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We introduce a reweighting technique which allows for a continuous sampling of temperatures in a
single simulation and employ it to compute the temperature dependence of the QCD topological
susceptibility χtop at high temperatures. The method determines the ratio of χtop between any two
temperatures within the explored temperature range. We find that the results from the method agree with
our previous determination and that it is competitive with but not better than existing methods of
determining dχtop=dT. The method may also be useful in exploring the temperature dependence of other
thermodynamical observables in QCD in a continuous way.
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I. INTRODUCTION

The axion solution to the strong CP problem, proposed
more than four decades ago [1–3], solves the fine tuning
problem of the smallness of the θ parameter in QCD by
introducing a new light (<meV) pseudo Goldstone boson
in the Standard Model. Soon after it was proposed, it was
also realized that long-wavelength axions would be pro-
duced abundantly early in the big bang and can serve as a
candidate for dark matter [4,5]. These proposals have
heightened interest both in searching experimentally for
the axion and in better understanding its phenomenology
and cosmological history; for a review of these topics see
for instance Ref. [6]. An important input for the cosmo-
logical production of axions and for their contemporary
properties is the QCD topological susceptibility χtopðTÞ,
which determines the axion mass:

m2
AðTÞ ¼

χtopðTÞ
f2A

: ð1Þ

Here mAðTÞ is the temperature dependent axion mass and
fA is the axion decay constant. The low-temperature value
of χtop is well determined [7,8], but the high-temperature

regime determines axion production efficiency; it is par-
ticularly important to determine χtopðTÞ in the temperature
regime from 500 to 1200 MeV [9]. In this temperature
range, this can only be achieved by nonperturbative lattice
investigations [10]. The most straightforward lattice meth-
ods, based on brute-force sampling of the gauge field
configuration space, face difficulties in this temperature
range because topologically nontrivial gauge field configu-
rations become very rare, leading to a loss of statistical
power. New methodologies are needed to overcome this
problem. In recent years one such methodology has been
developed [11,12] which provides access to high temper-
atures. In these calculations, it was shown that the differ-
ence of the expectation of the QCD action in two
topological sectors can provide a determination of
dðln χtopÞ=dðlnTÞ, which can be integrated to provide the
temperature dependence of χtop.
Alternatively, one can approach the problem at a fixed,

high temperature by reweighting between topological
sectors. A first attempt, based on a fixed guess for the
reweighting function [13], explored temperatures around
500 MeV. Another method, in which the reweighting
function is determined dynamically via an iterative self-
consistent technique, was introduced in [14] and further
improved in [15], where it was shown to be effective in the
pure-glue theory up to at least 7Tc.
Our main motivation for this work is to explore whether a

new technique might improve existing methods for deter-
mining χtop. The method introduced here is related to but
distinct from the technique of Refs [11,12]. We train a
single Markov chain Monte Carlo simulation to explore a
wide range of temperatures in a detailed-balance respecting
way by replacing the weighting function expð−βSÞ with
expð−WðSÞÞ, where WðSÞ is established by an iterative
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procedure such that the resulting ensemble can be
reweighted to describe any temperature in a relatively wide
range. We do this separately in the Q ¼ 0 and jQj ¼ 1
(nontopological and instanton-number �1) sectors, and
combine with a determination of χtopðTÞ at one temperature
to determine χtop across the full accessible temperature
range. We show that the approach has a similar efficiency to
[11], with both (slight) advantages and disadvantages
relative to their approach. The technique can be extended
to include fermions if the line of constant physics [lattice
mðβÞ] is known. However we find that our approach
developed in Ref. [15] seems to afford better numerical
efficiency.
In the next section we review the definition of topologi-

cal susceptibility and lay the groundwork for our technique.
Section III introduces our technique to carry out a detailed-
balance preserving Markov chain over a range of temper-
atures. Then Sec. IV presents our results and Sec. V closes
with a discussion.

II. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility is defined as

χtopðTÞ ¼
T
V
hQ2i ¼ T

V

Z
d4xd4yhqðxÞqðyÞi; ð2Þ

where Q ¼ R
d4xqðxÞ and q is the topological charge

density, V the spatial volume and T the temperature. In
the continuumQ always takes an integer value while on the
lattice one requires a refined definition of Q. Considering
the continuum integer topological charge Q one can write
the partition function as a sum over topological sectors:

Z¼
Z

DAe−βS ¼
X
N∈Z

Z
DAe−βSδðQ−NÞ≡X

N

ZN: ð3Þ

The susceptibility is then given by

χtopðTÞ ¼
T
V

R
DAe−βSQ2R
DAe−βS

;

¼ T
V

P
NN

2ZNP
NZN

: ð4Þ

At low temperatures and/or large volumes, this sum will
have important contributions from many N values. But at a
sufficiently high temperature, such that V=TχtopðTÞ ≪ 1,
the numerator is dominated by N ¼ 1 and N ¼ −1 and
the denominator is dominated by N ¼ 0. Renaming
Z1 þ Z−1 → Z1 (the part of the partition function where
Q2 ¼ 1, that is, Q ¼ �1) and considering a finite volume
we find

χtopðTÞ ≃
T
V
Z1

Z0

¼ 1

a4NxNyNzNτ

Z1

Z0

;

χtopðβÞa4ðβÞ ¼
1

VL

Z1

Z0

: ð5Þ

Here we have reexpressed the temperature and volume as
they would appear in a lattice calculation, with lattice
spacing a and lattice extents ðNτ; Nx; Ny; NzÞ in the
temporal and the three space directions, and VL ¼
NτNxNyNz the number of lattice sites. The last line
emphasizes that the lattice spacing is a function of the
lattice gauge coupling β ¼ 6=g2latt. The nontrivial relation
between these two quantities is determined by a scale
setting measurement.
In this work, we will present a method which determines

the ratio of susceptibilities at two specified temperatures.
With a fixed lattice extent in the spatial and temporal
directions, the two temperatures will correspond to two
gauge couplings βh and βc (h for hot and c for cold) which
will in turn correspond to two different lattice spacings
aðβhÞ and aðβcÞ. The ratio of susceptibilities at two
temperatures will then be given as

χtopðβhÞa4ðβhÞ
χtopðβcÞa4ðβcÞ

¼ Z1ðβhÞ
Z1ðβcÞ

Z0ðβcÞ
Z0ðβhÞ

: ð6Þ

Our method will also allow for the determination of the
above ratio for any pair of temperatures within the
prespecified range. We will do so by computing the ratio
of partition functions using two Monte Carlo simulations:
one that works within theQ ¼ 1 topological sector and one
which works within the Q ¼ 0 sector, but with each
simulation exploring the full range of β values, as we
describe in the next section.

III. TEMPERATURE REWEIGHTING

In a given Monte Carlo simulation, we intend to sample
a range of temperatures continuously over a prespecified
range in pure glue QCD regularized on a finite space-time
lattice. We will accomplish this using a reweighting
method very similar to the old proposal of Berg and
Neuhaus [16]. In this section we first show how a
reweighted Monte Carlo simulation can be used to deter-
mine the susceptibility; then we show how the reweighted
Monte Carlo calculation can be carried out; and finally we
show how to determine the reweighting function itself.
In practice, the numerical work proceeds in exactly the
opposite order.

A. Susceptibility using reweighting

In the standard Monte Carlo simulation one evaluates the
partition function ZðβÞ shown below at a particular gauge
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coupling β by generating gauge configurations with the
probability distribution dP½U� as1

ZðβÞ ¼
Z

DUe−βS; dP½U� ¼ dUe−βS

ZðβÞ : ð7Þ

In such a Monte Carlo calculation, a single temperature is
simulated which is controlled by the gauge coupling β since
the lattice dimensions are fixed. In order to simulate a range
of β values and therefore a range of temperatures, the
sampling weight in the usual Monte Carlo simulation in
Eq. (7) is replaced with

Z
DUe−βS →

Z
DUe−WðSÞ: ð8Þ

The weight function WðSÞ is a general function of the
action S, which should be chosen such that the above
integral samples a wide range of S values rather uniformly.
Assuming that such a WðSÞ function can be found, a
Monte Carlo simulation with WðSÞ generates an ensemble
which can be reweighted to determine expectation values at
a given β value β0 via

Zðβ0Þ ¼
Z

DUe−WðSÞeþWðSÞ−β0S

∝
X
i

eWðSiÞ−β0Si ; ð9Þ

where i indexes the sampled configurations. In practice this
partition function is used to determine expectation values
for operators via

hOi ¼ Z−1
Z

DUe−β0SO ≃
P

ie
WðSiÞ−β0SiOiP
ie

WðSiÞ−β0Si : ð10Þ

The condition thatWðSÞ will work well is that it samples
S rather uniformly over a range of action values. (If there is
an S-range where WðSÞ strongly undersamples, a Markov
chain will have trouble moving from one side of this range
to the other; and if there is a range where it strongly
oversamples, that will reduce the statistical power afforded
to all other ranges.) Call the smallest and largest action
values over which we want uniform sampling Smin and
Smax. Also define the density of states

ρðS0Þ≡
Z

DUδðS½U� − S0Þ: ð11Þ

Then our goal is that, between Smin and Smax, the function
WðSÞ should be close to lnðρðSÞÞ. Then the probability

(density) to obtain a particular S value S0 under the W-
weightedpath integral,PðS0Þ¼

R
DUe−WðS½U�ÞδðS½U�−S0Þ¼

ρðS0Þe−WðS0Þ, will be nearly uniform.
It is also informative to think about the functionWðSÞ in

terms of its derivative

W0ðSÞ ¼ dWðSÞ
dS

≡ βðSÞ: ð12Þ

We nameW0ðSÞ ¼ βðSÞ for two reasons. First, if we choose
WðSÞ ¼ βS with a fixed β value, then we get precisely the
standard ensemble, and W0 is precisely the β value of the
ensemble. And if standard sampling with β ¼ β0 returns an
expectation value for the action of hSiβ0 ¼ S0, then we will
find that under sampling using WðSÞ ¼ lnðρðSÞÞ, that
W0ðS0Þ ≃ β0. To see this, expand ln ρðSÞ in a Taylor series
about S0:

ln ρðSÞ ¼ ln ρðS0Þ þ βðS0ÞðS − S0Þ
þ β0ðS0ÞðS − S0Þ2=2þ � � � : ð13Þ

The range of S values of interest is set by 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
β0ðS0Þ

p
and is

small compared to S in the thermodynamical limit; this
controls the convergence of the Taylor series. Using the
series to evaluate hSi for the choice β ¼ βðS0Þ, we find

hSiβ0 ¼
1

Z

Z
dSSρðSÞe−βðS0ÞS;

¼ 1

Z

Z
dSSe−βðS0ÞSþln ρðS0ÞþβðS0ÞðS−S0Þ

× eβ
0ðS0ÞðS−S0Þ2=2þ…;

≃
1

Z
e−βðS0ÞS0þln ρðS0Þ

Z
dSSeβ

0ðS0ÞðS−S0Þ2=2; ð14Þ

where Z is the value of the integral without the explicit S
factor. Since β0 < 0, this is a Gaussian integral centered at
S ¼ S0, and the expectation value is S ¼ S0 up to correc-
tions which vanish in the thermodynamical limit.
Therefore, up to corrections which vanish in the thermo-
dynamical limit, a good choice forWðSÞwill have, as a first
derivative, W0ðSÞ ¼ βðSÞ the β value which returns the
given S as the expectation value for the action. Hence,
W0ðSÞ will look approximately as shown in Fig. 1.
Now let us return to the application of this approach to

the study of the susceptibility χtop. By establishing two
reweighting functions WðSÞ and WQðSÞ for the Q ¼ 0 and
jQj ¼ 1 ensembles, respectively, we can generate multi-
temperature ensembles, labeled by i and iQ, which,
respectively, sample the Q ¼ 0 and the jQj ¼ 1 ensembles
across temperatures. The ratio needed in Eq. (6) is then
given by

1We use square brackets to emphasize functionals, e.g.,
functions of fields; WðSÞ because S takes a real value, but
S½U� because U is a field.
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χtopðβhÞa4ðβhÞ
χtopðβcÞa4ðβcÞ

¼
�ðPiQe

WQðSiQÞe−βhSiQÞðPie
WðSiÞe−βcSiÞ

ðPiQe
WQðSiQÞe−βcSiQÞðPie

WðSiÞe−βhSiÞ

�
: ð15Þ

There are two subtleties associated with this expression.
The first is that Eq. (9) only determines the partition
function up to an overall multiplicative factor. However,
this multiplicative factor cancels between the numerator
and denominator expressions computed from the same
sample. The second subtlety is that the partition function Z
also has severe lattice-spacing dependent renormalizations,
which we cannot easily compute. Fortunately, these cancel
because each lattice spacing occurs once in the numerator
and once in the denominator in Eq. (15).

B. Update algorithm with WðSÞ
In this section we explain the algorithm to perform a

Monte Carlo simulation with weight function e−WðSÞ. Our
aim is to generate a sampling with probability distribution

dP½U� ¼ e−WðS½U�ÞR
DUe−WðS½U�Þ ; ð16Þ

where S½U� is the standard lattice gauge action and we
assume that WðS½U�Þ is a known differentiable function of
the action S. Simulating such a weight requires a slight
modification of the standard hybrid Monte Carlo (HMC)
algorithm [17].2

As in the standard HMC algorithm, we introduce
canonical momenta πμ for the link variables Uμ, and define
a Hamiltonian for this system as

Hðπ; UÞ≡X
μ;x

1

2
ðπμðxÞÞ2 þWðS½U�Þ; ð17Þ

S½U� ¼
X
□

�
1 − 1

3
Tr□

�
; ð18Þ

where S½U� in Eq. (18) is the standard Wilson gauge
action written without the gauge coupling β prefactor. The
standard HMC algorithm would use the same Hamiltonian
but withWðS½U�Þ replaced by βS½U�, that is, it would use a
strictly linear function for WðS½U�Þ.
A single HMC update trajectory consists of the stan-

dard steps:
(1) Picking a random canonical momentum πμðxÞ from

a Gaußian ensemble independently for each of the
elements of the Lie algebra.

(2) Solving the following Hamilton equations of motion
(shown here schematically):

dU
dt

¼ −iπU; ð19Þ

dπ
dt

¼ iU† ∂WðS½U�Þ
∂U ¼ iU† dWðS½U�Þ

dS½U�
∂S½U�
∂U ð20Þ

for a total time t0. The derivative with respect to Uμ

is a Lie derivative and in this sense these equations
are a schematic representation. Here the time t is a
fictitious variable under which the HamiltonianH is
conserved.
These Hamiltonian equations are discretized us-

ing a time-symmetric solver such as the leapfrog or
Omelyan algorithms. Under these algorithms, one
iteratively solves Eq. (19) for all link variables U at
fixed π, and then solves Eq. (20) for all π variables at
fixedU. Before applying Eq. (20), we must compute
S½U� and use the (instantaneous) value of W0ðS½U�Þ
in place of the usual factor of β at each time step
during the update.
The use of a time-symmetric algorithm is essen-

tial, since it ensures the property that, if the pair
ðUi; πiÞ (i for initial) is carried to ðUf ; πfÞ under the
update algorithm, then the pair ðUf ;−πfÞ is carried
to ðUi;−πiÞ up to roundoff error effects. This is
sufficient to ensure that the algorithm converges, in a
Fokker-Planck sense, to the probability distribution
expð−HÞ provided that we also include a Metropolis
accept/reject step.

(3) In adding the Metropolis step, the change in the
Hamiltonian ΔH ¼ H½Uf ; Pf � −H½Ui; Pi� is com-
pared to a random number drawn uniformly from the
interval [0, 1]:R½0; 1�. Whenever eΔH < R½0; 1�, we
accept the change, and proceed with Uf as our new
configuration. Otherwise we revert to Ui, that is, we
reject the update.

FIG. 1. A cartoon of the Monte Carlo sampling of WðSÞ. The
green line represents a W choice which will sample one β value,
while the blue line will sample all β values between βmax and βmin.

2It is also straightforward to use a mixture of heatbath and
overrelaxation steps. However this approach does not generalize to
the unquenched theory, so we concentrate on the HMC approach.
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The only differences with respect to the standard HMC
algorithm [17] are the use ofW0ðS½U�Þ the “instantaneous β
value” in place of β in Eq. (20) and the use of WðS½U�Þ in
place of βS½U� in the Metropolis accept-reject step. Both
modifications are compatible with the time-symmetry of
the update algorithm and therefore preserve detailed
balance. With these modifications, the HMC algorithm
now generates the desired probability distribution.
For the case of aQ ¼ 1 simulation, an additional accept-

reject step is needed, in which we check to see whether the
configuration has fallen down into the Q ¼ 0 sector and
reject the update if this is the case. In practice we can buffer
every Nth configuration and only perform this step after
every N HMC update steps, reverting to the last buffered
configuration when the check fails. We define Q as the
lattice sum of an a2-improved topological density defini-
tion after τF ¼ 2.4a2 units of Wilson flow, as in [15]. We
find that values of N ¼ 5 or N ¼ 10 are adequate to
preserve a good acceptance rate.
Lastly we remark on the optimal length of the individual

trajectories. The figure of merit for trajectory length is the
mean-squared change in S½U� per unit numerical effort. The
numerical effort is approximately linear in trajectory length
t0. For a short trajectory, ΔS½U� is linear, and ðΔS½U�Þ2
quadratic, in trajectory length; but beyond a certain (fairly
short) trajectory length the action change saturates.
Therefore we started with a study of how ðΔS½U�Þ2 varies
with trajectory length and chose the value which maximizes
ðΔS½U�Þ2=t0; t0 ≃ 0.75a. A single trajectory leads to a
change of ðΔS½U�=S½U�Þ2 ≃ 3=Ndof where Ndof ¼ 24VL is
the number of lattice degrees of freedom (3 polarizations
and 8 colors per site). Therefore, for a well-chosenWðS½U�Þ
function, since changes to S½U� accumulate in a Brownian
fashion, the number of updates needed to explore the full β
range is of order

Nupdates ∼ Ndof ln2ðβmax=βminÞ: ð21Þ

C. Choice and determination of WðSÞ
Now we return to the question of how to determine the

weight function WðSÞ. We start by choosing the range of β
values we want to explore, β ∈ ½βmin; βmax�. This choice is
purely determined by the temperature range we want to
study. Since W is a function of S, not β, we must convert
these limiting values into limiting S values. We do this by
performing short fixed-β Markov chains to establish
Smax ¼ hS½U�iβmin

and Smin ¼ hS½U�iβmax
. Our goal is to

find a good description ofWðSÞ in the range between these
two limiting values.
Our procedure will be almost the same as in our previous

work [14,15]. First, we choose a discrete set of values
Si; i ¼ ð0;…; NiÞ, with S0 ¼ Smin and SNi

¼ Smax. (Ni is
the total number of intervals between Smin and Smax.) The

function WðSÞ will be determined based on the values at
these S points,Wi ¼ WðSiÞ. In our previous work, we used
weight functions which were interpolated in a piecewise-
linear fashion between such control points. But because the
HMC algorithm described above works best when both W
and W0 are continuous, we instead define WðSÞ to be the
cubic spline interpolation between the WðSiÞ. The spline
function’s definition also requires boundary conditions; we
take these to be thatW0ðSminÞ ¼ βmax andW0ðSmaxÞ ¼ βmin.
We define W outside the range of the spline function by
fixing W0ðS > SmaxÞ ¼ βmin and W0ðS < SminÞ ¼ βmax.
This is also illustrated in Fig. 1.
It remains to determine the values forWðSiÞ. We make an

initial guess as follows. We choose an intermediate β value
βmid ¼ ðβmax þ βminÞ=2 and we perform a short fixed-β
Monte Carlo simulation to find the corresponding S value
Smid. We takeW0ðSÞ to be a quadratic fit based on the three
values ðβmax; βmid; βminÞ at ðSmax; Smid; SminÞ respectively,
and integrate to get a starting guess for WðSÞ, which we
evaluate at the Si to get WðSiÞ. Using more intermediate
points could give a better starting guess, but it would still be
necessary to apply the following automated iterative
improvement scheme.
We iteratively improve the values WðSiÞ by using an

automated schemewhichwe introduced inRef. [14] (see also
[18] where a similar scheme was developed). Consider the
difference in thewayWðSÞ samples and thewayWidealðSÞ ¼
ln ρðSÞ samples. Wherever WðSÞ < WidealðSÞ, e−WðSÞ is too
large, and too many samples are taken. Similarly, where
WðSÞ > WidealðSÞ, e−WðSÞ is too small, andwe fail to sample.
Therefore, it is natural to assume that, during aMarkov chain,
we aremostly sampling in placeswhereWðSÞ is too small. So
the philosophy of our update algorithm it to run a Markov
chain, and after everyupdate step, to assume that the currentS
value has a too-smallW value, and to slightly increaseWðSÞ
at the current S value of the chain. [This updating philosophy
was originally proposed by Berg and Neuhaus [16], and it is
also used in “metadynamics” updates [19–21]; but our
definition and update of WðSiÞ are different.]
There are two issues with applying this in practice. First,

WðSÞ is determined by values at a discrete set of points Si;
which WðSiÞ should be adjusted, and by how much? We
address this by adjusting the two Si values closest to the
current S value, in proportion to how close they are.
Second, how large should the adjustments to WðSiÞ be?
At the beginning, our guess forWðSiÞmay be off by quite a
bit, and we should use larger adjustments. But as our
determination improves, we want to make the algorithm
more stable so that it converges towards well determined
values. We address this by defining a parameter sr which
tells how strongly we change the W function, which is
reduced over the course of the Markov chain based on a
criterion which shows whether the WðSÞ function is giving
good performance. In detail, our procedure after each HMC
step is the following:
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(1) If S½U� < S0 or S½U� > SNi
, then S is out of range

and WðSÞ is not updated.
(2) If S½U� is in range, then we determine Si; Siþ1

such that the current S value lies between them,
Si < S½U� < Siþ1.

(3) We increase WðSiÞ and WðSiþ1Þ by ΔWðSiÞ ¼
srðSiþ1−S½U�Þ
ðSiþ1−SiÞ and ΔWðSiþ1Þ ¼ srðS½U�−SiÞ

ðSiþ1−SiÞ . Here sr is

an update strength, whose evolution we discuss next.
(4) If i ¼ 0 or iþ 1 ¼ Ni so we are in the first or last

interval, then the boundary value WðS0Þ or WðSNi
Þ

is updated with double strength. This is because
every WðSiÞ value is updated when S lies in the two
intervals on either side of Si, except these boundary
values which are only updated when S lies in the
single interval they bound. Therefore, to be updated
the same amount as the other WðSiÞ values requires
that these updates occur with double strength.

The value sr determines how strongly the algorithm
adjusts WðSÞ. Since the initial guess is rather crude, we
must initially adjustWðSÞ rather aggressively. Therefore we
choose sr initially such that, in the estimated time it takes
for the Monte Carlo simulation to go from the top to the
bottom and back, the WðSiÞ will change by of order 100:
sr ¼ 100Ni=Nupdates, with Nupdates given in Eq. (21). We
know that the update algorithm is successfully modifying
WðSiÞ because the algorithm is capable ofmoving from Smin
to Smax and back successfully. Therefore, each time the S-
valuemakes itsway from the first interval (S < S1) to the last
interval ðS > SNi−1Þ and back (whichwe call a “sweep”), we
reduce sr; at first we reduce it by a factor of 2 after each
sweep, but after the averageWðSiÞ changes by less than 1 per
sweep, we change it by a reduced amount. Specifically, if a
sweep is performed in Ns HMC updates and Nssr=Ni > 1,
then sr is multiplied by 1=2; but if Nssr=Ni < 1, then sr is
multiplied by 1 − Nssr=ð2NiÞ. The update ends when five
sweeps change the average WðSiÞ by a total of less than 1,
that is, the total Ns value summed over five consecutive
sweeps has ðPNssrÞ=Ni < 1. Since the changes to WðSiÞ
and sr and the stopping criterion are all simple and
predefined, the algorithm runs in an automated fashion
without the need for by-hand intervention.
We show the difference between the initial guess for

WðSÞ and the finally determined WðSÞ function, for the
lattice and β ranges specified in the next section, in Fig. 2.
The figure shows that our starting guess differed from the
finally determined WðSÞ by of order 60, which is enough
that the initial guess would completely fail to sample all S
values; the iterative improvement is necessary to provide
a quality WðSÞ determination.3 The complete built W0 is
shown in Fig. 3.

Finally, one must determine WðS½U�Þ for the Q ¼ 1
sector. Here we can take as an initial guess the WðS½U�Þ
value determined in the Q ¼ 0 sector. To further refine this
guess, we shift it by

WQ¼1ðSÞ ¼ WQ¼0ðSÞ − 11 lnðT=T0Þ; ð22Þ

where T is the temperature associated with the β value
described by the slope W0 using a scale-setting relation
between lattice coupling β and temperature T, and T0 is a
reference temperature which could for instance be the
temperature at βmin. The factor 11 is the expected temper-
ature dependence of χtopa4 when the lattice spacing a varies
as 1=T, at leading perturbative order. Again, Eq. (22) is
only used to refine the initial guess for WQ¼1ðSÞ; we again
perform an automated W changing Markov chain to
improve this guess; however the initial sr value can be
chosen to be smaller, sr ∼ 1Ni=Nupdates.
After theWðS½U�Þ-setting Markov chains are completed,

we freeze the values of WQ¼0;Q¼1ðSÞ and use them in
detailed-balance respecting Markov chains which we
will use to determine the susceptibility as described in
Sec. III A.

IV. RESULTS

In this section we present results of a simulation with the
aforementionedWðSÞ sampling. Our goal is only to test the
method;wewill not studymultiple lattice spacings to attempt
a continuum limit. Instead, we choose one lattice geometry
from among the geometries studied in Refs. [14,15], and
which we can therefore use to compare our results for
susceptibility ratios to those obtained via a competing

FIG. 2. Difference between the final determined WðSÞ and the
initial guess.

3We could further improve the initial guess by using more
intermediate β values; but using enough values, with precise
enough hSi determinations, to determine WðSÞ to better than �1
costs the same as the W refinement algorithm described here.

JAHN, JUNNARKAR, MOORE, and ROBAINA PHYS. REV. D 104, 014502 (2021)

014502-6



technique. Our goal is to establish which approach, the one
described here or the one described in Ref. [15], is more
efficient at establishing the topological susceptibility at high
temperature.
We choose to investigate a lattice with temporal extent

Nτ ¼ 10 and spatial extent 322 × 36, with ðβmin; βmaxÞ ¼
ð6.9076; 8.01951Þ, which corresponds, according to the
scale setting calculation of Ref. [22], which we will use
throughout, to Tβmin

¼ 2.5Tc and Tβmax
¼ 9.4Tc. This scale-

setting relation involves applying a fit to scale-setting data
beyond the range where the reference has performed
simulations, that is, an extrapolation, which means it
may not be absolutely trustworthy. However, by expressing
our results in terms of χtopðβÞa4ðβÞ, we can remain agnostic
about the relation between T and β and just determine how
accurately we can determine χtopa4 as a function of β for
this specific lattice geometry. Getting continuum results
over a range of temperatures will then of course require
multiple lattice Nτ values and a reliable scale setting.
However, for the time being our goal is just to evaluate
the precision-to-numerical-cost ratio of the technique, so
we leave this problem for later. The number of updates used
in each procedure are listed in Table I. Note that an
unfortunate choice of sr made the Q ¼ 1 building unnec-
essarily inefficient; a more careful choice should have
required a fraction as many trajectories, so that the
trajectory count would be dominated by the measurements.
We begin with a check that our WðSÞ function correctly

generates a rather uniform sample of configurations across
the desired β range. We investigate this by plotting a
histogram of the S values measured during the sampling
Markov chain, both for the Q ¼ 0 and the Q ¼ 1 ensem-
bles, shown in Fig. 4. The sample is adequately uniform.

Our main results are presented in Fig. 5, which shows
how χtopa4 changes as a function of β across the range we
study, evaluated from our Markov chains using Eq. (15).
We have chosen to use a value near the beginning of the β
range (T ¼ 2.8Tc) as the low temperature and to express all
other temperatures in relation to this one. The figure, and
further data presented in Table II, show that the error bars
are smallest between nearby β values and grow to around
�0.35 in lnðχtopÞ for the widest-separated temperatures.
Our results agree within error bars with the results in

FIG. 3. Final choice of W0ðSÞ for the lattice study described in
Sec. IV.

FIG. 4. A histogram of the S distribution of our Markov chain
samples in the Q ¼ 0 sector (left) and the Q ¼ 1 sector (right).

TABLE I. Numerical cost of the simulation on a lattice
four-volume V ¼ 10 × 322 × 36 with βmin ¼ 6.9076 and βmax ¼
8.01951.

Procedure Q HMC Trajectories Sweeps

Building 0 4 × 106 22
Building 1 8 × 106 17
Measurements 0 6.8 × 106 45
Measurements 1 4.9 × 106 35

FIG. 5. Results of the ratio in Eq. (15).
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Ref. [15] for those values where they are directly
comparable.

V. DISCUSSION

We have shown that the method we propose can
successfully find the β dependence of χtopa4, and therefore
the temperature dependence of the susceptibility if the line
of constant physics [that is, aðβÞ] is known. This deter-
mines χtop over a range of temperatures if it is known at the
lowest temperature, which is where it is most easily
determined by other approaches.
There are two key questions. Is it more or less effective

than the rather similar approach of Refs [11,12]? And how
does it compare with the approach of Ref. [15]?
The approach of Refs. [11,12] computes d lnðχtopa4Þ=dβ

at several β values, which it integrates to determine
χtopa4ðβÞ. We review this approach and compare it to
our own in an appendix. To summarize, in a high-statistics
determination, the approaches have essentially the same
numerical precision. However, if lower precision is desired,
the numerical cost associated with building the WðSÞ
functions in our approach is essentially “dead weight”
which does not contribute to the statistical power. The other
approach does not suffer from this problem and so it is
more efficient for a low-statistics determination. Our
approach has the advantage that it automatically includes
all intermediate temperatures, while the alternative bases
the determined d lnðχtopa4Þ=dβ on a finite set of values
which may leave discrete integration errors. But it is not
difficult to use enough values to render this a minor
concern.
Finally, we want to compare the numerical efficiency to

the method of Ref. [15]. Fortunately, the single lattice
we investigated in this work was also used in that
reference, and we can directly compare the error on
χtopa4ðβhÞ=χtopa4ðβcÞ found here with the error on the
same quantity found there, along with the number of HMC
trajectories needed in each case. In that reference χtopðTÞ
was determined at β ¼ ð6.90097; 7.30916; 7.76294Þ, cor-
responding to T ¼ ð2.5; 4.1; 7.0ÞTc, a little narrower than
the range considered here. The three determinations
required a total of 9.2 × 106 trajectories, about half the

number which should have been needed here. The average
trajectory length used was also shorter in that reference than
what we used here. The final errors on lnðχtopÞ in that study,
for this lattice, were (0.09,0.09,0.08) at the three temper-
atures. In comparison, in comparing 2.8Tc to 7.0Tc we find
statistical errors of 0.30. To reduce these errors to the level
of the other study would therefore require about 10 times
more statistics in our measurement runs, indicating that the
present method is of order 10 times less numerically
efficient. Moreover, Ref. [15] finds that the number of
trajectories needed for a given statistical error barely
changes as one increases the volume (larger aspect ratio)
or makes the lattice finer (larger Nτ at fixed aspect ratio),
whereas we know that the number of updates needed for the
method described in this paper should scale with the
number of lattice sites, see Eq. (21).
We conclude that our method is at least 10 times less

efficient than the single-temperature reweighting approach
of [15], and will become still less efficient as one goes
closer to the large-volume and continuum limits. As we
understand it, this also implies that it should be easier in
principle to achieve small statistical errors with the
approach of [15] than with the approach of [11,12].
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APPENDIX: COMPARISON WITH THE
SLOPE METHOD

Our approach is closely related to the approach of
Refs. [11,12], and as we understand it, the errors per
numerical effort are nearly the same. To explain this
conclusion, we start with a quick review of their approach,
and then look at the issue of statistical power in each
approach.
Their approach also seeks to compute Eq. (6) and then

use a determination of χtopðβcÞ to determine χtop at other
temperatures. Taking the log of Eq. (6) we find

ln
χtopðβhÞa4ðβhÞ
χtopðβcÞa4ðβcÞ

¼ ðlnðZ1ðβhÞÞ − lnðZ1ðβcÞÞ

− ðlnðZ0ðβhÞÞ − lnðZ0ðβcÞÞ: ðA1Þ

TABLE II. Several temperatures, the corresponding β values
using the scale setting of Ref. [22], and our results for the log
susceptibility ratio and its 1-sigma statistical error.

T=Tc β lnðχtopa4ðTÞ=χtopa4ð2.8TcÞÞ
1-σ statistical

error

3.5 7.1771 −2.25 0.17
4.0 7.2885 −3.68 0.20
5.0 7.4764 −5.79 0.24
7.0 7.7629 −9.39 0.30
9.0 7.9788 −12.20 0.36
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Now note that

ZðβÞ ¼
Z

DAμe−βS ⇒

−
∂ lnZ
∂ ln β ¼ 1

Z

Z
DAμe−βSβS ¼ hβSi ðA2Þ

the β dependence of lnZ is set by the expectation value of
the action. Therefore

lnZ1ðβhÞ − lnZ1ðβcÞ ¼ −
Z

ln βh

ln βc

hβSi1dðln βÞ; ðA3Þ

and the ratio we want is

ln
χtopðβhÞa4ðβhÞ
χtopðβcÞa4ðβcÞ

¼ −
Z

ln βh

ln βc

ðhβSi1 − hβSi0Þdðln βÞ: ðA4Þ

References [11,12] evaluate hβSi in bothQ ¼ 0 andQ ¼ 1
ensembles at a number of β values, which are then used to
estimate this integral by, e.g., the trapezoid rule.
To compute Eq. (A4) using our approach, first write

Z
lnβh

lnβc

−hβSidðlnβÞ¼
Z

lnβh

lnβc

−
P

ie
WðSiÞ−βSiβSiP

ie
WðSiÞ−βSi dðlnβÞ;

¼
Z

lnβh

lnβc

d
dlnβ

ln

�X
i

eWðSiÞ−βSi
�
dðlnβÞ;

¼ ln

P
ie

WðSiÞ−βhSiP
ie

WðSiÞ−βcSi ; ðA5Þ

so applying Eq. (10) to Eq. (A4) leads directly to Eq. (15).
Therefore the real difference between the approaches is
whether Eq. (A4) is estimated based on interpolating results
for several temperatures, or using a single Markov chain
which spans all temperatures.
Now consider the statistical power of each approach. The

accuracy of a Monte Carlo evaluation of hβSi is set by the
variance of βS and the number of independent configura-
tions used. The variance should be reasonably approxi-
mated as that for Ndof Gaussian random variables:
σ2βS ≃ Ndof=2. Therefore order-1 errors in hβSi require

Ndof=2 evaluations. Since the expectation value determines
an integrand, this is multiplied by the integration range,
so Ndof=2 evaluations return an error in the ratio of
partition functions which is of order lnðβmaxÞ − lnðβminÞ.
Evaluating hβSi at multiple β values leads to a larger error
at each evaluation, but because each is responsible for a
narrower Δβ range and the errors are uncorrelated, the final
statistical uncertainty is independent of the number of
β values used in the evaluation and depends only on
the total number of Markov steps and the width of the
β range considered. The final error estimate is Δ ln χ ¼
lnðβmax=βminÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndof=2Nupdates

p
. The error rises by

ffiffiffi
2

p
and

Nupdates is doubled when we recall that separate simulations
are needed in the Q ¼ 0 and Q ¼ 1 sectors.
In comparison, we see in Eq. (21) that our approach

can explore the full β range, leading to order-1 errors in
ln χ, in Nupdates ∼ Ndof ln2ðβmax=βminÞ. Therefore the two
approaches produce errors per unit numerical effort which
are the same up to an order-1 factor. In a numerical
experiment on a toy problem (N independent Gaussian
random variables x with action S ¼ P

x2=2) we find that
the order-1 factor is in fact 1, so the two approaches have
the same statistical power per compute time, provided that
WðSÞ is well determined and neglecting the computational
effort expended in evaluating it.
We should also remark on how each approach is

extended to full (unquenched) QCD. In each case the main
challenge is dealing with the way quark masses must be
varied with the lattice spacing and therefore with β: m ¼
mðβÞ (which must also be determined as part of the scale
setting). This added β dependence changes Eq. (A2),
replacing hβSi → hβSþ βdm=dβψ̄ψi. In our approach
one must replace WðSÞ → WðSÞ þ ψ̄ðDþmðW0ðSÞÞÞψ
where we use W0 in place of β for the scale dependence
of m. This amends Eq. (20) by the addition of the standard
fermionic force term and by the replacement dW=dS½U� →
ðdW=dS½U�Þ þ ðdm=dβÞðdW0=dS½U�Þhψ̄ψi where hψ̄ψi is
the sum of the ψ̄ψ value over all sites in the current
configuration. Finally, in Eq. (15), the W − βS reweighting
must be complemented by a determinant-ratio from the
S-dependent mass to the physical mass for the desired
β value.
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