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Abstract 52 

Oscillation-based models of speech perception postulate a cortical computational principle by 53 

which decoding is performed within a window structure derived by a segmentation process. 54 

Segmentation of syllable-size chunks is realized by a theta oscillator. We provide evidence for an 55 

analogous role of a delta oscillator in the segmentation of phrase-sized chunks. We recorded 56 

Magnetoencephalography (MEG) in humans, while participants performed a target identification 57 

task. Random-digit strings, with phrase-long chunks of two digits, were presented at chunk rates 58 

of 1.8 Hz or 2.6 Hz, inside or outside the delta frequency band (defined here to be 0.5 - 2 Hz). 59 

Strong periodicities were elicited by chunk rates inside of delta in superior, middle temporal areas 60 

and speech-motor integration areas. Periodicities were diminished or absent for chunk rates 61 

outside delta, in line with behavioral performance. Our findings show that prosodic chunking of 62 

phrase-sized acoustic segments is correlated with acoustic-driven delta oscillations, expressing 63 

anatomically specific patterns of neuronal periodicities.    64 

  65 
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Significance Statement 66 

Oscillation-based models of speech perception postulate a cortical computational principle by 67 

which decoding is performed within a time-varying window structure, synchronized with the 68 

input on multiple time scales. At pre-lexical level, cycles of a flexible theta oscillator – locked to 69 

the input syllabic rhythm – constitute the syllabic windows. We find that the presence of 70 

cortical delta oscillations correlates with whether or not an input phrase-sized chunk rate is inside 71 

the delta range. This suggests that at the phrase time scale, a delta oscillator could play a role 72 

analogous to that of the theta oscillator at the syllable level. The segmentation process is realized 73 

by a flexible delta oscillator locked to the input rhythm, with delta cycles constituting phrase-74 

sized windows. 75 

 76 

  77 
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Introduction  78 

Naturally spoken language is a stream of connected sounds, and although the speech acoustics 79 

contain no cues regarding the beginning or end of linguistic units a combination of interleaved 80 

cues (e.g., pauses, intonation, syllabic stress) are embedded in the acoustic stream. Information, 81 

broadly termed ‘accentuation’ (e.g. intonation, stress, pauses), is used by listeners to indicate 82 

boundaries associated with linguistic units (Aubanel et al., 2016; Oganian and Chang, 2019). The 83 

process by which the input signal is partitioned into temporal segments to be linked to a variety of 84 

linguistic levels of abstraction (ranging from phonetic segments to syllables to words and, 85 

ultimately, prosodic and intonational phrases) is called ‘segmentation’.  86 

The segmentation process has been shown to operate on time intervals associated with 87 

syllables (up to about 250 ms) (Brungart et al., 2007; Doelling et al., 2014; Ghitza and Greenberg, 88 

2009; Kösem et al., 2018), and a similar process has been suggested to operate on the phrasal 89 

level (0.5–2 s) (Ding et al., 2016; Ghitza, 2017; Keitel et al., 2018; Martin and Doumas, 2017). At 90 

the syllabic level, perceptual segmentation––or chunking––is by and large a pre-lexical process. 91 

Oscillation-based models propose that this segmentation is realized by flexible theta oscillations 92 

aligning their phase to the input syllabic rhythm (‘speech tracking’), where the theta cycles mark 93 

the speech chunks to be decoded (e.g., Ahissar and Ahissar, 2005; Assaneo et al., 2020; Ding and 94 

Simon, 2009; Ghitza, 2011; Giraud and Poeppel, 2012; Gross et al., 2013; Haegens and Zion 95 

Golumbic, 2017; Hovsepyan et al., 2020; Lakatos et al., 2019, 2005; Peelle and Davis, 2012; 96 

Pittman-Polletta et al., 2020; Poeppel, 2003; Rimmele et al., 2018). At the phrase level, phrase 97 

rhythm can affect segmentation (Gee and Grosjean, 1983; Martin, 2015; Deniz and Fodor, 2019; 98 

Hilton and Goldwater, 2020). There have been various studies aiming to quantify phrase length 99 

and rhythmicity (e.g., Breen, 2018; Clifton et al., 2006; Deniz and Fodor, 2019), suggesting that 100 
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typical intonational phrases are about one second in duration (Auer et al., 1999; Inbar et al., 2020; 101 

Stehwien and Meyer, 2021). More specifically, the duration of intonational phrases spans a range 102 

between approximately 0.5 to 1 sec in English (slightly faster in some other languages) (Inbar et 103 

al., 2020; Stehwien and Meyer, 2021). Prosodic segmentation (here also termed ‘prosodic 104 

chunking’) is based on intonation units that contain specific prosodic cues (such as pauses or 105 

pitch contour), which can pace the information flow at the phrasal time scale (Inbar et al., 2020; 106 

Shattuck-Hufnagel and Turk, 1996). The extent to which phrase level rhythmic structure supports 107 

segmentation and structural parsing was not widely studied. Here, we investigate the neural 108 

processing of rhythmic structure at the phrasal scale by analyzing how individuals’ group single 109 

digits into ‘phrase-sized’ digit chunks. What kind of neuronal mechanism can realize this 110 

chunking process?  111 

Cortical delta oscillators – with a frequency range  (~ 0.5 – 2 Hz) that corresponds to the phrasal 112 

time scale – were shown to be elicited during phrasal processing of speech or chunking processes 113 

at the phrasal scale (Buiatti et al., 2009; Ding et al., 2016; Meyer et al., 2016; Bonhage et al., 114 

2017; Keitel et al., 2018; Boucher et al., 2019). Delta was observed in the posterior superior 115 

temporal, the inferior frontal, precentral, and temporal-parietal cortex using ECoG (Ding et al., 116 

2016), and using EEG at bilateral middle and superior temporal areas (also fusiform gyrus) 117 

(Bonhage et al., 2017) and at fronto-temporal sites (Boucher et al., 2019). (Recall the ambiguous 118 

definition of the delta range in the literature, which covers a range of overlapping frequency 119 

bands inside the 0.5 to 4 Hz frequency range (e.g, Bonhage et al., 2017; Bröhl and Kayser, 2020; 120 

Keitel et al., 2018). Since we are interested in the segmentation of phrasal chunks, which in 121 

English are about 0.5 to 1 sec long (e.g., Miller, 1962; Inbar et al., 2020), we opted to define the 122 

delta frequency band to be 0.5 - 2 Hz). 123 
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And behaviorally, it has been shown that performance is impaired when the chunk rate is 124 

outside of the delta range (Ghitza, 2017). These findings suggest a role of neuronal oscillatory 125 

mechanisms in the delta range in chunking at a phrasal time scale (see also: Ghitza, 2020; Martin 126 

and Doumas, 2017). Little is known, however, about the brain areas that may recruit chunking 127 

related delta oscillations. 128 

Here we focus on the cortical mechanism that may be involved in acoustic-driven 129 

segmentation at a phrasal time scale, using sequences of digit chunks (with a minimal amount of 130 

content). We test the hypothesis that the decoding process is guided by a delta oscillator locked to 131 

the accentuation acoustic cues (Ghitza, 2017) by recording MEG data while participants 132 

performed a digit retrieval task. The digits in the string were grouped into chunks, with chunk 133 

rates either inside or outside to the delta frequency range (Fig. 1). The experiment addresses two 134 

questions: (1) Do elicited delta brain waves correlate with behavior, such that impaired 135 

performance in digit retrieval occurs if the chunk rate is outside of the delta range? (2) Where in 136 

the auditory pathway do those neuronal oscillations occur? 137 

Our data show that in superior and middle temporal areas and in speech-motor planning and 138 

integration areas (IFG, PC, SMG), robust neural delta periodicities were elicited by chunk rates 139 

inside of the delta range but were diminished when the chunk rate was outside of the delta range, 140 

in line with behavioral performance. In speech-motor integration areas (SMG) and areas 141 

implicated in processing word form and meaning (MTG), periodicity was present albeit 142 

diminished even for chunk rates inside the delta range. The delta periodicities were acoustically 143 

driven, in sync with the input as long as the acoustic chunk rate was inside delta. Delta 144 

periodicities were diminished for chunk rates outside delta, even though sufficient acoustic cues 145 

for chunking were present in all conditions. Thus, the failure to track the input-chunk-rate when it 146 
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was outside of the delta range was not caused by insufficient acoustic cues but seems due to 147 

neuronal circuitry characteristics constraining the tracking of the chunks. 148 

Materials and Methods 149 

Participants. The data from 19 healthy right-handed (Oldfield, 1971) mean score: 75.22, SD: 150 

18.08) participants were included in the study (mean age: 24.89 years, SD: 3.54; f = 14). Human 151 

subjects were recruited from the local community in Frakfurt. Two participants were excluded 152 

because of technical issues, and one participant because of outlier performance (i.e., performance 153 

< mean performance -2SD). Individual MRI scans were recorded for all except for two 154 

participants who did not fulfill the MRI scanning criteria. All participants gave written informed 155 

consent for participating in the study and received monetary compensation. The study was 156 

approved by the local ethics committee of the University Hospital Frankfurt (SG2-02-0128).  157 

Digit string stimuli. We used 10-digit long stimuli where we manipulated the pauses in-between 158 

digits according to the experimental conditions. We opted for digit sequences –material that is 159 

semantically unpredictable at the digit-chunk level (i.e., while semantic information is present at 160 

the single digit level, no semantic/contextual information is present at the digit-chunk level) – in 161 

order to minimize the bottom-up/top-down interaction that is in play in setting perceptual 162 

boundaries for digit-chunks. The digit sequences were grouped into chunks, with a chunk pattern 163 

termed 2222. For example, the 2222 pattern of the sequence 4259522560 is [42 59 52 25 60]. 164 

Digits were presented as single digits, i.e. 42 was read as four-two and not as forty-two. 165 

We used two chunk rates: 1.8 Hz (inside the delta range) and 2.6 Hz (at the outside 166 

border of the delta range, referred to as “outside”), termed conditions ‘1.8Hz’ and ‘2.6Hz’ (Fig. 167 

1). (Note that a third condition was used, which is not reported here. The condition was a ‘no-168 

chunk’ condition where digit chunks were presented at the rate of 2.6Hz. However, besides top-169 
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down chunking information (provided by the instructions), there were no acoustic chunking cues. 170 

The neuronal findings resemble that of the 2.6Hz chunking condition, confirming the main claims 171 

of this paper. They are reported elsewhere, Rimmele et al., 2020). 172 

 173 

 174 

Figure 1. Chunk patterns and chunk rates for the 10-digit digit string 4259522560. The 175 
chunk pattern is 2222, with chunk rates of 1.8 Hz (inside delta) and 2.6 Hz (outside). Each chunk 176 
was synthesized as a 2-digit unit, using the AT&T Text-to-Speech System accentuation (see 177 
text). Note that a particular 2-digit chunk has the same acoustics, regardless of whether it occurs 178 
in the 1.8Hz or 2.6Hz 2222 chunk condition (red box). The 1.8Hz stimulus is generated by 179 
increasing the gap between the chunks (with identical chunk acoustics). 180 
 181 

Corpus. The text material comprised 100 10-digit long text strings. Stimuli were generated by 182 

using the AT&T Text-to-Speech System with the American English female speaker Crystal. [The 183 

AT&T-TTS system (http://www.wizzardsoftware.com/text-to-voice.php) uses a form of 184 

concatenative synthesis based on a unit-selection process, where the units are cut from a large, 185 

high-quality, pre-recorded natural voice fragments. The system produces natural-sounding, highly 186 

intelligible spoken material with a realistic prosodic rhythm––with accentuation defined by the 187 

system-internal prosodic rules––and is considered to have some of the finest quality synthesis of 188 

any commercial product.] To generate stimuli with a 2222 chunk pattern, we first created a 2-189 
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digit chunk vocabulary as follows. For each doublet of digits that exists in the 100 text strings, a 190 

naturally sounding 2-digit chunk waveform was generated (naturalness was obtained by the 191 

AT&T system accentuation rules) resulting in a chunk-vocabulary. For a given text string, a 2222 192 

10-digit stimulus was generated by concatenating the corresponding five 2-digit chunk 193 

waveforms pulled from the chunk-vocabulary. The chunk rate was set by adjusting the gap 194 

duration in between two successive chunks, resulting in a stimulus with a temporal structure but 195 

without any contextual cues at the digit-chunk level. To enable the generation of stimuli with 196 

chunk rates greater than the delta frequency upper bound (at 2.6 Hz), the waveforms in all 197 

conditions were time compressed by a factor of 2.5, just below the auditory channel capacity 198 

(Ghitza, 2014). The duration of the 10-digit stimuli varied across conditions; for the 1.8Hz 199 

condition: mean = 2.61 sec (VAR = 85.6 msec); and for the 2.6Hz condition: mean = 1.99 sec 200 

(VAR = 85.6 msec). 201 

For each of the 200 10-digit stimuli (100 stimuli for each of the 1.8Hz and 2.6Hz 202 

conditions) a trial was created by concatenating the following waveform sequence: [one digit 203 

trial-count] [20-msec long gap] [10-digit string] [500-msec long gap] [2-digit target], resulting in 204 

one concatenated waveform per trial with durations that varied across trials and conditions. The 205 

200 trials were scrambled, and the resulting pool of trials was divided into blocks, 50 trials per 206 

block. A jittered intertrial interval of 3-4.5 sec was presented between trials. Overall, two 207 

different sets of stimuli were used. 208 

Task. Behavioral and MEG data were collected while participants performed a digit retrieval 209 

task, in the form of an adapted Sternberg target identification task (Sternberg, 1966) (target ID 210 

task from here on): listeners heard a 10-digit stimulus followed by a 2-digit long target, and were 211 

asked to indicate whether or not the target was part of the utterance. A target position was always 212 

within a chunk. Note that the task is suitable for probing the role of acoustic segmentation in a 213 
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memory retrieval task: a successful yes/no decision depends on how faithful the recognized 214 

chunk objects are, generated by a decoding process that, by hypothesis, depends on the goodness 215 

of segmentation. 216 

Procedure and Paradigm. Participants were seated in front of a board for instructions in the 217 

MEG testing booth. Binaurally insert earplugs (E-A-RTONE Gold 3A Insert Earphones, Ulrich 218 

Keller Medizin-Technik, Weinheim, Germany) were used for stimulus presentation. Two button 219 

boxes (Current Designs, Inc.) were used to record participants’ responses. The Psychophysics 220 

Toolbox (Brainard, 1997) was used to run the experiment. During the experiment, on each trial 221 

participants fixated the screen center (fixation cross) while listening to the digit sequences. The 222 

sounds were presented at a comfortable loudness level (~70 dB SPL), which remained unchanged 223 

throughout the experiment. Overall, the experiment lasted about 2.5 hours, including preparation 224 

time, recording time, breaks, and post-recording questionnaires. Participants were presented with 225 

the task requirements. They were instructed that all sequences comprise concatenated chunks of 226 

two-digits. Prior to the experiment, all participants performed a short training of three trials (with 227 

feedback) in order to familiarize themselves with the stimuli and task. Participants were asked to 228 

indicate by button press (yes/no response; with the response hand balanced across participants; 229 

yes-hand right: N = 12) whether or not the target was part of the preceded utterance. 230 

MRI and MEG Data Acquisition. A 3 Tesla scanner (Siemens Magnetom Trio, Siemens, 231 

Erlangen, Germany) was used to record individual T1-weighted MRIs. MEG recordings were 232 

performed on a 269-channel whole-head MEG system (Omega 2000, CTF Systems Inc.) in a 233 

magnetically shielded booth. Data were acquired with a sampling rate of 1200 Hz, online 234 

denoising (higher-order gradiometer balancing) and online low pass filtering (cut-off: 300 Hz) 235 

was applied. Continuous tracking of the head position relative to the MEG sensors allowed 236 
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correction of head displacement during the breaks and prior to each file saving of a participant, 237 

using the fieldtrip toolbox (http://fieldtrip.fcdonders.nl) (Stolk et al., 2013). 238 

Behavioral Analysis. A “yes–no” model for independent observations was used to compute 239 

dprime (Green and Swets, 1966). Four classes of response are considered: (1) Hit: a “yes” 240 

response when the target chunk is present in the digit sequence, (2) Correct Rejection: a “no” 241 

response when the target chunk is absent, (3) Miss: a “no” response when the target chunk is 242 

present, and (4) False Alarm: a “yes” response when the target chunk is absent. Nonparametric 243 

Wilcoxon signed-rank tests (two-sided) were used to test differences in the mean dprime across 244 

conditions. The Bayes factor BF10 (Schönbrodt and Wagenmakers, 2018), which reflects the 245 

likelihood data arose from the alternative model, was computed using the software JASP (JASP 246 

Team, 2020) (10000 samples) and default priors. 247 

MRI Analysis. The FieldTrip toolbox (http://fieldtrip.fcdonders.nl) (Oostenveld et al., 2011) was 248 

used for the MRI and MEG data analyses. The standard Montreal Neurological Institute (MNI) 249 

template brain was used for participants where an individual MRI was missing. Probabilistic 250 

tissue maps (cerebrospinal fluid gray and white matter) were constructed from the individual 251 

MRIs. Next, a single shell volume conduction model (Nolte, 2003) was applied to retrieve the 252 

physical relation between sensors and sources. Between the individual T1 MRI and the MNI 253 

template T1 a linear warp transformation was computed. A 8 mm template grid, defined on the 254 

MNI template T1, was warped on the individual head space by inversely transforming it, based 255 

on the location of the coils during the MEG recording and the individual MRI. Next, based on the 256 

warped MNI grid and the probabilistic tissue map a forward model was computed, and applied 257 

for source reconstruction. This allowed aligning the grids of all participants to each other in MNI 258 

space for the across participants statistics.  259 
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MEG Preprocessing. Line-noise was removed using bandstop filters (49.5-50.5, 99.5-100.5, two-260 

pass; filter order 4) and the data were band-pass filtered off-line (0.1–100 Hz, Butterworth filter; 261 

filter order 4). A common semi-automatic artifact detection procedure was applied: for artifact 262 

rejection, the signal was filtered to identify muscular artifacts (band-pass: 110-140 Hz) or jump 263 

artifacts (median filter) and z-normalized per time point and sensor. The z-scores were averaged 264 

over sensors, in order to accumulate evidence for artifacts that occur across sensor. Trials that 265 

exceeded a predefined z-value (muscular artifacts, z = 15; jumps, z = 30) were rejected. Trials 266 

were the range (min-max difference) in any sensor exceeded a threshold (threshold = 0.75e-5) 267 

were identified as containing slow artifacts and rejected. Down-sampling to 500 Hz was applied. 268 

The data were epoched (-3.5 to 5 sec). Furthermore, when head movements exceeded a threshold 269 

(5 mm) a trial was rejected. Next, all blocks of recorded MEG data were concatenated. If high 270 

variance was detected at any sensor, the sensor was rejected. Finally, independent component 271 

analysis (infomax algorithm; Makeig et al., 1996) was used to remove eye-blink, eye-movement 272 

and heartbeat-related artifacts based on cumulative evidence from the component topography and 273 

time course.  274 

MEG source-level analysis. In a first step, the data were epoched (0-5 sec). For the main 275 

analyses, only trials in which participants showed Correct responses (i.e. hits and correct 276 

rejections) were selected.  Next, the sensor-space measurements were projected and localized in 277 

source-space inside the brain volume (Van Veen et al., 1997) using Linearly Constrained 278 

Minimum Variance (LCMV) beamforming. A spatial filter was computed based on the individual 279 

leadfields for each participant and condition (lambda = 10%; 0.8 cm grid). Next, all trials were 280 

epoched to the minimum stimulus duration in the corresponding condition (condition 1.8Hz: 2.38 281 

sec; condition 2.6Hz: 1.68 sec). 282 
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Cortical regions of interest (ROIs). The automated anatomical labeling atlas (AAL; (Tzourio-283 

Mazoyer et al., 2002) was used to select the regions of interest (ROIs) as follows (Fig. 2): 284 

 STG (Temporal_sup_L/R): Auditory association areas  (Binder et al., 2009; Hickok and 285 

Poeppel, 2007) 286 

 MTG (Temporal_Mid_L): Implicated in processing word form and meaning 287 

 IFG (Frontal_Inf_Tri_L/R): Involved in speech-motor planning 288 

 PC (Precentral_L/R), SMG (SupraMarginal_L/R): Speech-motor integration 289 

 Calcariane (Calcarine_L/R): Primary visual cortex (as a control region) 290 

We opted to omit Heschl’s Gyrus (primary auditory cortex area) from the list of ROIs because of 291 

the very small number of voxels (3 in the Left, 2 in the Right). 292 

 293 

 294 

Figure 2. Cortical regions of interest (ROIs). The automated anatomical labeling atlas (AAL; 295 

(Tzourio-Mazoyer et al., 2002) was used to select ROIs in left and right superior temporal gyrus 296 

(STG), middle temporal gyrus (MTG) and speech-motor planning and integration areas (IFG, PC, 297 

SMG). V1 was used as control region. ROIs are color coded. 298 
 299 

Periodicity density function (PDF) within ROI. We aim to determine whether the elicited brain 300 

signal measured at any given voxel within a specific ROI shows periodicity, and if so, to extract 301 

the frequency. Ultimately, we seek to characterize the density function of the periodicities across 302 

all voxels in the ROIs of interest. 303 
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The aggregated cross-correlation measure (XCOV) of periodicity. To measure the neural 304 

response periodicity in individual voxels one could use one of several widely used measures, e.g., 305 

autocorrelation––where the first nontrivial peak indicates the period, or the intertrial phase 306 

coherence (ITPC)––where the outcome would be the frequency distribution of the coherence 307 

function. Importantly, these measures build on the number of trials, M. The trial signals are noisy, 308 

both due to the SNR and due to the brain wave irregularity (which is why these methods average 309 

over trials). But what if M is too small? Here we used a newly proposed measure, termed 310 

‘Aggregated cross-correlation’ (abbreviated XCOV), to measure periodicity across M trials. 311 

Broadly, we suggest taking advantage of the fact that, for M trials, we can generate about M2/2 312 

cross-correlation functions. Recall that, unlike autocorrelation, the first peak of a cross-correlation 313 

function does not indicate the period but rather the delay between the two signals. Therefore, we 314 

run each of the M2/2 candidate pairs through a “match filter”, which determines whether the 315 

corresponding two signals have a “zero” delay. Such a pair will have a cross-correlation function 316 

similar to that of an autocorrelation function, i.e., its peak is at zero and its earliest nontrivial peak 317 

is at the period. Only the pairs that pass the test are cross-correlated and aggregated. Obviously, 318 

the number of cross-correlation functions qualified for aggregation is between M and M2/2, 319 

depending on how strict the match filter is. (For example, in the STG ROI, the mean number of 320 

trials over subjects for the ‘Hit’ response was M=38, with a mean number of pairs of 703.  The 321 

mean number of pairs that passed the test was 433 for the 1.8Hz condition and 378 for the 2.6Hz 322 

condition – about one degree of order bigger than M. A similar trend was observed for all ROIs.) 323 

We term the outcome of this measure as the ‘XCOV’ function. 324 

 325 
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 326 

Figure 3. Analysis pipeline for deriving the periodicity density function (PDF) within a 327 
particular ROI. Shown is the resulting periodicity PDF for a given condition (say, the 1.8Hz 328 
condition), a given response class (say, Hit), and a given ROI (say, STG). L voxels, N subjects, 329 
and M trials per subject are considered. For the i-th voxel and the j-th subject, periodicity is 330 
computed using a newly proposed measure method termed ‘aggregated cross-correlation’, 331 
abbreviated XCOV. First (not shown), each brain signal is filtered to the frequency range of 332 
interest. Cross correlations were computed using the filtered signals. Note that as a cross-333 
correlation function, XCOV is computed against time-lags; the abscissa here shows the time-lag 334 
inverse, in frequency, hence going from right to left. The periodicity density function (PDF) is 335 
derived by (i) forming a histogram of the XCOV peak locations inside the frequency range of 336 
interest, (ii) normalizing the histogram to L×N, the total number of data points, and (iii) building a 337 
3rd order Gaussian Mixture Model (GMM) that fits the histogram. The GMM model is the desired 338 
PDF. The “goodness” of the PDF is quantified by in terms of P value, the percentage of 339 
datapoints inside the frequency range of interest with respect to the total number of datapoints 340 
(L×N); and the mean μ and variance σ of the prominent Gaussian component of a 3

rd
 order GMM. 341 

(The total number of data points is shown in the inset of each entry.)  342 
 343 

Periodicity density function (PDF) within a ROI. Fig. 3 details the analysis pipeline for deriving 344 

the periodicity density function of the periodicities within a particular ROI. L voxels, N subjects, 345 

and M trials per subject are considered. First (not shown), each brain signal is filtered to the 346 

frequency range of interest (low pass filter with cutoff frequency of 6 Hz for the (inside/outside) 347 

delta chunk rate analysis (Figs. 5 and 6 and 9a); and a bandpass filter with a [2-10] Hz frequency 348 

range, for theta (single digit rate) analysis (Fig. 7)). (The filters were chosen with a bandwidth 349 

wider than the expected mean periodicities (1.8- and 2.6 Hz for delta, about 4 Hz for theta), in 350 
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order to let the XCOV analysis determine the periodicity PDFs without any bias.) Cross 351 

correlations were computed using the filtered signals. Shown is the XCOV function at the i-th 352 

voxel, for the j-th subject, obtained by aggregating K cross-correlation functions. (Note that as a 353 

cross-correlation function, XCOV is computed against time-lags; the abscissa here shows the 354 

time-lag inverse, in frequency, hence going from right to left). The particular XCOV function 355 

shown in Fig. 3 has a single peak at 1.76 Hz but note that, in general, an XCOV may have more 356 

than one local peak. Next, the location of the prominent peaks is extracted, with the number of 357 

prominent peaks as a parameter. (The prominence of a peak measures how much the peak stands 358 

out due to its intrinsic height and its location relative to other peaks in the range of interest.) In 359 

our analysis one prominent peak per XCOV is considered. Hence, for L voxels and N subjects, a 360 

maximum of L×N data points are available to construct a histogram, from which only those 361 

inside the frequency range of interest are used, and the resulting histogram is normalized to L×N. 362 

A 3rd order Gaussian mixture model (GMM) that fits the histogram is the desired PDF. The 363 

“goodness” of the periodicity is quantified by in terms of P, the percentage of datapoints inside 364 

the frequency range of interest with respect to the total number of datapoints (L×N); and the mean 365 

μ and variance σ of the prominent Gaussian component of a 3rd order GMM. (The total number of 366 

data points is shown in the inset of each entry.) 367 

Results 368 

Behavioral results. Dprime scores were the highest in the 1.8Hz condition (mean = 2.19, SD = 369 

0.49) (Fig. 4), i.e., when the chunk rate is inside the delta frequency range. Lower dprime scores 370 

were registered in the 2.6Hz condition (mean = 1.74, SD = 0.42), when the chunk rate was just at 371 

the outside edge of the delta range. The difference in scores was significant (1.8Hz condition vs. 372 

2.6 Hz: W = 177, p < .001, r = .863; BF10 = 199.6). 373 
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 374 

 375 

Figure 4. Behavioral performance in the digit retrieval task. Dprime values are displayed, as 376 
measure of performance accuracy, separately for each condition. Blue dots indicate individual 377 
dprime scores, black lines indicate the mean dprime scores, dark gray bars indicate the +/-1 378 
standard error of the mean and light gray bars the confidence interval. Significance is indicated by 379 
**(p < .01). The performance was higher in the 1.8Hz acoustical chunk (inside delta chunking), 380 
compared to the 2.6Hz acoustical chunk condition (outside of delta) (replicating findings in [7]).  381 
 382 

Periodicity density function (PDF) of elicited brain waves. We used the aggregated cross-383 

correlation measure (XCOV) of periodicity across M trials to determine whether the elicited brain 384 

signal measured at any given voxel within a specific ROI shows periodicity, and if so, to extract 385 

the frequency. Then, we derived the periodicity density function of the periodicities across all 386 

voxels in the ROIs of interest (Fig. 2). The “goodness” of the periodicity is quantified by in terms 387 

of P, the percentage of datapoints inside the frequency range of interest with respect to the total 388 

number of datapoints (L voxels ×N subjects); and the mean μ and variance σ of the prominent 389 

Gaussian component of a 3rd order GMM. Fig. 5 shows the periodicity PDFs in the [1 4] Hz 390 

frequency range for the STG region of interest (ROI) in the left hemisphere. For the 1.8Hz 391 

condition, a strong periodic response at about 1.8 Hz was recorded for the Hits and Correct 392 

Rejections, with the P over 50%. Much weaker presence of periodicity was recorded for the 393 
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Misses and False Alarms. A similar trend is shown for the 2.6Hz condition, albeit with much 394 

weaker periodicity compared to the 1.8Hz condition, and with a smaller P (of below 30%). Notice 395 

that, across chunk conditions, the PDF patterns for hits and correct rejections are similar, as are 396 

the patterns for misses and false alarms. Such similarities were observed for all ROIs. Therefore, 397 

in presenting the rest of the data, the hits and correct rejections are combined to indicate Correct 398 

responses, and the misses and false alarms are as Erroneous responses.  399 

 400 
 401 
Figure 5. Periodicity density functions (PDFs) of delta periodicities per response class. 402 
The PDFs are displayed for the left hemisphere STG region of interest (ROI). The number of 403 
voxels in this ROI is 20 and the number of participants 19. Per voxel and subject, one XCOV 404 
peak inside the delta [1 4] Hz range was selected. The rows indicate the response classes (Hit, 405 
Miss, etc.), and the columns – the chunking conditions. Each entry shows the histogram (with the 406 
periodicity count scaled to L x N), and the corresponding PDF. The inset of each entry shows the 407 
total number of data points L x N analyzed (20 voxels × 19 subjects = 380 incidences). The 408 
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“goodness” of the PDF is quantified in terms of the percentage (P value) of datapoints inside the 409 
frequency range of interest with respect to the total number of datapoints, and the mean μ and 410 
variance σ of the prominent Gaussian component of a 3

rd
 order GMM. For the 1.8Hz condition, a 411 

strong periodicity presence at 1.8 Hz was recorded for the Hit and Correct Rejection responses, 412 
with P over 50%. A much weaker presence was recorded for the Miss and False Alarm 413 
responses. A similar trend is shown for the 2.6Hz condition, albeit with much weaker periodicity 414 
presence compared to the 1.8Hz condition, and a smaller number of datapoints (P of below 30%).  415 
 416 

In the following figures, the data are presented as follows. Each figure contains 6×2 417 

entries organized in six rows (ROIs) and two columns (chunking conditions). Each entry shows 418 

the periodicity PDF, and the “goodness” of the periodicity is quantified in terms of P, μ and σ. In 419 

some selected entries, the upper left corner shows the Kullback-Leibler Divergence (KLD) of the 420 

entry’s PDF with respect to a reference PDF defined in the respective figure caption. Finally, in 421 

some entries, no μ and σ values are present. This is so because of a failure of the 3rd order GMM 422 

to converge due to the small P value. 423 

Figures 6A and 6B show the elicited responses in the [1 4] Hz frequency band for Correct 424 

responses (i.e., Hits and Correct Rejections combined), and Erroneous responses (i.e., Misses and 425 

False Alarms combined), respectively. We term these elicited responses delta responses. For 426 

Correct responses in the 1.8Hz condition a strong periodicity presence at about 1.8 Hz is 427 

recorded. A similar pattern is shown for the 2.6Hz condition, albeit with much weaker periodicity 428 

presence compared to the 1.8Hz condition (lower P value and wider σ). For Erroneous responses, 429 

for all ROIs, no presence of periodicities is recorded, for any condition. More specifically: for 430 

Correct responses, in the chunked conditions, the auditory association ROI (STG) shows a 431 

compelling periodicity presence at 1.8 Hz in the 1.8Hz condition and a weaker presence at 2.6 Hz 432 

in the 2.6Hz condition. At the middle temporal ROI (MTG), periodicity exists for the chunked 433 

conditions, albeit with 1.8 Hz periodicity stronger than that of 2.6 Hz. Similar patterns are 434 

observed in the speech-motor planning and integration ROIs (IFG, SMG, PC), whereas 435 

periodicity is present at 1.8 Hz, and is absent in the 2.6Hz condition. Note that in the visual ROI 436 
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(Calcarine), delta periodicities are absent for all conditions. Finally, the 1.8Hz condition column 437 

of Fig. 6A also shows the Kullback-Leibler Divergence (KLD) for all ROIs, with respect to the 438 

STG ROI (highlighted in red). The KLD values suggest similar patterns of elicited delta 439 

periodicities observed in the temporal brain regions (STG and MTG ROIs, with KLD value of 440 

0.15 for MTG), and the frontal motor and temporal-parietal regions (IFG, SMG and PC ROIs, 441 

with KLD values of 0.15, 0.25 and 0.11, respectively).  442 

443 
Figure 6. Delta periodicities for Correct and Erroneous responses in the left hemisphere. 444 
(A) Periodicities for Correct responses: Rows indicate the regions of interest (ROIs) and columns 445 
the chunking conditions. Each entry shows the histogram (with the periodicity count scaled to the 446 
L x N), and the PDF, quantified in terms of the percentage (P value) of datapoints inside the 447 
frequency range of interest with respect to the total number of datapoints (L x N, see inset). For 448 
the 1.8Hz condition a strong periodicity presence at about 1.8 Hz is recorded. A similar trend is 449 
shown for the 2.6Hz condition, albeit with much weaker periodicity presence compared to the 450 
1.8Hz condition. The 1.8Hz condition column shows the Kullback-Leibler Divergence (KLD) 451 
computed for this condition at all ROIs, with respect to the STG ROI highlighted in red (upper left 452 
corner of the ROIs). The KLD values suggest similar patterns of elicited delta periodicities in the 453 
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temporal brain areas (STG and MTG ROIs), and in the frontal motor and temporal parietal areas 454 
(IFG, SMG and PC ROIs). (B) Periodicities for Erroneous responses: No presence of periodicities 455 
is recorded for any condition.  456 
 457 

Furthermore, we compared the elicited delta responses in all ROIs in the Left versus the Right 458 

hemispheres for Correct responses. Similar periodicity PDFs are observed for all ROIs in all 459 

chunking conditions. The KLD was calculated for each ROI in the Right hemisphere against the 460 

corresponding Left ROI. The KLD values show a closer similarity between the periodicity PDFs 461 

of the left and right hemisphere of the temporal brain regions (STG and MTG, with KLD values 462 

of 0.1 and 0.11, respectively). In contrast, in the frontal motor and temporal-parietal regions 463 

periodicities were more prominent in the left compared to the right hemisphere (IFG, SMG, and 464 

PC, with KLD values of 0.28, 0.15 and 0.47, respectively). 465 

 Figures 7A and 7B show the elicited responses in the [2 6] Hz frequency band for the 466 

Correct and Erroneous responses, respectively, for ROIs in the left hemisphere. We term 467 

responses in this frequency band theta responses. For the Correct behavioral responses, strong 468 

theta was elicited in all ROIs and for all chunking conditions. Such elicited neural response 469 

patterns reflect the single digit presentation rate. Two observations are noteworthy, the bimodal 470 

characteristic of the PDFs for all chunking conditions, in particular for the 1.8Hz chunking 471 

condition, and the strong, unexpected, theta periodicity presence in the Calcarine ROI. For the 472 

Erroneous responses, a weaker more dispersed periodicity presence was observed. Finally, for the 473 

Correct responses, the periodicity PDFs were similar in shape across conditions, as was 474 

quantified by the KLD values comparing the periodicity PDFs in the 1.8 Hz condition with 475 

respect to the 2.6 Hz condition (KLD values between 0.13 to 0.2 across ROIs). The similarity of 476 

the PDFs across chunking conditions confirms that the decoding time at the digit level was 477 

sufficient across conditions. 478 
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 479 

 480 
 481 
Figure 7. Theta periodicities for Correct and Erroneous responses in the Left hemisphere. 482 
(A) Periodicities for Correct responses: Strong theta periodicities were present in all ROIs and for 483 
all chunking conditions. Such elicited neural response patterns reflect the single digit presentation 484 
rate. The histograms are scaled to L x N (see inset). The PDFs are similar in shape across 485 
conditions, as is quantified by the KLD values comparing the PDFs in the 1.8 Hz condition with 486 
respect to the 2.6 Hz condition. (B) Periodicities for Erroneous responses: A weaker more 487 
dispersed presence of theta periodicities is recorded for all conditions (lower P value and wider 488 
σ). 489 
 490 

Correspondence between behavioral data and electrophysiological data. Fig. 8 quantifies the 491 

correspondence between the elicited delta periodicity patterns and the behavioral data. Shown are 492 

the 3rd order GMMs computed for the Correct responses in the left hemisphere and the two 493 

stimulus conditions. Unlike Fig. 6A, which shows PDF in terms of scaled periodicity count, 494 

shown here are the actual probability densities (with the ∫p(x)dx = 1). The title of each panel 495 
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shows three measures: (i) [dprime σ] – the behavioral performance indicated by mean dprime 496 

values and the variance across subjects; (ii) [Bias σ] – the average of the absolute difference 497 

(termed Bias) between the mean of the prominent Gaussian component of the GMM and the 498 

acoustic chunk rate, and the variance across the ROIs; and (iii) [P σ] – the average P value and 499 

the variance across the ROIs. Two observations are noteworthy. First, the tightness of the PDFs in 500 

the 1.8Hz condition as reflected in the high probability value at the periodicity frequency, 501 

compared to the pseudo-uniform shape of the PDFs in the 2.6Hz condition. And second, the 502 

decrease in dprime accompanies the increase in Bias and the decrease in P. These data support 503 

the hypothesis that perceptual chunking at the time scale of phrase is derived by acoustic-driven 504 

delta oscillators. 505 
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 506 

Figure 8. Correspondence between behavioral data and electrophysiological data. Shown 507 
are the 3rd order GMMs Correct responses in the left hemisphere. Unlike Fig. 6A, which shows 508 
PDF scaled to P (the percentage of datapoints inside the frequency range of interest with respect 509 
to the total number of datapoints), shown here are the actual probability densities (with the ∫p(x)dx 510 
= 1). The title of each panel shows three measures: (i) [dprime σ] – the behavioral performance; 511 
(ii) [Bias σ] – the average of the absolute difference between the mean of the prominent Gaussian 512 
component of the GMM and the driving acoustic chunk rate, and variance across the ROIs; and 513 
(iii) [P σ] -- the average P-value (defined in Fig. 6) and variance across the ROIs. Note the 514 
tightness of the PDFs in the 1.8Hz condition compared to the pseudo-uniform shape of the PDFs 515 
in the 2.6Hz condition, and the correlation between the decrease in dprime and the increase in 516 
Bias and the decrease in P. 517 
 518 

Discussion  519 

In this study we adopted a reductionist approach to test, in electrophysiological terms, the 520 

hypothesis that the speech decoding process at the phrasal time scale is guided by a flexible, 521 
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acoustic-driven neuronal delta oscillator locked to phrase-size acoustic cues (Ghitza, 2017). The 522 

proposal suggests an analogue role of a delta oscillator, at the phrasal time scale, to the role 523 

played by neuronal theta-band oscillations at the syllabic time scale. The study is reductionist in 524 

the sense that it is confined to the perceptual chunking of digits sequences, where the digits in the 525 

sequence are grouped into phrase-size chunks. We collected, concurrently, behavioral and MEG 526 

data during a digit retrieval task, in which the digit sequences were either presented with an 527 

acoustic chunk pattern inside or outside of the delta range. Stimuli with a chunk rate inside the 528 

delta range elicited considerable neuronal periodicity at the chunk rate in STG, MTG ROIs and 529 

IFG, SMG and PC ROIs. Critically, this pattern of detected periodicities was directly related to 530 

Correct behavioral responses. In contrast, stimuli with a chunk rate outside of the delta range 531 

elicited weak periodicity, aligned with observed declines in behavioral performance. In the 532 

calcarine ROI (early visual cortex), considered a ‘control area’ for our analyses, no periodicities 533 

at the chunk rate were elicited.  534 

Presence of delta periodicities in the auditory pathway  535 

How should these activity patterns of neuronal delta and theta periodicities, be interpreted? In the 536 

temporal cortex (STG and MTG), robust periodicities were recorded mainly by stimuli with a 537 

chunk rate inside the delta range, and only for Correct behavioral responses. Periodicities in these 538 

brain areas were present even for acoustic chunk rates at the edge of the delta range, albeit 539 

considerably weaker. A similar pattern of periodicities was observed in the speech-motor 540 

planning and integration areas (IFG, SMG and PC), where periodicities were absent for acoustic 541 

chunk rates outside the delta range. Note that the observed lack of hemispheric lateralization in 542 

auditory cortex in our study is in line with previous reports on bilateral theta/delta activity elicited 543 

to more complex speech stimuli (Assaneo et al., 2019; Flinker et al., 2019). Interestingly, in 544 
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contrast to the temporal brain areas, in the speech-motor planning and integration areas more 545 

divergence between the left and right hemisphere was observed, with more prominent delta 546 

periodicities in the left hemisphere. The left hemisphere more tightly followed the chunking rate 547 

compared to the right. These findings suggest an important role for superior and middle temporal 548 

and speech-motor planning and integration areas in chunking at the phrasal scale. Importantly, 549 

and quite remarkably, the delta-band activity in these areas was fully aligned with behavioral 550 

performance (i.e. delta activity was only elicited in Correct, but not in Erroneous responses). 551 

Previously, EEG studies showed delta in bilateral middle and superior temporal areas (also 552 

fusiform gyrus) (Bonhage et al., 2017) and at fronto-temporal sites (Boucher et al., 2019) was 553 

related to chunking during phrase and sentence processing. Delta might reflect the chunking of 554 

ordered sensorimotor events as articulated sound, rather than syntactic phrasal/sentential 555 

processing directly (Boucher et al., 2019). Furthermore, Keitel et al. (2018) and Morillon et al. 556 

(2019) recently  proposed that delta oscillations in the motor cortex are involved in temporal 557 

predictions, affecting speech processing in the auditory cortex at a phrasal scale (for a predictive 558 

account of delta see also: Breska and Deouell, 2017; Daume et al., 2021; or a statistical learning 559 

account: Henin et al., 2021). A possible interpretation of their findings through the lens of our 560 

results is that acoustic-driven segmentation of phrase-size chunks takes place in STG, and the 561 

recorded behavioral performance with respect to chunk rate is a consequence of the goodness of 562 

segmentation. When the chunk rate is inside the delta band, successful segmentation results in 563 

delta activities in speech-motor integration areas (SMG, PC, IFG) that may reflect decoding 564 

processes and possibly auditory-motor mapping related processes (Park et al., 2015). In contrast, 565 

chunk rates outside of the delta band might result in bad segmentation in STG, and in turn 566 

suppressed periodicities in speech-motor integration areas (SMG, PC, IFG) due to unreliable 567 

decoding and audio-motor mapping. This interpretation is in line with another study (Donhauser 568 
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and Baillet, 2020) that reports strong delta activity in STG when the speech input was 569 

‘informative’, which may be the consequence of appropriate segmentation.  570 

It could be argued that one cannot draw a conclusive relationship between 'chunking' and 571 

the neural periodicity in the delta range. In particular, the drop in intelligibility for the 2.6Hz 572 

condition may be due to the fact that the silent gaps in-between the two-digit chunks are shorter. 573 

This argument raises three points that merit discussion.  First, a question arises whether or not a 574 

2.6 Hz rhythm in the acoustics is present at the cochlear output level. Figure 9A shows a 575 

simulation of the cochlear modulation spectrum (e.g., Jepsen et al., 2008) for a 1.8Hz (left) and a 576 

2.6Hz (right) stimuli, taken at a characteristic frequency of 426 Hz (this cochlear place was 577 

selected at random, for demonstration). A robust modulation presence is observed for both 578 

stimuli, at their respective acoustic input rhythm. Second, it could be argued that the shorter silent 579 

gaps result in weaker acoustic cues for chunking. Recalling that neural activity in primary 580 

auditory cortex represents sensory representations of the acoustics with a minimal information 581 

loss (see, e.g., Nourski et al., 2009), a weakening in acoustic cues should be reflected in terms of 582 

a weaker periodicity presence at primary cortex (e.g., the Heschl’s Gyrus). As mentioned earlier 583 

(see Fig. 2), we opted to omit the Heschl’s Gyrus from our rigorous periodicity analysis because 584 

of the small number of voxels present (3 in the Left, 2 in the Right). Figure 9B shows the XCOV 585 

periodicity PDF for all five available voxels, for Correct and Erroneous responses combined. 586 

Keeping in mind the concern over the validity of the results due to the limited number of voxels, 587 

we observe a strong periodicity presence for both chunking conditions at their respective chunk 588 

rates, suggesting no weakening of the acoustic cues for chunking. In contrast, and as early as the 589 

STG level, we observe strong periodicities only for chunk rates inside the delta frequency range 590 

(Fig. 6). The findings suggest that the neuronal circuitry of the delta oscillator resides at the STG 591 

level and constrains prosodic chunking. Third, it could also be argued that the shorter silent gaps 592 
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result in an insufficient decoding time at the single digit level. However, our data show that this is 593 

not the case, as at the digit level, for all chunking conditions and at all ROIs, strong theta 594 

periodicities (at the single digit rate) were elicited regardless of the level of behavioral chunking 595 

performance. Thus, the drop in performance for the 2.6Hz condition – with a chunk rate just 596 

outside the delta frequency range – is due to the lack of decoding time at the chunk level but not 597 

due to digit decoding time. Recall that for both the 2.6Hz and the 1.8Hz stimuli, the two-digit 598 

chunks themselves have an identical time-compressed acoustics; the only difference is the 599 

duration of the silent gaps between the chunks (see Fig. 1). Performance is recovered by bringing 600 

the chunk rate back inside the delta range, hence providing the extra decoding time needed. As a 601 

whole, therefore, our data suggest that segmentation of phrase-sized chunks is realized by 602 

neuronal delta oscillators, and that the chunk’s decoding time is determined by delta, in analogy 603 

to the role of theta in determining the decoding time at the syllable level (Ghitza, 2014). 604 
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 605 

Figure 9. Cochlear modulation spectrum (A) and delta periodicities at Heschl’s Gyrus (B) 606 
for the digit-sequence stimuli shown in Fig. 1. (A)  Cochlear output in terms of cochlear 607 
modulation spectrum (Jepsen et al., 2008). Shown are modulation spectra of the digit-sequence 608 
stimuli shown in Fig. 1, for the 1.8Hz stimulus (left) and for the 2.6Hz stimulus (right). The 609 
modulation spectra shown are snapshots at the cochlear characteristic frequency (CF) of 426 Hz. 610 
Abscissae represent time (duration of 2.7- and 1.9 seconds, for the 1.8Hz and the 2.6Hz stimuli, 611 
respectively) and the ordinate represents the modulation frequencies (0.5 - to 7.6 Hz). Note the 612 
strong presence of modulations at 1.8 Hz for the 1.8Hz stimulus and at 2.6 Hz for the 2.6Hz 613 
stimulus. (B) Delta periodicities at Heschel Gyrus ROI for the Correct and Erroneous responses, 614 
combined. Note that the total number of datapoints is 380: the number of voxels (left and right 615 
combined) is 5, the number of participants 19, and the number of response conditions (correct 616 
and erroneous) is 4. The KLD value of the 2.6Hz probability density function (shifted to 1.8Hz) 617 
with respect to the 1.8Hz probability density function is 0.87. Keeping in mind the concern over 618 
the validity of the results due to the limited number of voxels, the strong periodicity presence for 619 
both chunking conditions suggest that the diminished periodicity for the 2.6Hz condition is due to 620 
neuronal circuitry characteristics at the STG level and not due to weakening of acoustic cues for 621 
chunking. 622 
 623 

Presence of theta periodicities in all chunking conditions 624 
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Our data show strong theta periodicities in all ROIs and for all chunking conditions. Such elicited 625 

neural response patterns reflect the single digit presentation rate. A bimodal characteristic of the 626 

PDFs is observed for all chunking conditions, but in particular for the 1.8Hz condition. The 627 

bimodality arises from the acoustic properties of the stimuli. Consider, for example, the stimulus 628 

shown in Fig. 1. Three intra-digit durations can be identified: (i) the duration between the onset of 629 

the first digit of a chunk and the first digit in the following chunk, which gives rise to the 630 

chunking rate, (ii) the duration between the onset of the first digit and onset of the second digit in 631 

a chunk, and (iii) the duration between the onset of the second digit in a chunk and the onset of 632 

the first digit in the following chunk. This plurality in intra-digit durations give rise to a bimodal 633 

duration distribution with a skewness determined by the prescribed chunking rate. The skewness 634 

is accentuated, in particular, in our 1.8Hz stimuli. The bimodal nature in the acoustics drives the 635 

elicited neural response seen in our data (Fig. 7A). 636 

Oscillations versus evoked responses 637 

Our data show strong delta cortical periodicities while listening to the 1.8 Hz chunked stimuli. 638 

Are these brain waves generated by a neuronal oscillator locked to the acoustic chunk rhythm or 639 

do they reflect the evoked response to the corresponding acoustic cues? The answer to this 640 

question at the syllabic level has been difficult to determine, because the impulse response of the 641 

neuronal circuitry to discrete acoustic cues associated with syllables (e.g., acoustic edges, vocalic 642 

nuclei) corresponds, in duration, to the theta-cycle range (about [125 330] msec). Doelling et al. 643 

(Doelling et al., 2019) addressed this conundrum by generating simulated outputs of an oscillator 644 

model and of an evoked response model, and comparing the quantitative predictions of phase lag 645 

patterns generated by the two models against recorded MEG data. They showed that, compared to 646 

the evoked response model, a model that includes oscillatory dynamics better predicted the MEG 647 
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data. Our data provides additional support for the oscillator interpretation. Can the observed, 648 

robust periodic responses to a 1.8 Hz chunked stimulus reflect evoked responses elicited by 649 

discrete acoustic cues at the phrase time scale? Indeed, steady-state evoked responses to slow 650 

dynamics have been observed in both visual and auditory sensory regions (e.g. Capilla et al., 651 

2011; Wang et al., 2011). However, only a model of oscillatory dynamics can explain the fact that 652 

neural response at the delta range is only present when the acoustic chunk rate is inside, but is 653 

absent for rates outside the delta range. 654 

Generalizability of the neuronal chunking mechanism  655 

Scaling up to real speech. The studies discussed above (Meyer et al., 2016; Bonhage et al., 2017; 656 

Keitel et al., 2018; Boucher et al., 2019; Morillon et al., 2019) suggest a presence of delta brain 657 

waves in phrasal chunking for continuous speech, beyond the digit retrieval paradigm used here. 658 

Extending our results to naturalistic speech has important implications for what would constitute 659 

optimally sized acoustic chunks for the sentential decoding – or parsing – process. If the 660 

information ‘bound’ within windows of roughly a delta cycle are integrated as phrases (intonation 661 

phrases and perhaps structural phrases, depending on the specific relation), it suggests that there 662 

are natural patterns of spoken phrase rhythms or phrase durations that are best suited for decoding 663 

spoken language, driven by the necessity to match a cortical function. Deploying the 664 

experimental analysis approach, we describe here to real speech can elucidate the temporal 665 

aspects of spoken language comprehension.  666 

Infra-delta chunking rate. As discussed earlier we define the relevant delta range to be between 667 

0.5 to 2 Hz, and chose the 1.8Hz condition to represent the case where the input chunking rate is 668 

inside delta, and the 2.6Hz condition to represent the outside delta case. The main research 669 

question of our study was whether elicited delta cortical oscillations correlate with behavior. In 670 

particular, does performance deteriorate if the chunk rate is outside the delta range? We addressed 671 
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this question by looking at an above-delta chunking rate (2.6 Hz), but we didn’t look at infra-delta 672 

rates (e.g., 0.3 Hz). The reason to skip the effects of infra-delta rates stemmed from the fact that 673 

the decay time of sensory memory – about 2 sec long (e.g. Cowan, 1984) – roughly coincides 674 

with the lower bound of the delta-cycle duration. Consequently, the dominant factor at the origin 675 

of a possible deterioration in performance may very well be an internal time constraint on 676 

processing spoken material (due to echoic memory span) rather than prosodic segmentation.  677 

Conclusion 678 

Oscillation-based models of speech perception (Ghitza, 2011; Giraud and Poeppel, 2012; Gross et 679 

al., 2013; Haegens and Zion Golumbic, 2017; Lakatos et al., 2019; Martin and Doumas, 2017; 680 

Rimmele et al., 2018) postulate a cortical computational principle by which decoding is 681 

performed within a time-varying window structure, synchronized with the input on multiple time 682 

scales. The windows are generated by a segmentation process, implemented by a cascade of 683 

oscillators. At the pre-lexical level, the segmentation process is realized by a flexible theta 684 

oscillator locked to the input syllabic rhythm, where the theta cycles constitute the syllabic 685 

windows. Doelling et al. (2014) provided MEG evidence for the role of theta, showing that 686 

intelligibility is correlated with the existence of acoustic-driven theta neuronal oscillations. 687 

Our major finding – that phrase-size chunking of digit strings is correlated with acoustic-688 

driven delta oscillations – suggests that the role played by neuronal theta-band oscillations in 689 

syllabic segmentation can be generalized to the phrasal time scale. The segmentation process is 690 

realized by a flexible delta oscillator locked to the input phrase-size chunk rhythm, where the 691 

delta cycles constitute the phrase-size chunk windows.   692 

Future research is required to investigate whether our findings can be generalized to 693 

continuous speech (i.e., beyond digit strings). That is, whether the intonational phrase patterns of 694 

language could be constrained by cortical delta oscillations. Adopting the view that the strategy of 695 
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composing syllables and words into phrasal units is the result of an evolutionary trajectory to 696 

match a cortical function (Bosman and Aboitiz, 2015; Patel and Iversen, 2014), we hypothesize 697 

that the phrases of language are constrained by delta oscillations, and the rules of chunking in 698 

speech production may be the product of common cortical mechanisms on both motor and 699 

sensory sides, with delta at the core. 700 

 701 

Software Accessibility statement: Analysis code will be made available upon request [to 702 

corresponding author]. 703 
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