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Numerical processing in the human parietal cortex
during experimental and natural conditions
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Human cognition is traditionally studied in experimental conditions wherein confounding

complexities of the natural environment are intentionally eliminated. Thus, it remains

unknown how a brain region involved in a particular experimental condition is engaged in

natural conditions. Here we use electrocorticography to address this uncertainty in three

participants implanted with intracranial electrodes and identify activations of neuronal

populations within the intraparietal sulcus region during an experimental arithmetic condition.

In a subsequent analysis, we report that the same intraparietal sulcus neural populations are

activated when participants, engaged in social conversations, refer to objects with numerical

content. Our prototype approach provides a means for both exploring human brain dynamics

as they unfold in complex social settings and reconstructing natural experiences from

recorded brain signals.
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T
he foundation of our scientific practice rests upon the
measurements we make during experimental paradigms in
which the influence of the natural environment is reduced

as much as possible, with all variables and confounds being
eliminated or kept to a bare minimum. By contrast, real life is
always shaped by ever-changing environmental factors and
flowing social interactions, which have made it near impossible
to study brain dynamics as they unfold in natural conditions.

Recent neuroimaging studies have broken new ground for
deciphering hemodynamic brain responses during relatively more
naturalistic conditions such as watching a movie, listening to a
story or viewing a visual scene inside the scanner1–10. Yet, despite
these advances, functional imaging studies have inherent
limitation in decoding brain activity within the subject’s own
environment. These methodological factors have limited imaging-
based investigations to behaviourally passive states during the
experimental presentation of natural stimuli within the scanner.
Electrophysiological studies with scalp electroencephalography
(EEG), on the other hand, have been shown to be suitable for
recordings in natural conditions11–17. However, given the
limitation of scalp EEG in localizing the precise source of
electrical signals, we relied on intracranial recordings to capture
brain responses from populations of neurons during experimental
as well as natural conditions.

We designed the current study to measure focal brain activity
during a well-established experimental condition before examining
the activity of the same brain region during natural conditions.
For this, we focused on numerical processing, which represents
one of the more complex cognitive functions of the association
areas of the human brain. Extant neuroimaging evidence in
humans and electrophysiological studies in non-human primates
have shown increased activation within the intraparietal sulcus
(IPS) region during experimental conditions of numerosity18–21.
However, intracranial electrophysiological studies of the IPS in
humans during similar conditions have been missing. It has
also been entirely unknown if a given IPS neuronal population
responds to events with numerical content during natural
conditions.

We used electrocorticography (ECoG) in patients with
epilepsy, who were implanted with chronic intracranial electrodes
covering the lateral parietal lobe for B7–10 days, during which
simultaneous video monitoring was performed. In combination,
this unique set of simultaneous ECoG/video data allows for
anatomically precise recordings from the human brain during
free behaviour. Each recording ECoG electrode captures electro-
physiological signals from a population of neurons (B500,000
cells) with high anatomical precision and temporal resolution22.
These electrodes are implanted chronically for several days and
the activity in a precise location of the brain can be studied during
spontaneous social interactions.

Although the ECoG electrodes capture oscillatory signals in
several narrow band rhythms such as a-, y- or g-bands, our focus

was on changes of high-frequency broadband (HFB) activity also
known as high-g. Unlike synchronous oscillatory rhythms, HFB
activity reflects asynchronous summation of population firing22

and directly correlates with blood-oxygenation-level-dependent
(BOLD) activity23–25.

Given the evidence from prior studies showing strong BOLD
responses in the human IPS during numerical cognition tasks and
those suggesting a direct link between HFB activity and increased
BOLD response, we focused our current analysis to test the
following two hypotheses. First, that there is higher HFB response
in the IPS during experimental arithmetic condition compared
with non-arithmetic conditions; and second, that the same IPS
area will show increased HFB response during periods of
numerical processing in natural conditions. To test the two
hypotheses, we conducted a controlled experiment in three
patients with intracranial recordings. Participants performed a
controlled experiment twice in which they were instructed to
judge the accuracy of complete arithmetic equations and non-
arithmetic memory statements (Fig. 1a). We established, in each
individual participant’s brain, the parietal areas with significant
HFB activity during the experimental arithmetic condition. Next,
we selected these same anatomical locations and retrospectively
explored simultaneous ECoG and video recordings to study the
behavioural correlates of HFB activity during natural conditions,
that is, when patients were engaged in everyday activities. We
report here that a set of neuronal populations within the human
IPS show increased HFB activity during the experimental
arithmetic condition, and that the same neuronal populations
are activated when participants, engaged in social conversations,
refer to objects with numerical content. Our approach provides a
means for both the exploration of human brain dynamics as they
unfold in complex social settings and the reconstruction of
naturalistic experiences from brain signals.

Results
Demographics and brain coverage. Formal clinical neu-
ropsychological evaluations suggested that the three participating
patients were all right-handed individuals with normal IQ. The
three participants were P1 (female), P2 (male) and P3 (male).
Across the three participants, grids of electrodes covered the left
(112 electrodes) or the right (178 electrodes) hemispheres. The
location of the grids was determined by clinical needs, and the
seizure foci were found to be in the right medial parietal (P1),
right medial occipital (P2) and left insular (P3) cortices. The
lateral parietal coverage was necessary for clinical purposes, but
only after intracranial monitoring it was found to be void of
epileptic activity. Using the anatomical boundaries as defined in
Fig. 1, we found 65 parietal electrodes (P1¼ 18, right; P2¼ 23,
right; P3¼ 24, left) that covered the anatomical landmarks of the
lateral parietal cortex (LPC) and were free of any epileptic or
artefact activity.

Table 1 | Behavioural data.

Participants Session Arithmetic
trials

Non-arithmetic
trials

Median
arithmetic(s)

Median non-
arithmetic(s)

Arithmetic/non-
arithmetic
duration

Accuracy
(%)

Chance level
(%)

P1 First 48 370 3.8 2.3 0.185 88 63
Second 48 370 2.8 1.9 0.177 79 67

P2 First 48 266 2.8 3 0.186 85 54
Second 48 270 2 1.6 0.183 85 65

P3 First 48 195 3.1 3.6 0.167 54 54
Second 48 271 3 3 0.166 85 52
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Behavioural data. Each participant performed the experimental
task twice and the behavioural data were largely consistent across
sessions (Table 1). Participants performed significantly above
chance level in both sessions, except for participant P3 who
performed relatively poorly during the first but improved his
performance during the second session of the same experiment.
The arithmetic trials constituted B20% of the task duration
(Table 1).

HFB power in IPS discriminates the numerical condition. We
evaluated the response of each parietal electrode in all frequency
bands by their event-related spectral perturbation (ERSP) for all
conditions and measured their temporal response profiles in six
distinct bands of activity: d(1–4Hz), y(4–8Hz), a(8–12Hz),
b(15–25), low-g (30–55Hz), and a relatively narrower band of
HFB (70–110Hz) was chosen to avoid line noise. This analysis
revealed a lack of significant increase of power, during the
arithmetic condition, in the lower bands across the 65 parietal
electrodes (P1¼ 18, P2¼ 23 and P3¼ 24). However, in 20 elec-
trodes (P1¼ 10, P2¼ 8 and P3¼ 2), we found a significant
increase of power in the HFB range during this condition
(Student’s t-test, Po1.6� 10� 4, Bonferroni corrected). In light
of this significant difference, we then estimated the degree of
separation between conditions. We found that 14 of these HFB-
activated electrodes (P1¼ 7, P2¼ 5 and P3¼ 2) had d0-values
greater than 0.75 (unit of s.d.). In other words, 20 electrodes
had statistically distinct distributions for arithmetic and non-
arithmetic conditions (using P-values), but in only 14 of these
electrodes the two distributions were distinct from each other
(using d0-values). Interestingly, the electrodes with the most
significant increase of HFB activity during the arithmetic

condition and with the highest d0-values were all located within the
IPS (Fig. 1f—for MNI coordinates of these electrodes see Table 2).

Importantly, the power of response in d-, y-, a- or b-bands was
not increased significantly in any of the 14 electrodes and their d0-
values were low (d0o0.34, P40.03, Bonferroni corrected for
number of electrodes and conditions, df¼ 416 (n1¼ 48 and
n2¼ 370), two-sample, right-tailed Student’s t-test, Fig. 2). The
power of low-g band was significantly increased in P1 (n¼ 3
electrodes, d041.2, Po10� 14) and P3 (n¼ 1, d0 ¼ 1.18, P¼ 2.7
� 10� 13) and the d0-values were high.
As noted, the same experimental task was administered twice

in each participant with identical but randomly ordered trials. We
used the first session as the ‘training session’ to establish optimal
with HFB amplitude and duration parameters for detection of
arithmetic trials in the second session, that is, the ‘testing session’.
For this, we relied on receiver-operating characteristic curves
(ROCs, Fig. 3a–c). These optimal parameters identified the supra-
threshold events that we labelled as ‘HFB peaks’. We evaluated
the sensitivity and specificity of the HFB peaks in separating
arithmetic (target) from non-arithmetic (non-target) trials in the
testing session and found that both sensitivity and specificity of
the HFB peaks in training sessions were similar to the ones
obtained during the testing session (Fig. 4). Given that the
training and testing sessions were recorded at different times, the
stability of the results from training to testing session suggested
that the statistics of the signals were qualitatively stable (that is,
positively skewed and leptokurtotic) and did not change
significantly over time. Using HFB peaks as events of interest
enabled us to make discrete signals from the instantaneous
amplitude fluctuation and subsequently in each electrode
determine a ‘selectivity index’ for the arithmetic condition during
the testing session. We found that all of the 14 arithmetically
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Figure 1 | ECoG responses in the human IPS region during experimental arithmetic condition. The experimental task (a) consisted of self-paced

arithmetic (simple addition equations) and non-arithmetic conditions (memory statements and 5-s fixation). During the arithmetic condition, we found

a significant increase of activity in some but not all electrodes. As seen in the time-frequency plot (b), this activity was best measured in the high-frequency

broadband (HFB, 70–110Hz) range. The temporal profile of relative HFB power changes (c) are shown for one representative electrode (P1–1)

averaged across trials. Using d0-values, the separation of the distributions of HFB responses during arithmetic (red, target) and non-arithmetic (blue, non-

target) conditions (d) could be quantified. In each participant’s brain, the d0-values were mapped (e), and the sites with the highest d0-values (red)

were located around the IPS region (white line in f). The IPS divides the superior (SPL) from the inferior parietal (IPL) lobules. PCS (post central sulcus) is

shown with dashed line. Among all subjects, electrode P1–1 (red electrode with white circle in e) had the highest d0-value.
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responsive electrodes had a high selectivity index (40.25) and,
more importantly, electrodes with higher d0-values also had
higher selectivity (r¼ 0.8, P¼ 0.007, Pearson’s correlation,
Fig. 5a). It should be noted that the selectivity index values were
extracted from the experimental trial-by-trial analysis whereas the
d0-values were calculated from the continuous analogue HFB
trace. Therefore, this analysis established a meaningful connec-
tion between the discrete signal in the experimental condition and
the continuous analogue signal in the natural condition. It also
confirmed that the measure of ‘HFB peak’ in the natural
condition preserves the selective property of the HFB signal.

Furthermore, we defined the so-called ‘co-occurrence’ value as
the ratio of the number of HFB peaks during the arithmetic
condition to the total number of HFB peaks. We found that the
co-occurrence values were significantly beyond the chance level
for electrodes (n¼ 14) with high selectivity index (r¼ 0.9,
P¼ 0.00001, Pearson’s correlation, Fig. 5b).

HFB activity in IPS during natural conditions. Once we
determined the optimal parameters, we applied the same para-
meters and identified the HFB peaks in the ECoG data during the
natural condition (Fig. 6). First, we determined the exact times at
which these HFB peaks occurred during the natural condition. In
parallel, and in a blind manner, independent raters watched the
video files recorded simultaneously with the ECoG data, and

determined the exact times at which behavioural events of interest
occurred. These included conversations of words or viewing of
objects with numerical content in space, time or magnitude. We
then analysed the timing of these behavioural events with the
timing of the HFB activity (Fig. 7 and Supplementary Movie 1).
This analysis revealed two important findings.

First, electrodes that had shown significant increase of HFB
activity during the experimental arithmetic condition exhibited
only infrequent HFB peaks in the natural condition, even though
the participants were involved in behaviours requiring attention,
memory, language and purposeful eye and hand movements. In
other words, the IPS neuronal populations identified to be
involved in numerical cognition were not activated when
participants moved their eyes or hands and grasped objects or
paid attention to different parts of the space. To quantify this, we
relied on the measure of ‘sparseness value’. In the controlled
experimental design, one has a priori knowledge about which
trials are arithmetic and which ones are non-arithmetic, and the
ratio of hits over misses (and, therefore, selectivity index values)
can be easily calculated. However, the natural condition does not
have the trial-based structure of an experimental condition.
Therefore, it is not amenable for the analysis of selectivity
index. Instead, considering each HFB peak as a discrete
event allowed us to calculate the sparseness value of response
during the natural condition. This analysis, which related a
property from the controlled experimental condition to another in
the natural condition, showed that the sparseness values of HFB
peaks correlated strongly with the selectivity index values of HFB
during the experimental condition (n¼ 14, r¼ 0.7, P¼ 0.003,
Fig. 8a). Interestingly, the sparseness values of the HFB peaks
varied across sites in the LPC and were highest in the IPS
recording sites.

Second, the infrequent HFB peaks in the natural condition
occurred at the times when the participant read, heard or spoke
words with numerical content (quantified by the co-occurrence
value, Fig. 8b). For each participant, neuronal populations with
the highest d0-values and the highest selectivity index during the
experimental arithmetic condition had the highest co-occurrence
values during both experimental and natural conditions, and
were located around the IPS region (marked with shaded
circles in Fig. 8). However, it should be noted that some
neuronal populations with higher co-occurrence values during
the controlled experimental condition did not have equally high
co-occurrence values during the natural condition. This indicates
that not all neuronal populations that were activated during
explicit calculation showed an equally high degree of response
during, for instance, the mere mention of numerical words.

Table 2 | The d0-values for the HFB peaks and the MNI
coordinates of the electrodes.

Electrode d0-Values MNI X MNI Y MNI Z

P1–1 5.8641 43 � 63 53
P1–2 2.6336 31 �68 57
P1–3 2.2397 39 � 52 60
P1–4 1.4864 42 � 71 44
P1–5 1.3315 30 � 75 49
P1–6 1.3099 31 � 59 65
P1–7 0.9537 17 �68 58
P2–1 2.1367 39 �64 50
P2–2 1.8009 33 � 58 56
P2–3 1.7085 41 �49 55
P2–4 1.467 30 � 73 50
P2–5 1.3276 15 � 72 56
P3–1 1.0541 �44 �49 58
P3–2 0.7531 �40 � 60 58

HFB, high-frequency broadband; MNI, Montreal Neurological Institute.
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d0-value of 0.75 (the higher the d0-values, the more selective activity during the experimental arithmetic condition). Each dot represents one electrode
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arithmetic condition are filled in red. Interestingly, none of these electrodes showed increase of activity in lower frequency bands during the arithmetic
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Moreover, the co-occurrence values changed significantly across
neighbouring electrodes, suggesting that the functional correlate
of the response was anatomically specific. For instance, three

electrodes within a 2-cm range of the LPC in P1 had widely
different co-occurrence rates (Supplementary Table S1, and
Fig. 7a, green trace versus red trace).
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These quantitative findings aside, Supplementary Movie 1
clearly depicts the essence of IPS activation during naturalistic
conditions. As seen in this video, neuronal populations with

selective response to arithmetic stimuli during the experimental
task exhibited HFB activity across different domains of numerical
calculation and enumeration. For example, supra-threshold
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increases in HFB activity were seen during events ranging
from the visual identification of numbers (Ishihara test) to
enumeration of objects or individuals (for example, ‘a bottle of
coke’, ‘some more Vicodin’, ‘another small group’, ‘bunch of

people’, ‘extra little bit’, ‘some of the nurses’ and ‘all the nurses’, as
well as estimation in the temporal domain (for example, ‘once
every hour’, ‘the first night’, ‘every hour on the hour’, ‘10 days
ago’ and ‘the day after last Monday’). The HFB peaks occurred
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three participants P1 (a), P2 (b) and P3 (c). The green trace in a is from a control parietal electrode (the same as in Fig. 2e), whereas the red traces are

from the electrode with the highest d0-values in each participant. There is a remarkable co-occurrence between behavioural events and HFB peaks
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0 20 40 60 80 100
0

20

40

60

80

100

Sparseness (%)

S
el

ec
tiv

ity
 in

de
x 

(%
)

0 20 40 60 80 100
0

20

40

60

80

100

Co-occurrence experimental condition (%)

C
o-

oc
cu

re
nc

e 
na

tu
ra

l c
on

di
tio

n 
(%

)

a b

Figure 8 | Sparseness and selectivity index are related to co-occurrence values. In both panels, markers in red, blue and green represent electrodes

from participants P1, P2 and P3, respectively. For each participant, the electrode with the highest d0-value is marked with a shaded halo. The red

square marker in each plot represents the control electrode also shown in Fig 2f. (a) Activity of electrodes responsive during experimental numerical

condition was sparse during natural condition. The selectivity index and sparseness were correlated (Pearson’s correlation, n¼ 14, r¼0.7, P¼0.0025).

(b) Co-occurrence of HFB peaks during experimental numerical condition and natural numerical processing are correlated. HFB peaks co-occurred

with numerical events greater than the chance level (shown with dashed lines) and this was significant for 9 out of 14 electrodes (filled markers, Po0.05).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3528 ARTICLE

NATURE COMMUNICATIONS | 4:2528 |DOI: 10.1038/ncomms3528 | www.nature.com/naturecommunications 7

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


during expressions of counting objects, individuals, quantities,
amounts, times and events. This included numerals, ordinals
and quantifiers (for example, ‘some’, ‘all’ and ‘every’) when they
were combined with quantities or numbers (for example, ‘some
sleep’, ‘all the nurses’ and ‘every two or three hours’), but not
otherwise (for example, ‘some kind of research’, ‘all the time’ or
‘everything’).

Discussion
Real-life experience has a rich and constantly changing context
that is shaped by the natural environment and human
interactions, making it challenging to study the underlying brain
activity during natural conditions. In this study, we have for the
first time addressed the link between the activity of a specific
neuronal population in the human brain during a controlled
experimental condition and the activity of the same population of
neurons during natural conditions.

Our methodological advantage is directly related to the
power of intracranial recording with ECoG in three domains:
(1) anatomical precision of the recorded data, (2) temporal
resolution of the signals and (3) the suitability of the method for
chronic recordings during natural conditions. Our findings
highlight the relevance and practical value of intracranial HFB
signal as the best metric of localized cortical activation because of
its striking spatial as well as functional selectivity26–36. We are
mindful that the profile of recorded electrophysiological activity is
rich and contains slower bands of activities (for example, a- or
y-band), but we found that the changes in the slow rhythmic
bands of activity were not regionally or conditionally selective. Of
additional note, low frequency changes in power show greater
frequency variability across the brain, that is, some regions
dominate in y-power, whereas others have a- and b-canonical
oscillations29,37. In contrast, the HFB signal provides a region-
invariant measure of local neuronal activation. For instance, we
show in the current study that the HFB power in the IPS is signi-
ficantly increased during arithmetic processing and unchanged
during episodic memory retrieval. In contrast, we recently
showed a reverse pattern of HFB response in another region of
the brain, that is, the posteromedial cortex, when subjects
participated in the same experimental task that was used in the
current study29,38. The posteromedial cortex showed an increase
in the HFB response during memory retrieval but a sustained
suppression of HFB response during arithmetic calculation. In
other words, a given cognitive condition may cause different HFB
responses in different cortical areas, depending on their level of
engagement or disengagement in the cognitive condition.

In our study, we used peaks of HFB power, that is, the ‘HFB
peaks’ as a signature of discrete events that could be detected in
continuous natural recordings. By using the same parameters for
the HFB peaks that we had defined in the experimental condition,
we were able to detect significant discrete events of instantaneous
amplitude fluctuations during a continuous recording and
explore the behavioural correlates for such discrete events
retrospectively. By introducing this new approach, and because
of the advantages of the ECoG method, we were able to compare
the neuronal population activity in the human IPS during a
controlled experimental arithmetic condition with the activity of
the same neuronal population during natural conditions. The
natural events that triggered the occurrence of HFB peaks
involved seeing, hearing or expressing numerals, ordinals and
quantifiers when these were combined with quantities or
numbers. In line with clinical observations39,40, previous experi-
mental neuroimaging studies have shown the involvement of the
LPC in processing quantifiers41. For instance, comprehension
of numerical quantifiers that require magnitude processing

(for example, ‘at least three’) depends on a lateral parietal
network, whereas the comprehension of logical quantifiers that
require a simple form of perceptual logic (for example, ‘some’)
does not42.

Our findings suggested that the HFB responses in the IPS
occurred after hearing words with numerical content or seeing
numbers, and before the expression of words with numerical
content. Most of the HFB peaks appeared early during speech
production. The temporal lag or lead of HFB responses relative to
behavioural events could not be precisely analysed for several
reasons: First, in natural conditions, it is difficult to determine
when exactly a participant thinks of a numerical concept before
expressing it. Second, the duration of HFB peaks in our study was
set to be at least 500ms and this sets a lower bound on our
temporal precision. Third, correlating the HFB peak timing with
the time of behavioural response, one is limited by the sync offset
between electrophysiological and video data. In our recordings,
the maximum sync offset was B200ms. These limitations can be
partially overcome in future studies with prospective design.

Our study provides the first intracranial electrophysiological
data in humans supporting the important role of the IPS region in
numerical cognition. Moreover, our observations suggested a
surprisingly high degree of sparseness of activity in the
numerically responsive IPS neuronal populations during the
natural condition. Although these populations of neurons showed
a high degree of selectivity for the experimental condition of
numerosity, they exhibited a great sparseness of HFB response
during the natural condition when the participants were engaged
in activities such as attending to visual objects in the room,
recalling past memories, grasping and reaching movements, or
saccades—activities that are known to activate the LPC. The
selective and sparse activity in the IPS neuronal populations
provides direct evidence that these populations have a specific
role in numerical cognition rather than being co-opted during
various other parietal functions. Future prospective studies are
needed to confirm this assertion by measuring neuronal
responses pertaining to various parietal functions during experi-
mental as well as natural conditions.

It should be noted that the aim of our retrospective study was
not to catalogue various natural correlates of activity in various
sites of the human parietal cortex. Similarly, our study was not
designed to decipher the nature of numerical processing in the
IPS region. For this, prospective well-designed studies with a
denser array of electrodes are needed to differentiate distinct roles
of adjacent neuronal populations in different aspects of numerical
processing. Our observations provide interesting preliminary
findings for such prospective studies. For instance, future studies
are needed to decipher how specific IPS neuronal populations
are engaged during explicit calculation versus implicit processing
of numerical information. In these future studies, it will be
important to determine whether the same IPS neuronal
populations are involved in both explicit and implicit numerical
processing and whether their activity is related to procedural
problem solving.

In our current study, we found that of 14 parietal electrodes the
ones with the highest co-occurrence values during the controlled
experiment also had the highest co-occurrence values during the
natural condition. In other words, if an electrode’s HFB activity
occurred more during calculation than in experimental memory
and rest conditions, its HFB response in the natural condition was
seen more during utterance of words with numerosity content
than any other condition. More importantly, however, not every
one of the 14 electrodes had the same co-occurrence match
between experimental and natural conditions. Some with activity
during experimental calculation condition showed significantly
less response during the natural events with implicit numerosity
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processing and vice versa. It is possible that this mismatch
between experimental and natural conditions reflects a difference
in neuronal response to explicit versus implicit numerosity
processing, depending on the anatomical location of the
electrodes.

In future studies, it will also be important to know how the
activity of these IPS neuronal populations is related to the activity
of other parietal and prefrontal areas, and rooted in procedural
problem solving, and how it is subject to evolutionary and
developmental changes19,43–49. In the same line, it will be
important to explore the temporal and causal links between the
activity of neuronal populations in the IPS and the ones in the
inferior parietal lobule and the medial temporal lobes that are
important for retrieval of mathematical knowledge20.

We believe that our study also serves as a prototype for
developing more sophisticated methods in the future. As others
have demonstrated, online tools to detect localized brain
responses50–53 will have clinical use in functional mapping of
the brain as well as in brain–machine interface paradigms, that is,
cognitive neural prosthetics54,55. In theory, it may be possible to
use our method to identify neuronal populations that are
responsive during a given specific thought and be able to read
the mind of a human individual. In parallel to such
methodological advancements, new ethical issues may have to
be addressed by neuroscience and law communities56–58.

Methods
Participants. Three patients were implanted with intracranial electrodes covering
the lateral parietal surface on the right (participant 1, 64 electrodes and participant
3, 114 electrodes) or left (participant 2, 112 electrodes; Fig. 1). All three patients
were implanted solely for clinical reasons and gave their informed consent to
participate in the study, which was approved by the Stanford University Institu-
tional Review Board. All patients were right handed, with normal IQ, with age 37,
43 and 45 years. In all participants, the lateral parietal electrodes of interest were
void of pathological activity. Participant 1 was female and participants 2 and 3 were
male. We emphasize that the aim of the current study was not to explore the
lateralization of response or the effect of gender in numerical cognition, and thus
our participants were not balanced on the basis of hemisphere coverage or gender.

Experimental task and stimuli. In the experimental task, participants judged with
self-paced responses the accuracy of addition equations or memory statements. In
the ‘arithmetic condition’, simple addition equations comprises adding one single
digit with one double-digit number (n¼ 48). These equations were randomly
mixed with the ‘non-arithmetic condition’, which contained the memory state-
ments without any numerical content (n¼B258) and 5-s long fixation or rest
trials (n¼B32). The task was administered twice in each participant (either the
same day (P1) or consecutive days (P2 and P3). Sentences had similar apparent
visual length to the arithmetic equations and were presented in the same font and
on the same screen background.

Electrode localization. We reconstructed individual three-dimensional brain
images by aligning preoperative high-resolution T1-weighted magnetic resonance
images (MRIs) with postoperative computed tomography (CT) scan images
obtained after the electrodes implantation with an accuracy of B±5mm as
described in our previous publications29,59–61. In brief, postoperative CT images
were aligned to preoperative structural T1-weighted MRI whole-brain scans
separately for each subject. Anatomical MRI data was reoriented to ‘AC–PC space’
by manually identifying the AC (anterior commissure), the PC (posterior
commissure) and a third point in the midsagittal plane. MRI data were then
resampled to 1mm isotropic voxels using a b-spline image interpolation algorithm
from SPM5 (http://www.fil.ion.ucl.ac.uk/spm). Postoperative CT images were then
aligned to the T1 MRI anatomy scans using a mutual information algorithm from
SPM5. After CT–MRI alignment, electrodes were identified in the coregistered CT
image slices and their centroid coordinates recorded (subject T1 headspace).

Intracranial EEG recordings. Patients were implanted with flexible grid subdural
platinum electrodes (AdTech Medical Instruments Corp.). The centre-to-centre
interelectrode spacing was 10mm and the diameter of each electrode’s exposed
surface was 2.3mm. Electrophysiological data were recorded simultaneously with a
Tucker Davis Technologies (TDT) system and by Nihon Kohden Technology (NK)
system. TDT data were synced with the display of a stimulus-presenting laptop by
TTL pulses from a custom-built photodiode and NK system synced with a real-
time online video camera. The TDT data were sampled at 3,052Hz, whereas the

NK data were sampled at 500 (P3) or 1,000Hz (P1 and P2). One of the subdural
electrodes served as a reference channel and an external ear lobule electrode as the
ground contact for both TDT and NK systems.

Preprocessing and spectral decomposition. Neurologist specialized in epi-
leptology (J.P.) examined the EEG data in all electrodes and excluded those with
epileptic activity from further analysis. Notch filter from EEGLAB package
(http://sccn.ucsd.edu/eeglab) was used to remove 60Hz noise and its second and
third harmonics. All EEG channels were re-referenced to a common average refer-
ence. EEG data were downsampled into 436 samples per second using MATLAB
software. We aligned TDT and NK EEG data by calculating their maximum cross-
correlation. Signals from each electrode contact were decomposed in two different
ways. To make ERSP, we decomposed each channel into 42 bandwidths by filtering
the signal by 42 custom-made band-pass filters. The central frequency of each band-
pass filter was chosen from 1 to 232Hz range with equal log-distance spacing. Second,
each channel was also decomposed in d (1–4Hz), y (4–8Hz), a (8–12Hz), b
(15–25Hz), low-g (30–55Hz) and high-g (70–110Hz) range by using band-pass
filters from EEGLAB package. Finally, we applied Hilbert transform on decomposed
signals to obtain the instantaneous amplitude of each frequency range. In this study,
we call the instantaneous amplitudes of HFB range as the HFB trace.

Event-related spectral perturbation. The instantaneous power (square of
amplitude) of each frequency was aligned and then averaged with respect to the
stimulus presentation or to participant’s response time for each condition of the
experiment. The trial length varied due to self-paced design of the experiment, and
the number of trials in the arithmetic condition differed from the non-arithmetic
condition. We matched the number of trials in the non-arithmetic condition to the
arithmetic condition by choosing a subset of trials to equalize the median of trial
length of both conditions. The statistical significance of power change was estab-
lished by normalizing the averaged power with the mean and s.d. of the dis-
tribution of the surrogates of the entire experiment38. Each surrogate signal was
produced by preserving the amplitude while randomizing the phase of the signal.
Each time-frequency point in the surrogate ERSP matrix had a Gaussian
distribution (central limit theorem) and, hence, Z-scores represented the
significance of the change in power.

Significance test and d0-values. The trace of power change for each lateral
parietal electrode was averaged over 1 s window (from 0.5 to 1.5 s after stimulus
presentation) for every trial to calculate the mean-power in six bands of d (1–4Hz),
y (4–8Hz), a (8–12Hz), b (15–25Hz), low g (30–55Hz) and high-g (70–110Hz).
We calculated the d0- and P-values for all electrodes and for all frequency bands.
Next, we normalized the mean power for each band by mean and s.d. of a gen-
erated surrogate mean-power distribution described above (the same as ERSP) by
fitting the histogram of values to a Gaussian distribution with equal mean and s.d.
(central limit theorem guarantees the goodness of fit). We used this mean power to
test the significance of power change for each band, condition and electrode. We
evaluated the null hypothesis that the mean of arithmetic trials was not different
from that of non-arithmetic trials by applying non-paired Student’s t-test. We then
quantified the extent to which the distribution of mean power in arithmetic trials
was different from that of non-arithmetic trials by calculating the d0-values. The
d0-value measures the distance between the means of these two distributions
(centroid) in units of s.d. of non-arithmetic distribution. We sorted electrodes
based on their high-g d0-values (d0 of HFB) and visualized in a mean-maximum
colour scale on each patient’s three-dimensional brain as depicted in Fig. 1f.

Characterization of HFB peaks. To quantify the occurrence of HFB activations,
we defined the so-called HFB ‘peaks’ as discrete events in the HFB traces where the
HFB instantaneous amplitude increased above a chosen threshold for amplitude
and was sustained beyond a chosen duration threshold. Therefore, each HFB peak
was determined by two threshold parameters: amplitude and duration (Fig. 2).
Before searching for the optimal amplitude and duration thresholds, we smoothed
the HFB traces with a standard Gaussian function (2� s¼ 500ms) to capture the
local trend of HFB traces. As in the experimental task we knew which trials were
arithmetic and which were non-arithmetic trials, we aimed to find the optimal
values for duration and amplitude by which we could accurately identify the
arithmetic trials from non-arithmetic trials. We used the ROC curve to identify the
parameter that produced the highest sensitivity (hits/hitsþmisses) and specificity
(correct rejection/correct rejectionþ false alarm). Hits were defined as the presence
of HFB peak during arithmetic trials, misses as the absence of HFB peak during
arithmetic trials, correct rejections as the absence of HFB peak in non-arithmetic
trials and false alarms as the presence of HFB peak during non-arithmetic trials.
The shape of the ROC curve of an electrode is determined by its d0-value; an
electrode with d0- close to zero produces an ROC curve close to diagonal line
(Fig. 2). On the ROC curve, the optimal amplitude threshold is the closest point to
the upper left corner (a point with the highest sensitivity and specificity). For a
given electrode, we tried a range of duration values from 500ms (the width of
smoothing Gaussian function) to 1 s for a given amplitude value in a step-wise
fashion (Fig. 2a). The ROC curve with the largest area under the curve area
determined the optimal duration value. We used one of the two sessions (training)
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of the first experiment to find the optimal amplitude and duration thresholds. Next,
we used these values to separate the arithmetic trials from non-arithmetic trials in
the other session (testing) of the first experiment and in the natural condition.

We use the term ‘natural condition’ even though being implanted with
intracranial electrodes in a hospital may be different than the real ‘every-day’ life.
Nevertheless, the daily life setting in the hospital can be considered ‘natural’,
because patients were engaged in natural social interactions with other people as
they would have done in any real-life setting, and our observations were made
outside the artificial controlled experimental condition generated within a lab and
without any obtrusive manipulations.

Selectivity of HFB response. We defined selectivity by the difference between
HFB peak occurrence frequency during arithmetic and non-arithmetic conditions.
We normalized this difference by summation of these two occurrence frequencies.
We defined selectivity index as (FOA—FON)/(FOAþ FON), where FOA is the
frequency occurrence of HFB peaks during arithmetic condition and FON is the
frequency occurrence of HFB peaks during non-arithmetic condition. The selec-
tivity is a value between zero (no selectivity) and one (maximum selectivity). For
example, the selectivity index value of 0.25 is equivalent to 66% increase in the
number of HFB peak frequency during arithmetic condition.

Labelling natural events. We had access to 10 (P1)- and 6 (P2 and P3)-min-long
simultaneous video and intracranial EEG data from the patients when they
interacted with their environment. We chose a random video segment using the
following specific inclusion criteria: (1) the video should be from the same day of
recording as the experimental data to avoid the plausible problem of mismatch in
the signal quality between the experimental and natural files; (2) patient must
interact with others and sounds must be audible (if there was no interaction
between the patient and others, we could not judge the behavioural correlates of the
HFB responses); and (3) lack of seizures or significant epileptic activity in the rest
of the brain within 2 h before or after video file to avoid pre-ictal or post-ictal
changes in the signal quality.

Two independent reviewers (Stanford University undergraduate volunteers)
evaluated the behavioural content of the words in conversations captured on the
videos by time-stamping the start and the end of each word uttered during
conversations (see Supplementary Table S1 and Supplementary Movie 1). Each
reviewer then labelled the words that either had, or not, any numerical content.

HFB peaks during numerical events in natural condition. We selected videos in
which the participants were awake and communicating with other people in their
hospital environment. We defined the co-occurrence as the ratio of the number of
HFB peaks with behavioural events in which words with numerical content were
exchanged to the total number of HFB peaks during natural condition. To show
that this co-occurrence ratio was not due to random alignment, we made a sur-
rogate video by displacing the behavioural data from the end of the video to the
beginning and then recalculated the co-occurrence ratio. It is noteworthy that the
surrogate video data is only temporally misaligned but otherwise identical to the
original video data. We made a Gaussian distribution of the co-occurrence ratio by
making 500 surrogate videos. The P-value of the comparison between real and
surrogate natural events is the probability of HFB peaks and numerical events
being aligned by chance. We also estimated the chance level by averaging of the
obtained co-occurrence values from the surrogate distribution.

The sparseness of HFB peaks during natural condition. The sparseness of the
response during natural events was calculated by segmenting ECoG recording by
non-overlapping 500ms windows (as long as the minimum HFB peak duration).
The sparseness62 of the activity of an electrode is calculated by
Sparseness¼ {1� (

P
gi/n)^2/

P
(gi^2/n)}/1–1/n}, where n is the total number of

bins and gi is a bin that contains a HFB peak. The maximum sparseness is one
when just one of the bins contains a HFB peak and the rest of bins are empty, and it
is at minimum (zero) when all bins contain a HFB peak.

References
1. Miyawaki, Y. et al. Visual image reconstruction from human brain activity

using a combination of multiscale local image decoders. Neuron 60, 915–929
(2008).

2. Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans.
Nat. Rev. Neurosci. 7, 523–534 (2006).

3. Thirion, B. et al. Inverse retinotopy: inferring the visual content of images from
brain activation patterns. Neuroimage 33, 1104–1116 (2006).

4. Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the
human brain. Nat. Neurosci. 8, 679–685 (2005).

5. Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working
memory in early visual areas. Nature 458, 632–635 (2009).

6. Brouwer, G. J. & Heeger, D. J. Decoding and reconstructing color from
responses in human visual cortex. J. Neurosci. 29, 13992–14003 (2009).

7. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchro-
nization of cortical activity during natural vision. Science 303, 1634–1640 (2004).

8. Stephens, G. J., Silbert, L. J. & Hasson, U. Speaker-listener neural coupling
underlies successful communication. Proc. Natl Acad. Sci. USA 107,
14425–14430 (2010).

9. Hasson, U., Malach, R. & Heeger, D. J. Reliability of cortical activity during
natural stimulation. Trends Cogn. Sci. 14, 40–48 (2010).

10. Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural
images from human brain activity. Nature 452, 352–355 (2008).

11. Gramann, K., Gwin, J. T., Bigdely-Shamlo, N., Ferris, D. P. & Makeig, S. Visual
evoked responses during standing and walking. Front. Hum. Neurosci. 4, 202
(2010).

12. Gwin, J. T., Gramann, K., Makeig, S. & Ferris, D. P. Removal of movement
artifact from high-density EEG recorded during walking and running.
J. Neurophysiol. 103, 3526–3534 (2010).

13. Jain, S., Gourab, K., Schindler-Ivens, S. & Schmit, B. D. EEG during pedaling:
evidence for cortical control of locomotor tasks. Clin. Neurophysiol. 124,
379–390 (2013).

14. Lau, T. M., Gwin, J. T., McDowell, K. G. & Ferris, D. P. Weighted phase lag
index stability as an artifact resistant measure to detect cognitive EEG activity
during locomotion. J. Neuroeng. Rehabil. 9, 47 (2012).

15. Presacco, A., Goodman, R., Forrester, L. & Contreras-Vidal, J. L. Neural
decoding of treadmill walking from noninvasive electroencephalographic
signals. J. Neurophysiol. 106, 1875–1887 (2011).

16. Shou, G., Ding, L. & Dasari, D. Probing neural activations from continuous
EEG in a real-world task: time-frequency independent component analysis.
J. Neurosci. Methods 209, 22–34 (2012).

17. Babiloni, C. et al. Golf putt outcomes are predicted by sensorimotor cerebral
EEG rhythms. J. Physiol. 586, 131–139 (2008).

18. Nieder, A. Counting on neurons: the neurobiology of numerical competence.
Nat. Rev. Neurosci. 6, 177–190 (2005).

19. Ansari, D. Effects of development and enculturation on number representation
in the brain. Nat. Rev. Neurosci. 9, 278–291 (2008).

20. Dehaene, S. The Number Sense: How the Mind Creates Mathematics 2nd edn
316 (Oxford University Press, 2011).

21. Butterworth, B. Foundational numerical capacities and the origins of
dyscalculia. Trends Cogn. Sci. 14, 534–541 (2010).

22. Ritaccio, A. et al. Proceedings of the second international workshop on
advances in electrocorticography. Epilepsy Behav. 22, 641–650 (2011).

23. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A.
Neurophysiological investigation of the basis of the fMRI signal. Nature 412,
150–157 (2001).

24. Kunii, N., Kamada, K., Ota, T., Kawai, K. & Saito, N. Characteristic profiles of
high gamma activity and blood oxygenation level-dependent responses in
various language areas. Neuroimage 65C, 242–249 (2012).

25. Esposito, F. et al. Cortex-based inter-subject analysis of iEEG and fMRI data
sets: application to sustained task-related BOLD and gamma responses.
Neuroimage 66C, 457–468 (2012).

26. Brindley, G. S. & Craggs, M. D. The electrical activity in the motor cortex that
accompanies voluntary movement. J. Physiol. 223, 28P–29P (1972).

27. Crone, N. E., Miglioretti, D. L., Gordon, B. & Lesser, R. P. Functional mapping
of human sensorimotor cortex with electrocorticographic spectral analysis. II.
Event-related synchronization in the gamma band. Brain 121, 2301–2315
(1998).

28. Flinker, A., Chang, E. F., Barbaro, N. M., Berger, M. S. & Knight, R. T. Sub-
centimeter language organization in the human temporal lobe. Brain Lang. 117,
103–109 (2011).

29. Foster, B. L., Dastjerdi, M. & Parvizi, J. Neural populations in human
posteromedial cortex display opposing responses during memory and
numerical processing. Proc. Natl Acad. Sci. USA 109, 15514–15519 (2012).

30. Lachaux, J. P. et al. The many faces of the gamma band response to complex
visual stimuli. Neuroimage 25, 491–501 (2005).

31. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in
human neocortex. Science 313, 1626–1628 (2006).

32. Schalk, G. et al. Decoding two-dimensional movement trajectories using
electrocorticographic signals in humans. J. Neural. Eng. 4, 264–275 (2007).

33. Miller, K. J. et al. Spectral changes in cortical surface potentials during motor
movement. J. Neurosci. 27, 2424–2432 (2007).

34. Chang, E. F. et al. Categorical speech representation in human superior
temporal gyrus. Nat. Neurosci. 13, 1428–1432 (2010).

35. Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma
activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

36. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local
field potential power spectra are correlated with single-neuron spiking in
humans. J. Neurosci. 29, 13613–13620 (2009).

37. Voytek, B. et al. Shifts in gamma phase-amplitude coupling frequency from
theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci.
4, 191 (2010).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3528

10 NATURE COMMUNICATIONS | 4:2528 | DOI: 10.1038/ncomms3528 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


38. Dastjerdi, M. et al. Differential electrophysiological response during rest,
self-referential, and non-self-referential tasks in human posteromedial cortex.
Proc. Natl Acad. Sci. USA 31, 31 (2011).

39. Morgan, B. et al. Some is not enough: quantifier comprehension in corticobasal
syndrome and behavioral variant frontotemporal dementia. Neuropsychologia
49, 3532–3541 (2011).

40. Cappelletti, M., Butterworth, B. & Kopelman, M. The understanding of
quantifiers in semantic dementia: a single-case study. Neurocase 12, 136–145
(2006).

41. McMillan, C. T., Clark, R., Moore, P., Devita, C. & Grossman, M. Neural basis
for generalized quantifier comprehension. Neuropsychologia 43, 1729–1737
(2005).

42. Troiani, V., Peelle, J. E., Clark, R. & Grossman, M. Is it logical to count on
quantifiers? Dissociable neural networks underlying numerical and logical
quantifiers. Neuropsychologia 47, 104–111 (2009).

43. Ashcraft, M. H. The development of mental arithmetic: a chronometric
approach. Dev. Rev. 2, 213–236 (1982).

44. Cantlon, J. F. et al. The neural development of an abstract concept of number.
J. Cogn. Neurosci. 21, 2217–2229 (2009).

45. Cantlon, J. F. & Brannon, E. M. Basic math in monkeys and college students.
PLoS Biol. 5, e328 (2007).

46. Delazer, M. et al. Learning by strategies and learning by drill—evidence from an
fMRI study. Neuroimage 25, 838–849 (2005).

47. Ischebeck, A. et al. How specifically do we learn? Imaging the learning of
multiplication and subtraction. Neuroimage 30, 1365–1375 (2006).

48. Price, G. R., Mazzocco, M. M. & Ansari, D. Why mental arithmetic counts:
brain activation during single digit arithmetic predicts high school math scores.
J. Neurosci. 33, 156–163 (2013).

49. Roitman, J. D., Brannon, E. M. & Platt, M. L. Representation of numerosity in
posterior parietal cortex. Front. Integr. Neurosci. 6, 25 (2012).

50. Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G. & Moran, D. W. A
brain-computer interface using electrocorticographic signals in humans.
J. Neural. Eng. 1, 63–71 (2004).

51. Schalk, G. et al. Real-time detection of event-related brain activity. Neuroimage
43, 245–249 (2008).

52. Jerbi, K. et al. Exploring the electrophysiological correlates of the default-mode
network with intracerebral EEG. Front. Syst. Neurosci. 4, 27 (2010).

53. Hamame, C. M. et al. Reading the mind’s eye: online detection of visuo-spatial
working memory and visual imagery in the inferior temporal lobe. Neuroimage
59, 872–879 (2012).

54. Andersen, R. A., Hwang, E. J. & Mulliken, G. H. Cognitive neural prosthetics.
Annu. Rev. Psychol. 61, 169–190 C161-163 (2010).

55. Pesaran, B., Musallam, S. & Andersen, R. A. Cognitive neural prosthetics. Curr.
Biol. 16, R77–R80 (2006).

56. Gazzaniga, M. S. The law and neuroscience. Neuron 60, 412–415 (2008).

57. Greely, H. T. Reading minds with neuroscience—possibilities for the law.
Cortex 47, 1254–1255 (2011).

58. Farah, M. J. Neuroethics: the ethical, legal, and societal impact of neuroscience.
Annu. Rev. Psychol. 63, 571–591 (2012).

59. Shum, J. et al. A brain area for visual numerals. J. Neorusci. 33, 6709–6715 (2013).
60. Foster, B. L., Kaveh, A., Dastjerdi, M., Miller, K. J. & Parvizi, J. Human

Retrosplenial Cortex Displays Transient Theta Phase Locking with Medial
temporal cortex prior to activation during autobiographical memory retrieval. J.
Neorusci. 33, 10439–10446 (2013).

61. Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions
distorts face perception. J. Neorusci. 32, 14915–14920 (2012).

62. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual
cortex during natural vision. Science 287, 1273–1276 (2000).

Acknowledgements
We thank Hilda Koopman (Los Angeles) and Stanislas Dehaene (Paris) for helpful
feedback on a draft of the manuscript and for providing advice on linguistic analysis;
Mark Burdelle, Harinder Kaur, Thi Pham and Liudmila Schumacher (Stanford Epilepsy
Monitoring Unit) for assistance and collaboration with ECoG data collection; Gwen and
Gordon Bell Family for generous donation that made the earlier work of this study
possible. This study was supported by NIH grant R01-NS0783961 (J.P.), Stanford
NeuroVentures Program (J.P.) and a Stanford School of Medicine Dean’s Postdoctoral
Fellowship (B.L.F.).

Authors contributions
J.P. and M.D. designed research; M.D., B.L.F. and V.R. acquired data; M.D. supervised
M.O. in the analysis of data; J.P. wrote the paper and all authors edited it.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Dastjerdi, M. et al. Numerical processing in the human parietal
cortex during experimental and natural conditions. Nat. Commun. 4:2528 doi: 10.1038/
ncomms3528 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3528 ARTICLE

NATURE COMMUNICATIONS | 4:2528 |DOI: 10.1038/ncomms3528 | www.nature.com/naturecommunications 11

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.nature.com/naturecommunications

	Numerical processing in the human parietal cortex during experimental and natural conditions
	Introduction
	Results
	Demographics and brain coverage
	Behavioural data
	HFB power in IPS discriminates the numerical condition
	HFB activity in IPS during natural conditions

	Discussion
	Methods
	Participants
	Experimental task and stimuli
	Electrode localization
	Intracranial EEG recordings
	Preprocessing and spectral decomposition
	Event-related spectral perturbation
	Significance test and d′-values
	Characterization of HFB peaks
	Selectivity of HFB response
	Labelling natural events
	HFB peaks during numerical events in natural condition
	The sparseness of HFB peaks during natural condition

	Additional information
	Acknowledgements
	References




