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We study a simple model of symmetry-enriched topological order obtained by decorating a toric
code model with lower-dimensional symmetry-protected topological states. We show that the sym-
metry fractionalization in this model can be characterized by string order parameters, and that these
signatures are robust under the effects of external fields and interactions, up to the phase transition
point. This extends the recent proposal of [New Journal of Physics 21, 113016 (2019)] beyond the
setting of fixed-point tensor network states, and solidifies string order parameters as a useful tool
to characterize and detect symmetry fractionalization. In addition to this, we observe how the con-
densation of an anyon that fractionalizes a symmetry forces that symmetry to spontaneously break,
and we give a proof of this in the framework of projected entangled pair states. This phenomenon
leads to a notable change in the phase diagram of the toric code in parallel magnetic fields

I. INTRODUCTION

Topologically ordered phases have been long studied
not just because of their exotic behaviours [1] that are
beyond Landau’s paradigm, but also for their potential
application as error correcting codes [2, 3]. One of the
most salient features of topological phases in 2D is the
existence of anyons: quasiparticle excitations that follow
neither bosonic nor fermionic statistics [4] and recently,
direct evidence of their existence has been found [5].

A paradigmatic example of topological order is the
fractional quantum Hall effect [6, 7] whose anyons host
just a fraction of the electron’s charge, i.e. they frac-
tionalize the charge conservation symmetry. Spin liquids
form another prominent example where excitations of-
ten carry fractional quantum numbers [8]. The quantum
phases of matter that possess such a non-trivial inter-
play between symmetries and topological order have been
dubbed symmetry enriched topological (SET) phases.

Bosonic SET phases are well understood: they have
been classified [9–13], exactly solvable Hamiltonians for
each phase have been constructed [14–17], their ground
states and anyons have been described in terms of ten-
sor networks [18–20] and different methods to detect
SET phases have been proposed [21–23], to name a few.
Notably, most of the aforementioned works focused on
renormalization-group (RG) fixed points, but some re-
cent studies of perturbed SET models can be found in
[24–27].

In this paper, we study perturbations of a simple fixed-
point SET Hamiltonian obtained by decorating a toric
code model with lower dimensional symmetry-protected
topological orders [28, 29]. Our main purpose of this
study is to understand the extent to which the symme-
try fractionalization in this model can be characterized
and detected by string order parameters. In [23], it was
shown that string order parameters can be used to detect

the symmetry fractionalization in fixed-point projected
entangled pair states (PEPS). Here, we wish to extend
the range of validity of these order parameters by remov-
ing their dependence on tensor network representations,
and investigate their behaviour away from fixed-points by
driving the model towards phase transitions with various
external fields and interactions.

Taking advantage of the simplicity of our fixed-point
Hamiltonian and inspired by Ref. [23], we define an or-
der parameter which is the expectation value of a certain
string operator. We use variational infinite PEPS [30–
32] to obtain the ground states of the perturbed Hamil-
tonian and compute observables in the thermodynamic
limit, although we stress that the usage of PEPS is not
necessary, and other numerical methods like the density
matrix renormalization group [33] or variational Monte
Carlo [34], could be used here as well. We find that
the order parameter correctly characterizes the symme-
try fractionalization within the entire SET phase, with
longer string operators providing more accurate results
nearer the phase transitions. This shows that string op-
erators also characterize symmetry fractionalization away
from fixed-points, and that they can provide a practical
tool for numerical detection of SET order.

During our investigations, we also observe the phe-
nomenon wherein the condensation of an anyon that frac-
tionalizes the symmetry must result in that symmetry be-
ing spontaneously broken. This was proven in Ref. [35]
using the framework of G-graded tensor categories and it
has been identified also in other phase diagrams [27, 36].
We also notice that this phenomenon has been stud-
ied previously in high energy physics, in particular, it
has been proposed to explain the electroweak symmetry
breaking [37]. We provide an alternative proof of this fact
in the framework of PEPS. The phenomenon leads to an
interesting modification of the well-known 2D phase dia-
gram of the toric code in parallel magnetic fields [38–42],
see Fig. 1. We also find that the symmetry is sponta-
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Figure 1. Schematic phase diagram of the toric code (left)
and symmetry-enriched toric code (right) in parallel X and Z
magnetic fields. Solid (dashed) lines indicate second (first) or-
der phase transitions. The arrows indicate a path connecting
the two condensed phases. In the symmetry-enriched case,
this path must encounter a phase transitions since the two
phases have distinct symmetry breaking patterns.

neously broken across phase transitions that cannot be
described as condensation transitions, such as that driven
by a transverse magnetic field [43], and in the interme-
diate phase found in a direct interpolation to the toric
code phase. This signals that there is yet more to un-
cover regarding the relation between topological phase
transitions and symmetry breaking.

The structure of the manuscript is as follows. In sec-
tion II we first introduce the target SET Hamiltonian
and the string order parameters that we use to capture
symmetry fractionalization. Then, we also explain the
spontaneous symmetry breaking (SSB) from anyon con-
densation and we add a proof of this phenomenon in
appendix B 3 using PEPS. In section III we show the
numerical results of using the SOP on the Hamiltonian
interpolation, and we obtain the phase diagrams for dif-
ferent combinations of perturbations applied to the tar-
get Hamiltonian. Finally, we summarize our results and
discuss their implications towards the characterization of
general SET phases in section IV.

II. TC HAMILTONIAN ENRICHED WITH
CLUSTER STATE LOOPS

In this section, we first define a Hamiltonian which
realizes an SET phase and will form the basis of our
analysis throughout the paper. Second, we derive the
order parameter we use to characterize the SET phases
obtained by perturbing the Hamiltonian. Finally, we dis-
cuss with the interesting phenomenon of SSB induced by
anyon condensation.

A. SET Hamiltonian

Our SET model can be described as a toric code, whose
ground states can be viewed as equal-weight superposi-
tions over closed loop configurations, where these loops

are further decorated with 1D symmetry protected topo-
logical (SPT) orders, namely cluster states [44]. Such a
model was first proposed in [28] and also studied in Refs.
[13, 29]. This decoration enriches the toric code with a
global Z2×Z2 symmetry, time-reversal symmetry (TRS),
and inversion symmetry which are fractionalized by the
charge excitations.

To define the model precisely, let us begin with the
toric code with spins on the edges of a honeycomb lattice.
The Hamiltonian is

HTC = −
∑
v∈V

Av −
∑
f∈F

Bf , (1)

where V (F ) denotes the set of all vertices (faces) in the
lattice and the terms in the Hamiltonian are

Av =
∏
e3v

Ze and Bf =
∏
e∈f

Xe , (2)

where X and Z are the spin-1/2 Pauli operators, e 3 v
denotes all edges terminating on v and e ∈ f denotes all
edges surrounding f . Let C be a subset of edges that form
closed loops on the lattice. We denote by |C〉 the state
where all edges in C are in the state |1〉 and the rest are
in |0〉. Then, the ground states of HTC can be written as
an equal-weight superposition of loop configurations:

|TC〉 =
1

N
∑
C
|C〉 , (3)

for some normalization factor N . Here, we are assuming
trivial topology such that |TC〉 is the unique ground state
of HTC .

Now, we introduce new spins on the vertices of
the lattice and initialize them in the state |+〉|V | =⊗

v∈V
1√
2
(|0〉v + |1〉v). We couple these to the edge

spins using a unitary circuit UCCZ which is constructed
using CCZ operators acting on every triplet consist-
ing of an edge e and its two vertices v+,−

e , where
CCZ = |0〉〈0|e⊗Iv+e v−e +|1〉〈1|e⊗CZv+e v−e and CZv+e v−e =

|0〉〈0|v+e ⊗ Iv−e + |1〉〈1|v+e ⊗Zv−e . We denote the resulting
state as

|SET 〉 = UCCZ

(
|TC〉 ⊗ |+〉|V |

)
. (4)

This circuit acts as CZ along the vertices of a loop
and it acts trivially away from them. Acting on initial
|+〉 states with CZ’s between nearest neighbours creates
the 1D cluster state. Thus, the vertices along loops form
cluster states, which are an example of 1D SPT orders
[45]. Decorating loops with 1D SPT orders is a well-
known way of creating SET orders [10, 21, 28, 46].

To obtain the Hamiltonian for which |SET 〉 is the
ground state, we can simply conjugate the initial uncou-
pled Hamiltonian

H̃TC = HTC −
∑
v∈V

Xv, (5)
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Figure 2. Hamiltonian terms in HSET (Eq. (6)) and an ex-
ample of a string operator SΓ that creates pairs of charge
excitations at the endpoints (Eq. 7). A wavy line connecting
two sites marked with circles represents a CZ operation on
these sites.

by UCCZ to obtain

HSET = −
∑
v∈V

Av −
∑
f∈F

B̃f −
∑
v∈V

Cv
1 +Av

2
(6)

where Av is unchanged from before, and B̃f is a modified
version of Bf decorated by additional CZ operators, see

Fig. 2. Cv = UCCZXvU
†
CCZ is also defined pictorially

in Fig. 2. We have additionally modified Cv by adding
a projector 1+Av

2 onto the closed-loop subspace. This
only affects the energy of some excitations, and serves
the purpose of making HSET commute with a Z2 × Z2

symmetry group generated by XA and XB , which are
defined to flip every spin on all vertices of the A and B
sublattice, respectively. Since the Hamiltonian is real, it
also has time-reversal symmetry generated by KXAXB ,
where K denotes complex conjugation. Moreover, the
Hamiltonian is invariant under bond-centered inversion
of the lattice.

B. Symmetry fractionalization in HSET

HSET represents a non-trivial SET order in the pres-
ence of either the Z2×Z2 symmetry or the time-reversal
symmetry. To see why, consider the following string op-
erator,

SΓ =
∏
e∈Γ

XeCZv+e v−e (7)

where Γ is a path of edges and v+,−
e are the two vertices

attached to e, see Fig. 2. This operator creates charge
excitations at the endpoint vertices vi and vf of Γ cor-
responding to violations of Av. Because Av = −1 at

these vertices, the Hamiltonian term Cv is disabled by
the projector 1+Av

2 . Therefore, we can dress the end-
point vertices of SΓ with Z operators without changing
the energy of the excitation,

SΓ(α, β) = ZαviZ
β
vf
SΓ. (8)

This gives a four-fold degenerate subspace of states as-
sociated to each Γ spanned by the states |α, β〉 :=
SΓ(α, β)|SET 〉. Within this subspace, the Z2 × Z2 sym-
metry acts projectively on each charge as

XA|α, β〉 = |α⊕ 1, β ⊕ 1〉.
XB |α, β〉 = (−1)α(−1)β |α, β〉, (9)

where we have assumed that α and β are both odd
vertices, a similar result holds in the general case (see
[28]). If we let V(1,0) (V(0,1)) denote the local action
of XA (XB) on a single charge, we have V(1,0) = X,
V(0,1) = Z and V(1,1) = XZ, where we have labelled
Z2 × Z2 = {(a, b) : a, b = 0, 1}. Since X and Z an-
ticommute, the charge carries a projective representa-
tion of Z2 × Z2, which demonstrates the fractionaliza-
tion. Concretely, if we write VqVk = ω(q, k)Vqk, where
q, k ∈ Z2 × Z2, the symmetry fractionalization (SF) pat-
tern is given by

ω(q, k) =

 +1 +1 +1 +1
+1 +1 −1 −1
+1 +1 +1 +1
+1 +1 −1 −1


q,k

. (10)

The local action of KXAXB is T = XZ so that T 2 = −1.
Then, the charge also fractionalizes time-reversal sym-
metry. Finally, since XA and XB anticommute near a
charge, and inversion swaps A ↔ B, it follows that in-
version anticommutes with XAXB near a charge. Con-
versely, it is easy to see that the SF pattern of the charge
for H̃TC of (5) is ω(q, k) = +1 for all q, k ∈ Z2 × Z2, so
that it is trivial. In Appendix A we construct a PEPS
representation of |SET 〉 which provides another view-
point on the SF pattern.

We note that the flux excitations are created by a
string of Z operators corresponding to a path on the
dual lattice, and they have no symmetry fractionaliza-
tion. The dyon, which is a composite of flux and charge,
fractionalizes in the same way as the charge.

Since we have used decoration by 1D SPT phases to
construct our 2D SET model, some comments on their
classifications are in order. For a global on-site symme-
try group, Q, 1D SPT phases are classified by the group
H2(Q,U(1)). When Q = Z2 × Z2, H2(Q,U(1)) = Z2

which means that there are only two phases: the trivial
one and the non-trivial SPT phase (the one of the cluster
state, i.e. the Haldane phase). In the case of SET phases,
the classification of SF patterns is given by H2(Q,G),
where G is an abelian group that depends on the topo-
logical order. In the present case, a toric code enriched
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with a Z2 × Z2 symmetry that fractionalizes the charge
and not the flux (without anyon permutation) could host
four inequivalent SF patterns.

By simple counting, this implies that not all SET
phases can be constructed by decorating topological or-
ders with 1D SPT phases as we have done here. This fact
affects how to detect SET phases since it implies that 1D
SPT order parameters [47, 48], or their embedding into
2D [21], cannot give a complete characterization of the
SET phases (in the case of toric code topological order
with G = Z2 × Z2 symmetry, they can say that the SET
phase is non-trivial but they don’t discriminate between
the different non-trivial ones). That is the reason why
in the next section, we study a generalization of the or-
der parameters first defined in [23] which can completely
characterize SET phases. We remark that, for time re-
versal symmetry, where there are only two phases, the
SF pattern of the charge can be characterized using 1D
SPT order parameters [21].

C. Order parameters for SET phases

To measure the effect of a perturbation on the SET
phase, we need to use an order parameter which detects
the SF pattern of the anyons. Such an order parameter
was proposed in Ref. [23]. Therein, the authors proposed
a set of string order parameters (SOPs) O[q] index by
elements q of the on-site symmetry group Q (= Z2 × Z2

here), that, for topological PEPS with zero correlation
length, reveal the lower diagonal {ω(q, q); 0 6= q ∈ Q} of
the SF pattern, which is sufficient to completely charac-
terize the phase. The value of ω(q, q) characterizes the
action of q applied twice on the charge. Since in our
case q ∈ Z2 × Z2, i.e. the group is order two, a value
ω(q, q) 6= 1 implies a projective action on the charge, see
(10). Here, we modify the SOPs in order to extend their
range of applicability beyond fixed-point tensor network
states.

To begin, let us summarize the SOPs of Ref. [23]. Con-
cretely, the goal of the order parameter is to capture the
projective action of the symmetry on a charge. This ac-
tion is equal to the effect of the braiding between the
charge and some other anyon [10]. The key idea to exploit
this connection is to use how braiding, and thereby the
projective action is detected: via an overlap of the anyon
affected by the braiding with a non-affected one. The
SOP evaluates the overlap of two charges placed at the
ends of a tensor product of symmetry operators together
with SWAP operators that permute sites. The symmetry
operators and the SWAP are meant to reproduce the ef-
fect of acting with the symmetry twice over an isolated
charge, to capture the value of ω(q, q).

One limitation of the SOPs described above is that
they rely on a tensor network representation of the
ground state in order to create an excited state with
charges. Even when such a representation is available,
the order parameters of Ref. [23] require imposing an

additional topological structure on the tensor network,
which makes variational optimization of the tensors more
costly. As such, it is desirable to modify the SOPs in such
a way that they are not reliant on the structure provided
by topological tensor networks. For this purpose, we now
introduce a new set of SOPs that are designed to detect
the SF pattern of HSET , and have no reliance on tensor
networks. To insert charges into the ground state, we use
the string operator SΓ (Eq. 7) of the fixed point Hamil-
tonian. When HSET is perturbed, the state created by
acting with SΓ on the ground state will no longer be
an eigenstate in general, but we nonetheless expect it
to have finite overlap with the corresponding eigenstate
having charges at the endpoints of Γ. Since the SOPs are
defined by a ratio of two expectations values, we do not
expect this to be an issue. We remark that for detecting
the SF pattern, we assume the knowledge of the topo-
logical order, in particular the explicit form of the anyon
creation operators (at some point of the phase diagram).

The SOPs we use are given in terms of the expectation
value of some string operators Λ[q], that depend on the
elements q ∈ Z2 × Z2 of the on-site symmetry group.
To define the string operator let us consider a line of 5
vertices with their 4 inside edges on the hexagonal lattice
and define

Λ[a,b] = S†Γ=1,··· ,6[Xa
1X

b
2X

a
3X

b
4]×

[SWAPe1,e3SWAPe2,e4SWAP1,3SWAP2,4]SΓ=5,6

=

(
4∏
i=1

CZi,i+1Xei

)
(Xa

1X
b
2X

a
3X

b
4)×

SWAPe1,e3SWAPe2,e4SWAP1,3SWAP2,4. (11)

This latter equality can be written pictorially as:

, (12)

where circles labelled a and b denote symmetry operators
Xa and Xb, wavy red lines depict CZ gates between
neighbouring vertices, and blue lines depict the action of
the SWAP operators. Using Λ[a,b] we define the following
SOPs:

O[a,b] =
〈Λ[a,b]〉
〈Λ[0,0]〉 , (13)

where the expectation value 〈 · 〉 is taken with respect
to the ground state of the perturbed Hamiltonian. Our
SOP is derived using the same physical principles as in
Ref. [23], but we remark that it is not the direct transla-
tion of the SOP from Ref. [23] into a physical operator,
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since that would result in a fattened string operator act-
ing on a line of plaquettes. Rather, we have chosen to
slim the order parameter to act along a single line, easing
numerical calculation.

For systems with a non-zero correlation length, i.e.
away from the fixed points, we can define a family of
SOPs of length ` which we expect will better capture the
SF pattern with increasing `, as in the case of 1D SOPs
[47, 48]. The corresponding operator acts on 4`+1 vertex
spins,

Λ
[a,b]
` =

4∏̀
j=1

CZj,j+1Xej

∏̀
i=1

[
Xa

2i−1X
b
2iX

a
2i+2`−1X

b
2i+2`

× SWAP2i−1,2i+2`−1SWAP2i,2i+2`

× SWAPe2i−1,e2i+2`−1
SWAPe2i,e2i+2`

]
(14)

so that the SOP of length ` is defined as follows:

O[a,b]
` =

〈Λ[a,b]
` 〉

〈Λ[0,0]
` 〉

. (15)

This SOP is expected to better capture the SF pattern
with increasing `, namely,

lim
`→∞

O[a,b]
` = ω((a, b), (a, b)) . (16)

We will focus mainly on O[1,1]
` since it is the one that

distinguishes the SF patterns of H̃TC and HSET (because
ω((0, 1), (0, 1)) = ω((1, 0), (1, 0)) = 1 for both systems).

In Appendix C, we give a first test of these order pa-
rameters by applying symmetry-preserving deformations
to a certain fixed-point PEPS tensor which drive across
a phase transition to a topologically trivial phase. We
find that, as the length ` is increased, the value of the
SOP converges to the value corresponding to the fixed-
point tensor as expected. In contrast, when the deforma-
tion explicitly breaks the symmetry, the order parameters
show no clear signature of convergence.

We warn that these SOPs are defined for SET phases,
that is, topological phases with an unbroken symmetry.
Because of this, the meaning of the value of (15) after
the phase transition point is not clear if the perturbation
drives the model to a non-SET phase, such as one where
the symmetry is spontaneously broken or the topological
order is trivial. For example, when inversion symmetry
is broken, the order parameter can depend on whether
the endpoints lie on the A or B sublattice. Furthermore,
we will find that the value becomes undefined in trivial
phases where the charge excitation is confined since in
that case, the expectation value of SΓ goes to zero (and

then 〈Λ[0,0]
` 〉 goes to zero as well).

Finally, we remark that a similar procedure can be car-
ried out for the other PEPS order parameters of Ref. [23].
In general, to detect other SF patterns, it is necessary to
change which sites are permuted by the SWAP depending

on the topological order and the symmetry group [23].
The use of the charge in this explanation is motivated by
the SF pattern of HSET but it could be applied to any
anyon that fractionalizes a global on-site symmetry.

D. Spontaneous symmetry breaking from anyon
condensation

In this section, we explain one interesting phenomenon
that we will observe in the phase diagrams obtained by
perturbing HSET . We find that the ground state sub-
space exhibits spontaneous symmetry breaking (SSB)
when an anyon that fractionalizes the symmetry (the
charge) is condensed. We note that this has been proven
in full generality, using the language of G-graded tensor
categories, to be a necessary outcome of condensing a
fractionalized anyon [35]. In appendix B 3 we give an al-
ternative proof of this based on PEPS. Our proof aims to
reach a broader audience using a simpler mathematical
formalism, at the cost of some generality.

To understand the physics behind this phenomenon,
let us make the following cartoon picture. The starting
point is some initial topological phase, invariant under
some global symmetry, which is undergoing an anyon
condensation process. We denote by b the anyon that
is condensing (we assume there is only one for the sake
of simplicity) and by 1 the vacuum of the initial topolog-
ical phase. The vacuum of the final phase, ϕ, is an anyon
condensate of b together with 1, which we can write as
ϕ = 1+b. If b transforms non-trivially under the symme-
try, this affects how the composition 1 + b, and therefore
ϕ, behaves under the action of the symmetry.

In the case where b fractionalizes the symmetry and
the symmetry is preserved, this would imply that either
ϕ transforms projectively, or in an undefined way since
it is a superposition of b and 1. However, a vacuum that
transforms non-trivially is not a valid theory, so the sym-
metry has to break spontaneously in order to act trivially
on the vacuum.

For the case where b is permuted to another anyon
c of the theory, ϕ would be also identified with 1 + c.
But c, in general, will be of another nature of b in the
anyon condensation process, that is, it can be a confined
anyon. Therefore, since by definition no confined anyon
can condense, the symmetry has to break spontaneously
to consistently act on the vacuum. This leads to the con-
clusion that the set of condensed anyons must be closed
under the permutation action of the symmetry.

III. PHASE DIAGRAM OF HSET

In this section, we first study a Hamiltonian interpo-
lation between HSET and H̃TC to understand the be-
haviour of the SOPs of Eq. (15) in the different SET
phases and how they depend on `. Afterward, we in-
troduce perturbations to HSET that commute with the
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symmetry (or part of it) and we study the resulting phase
diagrams numerically. We focus on the behaviour of the
SOPs as well as the possibility of SSB driven by anyon
condensation. For the latter, we employ local order pa-
rameters 〈ZvA〉, 〈ZvB 〉, and 〈XvA −XvB 〉 which anticom-
mute (only) with XA, XB , and inversion, respectively,
where vA/B denotes a vertex on the A/B sublattice. We
also measure local magnetizations on the edge degrees
of freedom to help understand the structure of the per-
turbed ground states.

The perturbations that entirely commute with the
symmetry are magnetic fields σe = (Xe, Ye, Ze) on edges
that are meant to break the topological order in differ-
ent ways. We also apply a ZZ Ising interaction on the
vertices of HSET that changes the symmetry fraction-
alization pattern, since it breaks explicitly the Z2 × Z2

symmetry down to a Z2 subgroup generated by XAXB ,
but preserves the topological order. In the next subsec-
tions, we examine the result of applying each perturba-
tion separately. We also consider the combination of X
and Z fields and examine their 2D phase diagram.

We use the iPEPS algorithm to approximate the
ground states of the perturbed Hamiltonians [30–32].
The unit tensor that we use for the PEPS description
consists of 5 (i.e., 3 edge and 2 vertex) spins on the hexag-
onal lattice, as depicted in Appendix A. It is important
to note that we choose a local tensor that contains ver-
tices vA and vB to allow for the spontaneous breaking of
inversion symmetry. The variational manifold is charac-
terized by 34× 25 = 2592 complex parameters, as we use
the bond dimension D = 3 for iPEPS simulations (note
that the ground state of the fixed-point Hamiltonian ad-
mits an exact representation with D = 3, as shown in
Appendix A). We remark that even though the bond di-
mension is small, the number of variational parameters
makes the tensor network ansatz rich enough to capture
the qualitative features of the phase diagram. The opti-
mization is comprised of iteratively updating the local
tensor by Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [49–52]. The energy gradient with respect to
the local tensor has been computed by contracting tensor
networks on a cylindrical geometry that is infinite along
one direction and we choose a gradient norm of the order
10−6 as a stopping criterion for the optimization algo-
rithm. Finally, the reported expectation values of the
local observables and SOPs have been computed on the
infinite plane by the boundary MPS method [32], where
we choose the bond dimension of the environment tensors
to be of the order 5D2.

A. Hamiltonian interpolation

In this section we check the behaviour of the SOPs on
the resulting phase diagram of the following Hamiltonian
interpolation:

H(λ) = λH̃TC + (1− λ)HSET , (17)

such that H(0) = HSET and H(1) = H̃TC . This path
therefore interpolates between an SET phase with a non-
trivial SF pattern and one with trivial SF. In Fig.3 we
show the numerical results for the evaluation of the order
parameters and the different local magnetizations.

We see in Fig.3(a) that the order parameter correctly
characterizes the SF patterns of the two ends of the in-

terpolation. In particular, O[1,1]
` is exactly −1 at the

SET fixed-point (λ = 0) and +1 at the toric code point
(λ = 1). Surprisingly it goes to zero in the middle part,
pointing towards an intermediate phase between the two

SET phases. The other order parametersO[0,1]
1 andO[1,0]

1

are equal to 1 at each endpoint, such that Eq.(16) is ex-
actly satisfied at the two fixed-points.

Away from the fixed-points, we can see that O[1,1]
` gets

sharper for increasing ` and approaches the fixed-point
value of each region (see blue, red and yellow lines of
Fig.3(a) corresponding to ` = 1, 2, 3). From the inset
of Fig. 3(a), we see that the SOP appears to converge
towards the fixed-point value in the SET phase expo-
nentially with string length, although our computational
resources do not allow us to go beyond ` = 3, making it
difficult to make any rigorous claims. Altogether, these
results affirm Eq.(15) as a reliable order parameter to
probe SET phases.

The nature of the intermediate phase can be seen
clearer by the behaviour of the magnetizations in Fig.
3(b). This intermediate phase spontaneously breaks all
of the symmetries, as indicated by non-zero values of
the SSB order parameters. We note that, by nature
of our numerical technique (that involves initialization
of tensors for the variational optimization with an opti-
mal ground state tensor of a nearby point), we see only
one of the SSB “branches” corresponding to one of SSB
ground states. For other ground states, 〈ZvA〉 is zero
while 〈ZvB 〉 is non-zero. We have also checked that it
is possible to construct ground states in all the branches
if we randomly initialize the variational optimization at
every point in the intermediate phase. We defer a closer
examination of the SSB pattern to Sec. III B, since it is
the same in both cases.

We point out that the interpolation of (Z2)3 SPT
phases studied in [53] can be connected to ours by gaug-
ing a Z2 subgroup of the (Z2)3 symmetry [29]. However,
this is not an exact duality due to the fact that we ad-
ditionally added the projection (1 +Av)/2. We leave for
future work the details and implications of this connec-
tion.

B. Xe − Ze fields: transitions to trivial phases

We now present our findings regarding the phase dia-
gram of HSET in the presence of parallel X- and Z-fields
on the edges:

HSET − hXe
∑
e

Ze − hZe
∑
e

Xe. (18)
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Figure 3. (a) SOPs and (b) magnetizations per site across two
phase transitions governed by the Hamiltonian interpolation.

The asymmetry between O[0,1]
3 and O[1,0]

3 in the intermediate
phase is due to the spontaneous breaking of inversion sym-
metry for the chosen ground state that is shown. The inset
in (a) shows the convergence of O[1,1] to −1 near the phase
transition in the SET TC phase. Solid lines and circles indi-
cate the fit [a exp(−b`) − 1] and the computed data points,
respectively.

While the phase diagram exhibits some similarities to the
well-known phase diagram of regular toric code [38–42],
it also has some novel features. In analogy to the reg-
ular toric code, the X- and Z-fields’ action drives the
condensation of charge and flux excitations, respectively.
However, as discussed in Sec. II D, the presence of an
anyon that fractionalizes the symmetry leads to SSB af-
ter charge condensation, which leads to a different phase
diagram.

Fig. 4 shows the 2D phase diagram in terms of the

order parameter O[1,1]
1 and the vertex Z-magnetization

〈ZvA〉 (〈ZvB 〉 is 0 through the phase diagram for the par-
ticular symmetry-breaking ground state we obtain). We
see that the string order parameter is able to detect the
entire SET phase in a broad 2D range of the phase dia-
gram (the crossed-out region indicates where the charge

is confined, such that O[1,1]
1 becomes ill-defined). The

Z-magnetization detects the transition to the charge-
condensed trivial phase, and in that phase indicates that
the symmetry is spontaneously broken. This supports
the general claim given in section II D that the conden-

Figure 4. Phase diagram of HSET with X- and Z-fields

showing O[1,1]
1 and 〈ZvA〉 on the left and right respectively.

On the right we indicate the three lines that we study in detail.
The crossed-out region is where the charge is confined, making

O[1,1]
1 ill-defined.

sation of a fractionalized excitation (the charge) must be
accompanied by SSB. As in the usual toric code phase
diagram (with no symmetry fractionalization), there is
a line of phase transitions between the two trivial con-
densed phases. In the toric code case, this line ends at a
finite point, meaning that the two condensed phases are
in fact the same trivial phase. Here due to the non-trivial
SF, we expect that the line cannot end at a finite point
since the two topologically trivial phases differ in their
symmetry-breaking pattern.

In the following, we further study the lines labeled as
(I), (II), and (III) in Fig. 4(b) to access the universal
features of the three transition lines in the phase diagram.

Line(I): flux condensation via Ze-field

Here we study the one-parameter Hamiltonian:

HSET − hZe
∑
e

Ze. (19)

The Ze-field commutes with the circuit UCCZ that was
used to construct HSET . Therefore, the same physics as
the regular toric code in a Z field primarily governs the
resulting phase transition [38–42]. Indeed, our numerics
are compatible with the transition point of the regular
toric code in Z-field, which is dual to the transverse field
Ising model on a triangular lattice [54]. The Ze-field
penalizes configurations with longer loops so that it con-
denses the flux. As a consequence of the breakdown of
the topological order due to flux condensation, we ob-
serve an increase in the expectation value of the Ze-field
on the edges (Fig. 5(b)). All SSB order parameters are
0 and we find that there is one symmetric ground state,
i.e. no symmetry breaking. This is expected, since the
flux does not fractionalize any symmetry.

From Fig.5(a) we see that O[1,1]
3 = −1 exactly for any

value of hZe , so the SOP works as expected in the SET
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Table I. Values of SSB order parameters for the different
short-range correlated ground states in the charge condensed
SSB phase (upper half) and IsingA ⊗ IsingB model (lower
half). A marking of ± indicates an arbitrary positive or neg-
ative value.

GS 〈ZvA〉 〈ZvB 〉 〈XvA −XvB 〉
1 + 0 +
2 − 0 −
3 0 + −
4 0 − +

GS 〈ZvA〉 〈ZvB 〉 〈XvA −XvB 〉
1 + + 0
2 − + 0
3 + − 0
4 − − 0

phase. However, the value after the phase transition is
ill-defined since, dual to the condensation of the flux, the
phase transition also confines the charge. This effect can
be measured by the confinement fraction of the charge
[55, 56] which is given by 〈Λ[0,0]〉. As shown in Fig.5(a),
〈Λ[0,0]〉 goes to zero after the phase transition, indicating
the charge confinement and invalidating the use of O[a,b]

after this point.

Line(II): charge condensation and SSB via Xe-field

We now examine the following Hamiltonian:

HSET − hXe
∑
e

Xe. (20)

Analogous to the case of regular toric code [38–42], this
perturbation drives the SET phase into a trivial topolog-
ical phase by condensing the charge. In Fig. 5(c) we can

see that O[1,1]
` gets sharper with increasing ` and that the

value correctly approaches −1 in the whole SET phase.
The condensation of the charge is also indicated by the
saturation of 〈Xe〉 in Fig. 5(d).

The condensation of the charge is accompanied by the
SSB of the symmetries that fractionalize this excitation.
As in Sec.III A, we find that all symmetries are sponta-
neously broken, as indicated by the non-zero SSB order
parameters. To better understand the SSB pattern, we
can obtain the other SSB ground states by starting with
one ground state and applying all possible symmetry ac-
tions generated by XA/B and inversion. Doing this, we
obtain a total of four orthogonal ground states, with each
ground state being invariant under either XA or XB , but
never both. It is interesting to compare this SSB pattern
of the ground states with another model with the same
symmetries. We consider two 2D Ising models placed on
each sublattice of the hexagonal lattice (i.e. next-nearest
neighbour ZZ Ising interactions on the hexagonal lat-
tice), and we denote this model as IsingA ⊗ IsingB . This
model is invariant under the same symmetries on the
vertex spins of HSET − hXe

∑
eXe and moreover, it also

breaks all of them spontaneously, resulting in 4 degener-
ate ground states. However, the four ground states have
a different SSB pattern as seen by the SSB order param-
eters in Table I. The unusual SSB pattern of the HSET

under a Xe field, comparing to the one of IsingA⊗IsingB ,
could be due to the fact that the SSB is induced by the
condensation of an excitation which fractionalizes on-site
and inversion symmetries in a joint manner.

By studying the behavior of the local order parameters
across the transition, we can see that it is second order,
and we can extract an estimate of the corresponding crit-
ical exponents, as shown in Fig. 5(d-Inset). We see that
〈ZB〉, which indicates the breaking of XB , has a different
critical exponent than 〈XvA−XvB 〉, the order parameter
for inversion symmetry breaking.

Line(III): combination of Xe − Ze fields

The condensation of the charge and flux drives the
SET in two different topologically trivial phases. In the
former, the trivial phase manifests SSB while the latter
does not. This shows a clear difference from the regular
toric code in parallel magnetic fields where both conden-
sations end up in the same trivial phase and there is a
finite first order line between them [39, 42]. Here we
study the one-parameter Hamiltonian

HSET − (2− hZe )
∑
e

Xe − hZe
∑
e

Ze, (21)

that describes line(III). Along that line, the SOP shows
a jump that is indicative of a first order phase transition
(Fig. 5(e)). Furthermore, expectation values of on-site
magnetizations on the edges and vertices also exhibit a
behavior that is consistent with first order phase transi-
tion (Fig. 5(f)).

C. ZvZv′-interaction: transition to a SSB toric
code

In this section, we analyze the effect of the nearest-
neighbour Ising interaction between vertices, i.e.

HSET − JZZv
∑
〈v,v′〉

ZvZv′ . (22)

The ZZ interaction on the vertices of the honeycomb lat-
tice does not preserve the whole global symmetry, it ex-
plicitly breaks part of the symmetry. It only commutes
with TRS, inversion, and a Z2 subgroup of the global
Z2 × Z2 (the one generated by acting with X on all ver-
tices). These symmetries still fractionalize the charge,
so we expect the symmetry fractionalization to persist
as the interaction strength is increased, up to the phase
transition.

The physics of the resulting phase transition are easy to
describe, since the ZZ interaction again commutes with
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Figure 5. (a),(b): Line(I) Phase transition from SET to the flux condensed trivial phase. (c),(d): Line(II) Transition of the
SET to a charge condensed phase with SSB. (e),(f): Line(III) Phase transition between the charge condensed (SSB) and the
flux condensed (symmetric) phase.

UCCZ , as in the case of Eq. 19. If we conjugate Eq. 22 by
UCCZ , we are left with HTC on the edge spins, and a 2D
transverse-field Ising model on the vertices. Therefore,
the physics of this transition should be as in this Ising
model. Indeed, the local order parameter 〈Zv〉 indicates
the SSB, and the corresponding critical exponent is in
agreement with the 3D classical Ising universality class
[see inset in Fig. 6(b)], although the critical point is
slightly lower than what is given in Ref. [54], which we
expect to be a result of our relatively low bond dimension.

The large JZZv limit of Eq. 22 will be equivalent to a
toric code on the edges with one of the SSB ground states
of the Ising model on the vertices, which is consistent
with the small values of 〈Xe〉, 〈Ye〉, and 〈Ze〉.

Despite the equivalence of Eq. 22 to the Ising model,
the SOPs still show non-trivial behaviour, as seen in Fig.

6(a). We see that, with increasing `, O[1,1]
` approaches -1

in the whole SET phase, indicating that the symmetry
fractionalization does indeed remain non-trivial despite
partially breaking the on-site symmetry. While the order
parameter is not designed to be used when the symmetry
is spontaneously broken, it is easy to show that O[a,b] = 0
for all [a, b] 6= [0, 0] in the limit JZZv → ∞, and this is
consistent with our results.
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Figure 6. Second order phase transition from the SET phase
to a toric code with SSB driven by the Ising field. (a) Values

of O[1,1]
` , see Eq.(15), for different block lengths `. (b) Mag-

netization per site along the different field directions on the
edges and vertices of the honeycomb lattice. The inset shows
the critical exponent β of the transition.
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perturbation.

D. Ye-field

We now study the effects of Y -field,

HSET − hYe
∑
e

Ye. (23)

In [43] the authors studied the regular toric code in trans-
verse Y -field and found a first order phase transition to a
fully polarized phase. Here, with SET order, we also find
a first order phase transition to a phase where the edge
spins are polarized in the Y -direction, as indicated by the
discontinuities in the SOP and the local magnetizations,
see Fig.7.

Interestingly, this phase transition is also accompa-
nied by SSB, as indicated by the non-zero SSB order
parameters. The SSB pattern is the same as observed in
Sec. III B. Unlike the phase transitions induced by paral-
lel X or Z fields, this transition cannot be interpreted as
a condensation transition, so we cannot use the general
arguments of Section II D to understand the presence of
SSB. Nevertheless, it remains possible that the charge
excitation is condensed (in the sense of condition (II) in
Section B 3), so our proof of SSB presented in Appendix
B may still apply. We leave a more detailed analysis of
the nature of this transition to future work.

IV. DISCUSSION

For all of the perturbations considered in the previous
section, we see that the string order parameter correctly
captures the symmetry fractionalization pattern in the
SET phase. Near a phase transition, the use of longer
strings is necessary to obtain the fixed-point value of the
order parameter. It is remarkable that the order param-
eters work so well even away from the fixed-point, given
that they are defined in terms of the anyon creation op-
erator SΓ which is only exact at the fixed-point. Our
results provide evidence that string order gives a ubiq-
uitous characterization of symmetry fractionalization in
SET phases.

There are many avenues for generalization of these re-
sults. First, Ref. [23] shows how to construct string order

parameters for detecting other types of symmetry frac-
tionalization in PEPS, and our strategy of lifting these
order parameters to physical observables should apply
equally well to these examples. Second, it should be pos-
sible to use similar methods to study perturbations of any
fixed-point SET model where the anyon creation string
operators are known [11, 16, 17]. Going beyond this, we
believe that our approach should be applicable even to
models for which a fixed-point is not known. As shown
by our results, it is not necessary to use the exact anyon
operator to detect the symmetry fractionalization in a
particular ground state. Therefore, is should be possible
to also apply our methods to systems where one can for-
mulate an approximation to the exact anyon operator.
For example, one could use an Ansatz like resonating va-
lence bond states, which form good approximations to
ground states for certain spin liquids [57, 58], to define
approximate anyon operators that can then be used to
define string order parameters for these spin liquids.

We emphasize the importance of using SOPs designed
for SET phases, as in the present study. This is be-
cause there are SF patterns that cannot be characterized
just by 1D SPT order parameters [21]. Two examples
related to toric code topological order are worth men-
tioning. First, two of the non-trivial SET phases of a
Z2 ×Z2 global symmetry cannot be distinguished by 1D
SPT order parameters. Second, the non-trivial SF pat-
tern given by a global Z2 symmetry has no analogous 1D
SPT phase; this is the case of the model studied in [14]
and the ones in appendix C. Our methods are able to
characterize all of these phases [23]. We hope our work
motivates the use of these SOPs to study unknown phases
of matter in 2D.

Apart from the string order parameters, we have also
observed several instances of SSB across the various
phase transitions, as summarized in Table II. The SSB
induced by the Xe field can be explained by the conden-
sation of an anyon that fractionalizes the symmetry. On
the other hand, we also observe SSB in the intermediate
phase of the direct Hamiltonian interpolation, and un-
der the transverse Ye field, despite the fact that neither
transition has a clear interpretation has a condensation
transition. Furthermore, in all three cases, the symme-
try breaking pattern, which involves both the on-site and
inversion symmetries, is distinct from that of a pair of
Ising models which share the same symmetries. These
findings suggest that there is yet more to uncover about
the connection between topological phase transitions and
spontaneous symmetry breaking.
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Appendix A: PEPS for the GS of HSET

The ground state of HSET has a tensor network de-
scription. We divide the lattice into the two types of
vertices, A and B. The PEPS is constructed by assign-
ing different tensors to each type of vertex and to the
edges. The resulting PEPS has bond dimension 3. The
non-zero components of the tensor of the edges, Te, are:

1 =
2 2

0 , 1 =
0 0

1 =
1 1

1 .

(A1)
This tensor projects the virtual legs on each edge onto
the state labelled 2 if there is no loop running along that
edge, and otherwise onto the span of the states labelled
by 0 and 1.

The non-zero components of the tensors of vertices A
and B, TA and TB , are respectively

1 = 2

2

0, 1

TA

2

, 1 =
TA

−

−
1

2

=
TA

+

+

0

2

,

(A2)

1 =
TB

2

2

0, 1

2

=
TB

0

0

0

2

=
TB

1

1

1

2

,

(A3)
plus all their rotations where ± = |0〉 ± |1〉. The first
role of the vertex tensors is to enforce an even number of
virtual |2〉 states at each vertex which gives the closed-
loop condition. Then, the rest of the structure serves to

create the decoration by cluster states. This can be seen
by imagining removing the legs labelled 2 in the above
equations. Then, the resulting tensors resemble those
defining the 1D cluster state [59].

The symmetries of these tensors are the following:

XTA = TA(Z ⊕ 1)⊗3, TA(X ⊕ 1)⊗3 = TA,

XTB = TB(X ⊕ 1)⊗3, TB(Z ⊕ 1)⊗3 = TB ,

TA(Z̄)⊗3 = TA, TB(Z̄)⊗3 = TB , (A4)

where Z̄ = −1⊕−1⊕ 1.
We block the hexagonal lattice to a square one by con-

tracting TA, Te and TB (independent of the direction) to
result in the tensor T :

T =
vA vB

e2
e1 e3

. (A5)

This tensor has the following symmetries:

T = T Z̄⊗4,

XvBT = T (X ⊕ 1)⊗4,

XvAT = T (Z ⊕ 1)⊗4,

XvA ⊗XvBT = T (iY ⊕ 1)⊗2 ⊗ (−iY ⊕ 1)⊗2, (A6)

where the first equation accounts for the Z2-injectivity.
Then, the state has a global symmetry corresponding to
the group Z2×Z2. The SF pattern is given in (10) which
corresponds to the D8 gauge theory (see [23]). If we
denote by vq, q ∈ Z2×Z2 the virtual symmetry operators
that satisfy vqvk = u(q, k)vqk we find that the matrices
u(q, k) are

uω(q,k) =

 1 1 1 1

1 1 Z̄ Z̄
1 1 Z̄ Z̄
1 1 1 1


q,k

, (A7)

where they are ordered as XvB , XvA ⊗ XvB , XvA . The
blue cells colored in Eq.(A7) correspond to the unique
Z2 subgroup (on-site symmetry XvA⊗XvB ) of the global
symmetry whose restriction results in a non-trivial SF
pattern.

Let us show how bond-centered inversion on the hexag-
onal lattice is represented in T . The action is given by a
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permutation of the virtual legs in T across the inversion
axis (dotted line in Eq. A5) together with a physical swap
of the vertices vA/B and edges e1/3. This action turns

out to be equal to a Hadamard gate H = X+Z√
2

acting

on each virtual leg so inversion transforms the tensor as
T → TH⊗4. This transformation allows us to compute
the interplay between the virtual operators of the global
Z2 × Z2 symmetry and inversion symmetry. For exam-
ple, the anticommutation relation of iY and H reveals
this nontrivial interplay.

Appendix B: SET on PEPS, order parameters and
SSB

In this section, we first introduce PEPS and show how
topological order, global symmetries, and their interplay
are characterized. Then, we elaborate on the order pa-
rameter that we have used in the main text to study the
SET phases. Finally, we prove the emergence of SSB
when an anyon that transforms non-trivially under the
symmetry is condensing.

1. Background of topological order and global
symmetries on PEPS

PEPS are pure states completely characterized by a
tensor A. We focus on bosonic and translational invariant
systems on the square lattice for the sake of simplicity.
The tensor Aiα,β,γ,δ–see Fig.8(a)–then has five indices;

one i = 1, . . . , d for the physical Hilbert space Cd of each
particle and four α, β, γ, δ = 1, . . . , D which correspond
to the virtual degrees of freedom (d.o.f.). The PEPS is
constructed by placing A on each vertex and contract-
ing the neighbour virtual d.o.f. (identifying and sum-
ming the indices) as depicted in Fig.8(b). When the cho-
sen boundary conditions are applied, the resulting tensor
contraction ci1,··· ,iN = C{Ai1 , . . . , AiN } describes a quan-
tum many-body state |ψA〉 =

∑
ci1,··· ,iN |i1 · · · iN 〉.

a. G-injective PEPS and global symmetries

We focus on the family of G-injective PEPS [60]
whose tensors have the following virtual symmetry (G-
invariance) illustrated in Fig.8(c):

A = A(ug ⊗ ug ⊗ u-1
g ⊗ u-1

g ), (B1)

where here A is represented as a map from the virtual to
physical indices, and ug is some unitary representation
of the finite group G. Given a G-injective PEPS, the
associated parent Hamiltonian [60], defined on a torus,
has the ground state degeneracy D(G) of the quantum
double model of G. In this work, we focus on abelian G
for the sake of simplicity.

(a)

i
α

δ

γ
β

(c)

=
u-1g

u-1g

ug ug

(b)

· · · · · ·
· · ·

· · ·

(d)

Figure 8. (a) Diagram for the PEPS tensor Aiαβγδ on the
square lattice. (b) The PEPS constructed via the contraction
of the virtual d.o.f. of the tensors. The contraction of indices
is represented by joining the corresponding legs associated
to the indices. We place the PEPS on a torus however, we
will leave the boundaries open in the drawings for the sake
of clarity. (c) Invariance of the G-injective tensor under the
action of the group G on the virtual d.o.f. (d) Pair of charge
operators placed on the virtual d.o.f.

The anyons of D(G) are charges, fluxes, and dyons (a
combined excitation of the previous two). Charges are
labelled by the irreducible representations (irreps) of G
and fluxes by elements of G. We represent the virtual
operator of a pair of charges, Πσ = Cσ ⊗ Cσ̄, as two
orange rectangles placed on two different edges of the
lattice, see Fig.8(d).

We consider G-injective PEPS, |ψA〉, with a global on-
site symmetry

U⊗nq |ψA〉 = |ψA〉 ∀q ∈ Q, (B2)

where Uq is a linear unitary representation of some finite
group Q and n is the number of lattice sites. For all
q ∈ Q, there is an invertible matrix vq which translates
Uq through the local tensor A on the virtual d.o.f. as
follows [61]:

Uq
=

v-1
q

vq

vq

v-1
q

∀q ∈ Q. (B3)

The operators vq do not have to form a linear represen-
tation. It actually turns out that

vkvq = uω(k,q) vkq, (B4)

where ω(k, q) ∈ G. This means that {vq} form a homo-
morphism up to the matrix uω(k,q), where u is the repre-
sentation of G introduced earlier for the G-invariance.

The action of the global symmetry on a charge sit-
ting on a virtual bond is given by Cσ → Φq(Cσ), where
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Φq(X) = vqXv
−1
q . Diagrammatically:

Uq

= ,
vq

v-1
q

≡ Φq(Cσ).

(B5)
If the symmetry is applied for two elements q, k ∈ Q, we
see that

(Φk ◦ Φq)(Cσ) = (τω(k,q) ◦ Φkq)(Cσ), (B6)

where τω(k,q) denotes the conjugation by uω(k,q). This
implies that the symmetry action over the charge sec-
tor can be projective, i.e. the symmetry fractionalizes.
Let us assume that ugvq = vqug for all g ∈ G and q ∈ Q
which means that the global symmetry does not permute
between anyons. Formally we define ω : Q × Q → G :
(k, q)→ ω(k, q) = vkvqv

−1
kq that satisfies a 2-cocycle con-

dition. The possible 2-cocycles are classified by the sec-
ond cohomology group H2(Q,G) which characterizes the
different SF patterns of G-injective PEPS.

2. Order parameters for symmetry fractionalization

In Ref.[23] the authors constructed order parameters
that identify the SF pattern of the charges without rely-
ing on the knowledge of the virtual symmetry operators
vq for the RGFP of G-injective PEPS. Here, we extend
their definition to G-injective PEPS where a perturba-
tion is applied.

We consider on-site perturbations of the tensor A of
the form A(θ) = T (θ)A, where T (θ) is some invertible
matrix that depends on θ. We notice that this kind of
perturbation keeps the G-injectivity of the tensor. Then,
the virtual charge operator can be the same as in the
RGFP.

ForG = Z2, Q = Z2 = {e, a}, the order parameter that
we propose to capture the SF pattern is the following:

O[a] =
L[a](θ)

L[e](θ)
. (B7)

The value of L[a](θ) is given by

Ua Ua
, (B8)

where the depicted tensor is A(θ) and the blue lines cor-
respond to the permuted sites (also where the symmetry
operators act before doing the scalar product). It is im-
portant to note that L[a](θ) is not given in terms of an

expectation value of an operator by |ψA(θ)〉. This is be-
cause of the presence of virtual charge operators.

For Q = Z2 × Z2 = {e, a, b, ab} the order parameter is
the triple {O[a],O[b],O[ab]}. The key point is that this
order parameter behaves as the fractionalization class of
the charge: O[q] ≈ ω(q, q), that is, it reveals the sign of
this action.

The order parameter of Eq.(B7) is meant for zero corre-
lation length states. However, a perturbation will gener-
ally increase the correlation length until the phase tran-
sition point is achieved. To account for the growth of
the correlation length the following order parameters are
defined by blocking sites:

O[a]
` =

L[a]
` (θ)

L[e]
` (θ)

(B9)

where L[a]
` (θ) is equal to

Ua

`

(B10)

and ` should be taken greater than the correlation length.

3. SSB from anyon condensation in PEPS

In this section, we use the framework of PEPS to prove
that there is SSB in the ground subspace if a condensed
anyon transforms non-trivially under the symmetry, i.e.
it either fractionalizes or it is permuted. We remark that
this has been proven in [35] using the language of G-
graded tensor categories.

The proof is done by analyzing the fixed point struc-
ture of the transfer operator of the PEPS. We show that
there is a contradiction if we suppose that the three fol-
lowing conditions hold at the same time: (i) there is no
symmetry breaking on the fixed point structure, i.e. ex-
pectation values are independent of the fixed point with
whom they are evaluated, (ii) the global symmetry frac-
tionalizes on an anyon b or it permutes b to c, (iii) the
anyon b condenses or the anyon b condenses and not c.
To do so we use the framework developed in [55, 56] to
describe condensation of anyons in G-injective PEPS to-
gether with the characterization of symmetries in [61]
that we revisit now.

In G-injective PEPS the transfer operator T has a de-
generate fixed point structure: {|ρc)} such that T|ρc) =
|ρc), see fig. 9(a). This comes from the symmetries of
the transfer operator: [u⊗Lg ,T] = 0, where ug ≡ ug ⊗ug′
defined for all g ∈ G×G. As in Ref.[55] we assume that
G is abelian, that the fixed point subspace is spanned by
injective MPS with tensors {Mc}, and that for each c, c′

there is a g such that u⊗Lg |ρc) = |ρc′)
A global symmetry on the PEPS is reflected in the

transfer operator as follows [v⊗Lq ,T] = 0, where vq ≡
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(a)

T = , |ρc) = ⇒ =

(b)

Mc = ⇒
Mc

= σc
L σc

R

(c)

Mc

vq

=
Mc(c′)

x−1
qxq

⇒ σc
L

xq

x−1
q

= σ
c(c′)
L

(d)

Mc

ug

=
Mc

y−1
gyg

Figure 9. (a) Transfer operator T, it fixed points vectors |ρc)
and the equation that relates T and |ρc). (b) Any fixed point
|ρc) is an injective MPS constructed with the tensor Mc. This
implies the uniqueness of the left/right fixed points, σcL/R, of
the transfer matrix constructed with Mc. (c) Transformation
rule of Mc and σcL under vq. (d) Transformation rule of Mc

under a operator ug corresponding to an unconfined flux, see
[55].

vq ⊗ v−1
q . The global symmetry acts on the fixed point

subspace as follows:

v⊗Lq |ρc) = λq|ρc′), ∀q ∈ Q, (0)

where |λq| = 1, λq does not depend on c, and we assume
that the symmetry operators can only permute between
the fixed points. Since we assumed that |ρc) are injective
MPS, the transfer operator constructed with any of these
states has a unique right/left fixed point, σcR/L depicted

in fig. 9(b). Eq.(0), is translated into how the virtual
operators transform those fixed points, see fig. 9(c).

The main assumption here is that the expectation val-
ues do not depend on the fixed point where they are
evaluated:

(ρc|TO|ρc) = (ρc′ |TO|ρc′), ∀c, c′ & O, (I)

where O is an observable and TO is it virtual representa-
tion using the transfer operator of the tensor. This is a
non-symmetry breaking condition since the fixed points

are related to the different ground states so that Eq.(I)
is equivalent to 〈O〉c = 〈UqOU†q 〉c. For example, a SB
pattern like the magnetization reads 〈mz〉c = −〈mz〉c′ .
In particular, this holds for the evaluation on the fixed
points of an anyon operator [g, α] defined as:

σcL σcR

M̄c

Mc

Cα

yg

= σc
′
L σc

′
R

M̄c′

Mc′

Cα

yg

, (I’)

where Cα (orange square) corresponds to the charge part
of the anyon and the operator yg (grey circle), defined in
fig. 9(d), corresponds to the flux part. Following Ref.
[55], the condition for an anyon [g, α] to be condensed is

σcL σcR

M̄c

Mc

Cα

yg

6= 0 (II)

a. SF case

In this case, we focus on global symmetries that do not
permute the anyons, that is

[vq, ug] = 0 ⇒ [yg, xq] = 0 ∀q ∈ Q, g ∈ G

and that there is a non-trivial SF pattern

vkvq = uω(k,q) vkq with some ω(k, q) 6= 1. (III)

We notice that whenever (III) holds, there must exist a
charge α that fractionalizes the symmetry:

uω(k,q)Cαu
−1
ω(k,q) = χα(ω(k, q))Cα, s.t. χα(ω(k, q)) 6= 1

(III’)
this is because there must exist a charge α that braids
non-trivially the flux labelled by ω(k, q) ∈ G.

Let us now suppose that (III), (I), and (II) hold and
that the anyon that fractionalizes the symmetry in (III’),
concretely its charge part, is the one that condenses, sat-
isfying (II). Then,
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σcL σcR

M̄c

Mc

Cα

yg

= σcL σcR

M̄c′

Mc′

xqx−1
q

x−1
q

xq

yg

vq

v−1
q

Cα = σcL σcR

M̄c′

Mc′

xqx−1
q

x−1
q

yg

xq

vq

v−1
q

Cα = σc
′
L σc

′
R

M̄c′

Mc′

yg

vq

v−1
q

Cα = σc
′
L σc

′
R

M̄c′′

Mc′′

vk
vq

xkx−1
k

v−1
k

v−1
q

x−1
k

xk

yg

Cα = σc
′′
L σc

′′
R

M̄c′′

Mc′′

vk
vq

v−1
k

v−1
q

yg

Cα

= σc
′′
L σc

′′
R

M̄c′′

Mc′′

vkq
uω(k,q)

v−1
kq

u−1
ω(k,q)
yg

Cα = σc
′′
L σc

′′
R

M̄c′′′

Mc′′′

x−1
qkxqk

xqkx−1
qk

yg

uω(k,q)

u−1
ω(k,q)

Cα = σc
′′′
L σc

′′′
R

M̄c′′′

Mc′′′

yg

uω(k,q)

u−1
ω(k,q)

Cα = χα(ω(k, q)) σc
′′′
L σc

′′′
R

M̄c′′′

Mc′′′

Cα

yg

.

We use now (I’), arriving to the following equation:

σcL σcR

M̄c

Mc

Cα

yg

= χα(ω(k, q)) σcL σcR

M̄c

Mc

Cα

yg

where we find a contradiction between (III’) and (II).
This means that if a perturbation that preserves the
global symmetry also induces an anyon condensation of
[g, α] whose charge part α also fractionalizes the symme-
try, then the symmetry has to be spontaneously broken
after the phase transition in the final phase.

b. Permutation case

In the case where there is a permutation of anyons the
symmetry acts on ug as follows:

Φq(ug) = vqugv
−1
q = uϕq(g) where ϕq ∈ Aut(G),

where this corresponds to a permutation of the fluxes.
Similarly, the permutation of charges is: Φq(Cσ) =
Cϕq(σ) where ϕq(σ) is another irrep of G. We remark
that for G abelian, the irreps form a group isomorphic
to G so ϕq ∈ Aut(G) also characterizes the permutation
of the irreps. Generally, for dyons, the transformation is
[g, α] 7→ [ϕq(g), ϕq(α)].

If we assume (I) that there is no symmetry breaking,
(II) that [g, α] is condensing and that the symmetry per-

mute [g, α] as explained before we obtain that

0 6= σcL σcR

M̄c

Mc

Cα

yg

= σcL σcR

M̄c′

Mc′

x−1
qxq

xqx−1
q

yg

vq

v−1
q

Cα = σc
′
L σc

′
R

M̄c′

Mc′

Cϕq(α)

yϕq(g)

.

This implies that the set of condensed anyons are closed
under the symmetry. Therefore, if a perturbation that
preserves the global symmetry induces an anyon conden-
sation of [g, α] and this is permuted to a non-condensed
anyon [ϕq(g), ϕq(α)], the symmetry has to be sponta-
neously broken after the phase transition in the final
phase.

Appendix C: A toric code state with a Z2 global
symmetry on the square lattice

In this appendix, we consider deformations of a fixed-
point tensor representing a toric code enriched with Z2

symmetry in order to test that the string order parame-
ters of Eq. B9 function as intended away from the fixed-
point.

We use the following PEPS tensor to model the ground
state of the symmetry-enriched toric code,

A =
1√
2

∑
b={0,1}

(X2)b
⊗4

(C1)

where here, and throughout this section, X =
∑3
i=0 |i+

1 (mod 4)〉〈i| is the generator of the left regular repre-
sentation of Z4 such that X4 = 1 and X2 = σx⊗12 ≡ g.
The tensor A is Z2-invariant, i.e. A has the following
virtual symmetry A = A(g ⊗ g ⊗ g ⊗ g). The PEPS con-
structed with A, |ψA〉, is left invariant by the action of
the operator U = X⊗X⊗X−1⊗X−1 on each lattice site:
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U⊗N |ψA〉 = |ψA〉 which would correspond to a global Z4

symmetry. However, the state |ψA〉 has also a local sym-
metry generated by U2 such that U2

i |ψA〉 = |ψA〉, where
i is any site. Therefore, the a priori global Z4 symmetry
is reduced to a global Z2 symmetry when quotiented by
the local symmetry: this is the one we consider here.

The interesting feature of this model, when consider-
ing the parent Hamiltonian of |ψA〉, is that the anyonic
excitation corresponding to the charge fractionalizes that
global Z2 symmetry. More explicitly, the virtual opera-
tor of the charge is Cσ = σz ⊗ 12 and the virtual action
of the global Z2 symmetry is given by the conjugation
with X such that Cσ → XCσX

−1. Then, if we apply
twice the global symmetry an isolated charge changes as
Cσ → −Cσ which corresponds to a projective represen-
tation of Z2.

In the following, we study the effects of different per-
turbations on the wavefunction generated by (C1)

1. Diagonal string perturbation

We apply the perturbation (exp[θX2/2])⊗4 to the ten-
sor A where exp[θX2] = cosh(θ)1+ sinh(θ)X2. The per-
turbation commutes with the symmetry and it drives the
system from the TC phase to a product state. This is be-

cause limθ→∞
sinh(θ)
cosh(θ) = 1 so that for large values of θ we

have exp[θX2/2] ∝ 1+X2. This implies that

lim
θ→∞

(exp[θX2/2])⊗4A ∝ (1 +X2)⊗4 ≡ A∞.

Since all the operators involved are real the on-site trans-
fer operator can be written as

E = A∗(θ)A(θ) = exp[θX2]⊗4[1⊗4 + (X2)⊗4].

The norm of the PEPS with the perturbation is calcu-
lated with the contraction of this tensor E on each vertex
v of the square lattice V. When two sites, i and j, coin-
cide the resulting factor is

Lθ(bi, bj) = Tr[cosh(2θ)(X2)bi−bj + sinh(2θ)(X2)bi−bj+1]

=

{
4 cosh(2θ) if bi − bj = 0 mod 2
4 sinh(2θ) if bi − bj = 1 mod 2

,

instead of the value 4δbi−bj ,0 in the non-perturbed case
θ = 0. Then, the norm can be expressed as the following
sum

〈ψA(θ)|ψA(θ)〉 = Cv∈V{Ev} =
∑
b

∏
〈i,j〉

Lθ(bi, bj), (C2)

so that 〈ψA(0)|ψA(0)〉 = 2·42Ns where Ns is the number of
sites of V. The wavefunction |ψA(θ)〉 can be normalized
locally by modifying the weight of the tensor A. We find

that the string order parameters are L[q]
` (0) = (−1)q · 2 ·

42Ns−4 at the fixed-point, and

L[a]
1 (θ) =

∑
b

A(b6, b7)B(b3, b4, b5, b6)Cb4,b5(b1, b2)Cb4,b5(b8, b9),

and similarly for L[e]
1 (θ). The values of the functions

A,B,C are

A(b6, b7) =


0 if b7 = 1, b6 = 0
−4 if b7 = 1, b6 = 1
4 if b7 = 0, b6 = 0
0 if b7 = 0, b6 = 1

= 2(s6 + s7),

B(b3, b4, b5, b6) =


4 if b3 + b6 = 0, b4 + b5 + b6 = 0
0 if b3 + b6 = 1, b4 + b5 + b6 = 1
0 if b3 + b6 = 1, b4 + b5 + b6 = 0
−4 if b3 + b6 = 0, b4 + b5 + b6 = 1

= 2s4s5(s3 + s6),

and

Cb4,b5(bi, bj) =

{
2(e4θ − e−4θ) if bi + bj + b4 + b5 = 0
2(e4θ + e−4θ) if bi + bj + b4 + b5 = 1

= 2(e4θ − sisjs4s5e
−4θ),

where all the sums are modulo 2 and the transformation
to spin variables is si = (−1)bi . The sublattice Ω corre-
sponds to the following set of edges that are involved in
the SOP:

Ω = {〈1, 4〉, 〈2, 5〉, 〈3, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, 7〉, 〈4, 8〉, 〈5, 9〉},

which are placed as follows:

s3 s4 s5 s6 s7

s1

s8

s2

s9

.

It can be checked that for θ = 0, bi = bj except for

b4, b5 in L[a]
1 (0), such that we obtain O1(0) = −1.

Mapping to the classical 2D Ising model

The norm of Eq. (C2) can be written as the partition
function of the classical Ising model∑

s

∏
〈i,j〉

eβsisj , (C3)

where si = (−1)bi are the Ising variables and the different
weights correspond to{

eβ = 4 cosh(2θ) = 2(e2θ + e−2θ),
e−β = 4 sinh(2θ) = 2(e2θ − e−2θ)

}
(C4)

If we compare the ratio of the above expressions we
obtain e−2β = tanh(2θ). So, the critical temperature

βc = ln(1 +
√

2)/2 corresponds to θc = βc/2 since
θ = tanh−1(e−2β)/2.

In order to compute Eq. (B9), we need to express its
numerator in the spins variables.
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Figure 10. (a) Results for L[a]
2 and L[e]

2 of the phase transition
driven by the perturbation exp[ θ

2
X2]⊗4. O`(θ) computed for

the phase transitions driven by perturbations (b) exp[ θ
2
Z]⊗4+

exp[− θ
2
Z]⊗4, and (c) exp[θZ]⊗4. All data are obtained by

using tensor network states algorithms.

The calculation results in the following

L[a]
1 (θ) ∝

∑
s

(s6 + s7)s4s5(s3 + s6)(1− s1s2s4s5e
−8θ)

× (1− s8s9s4s5e
−8θ)e8θ

∏
〈i,j〉∈V−Ω

eβsisj (C5)

where β depends on θ via Eq.(C4) as e−2β = tanh(2θ).

We can also map to the Ising model the order param-
eter for a blocking of ` sites:

L[a]
` (θ) ∝

∑
s

s3`+1s3`+2(s3`+2 + s4`+2)(s5`+1 + s5`+2)

×
∏
i=1,`

j=0,5`+2

(1− s2`+1+is3`+1+isi+jsi+`+je
−8θ)

×
∏

〈i,j〉∈V−Ω

eβsisj ,

where Ω` is now the sublattice composed by the following

red edges:

s2`+1 s3`+1 s3`+2

s4`+2

s5`+2s5`+1

s1
· · ·

· · ·

· · ·

· · ·
s5`+3

s2`

s7`+2

In Fig.10(a) we show the values of L[a]
2 (θ) and L[e]

2 (θ). It

easy to see that L[e]
2 (θ) corresponds to the confinement

fraction of the charge [55, 56] and it goes to zero after
the phase transition. Therefore, (B7) is no longer valid
in that region since the denominator goes to zero. But
before the phase transition, we can see that O[a] = −1.

We use the infinite matrix product state (iMPS) algo-
rithm for these computations [32]. Furthermore, since, in
this case, the deformation keeps the model exactly solv-
able, we use also use the Metropolis-Hastings algorithm
[62], which allows us to evaluate O`(θ) for even larger
values of ` (data not shown).

2. Dual string perturbations

Now, we analyze the behavior of the string order pa-
rameter by considering two further perturbations.

1. We start by defining Z = diag(1,−1, 1,−1) = 12⊗
σz. Since Z commutes with X2, by applying the
perturbation P (θ) = (exp[ θ2Z])⊗4 + (exp[− θ2Z])⊗4,
the resulting tensor in the limiting case can be given
as,

lim
θ→∞

P (θ)A ∝
(
σ⊗4

+ + σ⊗4
−
)
⊗
[
1⊗4

2 +X⊗4
]
.

The perturbed state corresponds to two copies of
regular toric code times product states. Moreover
the perturbation commutes with the symmetry, the
results of the numerics are shown in Fig. 10(b)
where it can be seen that O`(θ) gets sharper with
increasing `.

2. On the other hand, if we restrict the perturbation

to P (θ) = (exp[ θ2Z])
⊗4

the resulting tensor in the
limiting case is

lim
θ→∞

(exp[θZ])⊗4A ∝
[
|0〉〈0|⊗4 + |0〉〈1|⊗4

]
⊗ 1⊗4

2 ,

which corresponds to a product state. It is impor-
tant to note that in this example the perturbation
doesn’t commute with the symmetry so that the
SOP is no longer well defined. This is what Fig.
10(c) shows, a slow decay of O`(θ) in contrast with
the other sharp behaviours when the perturbations
commute with the symmetry.
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