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The so-called eigenvalue-eigenstate link states that no property can be associated to a quantum system unless
it is in an eigenstate of the corresponding operator. This precludes the assignation of properties to unmeasured
quantum systems in general. This arbitrary limitation of orthodox quantum mechanics generates many puzzling
situations such as for example the impossibility to uniquely define a work distribution, an essential building block
of quantum thermodynamics. Alternatively, modal theories (e.g., Bohmian mechanics) provide an ontology that
always allows one to define intrinsic properties, i.e., properties of quantum systems that are detached from
any possible measuring context. We prove here that Aharonov, Albert, and Vaidman’s notion of a weak value
can always be identified with an intrinsic dynamical property of a quantum system defined in a certain modal
theory. Furthermore, the fact that weak values are experimentally accessible (as an ensemble average of weak
measurements which are postselected by a strong measurement) strengthens the idea that understanding the
intrinsic (unperturbed) dynamics of quantum systems is possible and useful in a given modal theory. As examples
of the physical soundness of these intrinsic properties, we discuss three intrinsic Bohmian properties, viz., the
dwell time, the work distribution, and the quantum noise at high frequencies.
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I. INTRODUCTION

Properties of classical systems are well defined regardless
of whether or not they are being measured. Therefore, eval-
uating a property of a system at time t1 and correlating the
outcome with the value of the same (or another) property at
a later time t2 provides an unequivocal way of representing
the dynamics of classical systems. In quantum mechanics,
however, Bell [1] as well as Kochen and Specker [2], showed
that measurements cannot be thought of as simply revealing
the underlying (intrinsic) properties of the system in a way
that is independent of the context in which the observable is
measured. The result of correlating the outcome of measuring
an observable of a quantum system at time t1 with that at t2
of the same (or another) observable depends, in general, upon
the specification of the measuring context needed to obtain
these outcomes. This characteristic of quantum phenomena is
known as contextuality and the unavoidable perturbation that
measurements induce on the subsequent evolution of quantum
systems is commonly referred to as quantum backaction [3,4].

A practical problem associated to quantum backaction and
contextuality arises when trying to define any multitime (i.e.,
that requires at least two-time measurements) property of a
quantum system. Consider for example the case of the quan-
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tum work distribution. One can think of evaluating it by means
of a two-time projective measurement protocol of the energy
[5,6]. However, the first measurement projects the initial state
into an energy eigenstate and hence it prevents the possibility
of capturing any coherent evolution of the energy beyond that
of a Hamiltonian eigenstate. One could think that avoiding
the quantum backaction is possible by simply making the
coupling between the system and measuring apparatus very
weak, e.g., using the so-called indirect or weak measurements
[7,8]. Unfortunately, in general, it is not possible to obtain
(Born) probability distributions of dynamical properties that
are independent of the measurement context (see Appendix A
of the Supplemental Material [9] for a detailed explanation).
Therefore, while a number of alternative protocols have been
proposed to alleviate this problem (based on the use of weak
and collective measurements [10–13]), the backaction of the
measuring apparatus on the measured system is, in all existing
protocols, an undesired side effect that yields a list of incom-
patible definitions of quantum work. This has culminated in a
“no-go” theorem that states that, in fact, there cannot exist a
(super)operator for work that simultaneously satisfies all the
physical properties required from a proper definition of work
in quantum systems [14].

In this context, a natural question to ask is whether intrinsic
dynamical properties, defined as dynamical properties the
existence of which is detached from the measuring appara-
tus and hence that provide information of the unperturbed
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(backaction-free) quantum dynamics, can be defined and pos-
sibly measured [15]. The postulates of orthodox quantum
mechanics are categorical [16]: The so-called eigenvalue-
eigenstate link establishes that no property can be associated
to a quantum system unless it is in an eigenstate of the
corresponding operator. The eigenvalue-eigenstate link is mo-
tivated (but not imposed) by the experimental fact that a
projective measurement of a property of a quantum system
that is in an eigenstate of the associated operator provides a
single outcome (eigen)value without ambiguity (i.e., a single
experiment is enough to determine the property of the sys-
tem). On the contrary, a projective measurement of a property
of a system that is not in an eigenstate of the corresponding
operator can yield many different output values (i.e., a sin-
gle experiment is not enough to determine the property of a
system). This only result, which is in accordance with Born’s
law, is used by orthodox quantum mechanics to decide about
what can be and what cannot be considered a real property
of a quantum system. That is, orthodox quantum mechanics
rejects the reality of an unmeasured object’s property unless
the object is in an eigenstate of the property operator [17]. As
such, our previous definition of intrinsic dynamical properties
has no place in orthodox quantum mechanics.

On this matter, the purpose of this work is threefold. Our
first aim is to establish the correct theoretical framework under
which an intrinsic dynamical property is a well-defined quan-
tity. Second, we want to answer the question of whether an
intrinsic dynamical property can be experimentally accessed.
And third, we would like to provide some relevant examples
substantiating the importance of these types of properties. Ac-
cordingly, we have structured the paper as follows. In Sec. II
we introduce modal theories and show that these theories are
a valid mathematical framework to define intrinsic dynamical
properties. In Sec. III we will demonstrate that an intrinsic
property and a weak value are the same precise thing from
the point of view of modal quantum mechanics. This will be
a proof that intrinsic properties can be actually measured. The
implications of this connection between intrinsic properties
and weak values will be discussed in Sec. IV. In Sec. V, we
will acknowledge Bohmian mechanics as a particular modal
theory, and discuss three paradigmatic examples of the sound-
ness of these types of intrinsic dynamical properties: the dwell
time, the quantum work distribution, and the quantum noise at
high frequencies. The summary and conclusions of the work
will be presented in Sec. VI.

II. INTRINSIC DYNAMICAL PROPERTIES IN MODAL
THEORIES

A static property contains information of a system and an
operator at a given time. Alternatively, a dynamical property
bears information about a system associated to, at least, one
operator at two different times or two different (noncom-
muting) operators at the same time. Therefore, in orthodox
quantum mechanics it is not possible to define a real intrinsic
(backaction-free) dynamical property even though it is well
accepted that adopting the orthodox ontology for giving real-
ity to only measured values is a deliberate choice that is not
imposed by any experimental fact [18].

In this respect, van Fraassen proposed to develop
new quantum theories without imposing the “eigenvalue-
eigenstate link” [19]. These theories are today known as
modal quantum theories [19–21]. The main idea is to deny
a special status to measurements (measurements should be
dealt with in the same way as ordinary physical interactions)
so that the usual unitary evolution of the quantum state in
Hilbert space has to be valid at all times, with or without mea-
surement. How can the unitary evolution of the quantum state
(which may imply a superposition of different eigenstates) be
made compatible with the experimental evidence of getting a
definite eiegnvalue? The simplest solution is by introducing,
apart from the quantum state of the orthodox theory |ψ (t )〉,
which we refer to as a guiding state, an additional quantum
state |gi(t )〉, named property state, that specifies the value gi(t )
of the property G for a given ith experiment at time t . Property
states represent real valued properties of the quantum system
that are not defined alongside any measurement process and
therefore have no counterpart in the orthodox theory. While
other quantum interpretations are often put under the umbrella
of what is commonly known as a modal theory [22], we will
here only consider theories dealing with one property state
added to the guiding state [23].

The quantum state in a modal theory is thus defined not
only by |ψ (t )〉, but also by gi(t ) that is also referred to as
the ontic variable. Thus, when the system is not coupled to a
measuring apparatus, and hence there is no possible quantum
backaction, the value gi(t ) defines an intrinsic property of
the quantum system. In this sense, modal theories open the
path for defining intrinsic dynamical properties at the onto-
logical level. Note that modal interpretations do not reject
the existence of projective measurements, it only rejects the
eigenstate-eigenvalue link. In fact, the outcome of a projective
measurement in orthodox quantum mechanics is identical to
the outcome of the same projective measurement performed
within any modal theory (otherwise orthodox and modal the-
ories would be empirically distinguishable, which is not the
case). When a property G is projectively measured at a given
time t (for a given experiment i), one obtains the value gi(t ),
which obviously will coincide with a particular eigenvalue of
the operator Ĝ. Quantum uncertainty is then recovered by an
ensemble of N identically prepared experiments that are all
associated to the same guiding state |ψ (t )〉 but to different
property states |gi(t )〉. Consequently, modal theories are em-
pirically equivalent to orthodox quantum mechanics because
the probability density distribution of the property G at time
t always satisfies Born’s law. A mathematical way of ex-
pressing this condition is |ψ (g, t )|2 = limN→∞ 1

N

∑N
i=1 δ(g −

gi(t )) (where δ plays the role of a Dirac or Kronecker delta
depending on whether integrals over g are involved or not).
Then, the ensemble value of G provided by the modal theory
from different identically prepared experiments reads

〈G〉M = lim
N→∞

1

N

N∑
i=1

gi(t ) =
∫

dgg|ψ (g, t )|2 = 〈G〉, (1)

where for the case of a (partially) discrete spectrum the inte-
gral should be interpreted as a Stieltjes one. That is, Eq. (1)
states that the expectation value of a property G is identical in
modal, 〈G〉M , and orthodox quantum mechanics, 〈Ĝ〉. In this
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sense, we say that static intrinsic properties are “unproblem-
atic” within the orthodox theory.

Despite the fact that the orthodox theory can provide ex-
pectation values of static properties, strictly speaking, intrinsic
static properties are not well defined in orthodox quantum
mechanics. That is, before a projective measurement is carried
out, orthodox quantum mechanics asserts that the quantum
system defined by the state |ψ (t )〉 has no property G asso-
ciated unless |ψ (t )〉 = |g〉 [24].

III. CONNECTION BETWEEN WEAK VALUES AND
INTRINSIC PROPERTIES

Among a great variety of modal theories, Bohmian me-
chanics is probably the most prominent example. In Bohmian
mechanics the property state of the position is related to
the so-called Bohmian trajectory, which in turn evolves ac-
cording to the Bohmian velocity field [20]. The position and
momentum operators do not commute and hence there are
no simultaneous eigenstates of both properties. The orthodox
theory thus concludes that the velocity at a given position is
not a well-defined property for a quantum particle. In 2007,
however, Wiseman [25] showed that an operationalist defini-
tion of the velocity of a quantum particle involving weak and
projective measurements separated by an infinitesimal lapse
of time (“using a technique that would make sense even to a
physicist with no knowledge of quantum mechanics”) leads to
the concept of weak value as defined by Aharonov, Albert, and
Vaidman [26]. This weak value was proven to be the Bohmian
velocity [25,27]. Following this theoretical finding, a number
of experiments have been carried out where the Bohmian
velocity has been “measured” in the laboratory [28–32].

But, if the Bohmian velocity can be measured by means of
weak values, why is this property not well defined in orthodox
quantum mechanics? Let us answer this apparent contradic-
tion. Weak values can be experimentally accessed only by
averaging over a subensemble of postselected two-time mea-
surements. This experimental procedure, which involves a
postprocessing of the data acquired in an ensemble of identi-
cally prepared experiments, clearly goes beyond the limits of
what can be accepted as a real property within the eigenvalue-
eigenstate link. We remind that the orthodox concept of reality
is based on our ability to predict the experimental value of
the quantum system in a single experiment, not in our ability
to predict some average value from an ensemble of identical
experiments. For example, the fact that the average position of
a quantum system is a well-defined concept for an ensemble
of identical experiments in the orthodox theory does not imply
that the orthodox theory accepts that a quantum system has a
well-defined position in each experiment.

We now move to demonstrate that intrinsic dynamical
properties, i.e., property states in modal quantum mechanics,
can be linked to weak values. For that let us note that in a
given modal theory, with a given property state |gi(t )〉, other
properties SM (g), different from G, can also be considered
to be real (independently of whether or not they are being
measured) in a given modal theory. The property SM (g) is
linked to the guiding state |ψ (t )〉 and the property state |gi(t )〉.
At each time, in a particular ith experiment, the value of the
property SM (g) is given by SM (gi(t )). Then, the ensemble

value of this property is given by

〈S〉M = lim
N→∞

1

N

N∑
i=1

SM (gi(t )) =
∫

dgSM (g)|ψ (g, t )|2. (2)

It is important to emphasize that the ensemble value of 〈S〉M

is well defined independently of the fact that the system is
or is not measured, because SM (gi(t )) is an ontic variable.
In principle, it seems that the property SM (g) in Eq. (2) can
be arbitrary, but a necessary condition to accept SM (g) as a
physically meaningful value linked to the property S is that
its expectation value is the orthodox value 〈S〉M = 〈Ŝ〉, as it
happens for the property gi(t ) in Eq. (1). This last requirement
leads to the following definition of SM (g),

SM (g) =
∫

dg′ ψ
∗(g, t )S(g, g′)ψ (g′, t )

|ψ (g, t )|2 , (3)

where S(g, g′) = 〈g|Ŝ|g′〉. When (3) is introduced in Eq. (2), it
is then straightforward to realize that 〈S〉M = 〈Ŝ〉. The central
point of this paper is that the property SM (g) can be related to
the so-called weak values by simply noting that Eq. (3) can be
rewritten as

SM (g) = 〈g|Ŝ|ψ (t )〉
〈g|ψ (t )〉 ≡ g〈Ŝ〉ψ (t ), (4)

where we have used
∫

dg′|g′〉〈g′| = Î in Eq. (3). The above
identity states that the property SM (g) coincides with the weak
value g〈Ŝ〉ψ (t ) introduced by Aharonov, Albert, and Vaidman
in 1988 [26].

The quantity SM (gi(t )) is linked to two properties at the
same time, so we can call it a dynamical property. The last
requirement to define SM (gi(t )) as an intrinsic dynamical
property is the fact the quantum system has to be detached
from any measuring apparatus. It is in this sense that we define
intrinsic properties as context-free properties. The condition
for having the quantum system detached from the measuring
apparatus in the evaluation of the intrinsic dynamical property
or weak value in Eq. (4), is just ensuring a unitary evolution of
the state |ψ (t )〉, from its preparation at the initial time until t ,
without including any additional degree of freedom different
from the ones invoked at the initial time when defining the
system (i.e., the system is a closed system during the whole
evolution).

As it will be discussed in the next section, the above
result sets the ground for understanding weak values as an
experimental protocol for assessing the predictions of intrin-
sic dynamical properties of modal quantum theories. But,
more importantly, it reinforces the idea that understanding the
(backaction-free) dynamics of quantum systems is possible by
means of weak values.

IV. WHAT ARE THE IMPLICATIONS OF WEAK VALUES
AND INTRINSIC PROPERTIES BEING EQUIVALENT?

Since its first introduction in 1988 [26], there have been
many attempts in the literature to find a fundamental in-
terpretation of weak values, other than the simple result of
a specific measurement procedure. Without abandoning the
orthodox quantum mechanics viewpoint, weak values have
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been given a number of different, often incompatible, in-
terpretations [33–39]; see Ref. [40] for a recent review on
the difficulties to accommodate the weak values within the
orthodox ontology.

From the result in the previous section, we argue that the
definition of a particular weak value has to be made under a
particular modal interpretation of quantum mechanics. Equa-
tion (4) shows that, once a particular weak value g〈Ŝ〉ψ (t ) and
the corresponding intrinsic dynamical property SM (g) (linked
to a particular modal theory) are selected, the following onto-
logical and empirical implications apply:

(i) The same ontological meaning of the intrinsic property
SM can be given to the weak value g〈Ŝ〉ψ .

(ii) If the intrinsic property SM cannot be given an orthodox
meaning, then g〈Ŝ〉ψ cannot be given an orthodox meaning
either.

(iii) The intrinsic property SM and the the weak value g〈Ŝ〉ψ
are context-free (i.e., defined with the system detached from
any measuring apparatus). The discussion about contextuality
of a property SM requires that the system interacts with a
measuring apparatus, but then the property SM is no longer
an intrinsic property.

(iv) Since g〈Ŝ〉ψ can be experimentally evaluated, the
modal property SM is experimentally accessible too.

(v) Since g〈Ŝ〉ψ is in general a complex number, the modal
property SM takes a complex value too.

That is, the identity in Eq. (4) defines intrinsic modal prop-
erties as weak values and in turn provides a clear-cut physical
meaning of weak values in terms of intrinsic dynamical prop-
erties.

Let us discuss point (i) above. We want to clarify that con-
clusions arising from Eq. (4) are also compatible, if wanted,
with some opinions in the literature where weak values are
understood as just mathematical transition amplitudes, with-
out any direct physical implication concerning the definition
of a property. This interpretation would simply require disre-
garding the particular modal theory that gives support to the
weak value through SM (g). See a clear example in Appendix
B of the Supplemental Material [9] where the weak value of
spin is not accepted as a valid intrinsic property in one modal
theory, but is accepted in another.

Regarding point (ii), in the particular case where Ŝ and
Ĝ commute, 〈g|Ŝ|g′〉 = sδ(g − g′) and Eq. (3) reduces to
SM (g) = s, where s is an eigenvalue of Ŝ. Now, the modal
property SM is a well-defined property in orthodox quantum
mechanics as well, as it fulfills the eigenstate-eigenvalue link.
However, in more general cases where Ŝ and Ĝ are noncom-
muting operators, understanding the value SM (g) as a property
of a quantum system from the perspective of orthodox quan-
tum mechanics is prevented by the eigenvalue-eigenstate
link.

In point (iii) we emphasize that there is no contradic-
tion in arguing that intrinsic properties and weak values are
context-free and quantum mechanics is contextual since we
are talking about different things. The argument that quantum
mechanics is contextual refers to the measured properties of
a quantum system, while the intrinsic properties refers, by
construction, to properties that are not being measured. Notice
that the ontic property SM (gi(t )) of a modal theory is not
always an intrinsic dynamical property. When a measuring ap-

paratus interacts with the system, the ontic property SM (gi(t ))
can change its value and hence becomes a contextual ontic
property, but then the property SM (gi(t )) is no longer an in-
trinsic dynamical property (which requires it to be detached
from a measuring apparatus). In other words, the adjectives
context-free and noncontextual are different. The first refers to
a system without (measuring) context, while the second refers
to a system with a (measuring) context. The discussion about
contextuality, originated from the Kochen-Specker theorem
[2], is very relevant in the orthodox theory since it has direct
implications on which properties can be considered simul-
taneously real in that theory (via the eigenstate-eigenvalue
link). On the contrary, in modal theories, the reality of a
property gi(t ), or SM (gi(t )), is not linked to any measurement
process. In modal theories, the discussions about contextuality
or noncontextuality only deal with how much experimental
perturbation appears on the system due to the interaction with
the measuring apparatus. See a more elaborated example of
the differences between measured components of the spin and
weak values of the components of the spin in the Appendix B
of the Supplemental Material [9].

Moving to point (iv), it is well known that weak val-
ues g〈Ŝ〉ψ can be accessed experimentally [41–43]. From the
identity in Eq. (4), intrinsic properties can be thus identi-
cally measured. It is important here to distinguish between
measuring two properties in a single experiment (which has
implications for the orthodox reality of such properties), and
measuring two properties in an ensemble of identically pre-
pared experiments from an average over different data. Weak
values (for example, the Bohmian velocity) belong to this
second type, but they are genuine measurements [27]. The
most relevant feature of the experimental determination of the
weak value is that of providing information of two properties
at the same time in the absence of measurement disturbance
(backaction). It is not possible to get a single system linked to
a measuring apparatus giving empirical data free from backac-
tion when two properties are measured in a single experiment
(see Appendix A of the Supplemental Material [9]). But it is
possible to get an ensemble of identically prepared systems
(each one suffering from backaction when two properties are
measured) that provides postprocessed data (in a way that
the different backactions compensate) identical to the intrinsic
dynamical property of a single system (see Appendix C of the
Supplemental Material [9]).

As stated in (v) above, the meaning given to the real and
imaginary parts of the weak value g〈Ŝ〉ψ (t ) must be the same as
given to the real and imaginary parts of the intrinsic property
SM (g). Unlike the real part of the weak value, which can be
shown to provide direct information on the dynamics in time
of a given observable in the limit of zero measurement dis-
turbance (i.e., an intrinsic property), the imaginary part of the
weak value does not necessarily provide information pertain-
ing to the observable being measured [33,44,45]. Importantly,
the imaginary parts of SM (g) and g〈Ŝ〉ψ (t ) do not play any role
in the evaluation of the ensemble value 〈S〉 that motivated our
definition of SM (g) in Eq. (3). That is, the weighted sum over
the imaginary part of SM (g) and g〈Ŝ〉ψ (t ) in Eq. (2) vanishes
because 〈S〉 is a real number for any Hermitian operator Ŝ.

A more in-depth discussion about the physical meaning of
the imaginary part of the intrinsic properties and weak values
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is beyond the scope of this paper. Hereafter we will focus on
the discussion of their real part. For that, we introduce the real
part of intrinsic modal properties as

SRe
M (g) = Re[SM (g)] = Re

[
g〈Ŝ〉ψ (t )

]
. (5)

Using the above expression, the probability density distribu-
tion of the different values of the intrinsic property SRe

M (g) can
be then easily written as

PM (s, g, t ) = lim
N→∞

1

N

N∑
i=1

δ
[
s − SRe

M (gi(t ))
]
δ[g − gi(t )]. (6)

The above expression highlights one of the most impor-
tant advantages of working with intrinsic properties. When
properly integrated, expression (6) counts how many times the
following identities s = SRe

M (gi(t )) and g = gi(t ) are satisfied
simultaneously. By construction, the number of coincidences
can be zero or any other positive number, but the probability
PM (s, g, t ) cannot be negative. This is not always true when
computing probability with other more orthodox tools. For
example, the Wigner function distribution, which provides
simultaneous information on the position x = g and momen-
tum p = s, has negative values [46]. It is in this sense that
the Wigner distribution function is a quasiprobability distri-
bution to account for its negatives values. The probability
distribution computed from PM (s, g, t ) are always complete
positive [47].

V. INTRINSIC BOHMIAN DYNAMICS AS
LOCAL-IN-POSITION WEAK VALUES

As we have shown in the previous section, weak values
have to find ontological support in modal theories. For exam-
ple, if we are interested in local-in-momentum weak values
〈p|Ŝψ〉/〈p|ψ〉, then the property state of such modal theory
has to be the momentum. A momentum-based modal theory
can be developed, for instance, by rewriting the Schrödinger
equation in terms of 〈p|ψ〉 (instead of 〈x|ψ〉). A Hamilton-
Jacobi decomposition can be then used to find an equation
of motion for p(t ), which is defined as an intrinsic property
of the quantum system [48]. As discussed in the previous
section, such a modal theory would provide a full ontological
meaning for local-in-momentum weak values (but not for
local-in-position weak values which are defined in the original
Bohmian theory).

It seems reasonable to demand that, for a modal theory to
be consistent, properties SM (g) that have a natural connection
with G do also have to have an ontological reality. Let us
provide a practical example of what we mean by natural
connection. In Bohmian mechanics [49–52], the property state
for a given experiment |gi(t )〉 ≡ |xi(t )〉 specifies the position
of the particle gi(t ) ≡ xi(t ) at all times (without the need to in-
troduce the measuring apparatus) [20]. The Bohmian version
of Eq. (5) reads

SB(x) = Re
[

x〈Ŝ〉ψ (t )
]
, (7)

so, the real parts of local-in-position weak values are identical
to intrinsic Bohmian properties. Now, if we postulate that the
position is an intrinsic property, then the temporal derivative
of such intrinsic property, i.e., dxi(t )/dt , must be also a well-

defined property at all times. Including the mass m of the
quantum system, the Bohmian property of the momentum
defined at all times (with or without measurement) has to be

PB(xi(t )) ≡ m
dxi(t )

dt
. (8)

But, is this particular expression of the Bohmian momentum
(8), coming from a natural deduction from xi(t ), compatible
with the general expression (3)? Will the Bohmian momen-
tum (8) satisfy 〈P〉B = 〈P̂〉? By introducing the momentum
operator P̂ in the position representation given by 〈x|P̂|x′〉 =
−ih̄ ∂

∂x δ(x − x′) into (3), it is well known that expression (8) is
exactly reproduced [50,51] showing a natural consistency of
the Bohmian theory.

A discussion about the internal consistencies of other
modal theories (see Ref. [22]) is, however, beyond the scope
of this paper, and in the rest of the paper we will focus on
showing the physical soundness and utility of the intrinsic
Bohmian properties linked to local-in-position weak values.
As it will be shown, the knowledge of the position of a particle
without linking its value to the measuring pointer provides
some advantageous framework to answer some puzzling ques-
tions, for example, the time spent by a quantum particle to
go from one place to another. This information is required,
e.g., to evaluate dwell times, but it is also necessary to define
spatial distributions of some relevant quantities such as the
(thermodynamic) work. Identically, when dealing with high-
frequency quantum electron transport, the existence of the
position of particles independently of the measuring apparatus
allows one to know what is the contribution of electrons (at
different positions) to the total, particle plus displacement,
electrical current.

A. The quantum dwell time

Measuring the time spent by a particle within a particular
region 	a < 	r < 	b requires measuring the time t1 at which the
particle enters that region, and later, the time t2 at which the
particle leaves it. As we have already seen, the measurement
of the position of the particle implies the perturbation of the
state of the system in most general circumstances. Thus, any
subsequent measurement of the position is generally influ-
enced by the first measurement. In spite of its controversial
definition in orthodox quantum theory, the concept of dwell
time is necessary, for example, to evaluate the maximum
working frequency of state-of-the-art transistors and hence
the performance of modern computers [53]. In this respect,
it is important to notice that when using the information of the
dwell time in the evaluation of the performance of computers,
there are no position detectors at the two ends (	a and 	b) of the
active region of a transistor [54,55].

The unperturbed value of the dwell time can be easily
computed from intrinsic Bohmian trajectories 	ri(t ). Again,
for simplicity, we only consider one electron inside the ac-
tive region in each experiment. The expectation value of the
unperturbed dwell time can be defined as

τD = lim
N→∞

1

N

N∑
i=1

τ i, (9)
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where τ i is defined as the time spent by the (intrinsic) ith
Bohmian trajectory inside the region 	a < 	r < 	b, i.e.,

τ i =
∫ ∞

0
dt�[	ri(t ) − 	a]�[	b − 	ri(t )], (10)

where � is the unit step function. The above expression can
be rewritten as

τD = lim
N→∞

1

N

N∑
i=1

∫ ∞

0
dt

∫ 	b

	a
δ[	r − 	ri(t )]d	r. (11)

Defining the Bohmian velocity as the local-in-position weak
value of the momentum in the x direction, which can be given
by Eq. (7), 	ri(t ) can be defined as

	ri(t ) = 	ri(0) + 1

m

∫ t

0
dt ′ Re

[
	ri (t ′ )〈P̂x〉ψ (t ′ )

]
, (12)

with 	ri(0) as the initial position of the trajectory in the ith
experiment. Making use of the quantum equilibrium condition
[56] in Eq. (11), we get the well-know expression

τD =
∫ ∞

0
dt

∫ 	b

	a
|ψ (	r, t )|2d	r, (13)

which is certainly an unperturbed property of the quantum
system as there is no contamination from the measuring
apparatus. Notice that the experimental validation of the
above arguments requires one to know the intrinsic Bohmian
trajectories, which in turn can be reconstructed from local-in-
position weak values of the momentum [25].

Equation (12) provides a way to compute the intrinsic value
of the dwell time from local-in-position weak values of the
momentum operator P̂. Alternatively, we can compute this
time from a definition of the dwell time operator D̂ as follows,

τD =
∫ ∞

0
dt

∫ 	b

	a
|ψ (	r, t )|2d	r

=
∫ ∞

0
dt

∫ 	b

	a
〈ψ (t )|	r〉〈	r|ψ (t )〉d	r. (14)

Defining the operator Â = ∫ 	b
	a |	r〉〈	r|, Eq. (14) can be written as

τD =
∫ ∞

0
dt〈ψ (t )|Â|ψ (t )〉 = 〈ψ (0)|

∫ ∞

0
dtÛ †ÂÛ |ψ (0)〉,

(15)
where we have defined |ψ (t )〉 = Û (t )|ψ (0)〉. Now we define
the tunneling time operator D̂ = ∫ ∞

0 dtÛ †(t )ÂÛ (t ), which
allows us to write Eq. (15) as follows,

τD = 〈ψ (0)|D̂|ψ (0)〉. (16)

We can easily represent the above expression in terms of weak
values of the tunneling time operator D̂ [with postselected
state |	r〉 and the initial state |ψ (0)〉] by a simple transforma-
tion as follows,

τD =
∫

d	r〈ψ (0)|	r〉〈	r |D̂|ψ (0)〉

=
∫

d	r〈ψ (0)|	r〉 〈	r|ψ (0)〉 〈	r|D̂|ψ (0)〉
〈	r|ψ (0)〉

=
∫

d	r|ψ (	r, 0))|2 	r〈D̂〉ψ (	r,0)

= lim
N→∞

1

N

N∑
i=1

	ri (0)〈D̂〉ψ (	r,0), (17)

where we have used the quantum equilibrium [51] expression
|ψ (	r, 0)|2 = limN→∞ 1

N

∑N
i=1 δ(	r − 	ri(0)) in the last identity

of Eq. (17). By comparing Eqs. (9) and (10) to Eq. (17), it
is easy to obtain the relation between the Bohmian intrinsic
tunneling time τ i and the local-in-position weak value of the
tunneling time 	ri (0)〈D̂〉ψ (	r,0), i.e.,

τ i = 	ri (0)〈D̂〉ψ (	r,0). (18)

Notice that, at t = 0, we get Û (0) equal to the unity, so that
the evaluation of the weak value of the tunneling time with-

out the time integral is
∫ 	b

	a d	r〈	ri(0)|	r〉〈	r|ψ (0)〉/〈	r|ψ (0)〉 =∫ 	b
	a d	r〈	ri(0)|	r〉 = �[	ri(0) − 	a]�[	b − 	ri(0)], which is exactly

the expression of the intrinsic tunneling time in Eq. (10)
without the time integral. A similar argument can be applied at
any other time t by just redefining the initial time and evolving
the trajectories and wave functions accordingly. Equation (18)
says that the Bohmian dwell time of the ith particle is identical
to the weak value of the dwell time operator associated to the
ith particle defined as the one whose initial position is 	ri(0).
Therefore, Eq. (18) shows a deep connection between weak
values and intrinsic dynamical properties.

Certainly, there exist many orthodox protocols to com-
pute the dwell time [57–62]. For example, one can make use
of a physical clock to measure the time elapsed during the
tunneling [59–62]. Larmor precession was precisely intro-
duced to measure the time associated with scattering events
[60,62]. In any case, what is essential here is that the scientific
community has been persistent in looking for observables of
dynamical properties whose expectation values are free from
the contamination of the measuring apparatus. This is exactly
what the intrinsic properties defined in this paper are meant
for.

B. The quantum work distribution

Quantum work is the basic ingredient in the develop-
ment of quantum thermodynamics which is one of the most
important topics in the field of open quantum systems. Quan-
tum thermodynamics is essential in developing new quantum
technologies such as quantum heat engines. It also plays a
fundamental role in the consistency of the second law of ther-
modynamics in the quantum regime. However, there are many
issues that are still being investigated, most notably related
to the definition of work and heat. The problem is that these
thermodynamic variables are not observables related to Her-
mitian (super)operators, but are trajectory (history) dependent
[63–65]. This has culminated in the so-called “no-go” theorem
that states that in fact there cannot exist a (super)operator for
work that simultaneously satisfies all the physical properties
required from it [14]. This conclusion is based on three re-
quirements to be fulfilled by what Acin et al. [14] define to be
a properly defined positive definite work distribution. Namely:
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(1) The work distribution is described by a positive-
operator-valued measurement (POVM).

(2) For initial states that commute with the initial
Hamiltonian the work distribution reduces to the two-point
measurement (TPM) work distribution.

(3) The work distribution respects the change in the Hamil-
tonian expectation value.

As indicated in the Introduction, evaluating quantum work
by means of a TPM measurement protocol of the energy
will imply that the first measurement projects the initial state
into an energy eigenstate, hence preventing the possibility of
capturing any coherent evolution of the state. The alternative
orthodox protocols for the evaluation of the quantum work
such as Gaussian measurements [10,11], weak measurements
[12,13], collective measurements [14], etc., all suffer from
quantum contextuality, which provides as many different work
definitions as measurement schemes exist. The problem ap-
pears due to the requirement of the orthodox theory to include
a measuring apparatus that in practice does not exist. In
other words, we are not interested in the explicit measure-
ment of work, but on using dynamical information of the
quantum (sub)system in conjunction with quantum thermo-
dynamic equations to compute, e.g., the temperature variation
of a larger system involving a macroscopic thermodynamic
environment. We are thus seeking for an unperturbed value of
work.

To define an unperturbed work distribution, we follow
similar steps as in Refs. [66,67], where the reader can find
a detailed derivation of quantum work based on Bohmian
mechanics. Here, we will quickly move to the definition of
intrinsic work to discuss in detail how this definition solves the
above described puzzling situation. We thus start by defining
a single-particle [68] wave-function solution of the following
Schrödinger equation,

ih̄
∂ψ (	r, t )

∂t
=

(
(−ih̄ 	∇ − q 	A(	r, t ))2

2m
+ qV (	r, t )

)
ψ (	r, t ),

(19)
where 	r is defined as a vector in the ordinary three-
dimensional space, 	∇ is the gradient operator, and −ih̄ 	∇ −
q 	A(	r, t ) is the canonical momentum with A(	r, t ) the elec-
tromagnetic vector potential and q is the electron charge.
When the wave function is written in polar form as ψ (	r, t ) =
R(	r, t ) exp( iS(	r,t )

h̄ ), where R(	r, t ) and S (	r, t ) are the modulus
and phase, respectively, the real part of Eq. (19) evaluated
along the Bohmian trajectory 	r = 	ri(t ) for the ith experiment
gives us the following equation for the unperturbed power:

dE (	ri(t ))
dt

= d

dt

(
1

2
m	v2(	ri(t ), t ) + Q(	ri(t ), t )

)

= q	v(	ri(t ), t ) 	E (	ri(t ), t ) + ∂Q(	ri(t ), t )
∂t

. (20)

Here, E (	ri(t ), t ) is the unperturbed energy of the system
which according to the Hamilton-Jacobi equations is the
energy of the configurations 	r which is given by the time
derivative of the argument of the wave function, i.e., E (	r, t ) =
−∂S (	r, t )/∂t , v(	ri(t ), t ) is the Bohmian velocity, Q(	ri(t ), t )
is the quantum potential, and 	E (	ri(t ), t ) is the electric field.
While we have considered an external electromagnetic field

interacting with the quantum system, no measuring apparatus
is accounted for in Eq. (20). Thus, from Eq. (20), we can
describe the unperturbed work represented by the wave func-
tion ψ (	r, t ) and the trajectory 	ri(t ), during the time interval
t2 − t1 by just subtracting the initial energy E (	ri(t1), t1) from
the final one E (	ri(t2), t2). As we have already mentioned,
this result corresponds to the single experiment labeled by
the superscript i. Getting ensemble values of the work just
requires repeating the previous procedure for different initial
positions of the particles, according to the quantum equilib-
rium hypothesis [56].

As stressed along the paper, the very crucial aspect of this
unperturbed work is its measurability in the laboratory using
the local-in-position weak values. This can be expressed as
follows,

Re
(

	ri (t )〈Ê〉ψ (t )
) = Re

( 〈	ri(t )|Ĥ |ψ (t )〉
〈	ri(t )|ψ (t )〉

)
. (21)

Here, we define Ê ≡ Ĥ which is just the usual nomencla-
ture to define quantum work. The left-hand side of Eq. (21)
corresponds to the weak value of the energy computed at a
particular trajectory that has been obtained by postselecting
the position. Now using the Hamiltonian from Eq. (19) in
Eq. (21) and writing the wave function in the polar form to
evaluate 〈	ri(t )|Ĥ |ψ (t )〉, we can rewrite Eq. (21) as

Re
(

	ri (t )〈Ê〉ψ (t )
) =

[−h̄2

2m

∇2R(	r, t )

R(	r, t )
+ ( 	∇S (	r, t ))2

2m

]
r=ri (t )

= Q(	ri(t ), t ) + 1

2
m	v(	ri(t ), t )2, (22)

where ∇2 is the Laplacian operator. Thus, from Eq. (20), it is
straightforward to see that

Re
(

	ri (t )〈Ê〉ψ (t )
) = E (	ri(t ), t ). (23)

We thus conclude that the intrinsic Bohmian energy is equal
to the local-in-position weak value of the energy and hence
that it can be, in principle, measured experimentally. Given
a collection of weak values of the energy at times t1 and
t2, one can then easily evaluate the quantum work in the ith
experiment as

W i(t2, t1) = Re
(

	ri (t2 )〈Ê〉ψ (t2 )
) − Re

(
	ri (t1 )〈Ê〉ψ (t1 )

)
. (24)

The work distribution, on the other hand, can be given as
follows,

P (w, t2, t1) = lim
N→∞

1

N

N∑
i=1

δ(w − W i(t2, t1)). (25)
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From the work distribution in Eq. (25) we can now evaluate
the corresponding expectation value:

〈W (t2, t1)〉 =
∫

dw wP (w, t2, t1)

= lim
N→∞

1

N

N∑
i=1

W i(t2, t1), (26)

where N is the total number of experiments considered.
The above Bohmian approach circumvents the problem

of the unavoidable contextuality of quantum work in the or-
thodox theory. The unperturbed “Bohmian work” fulfills the
aforementioned last two requirements [(ii) and (iii)] for a
properly defined work distribution and reduces to the known
definitions in the appropriate limits. Furthermore, it circum-
vents the no-go theorem in Ref. [14] because it cannot be
associated with a POVM. Instead, the Bohmian work always
defines a positive value for the work probability distribution
and, moreover, describes a property that is free from any
measuring context (as it does not depend on the backaction
of the measuring apparatus). These are new conditions that
should, in our opinion substitute (i) in Ref. [14], i.e.:

(i1) The work definition must always lead to a positive-
valued probability distribution.

(i2) The work distribution should not depend on the back-
action of the measurement. It should be context-free.

C. The quantum noise at high frequencies

Electron devices are meant to manipulate information in
terms of scalar potentials and output electrical currents. State-
of-the-art electron devices are nowadays entering into the
nanometer scale and operating at frequencies of hundreds of
GHz. At such timescales and length scales, a full quantum
treatment of the electrical current is mandatory. Furthermore,
the total current at such frequencies is the sum of the conduc-
tion (flux of particles) plus the displacement (time derivative
of the electric field) components [53,69–71].

At very high frequencies (on the order of THz) the en-
vironment correlations are expected to decay on a timescale
comparable to the system dynamics. In this highly non-
Markovian regime, a measurement at a given time within
the active region of the device will certainly influence the
dynamics of the electrons and hence the outcome of a sub-
sequent measurement [72]. This non-Markovian environment
can be modeled through proper boundary conditions of the
active region. The important point is that there is no measuring
apparatus (ammeter) next to or inside the active region of
an electron device. Therefore, if one is interested in defining
multitime characteristics of these devices independently of
the measuring apparatus, this should be done through the
introduction of some sort of intrinsic electrical current. This
idea is reinforced by the fact that it can be proven the electrical
current in the device is very weakly perturbed by the electrons
of the cables and surroundings and hence that measuring the
electrical current at a macroscopic distance does not perturb
appreciably electron dynamics in the active region [73].

To simplify the discussion, let us consider the unperturbed
value of the total electrical current for a single electron in the
active region of the device (the extension to many electrons is

conceptually straightforward). Given the Bohmian trajectory
	ri(t ) of the electron [which is obtained solving a transport
equation such as in Eq. (19)], the total current generated on
a surface S of the active region of the device is

I i(t ) =
∫

S

	Ji
c(	r, t ) · d	s +

∫
S
ε(	r, t )

d 	Ei(	r, t )

dt
· d	s, (27)

where ε(	r, t ) is the (inhomogeneous) electric permittivity,
which can be time dependent. The current (particle) density
for the ith experiment is given by 	Ji

c(	r, t ) = q	v(	ri(t ), t )δ[	r −
	ri(t )]. The electric field 	Ei(	r, t ) is the solution of the Gauss
equation [74] with proper boundary conditions for a charge
density given by Qi(	r, t ) = qδ[	r − 	ri(t )]. In principle, the
surface integral of the current density in Eq. (27) has a de-
pendence on the particle position 	ri(t ). However, due to the
conservation of the total current, it can be proven that for a
two-terminal device with a length L much smaller than the
lateral dimensions W, H , i.e., L � W, H , then the total current
can be well approximated as [69,70,75]

I i(t ) = q

L
vi

x(t ), (28)

where vi
x(t ) is the velocity of the electron in the active region,

i.e., d
dt xi(t ) [76]. Outside the active region, the electron is

screened and its contribution to the total current can be ne-
glected.

Using the definition of the Bohmian velocity vx(t ) [51], the
intrinsic electrical current in Eq. (28) can be now expressed in
terms of the local-in-position weak value of the momentum
operator,

vx(t ) = h̄

m
Im

[ ∂
∂x ψ (	r, t )

ψ (	r, t )

]
= 1

m
Re

[ 〈	r|P̂x|ψ (t )〉
〈	r|ψ (t )〉

]
, (29)

where we have used 〈	r|P̂x|ψ (t ) = −ih̄ ∂
∂x ψ (	r, t ). Evaluating

the velocity in Eq. (29) for a particular trajectory 	r = 	ri(t ) we
finally get the current for the ith experiment from Eq. (28) as
follows:

I i(t ) = q

mL
Re

[ 〈	ri(t )|P̂x|ψ (t )〉
〈	ri(t )|ψ (t )〉

]
= q

mL
Re

[
	ri (t )〈P̂x〉ψ (t )

]
.

(30)
Thus the unperturbed current is equivalent to the local-in-
position weak measurement of the momentum operator P̂x

in the transport direction x, where 〈	r|ψ (t )〉 = ψ (	r, t ) is the
wave function of the electron in the active region and ri(t )
specifies the position where the local-in-position weak value
of the momentum is to be evaluated. From the information
of an ensemble of experiments, it is then easy to evaluate the
ensemble value of the current as

〈I (t )〉 = lim
N→∞

1

N

N∑
i=1

q

mL
Re

[
	ri (t )〈P̂x〉ψ (t )

]
. (31)

The intrinsic current in (30) can be now used to define (dy-
namical) properties that depend on multiple-time observations
without introducing the perturbation that the first measure-
ment produces on the subsequent dynamics of the electron.
Consider, for example, the power spectral density of the elec-
trical current, which can be calculated through the Fourier
transform of the current-current correlations. This quantity
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requires the knowledge of the current at two different times
and hence its orthodox definition would always be contextual
(as the first measurement of the current would affect the sub-
sequent dynamics of the electron). Alternatively, an intrinsic
power spectral density can be easily defined relying on the
intrinsic current in (30) [77–83],

PSD(ω) = lim
N→∞

1

N

N∑
i=1

( q

mL

)2
∫ ∞

−∞
dτe−iωτ · · ·

× Re
[
	ri (t2 )〈P̂x〉ψ (t2 )

]
Re

[
	ri (t1 )〈P̂x〉ψ (t1 )

]
, (32)

where we have assumed that we are dealing with a wide-
sense stationary process where the correlation depends only
on the time difference τ = t2 − t1. Therefore, the intrinsic
(backaction-free) power spectral density (as well as any other
intrinsic dynamical property) not only can be easily defined,
but it can be measured using weak values.

VI. CONCLUSIONS

In this paper we have introduced the concept of intrinsic
properties. Specifically, we have defined an intrinsic property
as a property of a quantum system whose existence is inde-
pendent of the measuring apparatus and hence that provides
information about the unperturbed (backaction-free) quantum
dynamics. These intrinsic properties cannot be defined within
the eigenvalue-eigenstate link of orthodox quantum mechan-
ics (unless the system is in an eigenstate of the associated
property operator). Contrarily, intrinsic properties arise natu-
rally in the context of modal quantum theories (e.g., Bohmian
mechanics), where the ontology of orthodox quantum me-
chanics is augmented by introducing property states.

We have shown the equivalence between intrinsic prop-
erties and weak values. Such equivalence suggests that any
attempt to provide weak values with a physical meaning is at
the same time an effort to give physical meaning to the intrin-
sic properties of modal theories (and vice versa). Contrarily, it
seems not possible to physically interpret weak values (apart
from being a mathematical transition amplitude) within the
ontology of orthodox quantum mechanics, as intrinsic prop-
erties have no meaning there. Notice that there is no reason
to expect that all weak values have the same ontological sta-
tus, in the same way as not all measurable properties have
the same ontological status in a given modal theory. Thus,
it is possible to discredit most of the weak values as just
the result of juggling with experimental data (without any
physical significance), but at the same time admitting that few
weak values have a physical significance supported by one
particular modal theory.

Intrinsic properties, or equivalently weak values, are, to
a good approximation, accessible experimentally. This is a
relevant statement, as we are persistently looking for dy-

namical properties of quantum systems whose expectation
value is free from quantum backaction [55,84]. In partic-
ular, we have focused on local-in-position weak values or,
equivalently, intrinsic Bohmian properties. We have shown
that Bohmian trajectories, evaluated through weak values,
allow one to define and measure dwell times, quantum work
statistics, or the power spectral density of current-current cor-
relation functions. All these physical properties are associated
to noncommuting operators.

Finally, we clarify that, while we have illustrated
the soundness of intrinsic properties using three intrinsic
Bohmian properties, the results in this paper do not put the
Bohmian theory (i.e., the positions of quantum particles)
in a privileged status. Our paper does only indicate that if
Bohmian theory is not considered to provide a correct descrip-
tion of the quantum world, the same conclusion can be said
about local-in-position weak values obtained in the laboratory.
Equivalently, if local-in-position weak values are assumed to
have a physical meaning, the same can be stated about the
Bohmian theory. The same precise arguments apply to any
other modal theory and its associated weak values. Some
experimental and theoretical examples of other modal theories
(i.e., with ontological descriptions different from the Bohmian
theory, while still yielding experimental predictions identical
to those of the orthodox quantum theory) can be found in
Refs. [85–88]. Our paper also emphasizes that looking for
a meaning of weak values without linking them to a given
ontology (or mixing ontologies in a type of bipolarity that
wants a reality independent of the measurement, but at the
same time rejects it) is not the correct path to understand weak
values.
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