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Abstract

Understanding the factors that underlie the epigenetic regulation of genes is crucial to

understand the gene regulatory machinery as a whole. Several experimental and computa-

tional studies examined the relationship between different factors involved. Here we investi-

gate the relationship between transcription factors (TFs) and histone modifications (HMs),

based on ChIP-seq data in cell lines. As it was shown that gene regulation by TFs differs

depending on the CpG class of a promoter, we study the impact of the CpG content in pro-

moters on the associations between TFs and HMs. We suggest an approach based on

sparse linear regression models to infer associations between TFs and HMs with respect to

CpG content. A study of the partial correlation of HMs for the two classes of high and low

CpG content reveals possible CpG dependence and potential candidates for confounding

factors in our models. We show that the models are accurate, inferred associations reflect

known biological relationships, and we give new insight into associations with respect to

CpG content. Moreover, analysis of a ChIP-seq dataset in HepG2 cells of the HM

H3K122ac, an HM about little is known, reveals novel TF associations and supports a previ-

ously established link to active transcription.

Introduction

Epigenetic modifications play a crucial role in the gene regulatory system. They allow a single

DNA molecule to be interpreted in different cell types and throughout different developmental

stages, by directly interacting with other regulatory factors or by reorganizing the DNA acces-

sibility in the cell and thereby affecting gene transcription [1]. The genomic location of certain

epigenetic modifications, the post-translational modifications of histone residues, can be mea-

sured by genome-wide assays such as chromatin immunoprecipitation followed by massive

parallel sequencing (ChIP-seq) [2, 3]. Several consortia such as ENCODE [4, 5] and IHEC [6]
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have surveyed many of these modifications for a number of cell types and cell lines. With this

data at hand, epigenetics has the potential for a better understanding of, for instance, the cause

and effect of diseases [7–10] and can lead to the development of novel therapeutic approaches

for cancer [11, 12] or HIV [13].

Here, we consider the interplay between two important layers of gene regulation, DNA-

binding transcription factors (TFs), and post-translational modification of histone residues

(HMs) of the nucleosome complex. Co-localization and interactions between both these layers

have been observed and have proven to be useful for determining the expression level of

nearby genes [14–19]. Approaches to model the chromatin signaling network using HMs and

chromatin modifying enzymes, including certain TFs, yielded novel insights into interactions

between these components in the gene regulatory network [20]. However, how precisely TFs

and HMs interact with each other remains unclear and many facets, such as affiliation to pro-

tein families [21], sequence composition [22], or feedback loops [23], appear to be relevant for

the complex regulatory machinery. Recent work suggested that the information provided by

TFs and HMs jointly is redundant in predicting gene expression [24, 25], suggesting that these

two entities are tightly coupled. This is in line with previous findings that showed the ability of

certain TFs to recruit histone modifying enzymes [26], and that certain HMs amplify the likeli-

ness of TFs binding to specific genomic positions [27]. Furthermore, direct physical contacts

of HMs and TFs have been reported previously [28], as well as destabilizing properties of HMs

for heterochromatic regions, which make these regions generally more accessible for proteins

[29].

In the past, different computational models have been proposed to elucidate the role of Epi-

genetic factors in gene regulatory networks and, in particular, to discover patterns and associa-

tions from epigenetic data about TF binding and HM occurrence. From the data perspective,

the models can be categorized into three different groups, 1) unsupervised approaches using

TF and HM data, 2) the prediction of TF binding based on HM data, and 3) the prediction of

HM binding based on TF data.

Successful unsupervised approaches leveraged graphical models for discovering interac-

tions between TF and HMs. Lasserre et al. [30] combined HM ChIP-seq data with mRNA and

DNase hypersensitivity information to infer an undirected interaction network using sparse

partial correlation, which was able to recover many known interactions. In another, but related

study, the authors of ChromNet derived group graphical models based on inverse correlation

of ChIP-seq data, including TFs and HMs [31]. For the prediction of TFs based on HM data,

one approach derived TF binding affinities from HM data using multiple linear regression and

random forests, focusing on the discovery of differential epigenetic patterns between promoter

and distal regions in the genome [32].

For the purpose of predicting HM information based on TF data, different methods have

been employed. Whitaker et al. use DNA binding motifs to make a binary prediction of the

presence or absence of an HM peak employing a LASSO logistic regression model to filter pre-

dictive motifs and a Random Forest on the filtered motifs to classify whether an HM is present

at a specific region [33]. Benveniste et al. tackle the similar problem of predicting the HM exis-

tence in a window of 100bp along the Transcription Start Site (TSS). However, instead of

using the TF motifs as in Whitaker et al. [33], they estimated the abundance of TF ChIP-seq

data obtained from ENCODE [34]. Perner et al. later combined partial correlation with an

elastic net based regression approach to infer associations between a small set of chromatin

modifiers and HMs [20]. Their method leverages the potential of regression based approaches

combined with the ChIP-seq data available in databases to gain insight into the interplay of

TFs and HMs.
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In our work we build up on the previous approaches by extending the existing ideas to cap-

ture more complex relationships, investigating the impact of CpG content on the regulatory

machinery, and studying new data. In contrast to Benveniste et al., we use a LASSO regression

based approach to be able to investigate negative associations between TFs and HMs and to

use the coefficients as a mean to measure the strength of their association. Furthermore, a

LASSO approach implicitly selects a subset of TFs that impact HM occupancy, by driving

other coefficients to zero. This implicit feature selection allows us to distill the factors relevant

for HMs from a large set of TFs without prior knowledge. We extend the work of Perner et al.

by using a larger set of TFs, not restricting to chromatin modifiers, to be able to derive novel,

unknown interactions, or associations between TFs and HMs. Furthermore, we binned the

region around the TSS into windows of 100bp length to improve resolution and added a fusion

penalty to enforce similar coefficients for adjacent bins in order to better resemble the input

signal. Apart from these technical extensions, our main contribution lies in the analysis of the

impact of promoter CpG content on the derived models by splitting the gene set into promot-

ers with high and low CpG content, following the ideas of Karlic et al., and Saxonov et al. [22,

35]. It was previously shown that different histone marks are associated with gene expression

in CpG-rich versus CpG-poor promoters [29, 35] and that CpG-poor promoters are enriched

in binding sites of tissue-specific TFs [36]. Thus we speculate that TF–HM associations may

differ in these two promoter classes. Furthermore, we use our method to study associations of

TFs to H3K122ac, a mark that only recently draw attention as first reports show an association

with active gene expression [37].

Materials and methods

Basic model

HM presence has been associated with the presence of several TFs [20, 31, 34]. Thus, it is sug-

gestive to predict the presence of a given HM from a set of TFs that could recruit other histone

modifying enzymes or directly act as readers, writers, or erasers of that HM. A straightforward

way of predicting HMs based on TFs is to train a regression model that takes the abundance of

m TFs as input (features) and the abundance of an HM as output (response). Thus, we can for-

mulate the prediction of the abundance abd(HMY) of a Histone Modification HMY as

abdðHMYÞ � b0 þ b1 � abdðTF1Þ þ b2 � abdðTF2Þ þ � � � þ bm � abdðTFmÞ; ð1Þ

where β0 is the model bias term and βi, i = 1‥n are model coefficients subject to optimization.

In our case, the abundance of both TFs and HMs is obtained by using ChIP-seq measurements

in non-overlapping windows from 500bp upstream to 500bp downstream of the transcription

start site (TSS) of all annotated protein coding genes. To get a more refined resolution of the

ChIP-seq data for the features, we further bin those windows into segments of 100bp length, in

which read counts of the TF ChIP-seq data are accumulated (Fig 1 top). To prevent a loss of

prediction power due to outliers and differing signal strength, caused by e.g. measurement

errors, noise, and distinct antibody affinity, we normalize the logarithm of each signal to [0, 1]

(abdnorm) instead of using the raw read counts. Thus, we modify Eq 1 to obtain the following

model:

abdðHMYÞ � b0 þ b1;1 � abdnormðTF1;Bin1Þ þ b1;2 � abdnormðTF1;Bin2Þ þ � � � þ bm;k � abdnormðTFm;BinkÞ;

considering k bins for each of the m TFs. To gain more interpretability, we impose regulariza-

tions on the coefficients. First, we add an L1 norm of the coefficients as a penalization term to

achieve sparsity, thus reducing the number of TFs selected for an HM to the ones with the

strongest relationship to that HM. One approach to solve linear regression with L1 norm is
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LASSO and has been established in the machine learning community, known to recover fea-

tures that are important to explain the response variable and setting feature coefficients which

are weakly correlated with the response to zero [38]. Second, we use an additional penalty

term for the absolute difference between coefficients of adjacent bins to maintain the biological

signal among adjacent bins of a window. In addition to a sparsity constraint, the generalized

fused LASSO [39, 40] incorporates such a fusion penalty, allowing the specification of a feature

graph G = (V, E), such that for each pair of features (vertices) connected by an edge, a penaliza-

tion for the absolute difference between their coefficients is added to the optimization func-

tion. In our case, E is the set of pairs of adjacent bins.

Thus, the final objective function that is optimized to find a set of coefficients b̂ can be writ-

ten in Lagrangian form as

b̂ ¼ arg min
b

ðkðY � bXÞk2

2
þ l1ðkbk

1

1
Þ þ l2

X

ðxi ;xjÞ2E

kbi � bjk
1

1
Þ;

where λ1 and λ2 are Lagrangian multipliers adjusting the contribution of the two penalization

terms to the overall loss.

Fig 1. Workflow of this association study. Top: Summary of the data processing pipeline. Promoter regions of protein coding genes are taken as

samples (columns). Each HM ChIP-seq signal (dotted red lines) in a window (black vertical lines) from 500bp upstream to 500bp downstream of the TSS

is averaged to obtain the response values for our models (solid red lines). For the TF data, we further segment this window into ten non-overlapping bins

(black vertical dashed lines), each of which is of length 100bp. The TF ChIP-seq signal (blue dotted lines) is averaged (solid blue lines) inside each bin to

obtain a higher resolution for the features. Bottom: Sketch of the steps involved in this association study. Starting from the data set, described at the top,

the samples (gene sets) are split by CpG content and separate models for each set are trained. The derived coefficients are then processed to test for

statistical significance with an F-Test and the top 10 significant coefficients are used for the association analysis. To further support the analysis, we

examine the ranked partial correlation coefficients of the Histone Modification data.

https://doi.org/10.1371/journal.pone.0249985.g001
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Model training and assessment

To train the models we use the generalized fused LASSO implementation provided by Arnold

et al. [40]. For a given data set, we performed a 5-fold nested cross validation, with parameter

optimization in the inner folds based on RSS, and measured model performance in terms of

RSS and Spearman correlation coefficient on the outer folds. The implementation expects one

parameter g ¼
l1

l2
, where γ = 0 applies only fusion and γ = 1 enforces similar sparsity and fusion

penalties in the model. The parameter γ is explored within the set of values {0} [ {10i|i = −5,

−4, � � �, 5}. The λ2 values corresponding to the knots at the solution path are then derived for

each γ value.

Inference of associations

For each of the models, we examined the impact of each TF on the response signal of an HM.

For this, we summed the coefficients over all bins of a TF and performed an F-test with signifi-

cance cutoff α = 0.005 to assess the statistical significance of the derived coefficients. We com-

puted the F-statistic as

F ¼
RSS0 � RSSfull

dfðM0Þ � dfðMfullÞ
�
N � dfðMfullÞ � 1

RSSfull
;

where RSS0 denotes the residual sum of squares for the reduced model by excluding the TF we

test for, RSSfull is the RSS of the full model [38]. The variables dfðM0Þ and dfðMfullÞ are the

degrees of freedom (df) of the reduced and full model, respectively. Due to the fusion penalty

in the objective function, the df of fused features are counted as one. Thus, the df of the model

are computed as the number of nonzero blocks of coefficients, where one block is a set of

fused coefficients having the same value. This definition of the degrees of freedom is suggested

by the authors of fused LASSO [39]. As re-training the model for each TF removed would be

intractable, we compute the RSS of each reduced model (RSS0) by setting the coefficients of

the TF we test for to zero to estimate the F-statistic.

Once we computed p-values for each TF, we report the TFs with the ten lowest p-values

that are smaller than α as important and significant. This ensures that, on the one hand all TFs

that we consider are statistically significant for predicting the response, but on the other hand

maintains a comprehensible subset of TFs. The overall workflow of our approach is depicted

in Fig 1.

CpG content based set partitions

It is known that CpG content has an impact on different components of the gene regulatory

system [41, 42]. For example, most housekeeping genes show CpG enriched promoter regions

[43] whereas tissue-specific genes most frequently harbor CpG poor promoters [36]. Besides,

it is evident that CpG content in promoter regions spikes around the TSS, decreasing with

growing distance from the TSS (compare Fig 2).

To investigate the influence of genomic CpG content on the relationship of TFs and HMs,

we partition the promoter regions of protein coding genes into those with high, and those with

low CpG content for the given reference genome. We thus obtain a criterion that allows us to

split the samples of each experiment into two groups, that we can model separately to reveal

CpG dependent trends. This split into two groups does arise naturally from the promoter

regions, as Saxonov et al. showed by looking at frequencies of CpG content across genes [22].

That revealed a clear bimodal distribution of CpG content that leads to two classes as well as a

threshold separating the two modes.
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Here, we reproduced their results for hg19, the reference genome build for the processed

data, by counting the number of CpGs from 500bp upstream to 500bp downstream of TSSs of

protein coding genes, counting CpGs in bins of width 5. This yields a bimodal distribution

analogous to Saxonov et al. [22], which can be fitted by two Gaussians visualized in Fig 2b. The

intersection of the two Gaussians gives a threshold to classify the CpG poor and CpG rich pro-

moters. We end up with a split of samples into 3772 promoters with low, and 10240 promoters

with high CpG content. We apply this split to each HM and TF ChIP-seq data set to train sepa-

rate models for high, respectively low CpG content. All our models were trained on each parti-

tion as well as the whole data to be able to exclude any influence of training set size on the

performance in the analysis of the individual models.

Partial correlation analysis

Partial correlation of two variables X and Y given a set of other variables Z, is computed as the

Pearson correlation coefficient ρ between the residuals of the two linear regression models pre-

dicting X with Z and Y with Z, respectively. Thus, the partial correlation can be seen as the

Pearson correlation of two variables X and Y after removing the information of other variables

Z. In our study, we compute the Partial Correlation for each pair of HMs, separately for the

CpG poor and rich promoter genes. To assess the significance of the correlations, we carry out

a permutation test assuming that the observed Partial Correlations between X and Y given Z is

generated by chance from the marginals of the residuals rXjZ , rYjZ . Thus, we draw n = 10000

permutations of the residuals rsXjZ with σ indicating that these residuals are permuted and

keep rYjZ fixed, then computing the Partial Correlation based on the permuted residuals

rðrsXjZ; rYjZÞ. The p-value is obtained as the number of observed Partial Correlations of the

permuted residuals being larger than the actual Partial Correlation, divided by n, and a

Fig 2. CpG distribution around TSS Visualized are the distributions of CpGs from 500bp upstream to 500bp downstream of

TSSs of protein coding genes of the hg19 reference in bins of width 5. Left: Relative CpG distribution along the gene regions of

interest for this work. Right: Histogram of CpG content of genes, summed over all bins per gene, with Gaussians indicated for the

two modes of the distribution. The intersection of the Gaussians defines the split into CpG poor (left side) and CpG rich genes

(right) indicated by the dashed red line.

https://doi.org/10.1371/journal.pone.0249985.g002
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significance threshold of α = 0.01 is set for Bonferroni corrected p-values. The results are sum-

marized in Fig 3, with significant Partial Correlations marked with an asterisk.

Data

All models were generated on data of the immortalized human liver carcinoma cell line

HepG2 and leukemia cell line K562. The HM data is a set of files derived from ChIP-Seq exper-

iments produced within the DEEP project [44] representing the read counts mapped to

regions over the whole human genome (reference genome version hg19). The experiments

comprise the modifications H3K27me3, H3K27ac, H3K36me3, H3K4me1, H3K4me3 and

H3K9me3. Additionally, an experiment of H3K122ac is available for the HepG2 cell line. The

abundance of 158 and 111 TFs was measured by the ENCODE consortium using ChIP-Seq

experiments for K562 and HepG2, respectively.

The HepG2 cell line HM data has been obtained through the DEEP project. This data has

been deposited at the European Genome-Phenome Archive (EGA) under the accession num-

ber EGAS00001001937 (https://www.ebi.ac.uk/ega/home). For the K562 cell line both HM

and TF, as well as HepG2 TF data can be accessed through the encode portal (https://www.

encodeproject.org/matrix/?type = Experiment). S1 and S2 Tables in S1 File contain ENCODE

Fig 3. Partial correlation and spatial coefficient analysis for HepG2 Top: Partial correlation heatmap between histone modifications in CpG rich (left)

and poor (right) promoters in HepG2. Partial correlation coefficients are computed on mean ChIP-seq signal on the promoter regions of the gene sets.

Significant partial correlations are marked with �. Bottom: For selected models, coefficients for two TFs that deviate strongly across bins are shown as a

heatmap. Color scale for model coefficients is given on the left.

https://doi.org/10.1371/journal.pone.0249985.g003
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accession IDs for the TF data obtained from the ENCODE portal, the former for the K562 cell

line, the latter for HepG2. S3 Table in S1 File contains ENCODE accession IDs for HM data

obtained for K562 from ENCODE.

Results

In this section we present the results for our analysis of TF and HM ChIP-seq data in the light

of CpG content in promoter regions. The analysis, for which the overview is depicted in Fig 1,

is separated into two parts. The first part comprises a partial correlation analysis of the HM

ChIP-seq signals, the second part involves the analysis of regularized regression models that

allow to derive relationships between TFs and HMs from ChIP-seq data. The partial correla-

tion analysis help our understanding of confounding relationships between TFs and HMs.

Such confounding relationships are likely to appear as e.g. HMs that are linked to active tran-

scription are likely to be co-located in active promoter regions. Thus, a discovered TF–HM

relationship might be just spurious, if the TF is actually interacting with a co-located mark.

Hence, we can leverage the knowledge from the partial correlation analysis for the interpreta-

tion of our regression models. Starting with insights from this partial correlation, we then pres-

ent results that reveal CpG content dependence of regression model performance, promoter

locality of TF–HM relationships, and show general relationships that reflect known interac-

tions as well as potential new interaction partners. Finally, we present results on a new data set

of H3K122ac.

Partial correlation between HMs suggests potential CpG switches

For the partial correlation analysis, depicted in Fig 3, we can observe a strong partial correla-

tion coefficient between H3K9me3 and H3K27me3, which are both associated with hetero-

chromatin. Also, H3K36me3 and H3K9me3 show a high partial correlation coefficient value.

Recent work reported the presence of H3K36me in constitutive heterochromatin, which is

often marked with H3K9me3 [45]. Furthermore, we can see a weak positive correlation

between H3K27ac and H3K4me3, both found in euchromatic regions. The marks H3K4me1

and H3K4me3 show a strong negative value, as these HMs are mutually exclusive as they

appear on the same residue. For H3K122 we can observe a strong partial correlation with both

H3K27ac and H3K4me3. Intriguingly, we can observe a significant sign change from positive

to negative correlation for the pair H3K27me3–H3K4me1 and H3K9me3–H3K36me3

between the CpG rich and CpG poor models in HepG2 cells. This suggests that certain epige-

netic associated marks are CpG dependent. In fact, it was reported that poised enhancers,

which are also marked with H3K4me1 [46], are low in CpG content when they lose

H3K27me3 [47].

Model performance is dependent on HM and CpG content

To infer interactions between TFs and HMs, we trained regularized regression models on TF

and HM ChIP-seq data in promoter regions of protein coding genes. We further split the pro-

moters into two classes, high and low CpG content. For each of the models trained, we assessed

the individual performance in terms of Pearson correlation between predicted and actual HM

abundance. First of all, we can observe that correlation coefficient between model predictions

and actual ChIP-seq signals yields different performance trends for individual marks and gene

partitions, depicted in Fig 4. In general, we achieve good results with correlation values around

0.9 for the HMs associated with active genes or enhancers, such as H3K27ac and H3K4me3

[29, 46], which meets our expectation that the crosstalk between protein complexes and HMs

enable us to predict HM abundance accurately. We can see a drop in performance considering
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Fig 4. Overall model performance measured as Pearson correlation (y-axis) between predicted and actual response across test sets of outer folds of

cross validation for each of the models. Mean correlation coefficient of the 5 folds is indicated by a solid line, range of obtained correlation values across

folds is given as the transparent area. We receive one model for each combination of cell line (top plot HepG2, bottom plot K562), CpG type (given by the

color encoding), and Histone modification (encoded on the x-axis). Significant differences of performance between CpG rich and poor model according to

a Wilcoxon test (α = .05, Benjamini-Hochberg corrected) are indicated by asterisks (�).

https://doi.org/10.1371/journal.pone.0249985.g004
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modifications commonly associated with repressed genes, such as H3K27me3 and H3K9me3

[29], with correlation values around 0.8. Both these marks are often found in heterochromatic

regions, which also explains the slightly weaker performance of models, as densely packed

chromatin presumably reduces DNA accessibility and hence prevents TF binding to a certain

extent [48]. Also for H3K36me3, a mark associated with elongation [29], we see that the model

does not predict as well as the other marks, with a moderate correlation coefficient of around

0.5.

In addition to comparing models based on the HM’s function, we can contrast them based

on the genes’ CpG content. In general, we observe that, in models trained for a given HM,

often one of the CpG classes, either models with CpG poor or CpG rich genes, outperforms

the respective other class significantly, for instance in all histone marks associated with active

genes. To confirm their significance, we performaned a Wilcoxon test with Benjamini-Hoch-

berg test correction (see S5 Table in S1 File) and significance threshold α = .05. These results

suggest that there is a dependency between TF binding (or their interactions with HMs of

interest) and the CpG content. In Fig 4 it also becomes evident that neither CpG rich nor CpG

poor genes are dominating the respective other class in all cases in terms of prediction power.

Rather, the marks H3K4me3 and H3K27ac, commonly associated with active transcription,

are easier to predict with our model in CpG rich genes, but for H3K4me1 the models based on

CpG poor genes predict significantly better. Strikingly, the H3K4me1 on the CpG poor genes

consistenly outperforms the model with all genes combined in both cell lines.

Variations in model coefficients corresponding to regions along promoter

suggests binding preferences

To get a more fine-grained view on the locality of interactions across the promoter, we split

each promoter region into smaller windows (Fig 1), and accumulate ChIP-seq signals in each

such window. Although the best models typically show a strong fusion between adjacent win-

dows, that is showing very similar coefficients for adjacent windows, we also observe individ-

ual large coefficients for a few windows differing strongly from the small coefficients of the

other windows of that promoter. Two interesting cases are visualized in Fig 3. For the TF

GATAD2A, we observe higher coefficients in the first three windows compared to the rest in

CpG poor models of the H3K27ac and H3K122ac marks. This trend is not evident in the CpG

rich models. The TF SAP130 exhibits an exceptionally high coefficient in the last window of

CpG rich models, which could be caused by a binding preference of this TF in this region cor-

related with the HM signals. Furthermore, SAP130 is a sub component of the regulatory com-

plex SIN3A, which shows CG-enriched binding motifs (see S5 Fig in S1 File).

Inferred associations reflect known interactions and reveal potentially

novel interactions

While yielding great performance, it is not given that the models discover biologically mean-

ingful relationships. In this section, we show based on the top 10 statistically significant coeffi-

cient of a model that we indeed derive biological relationships that we can validate by

literature. We summarized these significant coefficients for HepG2 in Table 1, the correspond-

ing table for K562 can be found in S4 Table in S1 File.

We start with a sanity check to see if we can observe a change from positive to negative cor-

relation for the same TF between an HM that is associated with active transcription and an

HM that is linked to repressed genes. Indeed, we can generally observe that the sign of pre-

dicted associations of significant TFs changes between models of those different HM classes,

e.g. for TBP, SSRP1, TEAD3, or ARID4B. We investigated the biological relevance of predicted
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Table 1. Overview of the top 10 TFs found significant in HepG2 models. Positive and negative associations, derived from the coefficients, are indicated by red and black

dots, respectively.

HMH3 K36me3 K9me3 K27me3 K4me1 K4me3 K27ac K122ac

CpG + − + − + − + − + − + − + −
ARID4B • • • • � � � •

CEBPA •

DMAP1 • • � � � � �

FOXA3 •

GABPB1 � � � �

GATAD1 • • •

GATAD2A • � � � � �

HBP1 • � �

HCFC1 •

HMG20B � •

HOMEZ �

KAT8 � • • �

KDM1A •

KLF6 � �

KLF16 � �

KMT2B � � • • • • � � �

MBD1iso1 � �

MBD1iso2 � � � �

MIER2 � • • •

MIER3 �

MXD3 � � �

MXD4 •

NFIL3 •

NFYC • • •

PAF1 � � • •

PPARG •

RCOR2 • �

RFXANK �

RXRB • �

SAP130 • • • � � � �

SSRP1 � � • • • • � �

TBP • • • • � � �

TEAD3 • • • � � •

TGIF2 • • •

THAP11 • • • �

SOX5 •

SP5 •

SUZ12 � •

ZBTB26 � � � �

ZKSCAN8 •

ZNF48 � � � �

ZNF511 � •

ZNF580 � � �

ZNF644 � •

ZNF792 •

https://doi.org/10.1371/journal.pone.0249985.t001
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associations by exploring the literature, as well as inspecting data of a different experiment,

based on ChIP-MS data of mESCs, from a study by Ji et al. found as in [49].

The TATA-binding protein (TBP) is a well known TF linked to transcriptional activation

and is crucial for the expression of most genes as a recruiter for RNA Polymerase II [50]. Fur-

thermore, general binding of TBP is facilitated by acetylated histone tails [51], and TBP is

known to specifically bind to H3K4me3 [52]. These findings are evident in the ChIP-MS data,

where TBP is only abundant in samples of H3K27ac and H3K4me3. In our model TBP is cho-

sen as an important factor with positive association for three models of the acetylated marks

and negative association for H3K4me1 models, which is a modification that is mutually exclu-

sive to the H3K4me3 serving as TBP binding site.

The transcription factors ARID4B and SAP130 are both subunits of SIN3A, a co-repressor

complex with histone deacetylase (HDAC) activity. More specifically, SIN3A contains

HDAC1 and HDAC2 subunits [53], and is found tethered to SET1/ASH2 proteins that tri-

methylate H3K4 [54]. The relation between SIN3A to the methyltransferase SET1 is reflected

in our model, where both ARID4B and SAP130 have positive coefficients in all H3K4me3

models. In the K562 cell line, where SIN3A ChIP-seq data is available, we can also find SIN3A

among the top positive associations with H3K4me3 (see S4 Table in S1 File). Interestingly, we

find both ARID4B and SAP130 with positive associations in our models for H3K27ac. This is

also reflected in the ChIP-MS data, where SIN3A is only detected in samples of the activating

marks H3K4me3 and H3K27ac, and not in H3K9me3. A similar case can be found for

GATAD2A, which is part of the NuRD complex that contains HDAC1 and HDAC2 as core

chromatin modifying components [55]. Our models report positive associations with activat-

ing marks such as H3K4me3 and H3K27ac. Again, ChIP-MS data is consistent with our find-

ings, reporting abundance of GATAD2A only in H3K27ac and H3K4me3 samples.

Further examples for the biological relevance of our findings include the Structure Specific

Recognition Protein 1 (SSRP1), which is a subunit of the FACT complex, acting as a histone

chaperone to reorganize chromosomes to enable transcriptional elongation [56]. H3K27ac, a

general activation mark as mentioned before, and H3K36me3, a mark specific for elongation

[57], have SSRP1 as one of the top positively associated TFs. Furthermore, all models trained

for marks linked to repressive genes have SSRP1 negatively associated to them. The same

trend is notable in the ChIP-MS data, where a small amount of the factor can be found for all

samples, but for the active marks there is a 3-fold increase in abundance compared to repres-

sive marks. Another case of epigenetic interactions of a protein complex is given by the factor

DMAP1 as part of NuA4, a complex with histone acetyltransferase activity reported to have an

activating function in transcription [58]. Our models are consistent with this report, showing

positive associations between DMAP1 and the activation associated marks H3K27ac and

H3K4me3, as well as H3K122ac. Furthermore, DMAP1 is abundant in H3K27ac and

H3K4me3 samples in the ChIP-MS data. MIER2, a factor recruiting HDACs [59], has a strong

negative association with the HM in models for acetylation marks H3K27ac and H3K122ac.

We can also derive associations with respect to the CpG content classes. For example,

THAP11 is associated with binding to HCFC1, a protein complex known to bind to CpG

islands and to recruit different chromatin modifying enzymes including KDM1A, a H3K9

demethylase [60]. In our models, THAP11 is suggested as negatively associated to H3K9me3

and H3K27me3 (see Table 1), only for the CpG rich gene set. In models for the CpG poor

genes of these two marks, THAP11 shows only a small negative coefficient (see S2 and S3 Figs

in S1 File).

As a final example, we examine the relationships of the RNA polymerase II-associated fac-

tor 1 homolog (PAF1). This factor interacts with RNA Polymerase II to stimulate transcrip-

tional activity [61]. This behaviour can be observed in our models, where PAF1 is selected
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with a top positive coefficient in H3K36me3 models of HepG2, and exhibits negative associa-

tion in models for genes with low CpG content of the repressive marks H3K9me3 and

H3K27me3. Furthermore, PAF1 shows a strong positive coefficient in the H3K27ac model for

the CpG rich genes of the HepG2 cell line (see S4 Fig in S1 File), even though it is not in the

top 10 most significant factors. The ChIP-MS data shows similar results with a high abundance

of PAF1 in samples of H3K27ac, H3K4me3, and H3K36me3.

So far, we showed that many of the derived interactions of our models are consistent with

reports in the literature as well as results of a ChIP-MS study. This suggests that also novel

inferred associations between TFs and HMs reflect biologically meaningful relationships. For

instance, the Transcriptional Enhancer Factor TEF-5 (syn. TEAD3) is a protein important for

cell growth and tumor suppression [62]. So far, little is known about its epigenetic activity in

cells. Our models suggest TEAD3 has a strong negative association with the repressive marks

H3K9me3 and H3K27me3, and strong positive association with H3K4me1, which marks

enhancers. This points to a possible role of TEAD3 at enhancers, and could be used as a guide

for future experimental studies.

H3K122ac, a marker for active regions

So far, we examined the relationships of TFs with well known HMs and showed that those

yield interesting characteristics with regard to CpG content and are biological meaningful.

Here, we apply our methodology to H3K122ac—a modification for which the precise function

is still unknown—to elucidate its role in gene regulation. First studies suggest that this mark,

located at the dyad axis of the nucleosome, destabilizes the nucleosome complex, thus loosen-

ing up densely packed chromatin and stimulating transcription [37]. Our models were are able

to predict abundance of H3K122ac nearly as accurate as the other modifications linked to

active genes, with correlations between 0.85 and 0.9 across the different models as illustrated

in Fig 4. We discover hints for an association with activation when comparing the most signifi-

cant TFs found for the different HMs in the HepG2 cell line, with similar TFs picked in

H3K122ac and the marks H3K27ac and H3K4me3 associated with active genes (Table 1).

Also, important TFs such as TBP, SAP130, or KMT2B have opposing signs between H3K122ac

and the models of the H3K9me3 and H3K27me3, which are linked to repressed genes. Fur-

thermore, TBP, a tightly regulated TF crucial for the initiation and activation of transcription

for most genes [50], shows the highest coefficient in the H3K122ac model for CpG poor genes,

further supporting the idea of H3K122ac to be linked to active transcription.

However, the partial correlation study (Fig 3) indicates a strong positive partial correlation

between H3K122ac and H3K27ac, and a strong negative partial correlation between

H3K122ac and H3K9me3. On the one hand, this further supports the hypothesis of H3K122ac

being a mark commonly associated with active transcription. On the other hand, this shows

that the co-occurrence of H3K122ac with H3K27ac could also lead to similar TFs being picked

for both models, with one of the HMs acting as a confounder for the other HM.

Discussion

In our analysis, we show that with the suggested models we were able to accurately predict his-

tone modifications based on TF abundance and thereby infer biologically meaningful relation-

ships. We observe a difference between models trained on modifications that are linked to

active genes, such as H3K27ac and H3K4me3, performing better than models of marks that

are mostly associated with repressed genes, such as H3K9m3 and H3K27me3. One reason

could be that the latter are reported as marks for heterochromatic regions, densely packed

chromatin, where it is in general more difficult for TFs to bind as most of the DNA is not
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directly accessible. Thus, there is less information available to the model, because our input is

TF ChIP-seq measurements. We also observe a drop in performance when looking at

H3K36me3 compared to other models. This mark is an elongation mark and as such, it is

mostly found in the gene body [63], whereas we are interested in HM presence at the vicinity

of the transcription start site. Besides, there is also a difference between CpG rich and CpG

poor model performance evident throughout all models, but we observe that for certain marks

the CpG poor model performs better and for others the CpG rich model performance is supe-

rior. It is therefore unlikely that the differences are due to technical biases based on the CpG

content of the sequences, but rather reflect actual CpG dependent associations. Moreover, we

observe a discrepancy in the performance of the HepG2 and the K562 cell lines. There are sev-

eral reasons that could lead to this discrepancy in the performance, for instance different

expression patterns between these two cell lines. These differences in gene expression based on

cell type specific regulatory programs also involve a different epigenetic landscape and hence

HM and TF distribution, which may lead to different associations being found. Also available

experimental measurements are distinct between the two cell lines, with certain TFs being

only measured for one of the cell lines. Additionally, the observed difference for the

H3k36me3 mark between the two cell lines is likely due to its role in transcriptional elongation

as mentioned above.

Within the scope of the literature search to assess biological relevance of the found associa-

tions, we discovered subtle relationships that could not be explained by individual literature

alone. For example, ARID4B and SAP130 are both subunits of the SIN3A complex, which is

involved in histone deacetylation [53]. However, these TFs are found to be associated with

H3K4me3 and H3K27ac, which are linked to active promoter regions. Both these associations

were also present in ChIP-MS data of mESCs of the study of Ji et al. [49], where both

H3K4me3 and H3K27ac were co-located with these proteins. The link to H3K4me3 could be

explained by the physical interaction of the SIN3A complex with SET1/ASH2 [54], which are

proteins that trimethylate H3K4. The association with H3K27ac seems to contradict the his-

tone deacetylase activity of the SIN3A complex. Recently however, an ongoing dynamic turn-

over of acetylation, crucial for the orchestration of gene expression, was hypothesized and

supported by experimental results [64–66]. Assuming this rapid dynamic turnover combined

with the fact that SIN3A establishes H3K4me3 modification, one hypothesis is that the tradi-

tional view of SIN3A being a repressor is too generic, but it rather acts as a complex that tightly

regulates transcription by dynamic activation and repression. Another hypothesis would be

that the occurrence of H3K27ac as important association is due to H3K4me3 acting as con-

founding variable. These two marks seem to be often co-localized, which was further sup-

ported by our partial correlation study.

We also find that certain TFs, such as GATAD2A show binding preferences depending on

the CpG content. For GATAD2A, there seems to be a binding preference indicated by high

coefficients for certain bins of the promoter window for H3K27ac and H3K122ac. There is no

such trend apparent in the CpG rich models of marks associated with transcriptional activa-

tion, where this TF is also generally not picked as an important feature of the model (compare

Table 1). This suggests that GATAD2A interaction with HMs is dependent on the CpG con-

tent of the promoter region. In fact, GATAD2A is a structural component of the NuRD com-

plex, which binds to methylated cytosines of the DNA through MBD2 [67, 68]. This could

explain the absence of GATAD2A as an important feature for CpG rich models, as CpG

islands are predominantly unmethylated [69] and MBD2 shows a CG enriched binding motif

(see S6 Fig in S1 File).
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Conclusion

In this work we extended existing approaches that investigate the relationship between TFs

and HMs in the light of gene regulation based on ChIP-seq data. In particular, we studied TF–

HM relationships in the context of sequence CpG content and expand the work to the

H3K122ac mark, about little has been known so far. We use the regularized regression method

Fused LASSO [39] to predict the abundance of HMs in promoter regions based on the abun-

dance of a set of TFs in these regions. We leverage the coefficients of each model as a mean to

measure positive as well as negative associations between TFs and HMs. One drawback of this

approach is the limitation to linear models, which are not able to discover nonlinear associa-

tions. However, nonlinear models are hard to interpret and are thus less not suited for explor-

atory studies as this one. We complemented the regression models with a partial correlation

study of the considered HMs in the context of sequence CpG content and further make use of

these results in the interpretation of the regression models to avoid inferring confounded asso-

ciations. Here, we gathered data for K562 and HepG2 cell lines using existing ChIP-seq mea-

surements of a large set of TFs from ENCODE [4]. The ChIP-seq measurements of the HMs

H3K27ac, H3K4me1, H3K4me3, HeK9me3, H3K27me3, H3K36me3 for K562 were obtained

from the ENCODE database. The same HMs and additionally H3K122ac were measured

through ChIP-seq for the HepG2 cells as part of the DEEP project [6, 44].

For the modeling, we complement the method of Benveniste et al. [34] by using a regression

approach instead of classification. Thus, we are also able to capture negative association and

implicitly obtain a measure of association strength, which binary classification can not handle.

Compared to Perner et al. [20] we do not limit the features only to known chromatin modifi-

ers, but also incorporate other TFs that allow us to derive potential novel associations. In con-

trast to both methods we use a higher resolution of the TFs by partitioning the promoter

regions into small bins. Our main contribution is the extension of the association study by sep-

arating the set of promoters into CpG rich and CpG poor promoters, to investigate their

impact on the relationship between TFs and HMs. We explored the relationship between TFs

and H3K122ac in HepG2 cells, a HM about little is known so far, suggesting TFs involved in

its regulation by investigating model coefficients and taking the partial correlation with the

other HMs into account.

To assess the biological relevance of the discovered associations, we additionally searched

the literature for the results of the HepG2 cell line. We were able to explain many of the derived

relationships directly by, for instance, interaction of TFs with a chromatin modifying complex,

or TFs building a subunit of such a complex. Several other discovered associations could be

explained by reportedly strong connections of the TF with active transcription, where the posi-

tively associated marks were linked to active transcription and negatively associated marks to

repressed transcription. We also found relationships that were more subtle, such as ARID4B

and SAP130 associated with H3K27ac, leaving room for speculation. The results of our model

can also be used to guide future work on discovering novel interaction partners between TFs

and HMs, as some of the discovered associations have not been reported in the literature and

thus could serve as a starting point for interaction studies.

As a new result, we investigated the influence of CpG content on the prediction perfor-

mance and discovered associations. We found that the model performance is dependent on

the CpG content, with the CpG rich models being superior to the CpG poor models for

H3K4me3 and H3K27ac, but inferior for the H3K4me1 models. Moreover, we discovered that

certain TFs can only be found as important and significant in one of the two groups, such as

THAP11. This suggests that CpG content is a key factor for TF-HM relationships and thus

should be incorporated in studies of TF and HM data.
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To summarize, we showed that our regularized regression approach performs well and was

able to recover known positive as well as negative associations between TFs and HMs and thus

could be used to guide future search for novel interactions. Furthermore, we found that the

CpG content has an impact on regression performance, which could be explained by the the

binding preference of certain TFs to only CpG poor respectively rich genes. As only little

research has focused on this dependence, we were only able to back up the findings for

THAP11 by literature. Nonetheless, these results indicate that the CpG content is an important

factor in the gene regulatory system and its information content should be leveraged in

computational models, if possible. Finally, our investigation of H3K122ac suggests a role as a

mark for active regions, which is not only evident in the regression models but is also sup-

ported by the partial correlation study.
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