (4.37), the first equation is contracted with ηδλT δ and the
second one with η−k δλT δ and summed over k. It is then useful to rewrite such expressions in
terms of the (rescaled) level 2 coset generators acting on triple tensor products [17]

12
Cm = −ηm αβ T α⊗T β ⊗K ,

13
Cm = −ηm αδ T α⊗K⊗T δ ,

23
Cm = −ηm βδ K⊗T β ⊗T δ , (C.3)

which satisfy several useful relations given in equations (2.24)–(2.26) of [17]. We can then write,
using the notation Σ(k) = |Σ(k)〉〈π| even if Σ(k) is not a tensor product

η−k δλ∆ΛTr(G(k)T λ)⊗T δ = δk
1 〈∂Λ|⊗〈∂Λ|

[23
C−1 ,

12
C1
]
|Λ〉⊗|F〉 + 〈π|⊗〈∂Σ|

[23
C−k ,

12
C0
]
|Σ(k)〉⊗|F〉

+ 〈π|⊗〈∂Σ|
(

k
23
C−k + (1 − k)

13
C−k

)
|Σ(k)〉⊗|F〉 (C.4)
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and we now use equations (2.24) and (2.26) of [17] (which can can be proved using (A.7)) to
write

[23
C−1 ,

12
C1
]

=
13
C0 −

12
C0 −

23
C0 +

[23
C0 ,

12
C0
]

(C.5)
[23
C−k ,

12
C0
]

= −k
13
C0 − k

12
C0 + k

23
C0 +

[23
C0 ,

12
C−k

]
. (C.6)

It is then straightforward to arrive at (4.51) by expanding back the coset generators, repeatedly
using the section constraints and adding up all variations into (4.37).

Let us now look at the non-covariant variation of F̂γ

m for generic m ∈ Z. We will use the
fact that Sγ

m can be expanded in a ρ and φn dependent series of constant Sn operators with
n ≤ m. Thus, we compute the non-covariant variation of each term in such a series (using
Sn(Lp) = Lp+n)

F̂n = −〈∂F |Ln|F〉 −
∞∑

k=1

Tr
(
G(k)Ln−k

)
, (C.7)

and add them up at the end. We can still use (C.1) and (C.2) by setting T λ → Ln for the former
and T λ → Ln−k for the latter. Looking at the first term of the latter for k = 1, we can first
focus at the commutator term when T β is along the loop components. We use the identity

[Ln−1 , T A
p ] = [Ln , S−1(T A

p )] − Sn−1(T A
p ) (C.8)

which, combined with (2.9), gives us

η1 αβ〈∂Λ|T β|Λ〉〈∂Λ|[Ln−1, T α]|F〉

= ηαβ〈∂Λ|T α|Λ〉〈∂Λ|[Ln, T β]|F〉 − ηn αβ〈∂Λ|T α|Λ〉〈∂Λ|T β|F〉

+ 〈∂Λ|Λ〉〈∂Λ|Ln|F〉 − 〈∂Λ|Ln|Λ〉〈∂Λ|F〉 (C.9)

where we added and subtracted the K⊗vir components of each bilinear form to make the identity
hold along all components. This is the only contribution of order

(
〈∂Λ|

)2 coming from ∆ΛG(k), as
the only other ones with two derivatives acting on |Λ〉 come from (C.1). Then, putting together
all components of order

(
〈∂Λ|

)2 we find

∆ΛF̂n = 〈∂Λ|Sn(L0)|Λ〉〈∂Λ|F〉 + ηn αβ〈∂Λ|T α|Λ〉〈∂Λ|T β |F〉 + O(〈∂Σ|) (C.10)

where in the first term we have highlighted the shift operator coming from writing Sγ

m as a
series. With similar steps this expression is completed with the Σ dependent terms

O(〈∂Σ|) =
∞∑

k=1

Tr
(
Σ(k)Sn(L−k)

)
〈∂Σ|F〉 + n

∞∑

k=1

ηn−k αβTr
(
Σ(k)T α

)
〈∂Σ|T β|F〉 . (C.11)

We have again highlighted the shift operator Sn. The second terms of the last two expressions
vanish by the section constraints (3.9) if n < 1. When n = 1, only terms proportional to Σ(1)

contribute, and using the section constraint we simplify them to

η0 αβTr
(
Σ(1)T α

)
〈∂Σ|T β|F〉 = 〈∂Σ|Σ(1)|F〉 − Tr

(
Σ(1)

)
〈∂Σ|F〉 . (C.12)
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Recalling that we are really interested in the non-covariant variation of F̂γ

m, which is a series in
the objects we just varied, for n ≤ m, we find

∆ΛF̂γ

m = 〈∂Λ|Sγ

m(L0)|Λ〉〈∂Λ|F〉 +
∞∑

k=1

Tr
(
Σ(k)Sγ

m(L−k)
)
〈∂Σ|F〉 , m < 1 , (C.13)

and we recognise the definition (4.42) for Λ̂γ

m. When m = 1, from (4.9) we see that (C.12)
contributes with an overall ρ−1 factor. In total we have

∆ΛF̂γ

m = −Λ̂γ

m〈∂Λ,Σ|F〉 + δm
1 ρ−1(〈∂Σ|Σ(1) − Tr(Σ(1))〈∂Σ|

)
|F〉 , m ≤ 1 . (C.14)

This reproduces (4.52) in particular. Combining this result with (4.51) and (4.45), (4.53) is also
readily found. Finally, notice that for m > 1 (C.14) is modified by the second terms in (C.10)
and (C.11) which contribute in forms that cannot be simplified by the section constraints.
As a result, the expression contracting |F〉 in ∆ΛF̂γ

m is not anymore directly subject to the
section constraint. This means that such non-covariant variations appear in the transformation
properties of X(m) for m > 1 and that they cannot be reabsorbed by (re)defining the variation
of the term 〈χγ

m|F〉.
Let us now prove (4.129). The idea is that DδA = (d − δA)δA where δA is the transformation

under generalised diffeomorphisms of δA, with A as parameter. Using the definition (4.42) of
the operator (̂ )

γ

m we then write

(̂DδA)
γ

m = −〈∂A + ∂δA| Sγ

m(L0) |(d − δA)δA〉 −
∞∑

k=1

Tr
[(

(d − δA)δB(k)
)

Sγ

m(L−k)
]

. (C.15)

We have included here the variation of the B(k) fields to be more general, as it does not complicate
the proof. The operator d − δA commutes with the partial derivatives in the first term so that,
in order to bring it out of (̂ )

γ

m, we just need to add and remove its action on the shift operators.
Using (4.8) and covariance under generalised diffeomorphisms of the coset representative we are
led to compute

− 〈∂δA|
(
DSγ

m(L0)
)
|δA〉 −

∞∑

k=1

Tr
[
δB(k)DSγ

m(L−k)
]

, (C.16)

which must be subtracted from (d − δA)δ̂A
γ

m. Each derivative of the shift operators reads (with
k = 0 for the first term)

DS0

(
Γ−1Sm(ΓL−kΓ−1)Γ

)

= S0

(
Γ−1Sm

(
[DΓΓ−1, ΓL−kΓ−1]

)
Γ
)

− S0

(
Γ−1[DΓΓ−1, Sm(ΓL−kΓ−1)]Γ

)

= m
∞∑

p=0

(DΓΓ−1)−p Sγ

m−p(L−k) , (C.17)

where we used (B.2) in the last step. Plugging this back into (C.16) we reproduce (4.129).
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C.2 Some details on vir− gauge fixing

The gauge-fixing of vir− in the Virasoro-extended formulation was considered in Section 4.5.
We here give some additional details.

cvir dependent couplings

We first reconsider the cvir dependent terms in (4.57) and show explicitly that after we gauge-
fix φm → 0, m ≥ 2 they cancel out. We begin with the term coming from ωαβJαJ(1)

β . This is
(minus) the contribution of the vir components of J to the central charge term in the commutator
[J, J(1)]. The latter can be rewritten as

−
1
2

[J, J(1)]
∣∣
K = −2[P, P(1)]

∣∣
K − 2ωα(V−1)fβδ

αPβP(1)
δ . (C.18)

We are interested in the terms quadratic in the vir components of P, in which case the cocycle
term does not contribute because conjugation by ρL0 and eρ̃L−1 does not generate central terms.
The former term then reads

− 2[P, P(1)]
∣∣
K = −

cvir

6

∑

n∈Z

(n3 − n)PnPn+1 + . . . , (C.19)

where the dots denote terms dependent on the loop components of P. Using (4.61) and the fact
that Pn only contributes for |n| ≥ 2, we then arrive at

−
1
2

[J, J(1)]
∣∣
K = −

cvir

24
(n3 − n)Jn J−n−1 + . . .

= −
cvir

12

∞∑

m=0

[A]−m

[
ΓL−mΓ−1 + h.c., P(1)]∣∣

K + . . . . (C.20)

Adding to this expression also the term proportional to [A]nJ−n−1 coming from the cocycle in
(4.58), we arrive at the identity

cvir

24

∑

n∈Z

(n3 − n)(Jn + 2[A]n) J−n−1 = −
cvir

12

∞∑

m=0

[A]−m

[
ΓL−mΓ−1 − h.c. , P(1)]∣∣

K . (C.21)

Using (4.62) it is then straightforward to show that this expression matches the left-hand side
of (4.68) and hence cancels out with the last term in the first line of (4.57), removing all cvir

dependent couplings from the pseudo-Lagrangian.

Matching 〈χ| transformation

We now proceed to proving that (4.79) agrees with the transformation of 〈χ| in [1]. The ê8

invariant bilinear forms (2.7) are not invariant under generic vir transformations. This means
in particular that in an expression like

ηm αβ M−1(T α)†M ⊗ T β (C.22)
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we cannot simply bring the M conjugation through to the other factor. Formally writing

M = Γ†Γ gM , gM ∈ Ê8 , (C.23)

we see that the problem lies in Γ†Γ which involves exponentials of all vir generators. When
we gauge fix φm → 0, m ≥ 2, however, only exponentials of L0, L−1 and L1 are left, and
parameterise a well-defined SL(2) element

Γ†Γ → m ∈ SL(2) , (C.24)

which acts on w by fractional linear transformations. In this case it is possible to bring the M
conjugation through in (C.25) and this was done in the appendix of [1]. We summarise here
some results:

η−1 αβ M−1T α†M ⊗ T β =
1
ρ2

(
η1 αβ − 2ρ̃ ηαβ + ρ̃2 η−1αβ

)
T α ⊗ M−1T β†M , (C.25)

ηαβ M−1T α†M ⊗ T β =
1
ρ2

(
ρ̃ η1 αβ + (ρ2 − 2ρ̃2) ηαβ + (ρ̃3 − ρ2ρ̃) η−1αβ

)
T α ⊗ M−1T β†M ,

η1 αβ M−1T α†M ⊗ T β =
1
ρ2

(
ρ̃2 η1 αβ + 2(ρ2ρ̃ − ρ̃3) ηαβ + (ρ2 − ρ̃2)2 η−1αβ

)
T α ⊗ M−1T β†M .

Let us then prove that (4.79) matches the non-covariant variation of 〈χ| derived in [1], when
gauge fixed to φm = 0, m ≥ 2 and φ1 = ρ̃. To do so, we must expand Λ̂γ

−1 and MΛ̂γ

−1. The
former is expanded as in equation (4.42). The latter is defined as in (4.45), with F → Λ:

MΛ̂γ

−1 = Λ̂γ

1 + ωα(M)
(

[Λ]βSγ

1(T β)
)

α
. (C.26)

Again, the expansion of the first term on the right-hand side follows (4.42). Let us now look at
the cocycle term. We expand the shift operator as in (4.74) and write [Λ]β explicitly using (3.5)
(recall that Σ(m) = 0 for m ≥ 2 because we are gauge-fixed):

ωα(M)
(
[Λ]βSγ

1(T β)
)

α
= ωα(M)

1
ρ

(
(η1 αβ − ρ̃ ηαβ)〈∂Λ|T β|Λ〉 + (ηαβ − ρ̃ η−1 αβ)Tr

(
Σ(1)T β

))
,

(C.27)
where we also used (2.9) and ωK(M) = 0. We must now expand the contraction of the cocycle
with the invariant bilinears. First, we open the cocycle and write

ωα(M) ηk αβK ⊗ T β = ηk αβ

(
M−1S0(T α†)M − S0(M−1T α†M)

)
⊗ T β

= ηk αβ

(
M−1T α†M − S0(M−1T α†M)

)
⊗ T β + K ⊗ Lk (C.28)

Using then (C.25) on this expression for k = −1, 0, 1, we see that the first term becomes a
sum of terms of the form ηk Kβ for k = −1, 0, 1. The last term instead stays as it is. Adding
everything up we then find

ωα(M)
(
[Λ]βSγ

1(T β)
)

α
= 〈∂Λ|Sγ

1(L0)|Λ〉 −
1
ρ

〈∂Λ|M−1(ρ̃L0 + (ρ2 − ρ̃2)L1
)
M|Λ〉

+ Tr
(

Σ(1)Sγ

1(L−1)
)

−
1
ρ

Tr
(

Σ(1)M−1(L0 − ρ̃L1
)
M
)

. (C.29)
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Combining this expression with Λ̂γ

1 and Λ̂γ

−1, expanding the shift operators and plugging every-
thing into (4.79) we arrive at

∆Λ〈χ| = − 〈∂Λ|

( ∞∑

n=0

ρ̃nL−1−n + M−1
(

ρ̃
ρ2 L0 +

(
1 −

ρ̃2

ρ2

)
L1

)
M

)

|Λ〉〈∂Λ| −
ρ̃
ρ2 〈∂Λ|Λ〉〈∂Λ|

− Tr
[

Σ(1)

( ∞∑

n=0

ρ̃nL−2−n + M−1
(

1
ρ2 L0 −

ρ̃
ρ2 L1

)
M
)]

〈∂Σ| −
1
ρ2 〈∂Σ|Σ(1) , (C.30)

which reproduces equations (4.67) and (4.92) of [1].

C.3 Series regularisation and integrability conditions

In computing the equations of motion in the extended formalism of Section 4.6, we have found
that for some of them, using twisted self-duality to eliminate all dual fields leads to divergent
sums that need to be regularised. This necessity is essentially due to the fact that commutators
of P and Q cannot be reduced to a finite expression using only the E8 commutation relations,
especially when Sm operators are involved, because P and Q are infinitely extended over both the
positive and negative loop and vir levels. We give more details on this in Appendix F. To motivate
the regularisation procedure we adopt in this paper, we can look at the integrability condition
for twisted self-duality (2.46) in purely two-dimensional (super)gravity, which we proved in
Section 2.3, but formulated now only in terms of P and Q as defined in (2.45) and their Maurer–
Cartan equation. The matching of integrability conditions of (2.46) we give in Section 2.3
does not involve any regularisation because it is based on the Maurer–Cartan form dVV−1

which takes values only along non-positive loop and vir levels. Then, the only commutators
one encounters are those needed to apply the Maurer–Cartan equation to the linear system
(2.22) (more precisely, its w expansion with generic γ(w)) and they are all finite. Writing
the integrability conditions in terms of P and Q instead, we encounter commutators that are
not finite per se, and we will see that in order to reproduce the result based on dVV−1 the
regularisations employed in Section 4 become necessary.

The Maurer–Cartan equation for P reads dP − [Q, P ] = 0. Applying an S1 operator to this
expression, using (B.2) and then (2.47), we arrive at

S0
(

d ⋆ P − [Q, ⋆P ]
)

= 0 . (C.31)

The e8 component of this equation was already computed, in ExFT, in Section 4.6. Let us check
that up to a regularisation, (C.31) reproduces (2.15), (2.16) and nothing else. We will need that
in the triangular gauge (2.30) and by twisted self-duality

P m
A = ⋆mP 0

A , Qm
A = −sgn(m) ⋆m P 0

A , m 6= 0 , (C.32)

Pm = ⋆m(dΓΓ−1)0 , Qm = −sgn(m) ⋆m (dΓΓ−1)0 , Q0 = 0 . (C.33)
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Let us take the L−p, p ≥ 0 component of this equation which, using twisted self-duality, reads

2d⋆p+1(dΓΓ−1)0 + [(dΓΓ−1)†, ⋆(dΓΓ−1)]|L−p (C.34)

= 2d⋆p+1(dΓΓ−1)0 +
∑

n≥0

(2m + p) (dΓΓ−1)−m ⋆ (dΓΓ−1)−p−m

= 2d⋆p+1(dΓΓ−1)0 + (dΓΓ−1)0 ⋆p+1 (dΓΓ−1)0

(
2p + 8

∞∑

m=1

(−1)mm + 4p
∞∑

m=1

(−1)m
)

= 2d⋆p+1(dΓΓ−1)0 − 2(dΓΓ−1)0 ⋆p+1 (dΓΓ−1)0

= −ρ−1d ⋆ dρ if p even, 0 otherwise,

which recovers the free equation of motion for ρ. We have resummed the divergent series∑∞
m=1(−1)mm → −1/4 and

∑∞
m=1(−1)m → −1/2 using the z → 1 limit of a geometric series∑∞

n=1(−z)np(n) for p(n) a polynomial in n. Now for the loop part,

d⋆P |T C
p

− [Q, ⋆P ]|T C
p

(C.35)

= d⋆p+1P 0
C − fAB

C

∑

n∈Z

Qn
A ⋆ P p−n

B +
∑

n∈Z

n
(
Qp−n ⋆ P n

C − Qn
C ⋆ Pp−n

)
.

We redefine n → p − n in the second-to-last term. Using that, by twisted self-duality, Qn
A and

Qn are n-odd, while the P are n-even, we find that several terms cancel out and we are left with

= d⋆p+1P 0
C − fAB

CQ0
A ⋆p+1 P 0

B − 2
∞∑

n=1

n
(
Qn

C ⋆ Pp−n + Qn ⋆ P p−n
C

)
(C.36)

= d⋆p+1P 0
C − fAB

CQ0
A ⋆p+1 P 0

B + 41+(−1)p

2 (dΓΓ−1)0 ⋆p+1 P 0
C

∞∑

n=1

(−1)nn

=

{
dP 0

C − fAB
CQ0

AP 0
B = 0 p odd,

ρ−1d(ρ ⋆ P 0
C) − fAB

CQ0
A ⋆ P 0

B p even,

which reproduces (2.16) given P 0
A = P̊A and Q0

A = Q̊A, which is valid because of the triangular
K(E9) gauge. We have again regularised

∑∞
n=1(−1)nn → −1/4.

C.4 Matching of scalar equations of motion to E8 ExFT

As a further motivation for the regularisations employed in Section 4.6 and studied in the
previous section, we provide here the matching of the V̊ scalar field equations of motion derived
there to those of E8 exceptional field theory. A full matching of the E9 theory to the E8 one
has been given at the level of the pseudo-Lagrangians in the minimal formalism of Section 5.

We begin with the π0 A component of equation (4.121), looking only at the left-hand side
since the scalar potential has already been matched to E8 exceptional field theory in [1]. We
will rewrite the relevant term as

ρ
(
D̂ ⋆ P0

A + 2[F]+1
A

)
V̊ T AV̊ −1 , (C.37)

100



where we have conjugated the expression by the E8/Spin(16) coset representative V̊ and rescaled
by a factor of 2. This means that this expression should be traced with 2π0

B(V̊ T BV̊ −1) =
M−1δM , which is the natural expression for the variation of the E8 generalised metric MAB .

We will now choose the solution of the section constraint (3.10). With this, we can expand

[A]1
A

T A =
1
2

ρ (∂Aw) V̊ T AV̊ −1 , (C.38)

[A]0
A

T A =
1
2

(fAB
C∂CAB − BA + fAB

CY B
1 ∂Cw) V̊ T AV̊ −1 , (C.39)

where T A ∈ E8 and w = 〈0|A〉 (not to be confused with the spectral parameter). In analogy
with (5.107) and (5.106), we have defined AC = 〈0|T C

+1|A〉 and −BA = Tr(B(1)T−1 A).
Looking at the first two terms in the expansion (4.122) of D̂ ⋆ P0

A, we write
(
D(ρ ⋆ P0

A) − ρ fCD
AQ0

C ⋆ P0
D

)
V̊ −1T AV̊

= d(ρV̊ −1 ⋆ P0
AT AV̊ ) − 〈∂|

(
|A〉ρV̊ −1 ⋆ P0

AT AV̊
)

+ ρ
(
fAB

C∂CAB − BA + fAB
CY B

1 ∂Cw
)
[T A, V̊ −1 ⋆ P0

F T F V̊ ] . (C.40)

We now implement the field redefinitions

AC = A3DC − w AC
ϕ ,

BC = B3D
C − w Bϕ C − ρ ⋆∂Cw

(C.41)

where A3D
µ

C and B3D
µ C are the x0 and x1 components of the E8 vector fields, while AC

ϕ and Bϕ C

are their components along the third space-time direction denoted by ϕ. We do not need a suffix
3D for the latter, but we identify them with

AC
ϕ = Y C

1 , Bϕ C = 2ρ ηCD〈χ̃1|T D
−1|0〉 . (C.42)

This was already established in [1]. Using (4.61), we then have that

2 V̊ −1P0
AT AV̊ = j3D − w jϕ − ρ ⋆∂Aw (T A + M−1T AM) (C.43)

where j3D = j3D
µ dxµ is e8 valued and

j3D
µ̂ = (j3D

µ , jϕ) = M−1Dµ̂M (C.44)

is the E8 scalar field current and Dµ̂ the E8 ExFT covariant derivative:

M−1Dµ̂M = M−1∂µ̂M −A3D
µ̂

CM−1∂CM +(fAB
C∂CA3D

µ̂
B −B3D

µ̂ A)(T A +M−1(T A)TM) . (C.45)

We then have that (C.40) becomes, after the field redefinitions,

1
2
(
D − wDϕ − (Dϕw)

)(
ρ ⋆j3D − ρ ⋆w jϕ − ρ2 ⋆∂Aw (T A + M−1TAM)

)

−
1
2

ρ2∂Aw
[
T A, j3D − w jϕ − ρ2 ⋆∂Bw (T B + M−1TBM)

]
. (C.46)
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The ∂Aw ∗∂Bw[T A, T B] term vanishes by the section constraint.
We must now add to the above expression the [A]1

A
dependent terms of (4.122) as well as

the last one in (C.37). For the latter we compute, applying (C.41),

2[F]1
A

V̊ −1T AV̊ = ρ ∂A(〈0|F〉) T A = ρ (D − wDϕ)(∂Aw) T A + ρ Dϕw ∂Aw T A (C.47)

where w transforms as a scalar (weight 0) under E8 generalised diffeomorphisms. For the last
two terms of (4.122) we also need Dρ after the refinitions (C.41):

Dρ = ( D − wDϕ − (Dϕw) )ρ (C.48)

so that

2ρ fCD
A([A]1

C
− [A]1 C)P0

DV̊ −1T AV̊ + 2 Dρ [A]1
A

V̊ −1(T A + TA)V̊

=
1
2

ρ2∂Aw
[
T A − M−1TAM , j3D − wjϕ − ρ ⋆∂Bw (T B + M−1TBM)

]

+ ρ( D − wDϕ − (Dϕw) )ρ ∂Aw(T A + M−1TAM)

≃ ρ2∂Aw
[
T A , j3D − wjϕ − ρ ⋆∂Bw (T B + M−1TBM)

]

+ ρ( D − wDϕ − (Dϕw) )ρ ∂Aw(T A + M−1TAM) , (C.49)

where in the last step we are using that the whole expression appears traced with M−1δM .
Again, the ∂Aw ⋆∂Bw[T A, T B] term vanishes by the section constraint. Putting everything
together we find

1
2

(M−1δM)A
[
( D − wDϕ − (Dϕw) )(ρ ⋆j3D

A − ρ ⋆w jϕ A) + ρ3 fAB
CMBD∂Cw ⋆∂Dw

]
+ . . . = 0

(C.50)

where the dots correspond to the contribution from the E9 scalar potential.
Comparing with the E8 ExFT equations of motion, we have that the variation of the kinetic

term reads (up to total derivatives, denoting by e the determinant of the 3d vielbein)

δ
(

−
1
4

egµ̂ν̂ηABj3D
µ̂ Aj3D

ν̂ B

)
=

1
2

(M−1δM)ADµ̂

(
egµ̂ν̂j3D

µ̂ A

)
(C.51)

=
1
2

(M−1δM)A
[
( D − wDϕ − (Dϕw) )(ρ ⋆j3D

A − ρ ⋆w jϕA) + Dϕ(ρ−1e2σ)jϕA

]
,

where the last term is purely internal (only internal derivatives and no 2d vector fields) and
hence is reproduced by the E9 scalar potential contributions in the ‘. . .’ above. Finally, the E8

scalar potential contains one term dependent on the Kaluza–Klein vector wµ:

−eVE8 = . . . +
1
4

eMAB∂Agµ̂ν̂∂Bgµ̂ν̂ = . . . −
1
2

ρ3 MAB∂Awµ ∂Bwµ . (C.52)

Again the dots represent purely internal terms. Variation of this term reproduces exactly the
last term in (C.50), proving the claim.
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D The E9 Virasoro constraint

In order to match the Virasoro constraint (4.83) in the Virasoro-extended formulation of the
theory with the Euler–Lagrange equation for g̃µν in its minimal formulation, one must assume
that the section constraint is solved consistently with the E8 parabolic gauge (5.96) such that
B takes the form (5.105). This is always possible since all solutions to the section constraint are
E9 conjugate to this one. Although matching these two equations in this way requires to break
E9 symmetry, both equations are E9 invariant and they therefore must be equivalent.

The terms in the pseudo-Lagrangian (5.44) that contribute to the Euler–Lagrange equation
for g̃µν are

L1 +
1
2

εµνJµ −1Jν K +
1
2

ρεµνεσρg̃κλDµg̃σκDν g̃ρλ +
ρ−1

4
〈∂g̃µν |M−1|∂g̃µν〉 . (D.1)

By construction, the variation of L1 involves infinitely many terms, with

δL1 = 1
2ρ−1δg̃µν

(
Tr
[(

M−1S1(J ♭
µ)†M + χ♭

µ

)
Bν

]
− 1

2ηαβTr[T αBµ]Tr[M−1T β†
MBν ]

)
. (D.2)

But if we assume (5.105) and therefore (5.106), one can use the semi-flat formulation introduced
in Section 5.4 with the same steps to show that the variation of the pseudo-Lagrangien (5.44)
with respect to g̃µν reduces to the variation of

Z −
ρ
4

ηAB g̃µν
(
ηAC J̃µ

0
C + MACBµC

)(
ηBDJ̃ν

0
D + MBDBνD

)
+ 2g̃µνDµρDνσ + DµρDν g̃µν

+
1
2

ρεµνεσρg̃κλDµg̃σκDν g̃ρλ +
ρ−1

4
〈∂g̃µν |M−1|∂g̃µν〉 , (D.3)

where Z is the term (5.127) that vanishes upon using the duality equation (5.35). One can
therefore ignore Z in deriving the Euler–Lagrange equation for g̃µν to get a manifestly finite
result.

Using the same solution to the section constraint for the fields B(k) in the extended formu-
lation and setting all the Virasoro fields to zero, one obtains that

2Pµ
0
AV̊ −1T A

0 V̊ =
(
J̃µ

0
A + ηACMBCBµB

)
T A

0 , (D.4)

where BA = −Tr(B(1)T−1 A). Substituting this result in the Euler–Lagrange equation (D.3) for
g̃µν evaluated at g̃µν = ηµν gives precisely (4.83) at vanishing Virasoro fields.

E On symmetries of pseudo-Lagrangians

In this appendix, we consider in some generality the definition of symmetries of a pseudo-
Lagrangian. This discussion is relevant to the invariance of the theory under external diffeo-
morphisms as discussed in Section 5.3. Denote the fields of a theory collectively as φI , with a
pseudo-action S =

∫
L, its associated Euler–Lagrange equations EI = δS

δφI = 0, and assume a
separate set of duality equations EA = 0.
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Having a symmetry with parameter ξ means that the equations of motion transform into
each other according to

δξEI = AI
J (ξ, φ)EJ + BI

B(ξ, φ)EB , δξEA = CA
J (ξ, φ)EJ + DA

B(ξ, φ)EB . (E.1)

This is certainly the case if both the duality equations and the pseudo-action are invariant under
that symmetry, in which case BI

B = CA
J = 0. But we want to define a minimal requirement.

To this purpose consider

δ
δφI

δξS =
δ

δφI

∫
δξφJ δS

δφJ

=
∫

δξφJ δ
δφJ

δS
δφI

+
∫

δδξφJ

δφI

δS
δφJ

= δξEI +
∫

δδξφJ

δφI
EJ . (E.2)

One re-obtains that the Euler–Lagrange equations transform into themselves if δξS = 0. How-
ever, having a symmetry as defined by (E.1), only requires the weaker condition that δ

δφI δξS
must be proportional to the equations of motion EI and the duality equations EA. For this to
be the case it is sufficient for δξS to be quadratic in the duality equations

δξS =
∫ (

αIJ (ξ, φ)EIEJ + βIB(ξ, φ)EIEB + γAB(ξ, φ)EAEB

)
. (E.3)

One can always redefine the symmetry such that the two first terms vanish, with

δ′
ξφI = δξφI − αIJ (ξ, φ)EJ − βIB(ξ, φ)EB (E.4)

but the last term cannot be eliminated in general. One has then

BI
B(ξ, φ) =

∫ (δγAB(ξ, φ)
δφI

EA + 2γAB(ξ, φ)
δ

δφI
EA

)
(E.5)

and we get that γAB 6= 0 if BI
B(ξ, φ) does not vanish. So if the Euler–Lagrange equations do not

transform into each other under a symmetry, but also mix with the duality equations, then the
pseudo-Lagrangian is only invariant up to terms quadratic in the duality equations. However,
it is not sufficient that the action is invariant up to terms linear in the duality equations.

F On Kac–Moody groups

For a given Kac–Moody Lie algebra there are different definitions of an associated Kac–Moody
group and representations, see [75, 76]. In the case of centrally extended loop groups, the two
standard notions of a minimal group and maximal (or completed) group can be described as
follows.
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The minimal group, denoted Êm
8 consists of maps from the complex plane into the group E8,

where the maps are restricted to Laurent polynomials around infinity (or the origin). In terms
of the spectral w ∈ C, one starts with elements gm(w) that can be written as

gm(w) =
ℓ2∑

ℓ=ℓ1

w−ℓgℓ (F.1)

with ℓ1 ≤ ℓ2 (finite integers) and such that for each value of w one has gm(w) ∈ E8 (for a chosen
matrix representation). This space of maps forms a group (under pointwise multiplication) and
can be centrally extended [77]. The resulting group is Êm

8 .
The completed group Êc−

8 replaces Laurent polynomials by formal Laurent series around
infinity. In terms of an expansion in powers of w, this means that we are allowing arbitrarily
negative powers of w

gc−(w) =
∞∑

ℓ=ℓ1

w−ℓgℓ . (F.2)

The − indicates both that the powers are arbitrarily negative and that this corresponds to a
completion in the positive Borel direction, which is consistent with our choice of letting T A

m
∼=

wmT A correspond to negative (positive) roots for m > 0 (m < 0), respectively. We also require
gc−(w) ∈ E8 as a group element in the field of formal Laurent series in w. As the conditions
for being in the group are algebraic conditions on the matrix entries (such as det

(
gc−(w)

)
= 1),

these are also expressible in terms of formal Laurent series and can be imposed without requiring
the series to converge. Since formal Laurent series form a field, elements of this type form a
group and can again be centrally extended.42 The logarithmic derivative dgc−(w) (gc−(w))−1

is an element of the completed Lie algebra êc−
8 that consists of e8-valued Laurent series around

infinity with central extension. From the point of view of the root space, we allow for an infinite
linear combination of negative root generators in êc−

8 but only a finite linear combination of
positive root generators. It possible to define a Lie bracket on êc−

8 .
The explicit coset representative that is given in (2.30) clearly belongs to this completed

group and thus we take for the scalar fields the group Êc−
8 . Elements of this group can act

on highest weight modules R(Λ)h since the exponentials of positivehighest generators all are
finite sums (rather than series) due to the existence of a highest weight. When we try to act
on a lowest weight modules R(Λ)h the exponentials do not terminate but the computation for
any given weight space is a finite sum so that one could consider infinite linear combinations
in the space R(Λ)h, which is sometimes called the completed module [76] and which we denote
by R(Λ)c−

h . The (algebraic) dual of highest weight module R(Λ)h is a completed lowest weight
module R(Λ)c−

h and the pairing is invariant under Êc−
8 .

The Chevalley involution maps the (negatively) completed Lie algebra êc−
8 to the (positively)

completed Lie algebra êc+
8 since it interchanges negative and positive roots. If êc−

8 are Laurent
42We note that, when using the Geroch group for generating solutions of the Einstein equations [78], an

intermediate version of the loop group is used that is given by meromorphic functions on (covers of) Riemann

surfaces.
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series around infinity, then êc+
8 are Laurent series around the origin. Therefore, the projections43

P (w) =
1
2

[
dV c−(w)

(
V c−(w)

)−1 +
(

dV c−(w)
(
V c−(w)

)−1
)†
]

,

Q(w) =
1
2

[
dV c+(w)

(
V c+(w)

)−1 −
(

dV c−(w)
(
V c−(w)

)−1
)†
]

, (F.3)

of the Mauer–Cartan form lie in the doubly completed space êc+−
8 := êc+

8 +êc−
8 for V c−(w) ∈ Êc−

8 .
There is no Lie bracket on êc+−

8 that can be defined by a finite number of operations from the
one on e8 since this would require multiplying Laurent series around infinity with Laurent series
around zero which is not a well-defined operation. The completed group Êc−

8 does not act
on êc+−

8 for the same reason, only Êm
8 does. Therefore, strictly speaking, the current J(w) =

2 (V c−(w))−1 P (w)V c−(w) is ill-defined. There is a well-defined action of K(Êm
8 ) = K(E9)

on the components P and Q of the Maurer–Cartan form. This is sufficient for defining the
action of generalised diffeomorphisms since the derivative is a constrained object. Besides using
the Unendlichbein approach to avoid the problem of the ill-defined current, one can consider
E9 exceptional field theory in a level decomposition with respect to a finite-dimensional Levi
subgroup, such as E8. This semi-flat formulation was used in Section 5.4 and yields a current
J̃ that is in êc+−

8 since the conjugation of the symmetrised Maurer–Cartan form is reduced
to elements of the Levi subgroup and all other objects in the theory are conjugated by the
remaining unipotent elements of Êc−

8 appropriately.
Because the coset representative is an element of Êc−

8 ,44 the representations it acts on must
be of the right type: either completed lowest weight modules (such as |A〉) or minimal highest
modules (such as 〈∂|). For instance, typical expressions we encounter are 〈∂|V −1 . . . V −1†|A〉
with V −1† ∈ Êc+

8 that can act on completed lowest weight modules (while V −1 has finite action
on 〈∂|).
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