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ABSTRACT
It has long been recognised that phrases and sentences are organised hierarchically, but many
computational models of language treat them as sequences of words without computing
constituent structure. Against this background, we conducted two experiments which showed
that participants interpret ambiguous noun phrases, such as second blue ball, in terms of their
abstract hierarchical structure rather than their linear surface order. When a neural network
model was tested on this task, it could simulate such “hierarchical” behaviour. However, when
we changed the training data such that they were not entirely unambiguous anymore, the
model stopped generalising in a human-like way. It did not systematically generalise to novel
items, and when it was trained on ambiguous trials, it strongly favoured the linear
interpretation. We argue that these models should be endowed with a bias to make
generalisations over hierarchical structure in order to be cognitively adequate models of human
language.
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1. Introduction

The ability to use language is a hallmark of the human
mind. The formal structures of human language reveal
the wealth of representational infrastructure that our
brains deploy to guide our linguistic behaviour. As
such, even in a short phrase like these two blue balls
lies a hidden signal about how the mind structures infor-
mation. For this simple four-word phrase, there are 24
logically possible word orders, yet only 14 of these are
attested in the world’s languages (Cinque, 2005). Strik-
ingly, the word order in English and its mirror variant
(balls blue two these) are by far the most frequent
(Cinque, 2005; Greenberg, 1963), reflecting the selection
of word orders that transparently map to the hierarchical
structure of the noun phrase (Culbertson & Adger, 2014;
Martin et al., 2020). The word “hierarchical” here refers to
the representational format of constituent structure:
words are embedded into constituents, which are in
turn recursively embedded into larger constituents,
creating hierarchically organised syntactic structures
which are often visually denoted by means of tree struc-
tures (see Figure 1(a)). It has long been argued that the
semantic interpretation of phrases and sentences is
linked to this hierarchical constituent structure (e.g.
Chomsky, 1957; Everaert et al., 2015; Heim & Kratzer,

1998; Jackendoff, 1972; Partee, 1975; Pinker, 1999).
That is, syntactic operations are defined over hierarchical
structure rather than linear order (i.e. they are structure-
dependent; Chomsky, 1957), and semantic dependen-
cies (like scope, the fact that two applies to blue balls
rather than balls alone1) directly follow from such hier-
archically organised constituent structure.

Despite these arguments in theoretical linguistics,
however, an alternative view holds that language use
can be accounted for in terms of sequential rather
than hierarchical structure (e.g. Bybee, 2002; Christian-
sen & Chater, 2015; Frank et al., 2012). A core aspect of
this view, which has been championed by several
authors in different proposals, is that constituency is
not a basic structure but rather an epiphenomenon,
emerging from frequently occurring sequential patterns
in language, which are “chunked” into sequences
without much internal structure (Bybee, 2002; Christian-
sen & Chater, 2015; Frank et al., 2012). In other words,
while this “linearity view” does not entail that hierarchi-
cal structure does not exist, it holds that hierarchy is not
fundamental in language use. This view is strengthened
by the recent successes of mainstream models in natural
language processing (NLP), which treat sentences as
linear strings of words. These models achieve
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remarkably good performance, arriving at around 93%
accuracy on several diagnostics (e.g. Devlin et al.,
2018), and are often used to account for behavioural
data in psycholinguistic experiments (e.g. Christiansen
& MacDonald, 2009; Frank & Bod, 2011; Gulordava
et al., 2018; Linzen et al., 2016).

Against this background, we use the interpretation of
ambiguous noun phrases such as second blue ball as a
test of the idea that constituency is not fundamental
in language use. We first show in two behavioural exper-
iments that the interpretation of these phrases is based
on their hierarchical rather than their linear structure,
indicating that language interpretation can in fact be
biased towards hierarchical constituency. We then train
and test a recurrent neural network model on our task
in order to see whether it is able to reproduce such “hier-
archical” behaviour. In several simulations, we evaluate
whether the model generalises in a human-like way.
We show that it can simulate hierarchical behaviour,
but only if the training data are unambiguously hierarch-
ical. When it is trained on ambiguous data which are
equally consistent with the linear and the hierarchical
interpretation of second blue ball, it strongly favours
the linear interpretation. Moreover, the model does
not systematically generalise to items that were not
observed during training. Overall, this leads us to con-
clude that without a predisposition for hierarchical struc-
ture, the model is not a cognitively adequate model of
human language (Dehaene et al., 2015; Fitch, 2014).

1.1. Behavioural evidence for hierarchical
structure

Broadly speaking, two kinds of evidence support the
claim that words, phrases and clauses have internal hier-
archical structure. First, syntactic operations, such as
movement, deletion and substitution target constitu-
ents rather than individual words. These operations are
said to be structure-dependent, and behavioural exper-
iments have shown that children obey structure depen-
dence as soon as they can be tested (e.g. Crain &
Nakayama, 1987). Second, structure provides the unit
of semantic interpretation, as can be seen in the

structural ambiguity of words (e.g. uninstallable),
phrases (e.g. deep blue sea) and clauses (e.g. she saw
the man with binoculars), as well as the structure-depen-
dent interpretation of anaphora, disjunction, negative
polarity items, and other scope phenomena (Reinhart,
1983; see Crain et al., 2017 for a recent overview of the
empirical data from acquisition). These facts about
language structure show that constituents behave as
units, both to syntactic operations and to semantic
interpretation.

Furthermore, a large body of experimental evidence
converges in showing how hierarchical structure
explains language behaviour. Of particular relevance to
the current study are three behavioural paradigms
which investigate noun phrase interpretation. First,
Lidz and colleagues used a preferential looking para-
digm to show that 18-month-old infants interpret the
pronominal one in Look! A yellow bottle. Do you see
another one? as anaphoric with the constituent yellow
bottle rather than with the bare noun bottle, consistent
with the interpretation of anaphoric one in adult
language (Lidz et al., 2003). Second, a cross-domain
structural priming study by Scheepers and Sturt (2014)
showed that people find adjective-noun-noun com-
pounds more acceptable when their structure is congru-
ent with a mathematical equation that they have solved
just before. In their study, left-branching phrases, such as
organic coffee dealer (i.e. [[organic coffee] dealer]),
received higher ratings after left-branching equations
(e.g. 25 × 4 – 3) than after right-branching equations
(e.g. 25 – 4 × 3). Third, Culbertson and Adger (2014)
exposed English learners of an artificial language to
different noun phrases with only one postnominal
modifier (i.e. N-Dem, N-Num, N-Adj), based on which
they had to infer the relative ordering of the modifiers
in a complex noun phrase (see also Martin et al., 2020).
The training data were equally consistent with two poss-
ible grammars, one of which was similar to English in
terms of the linear ordering of the modifiers (i.e. balls
these two blue), while the other was similar to English
in terms of the abstract structure of the noun phrase
(i.e. [[[[balls] blue] two] these]). The learners consistently
favoured the order that was structurally similar to
English, despite its dissimilarity to English in terms of
surface statistics. In line with this finding, a recent
study on artificial rule learning showed that people
from different age groups and different cultural and
educational backgrounds spontaneously infer and gen-
eralise abstract hierarchical structure after exposure to
sequences whose structure is fully consistent with
both hierarchical rules (based on recursive center-
embedding) and linear rules (based on ordinal position;
Ferrigno et al., 2020). Combined, these studies

Figure 1. Hierarchical (a) and linear (b) representations for the
phrase second blue ball.
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demonstrate that people represent noun phrases as
hierarchical structures rather than as linear sequences.
Moreover, the studies by Lidz et al. (2003) and by Cul-
bertson and Adger (2014) indicate that this hierarchical
bias does not come from the environment but rather
reflects an inherent property of the linguistic system,
which might also be present in other domains of cogni-
tion (Dehaene et al., 2015; Ferrigno et al., 2020; Fitch,
2014).

Evidence from the spontaneous creation of
languages in language-deprived populations supports
this latter point. Deaf children who are born to speaking
parents and are not exposed to sign language in infancy
spontaneously develop a gestural system for communi-
cation (Goldin-Meadow, 2003). This system, called home-
sign, has many of the properties of natural language,
including hierarchically organised levels of recursive
constituent structure and structure-dependent oper-
ations, such as substitution (Goldin-Meadow, 2003; Hun-
sicker & Goldin-Meadow, 2012). For example, in
homesign, multi-gesture combinations that refer to a
single nominal entity (e.g. a demonstrative gesture and
a noun gesture: “that bird”) function both syntactically
and semantically like single-gesture nominals. They can
substitute for a single noun (“bird”) and can be
embedded in a hierarchically structured clause, to yield
a signed clause with the hierarchical structure [[that
bird] pedals] rather than the flat structure [that bird
pedals] (Hunsicker & Goldin-Meadow, 2012). Because
the multi-gesture nominals produced by homesigners
are effectively absent in the gestures of their hearing
family members, they reveal that the homesigners them-
selves are the source of these structural properties in
their linguistic system (Flaherty et al., 2021).

1.2. Computational modelling of hierarchical
structure

While the behavioural evidence strongly supports the
hierarchical view, the linearity view is strengthened by
recent results from computational studies of language
acquisition. Most contemporary language models are
not endowed with a cognitive architecture that supports
the acquisition and knowledge of linguistic information
(e.g. hierarchical representations, structure dependence,
or compositionality), yet they perform quite well on a
range of language tasks. In particular, recent compu-
tational research with recurrent neural network (RNN)
models has shown that these models often perform
quite accurately on tasks which are thought to require
knowledge of hierarchical structure, such as subject-
verb agreement and question formation. For example,
RNNs can learn to generate the correct agreement in

long-distance dependencies (e.g. The boy who likes the
girls has … ) and to move the right verb in constructing
complex yes-no questions (e.g. Has the boy who likes the
girls… ?), seemingly without invoking hierarchical struc-
ture (Gulordava et al., 2018; Linzen et al., 2016; McCoy
et al., 2018, 2020; Tran et al., 2018). Moreover, RNNs are
able to generalise very well to novel grammatical con-
structions when these feature a mixture of examples
that were observed in the training set, but they fail to sys-
tematically generalise across items in the training set to
compose novel items (Baroni, 2020; Lake & Baroni, 2018;
Loula et al., 2018). These findings show that RNN
models show impressive generalisation ability, apparently
without relying on systematic compositionality.

It is often the case that the data on which these
models are trained is both qualitatively and quantitat-
ively very different from the linguistic input children
receive (Linzen, 2020; Linzen & Baroni, 2021). Recent
studies have sought to address this issue by exposing
the model during training only to ambiguous data,
from which multiple generalisations are possible (e.g.
McCoy et al., 2018, 2020; Mulligan et al., 2021). During
the test phase, the model is then evaluated on items
for which these generalisations make different predic-
tions. The idea behind this training-test regime is that
the model’s performance on test trials reveals its
specific inductive biases. Comparing this performance
to human behaviour in the experimental paradigms dis-
cussed above (Culbertson & Adger, 2014; Ferrigno et al.,
2020; Martin et al., 2020), we can evaluate whether these
models generalise in a human-like way. Initial results
from these studies show that some RNN architectures
can make human-like syntactic generalisations, in par-
ticular when the training data contain cues to hierarchi-
cal structure (McCoy et al., 2018).

In short, while most computational language models
do not explicitly incorporate structure dependence, they
appear extremely proficient in a range of complex
language tasks if they are trained on quantitatively and
qualitative rich data. This reveals a possible gap between
the validity of thesemodels as models of human cognition
and their ability to achieve human-like behaviour in
certain circumstances. We approach this issue by compar-
ing the performance of a long short-term memory (LSTM)
neural network to the behaviour of human participants on
a task that requires hierarchically structured knowledge.
The following sections first describe the task and results
from the behavioural experiments.

1.3. Background of the present study

In two experiments, we tested whether people interpret
ambiguous noun phrases such as second blue ball as a
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hierarchical structure or as a linear string. On the hier-
archical interpretation, which is derived from the right-
branching structure depicted in Figure 1(a), the structure
encodes semantic scope. The ordinal second takes scope
over the constituent blue ball, and the whole refers to
the second among blue balls. On the linear interpret-
ation, instead, second and blue are interpreted conjunc-
tively, and they independently modify the noun ball (i.e.
the ball that is blue and second). Here, the conjunctive
(linear) interpretation is associated with the flat rep-
resentation depicted in Figure 1(b). However, we note
that this is not the only possible way in which that
interpretation can be represented. It could also be
derived from a hierarchical structure, for instance by
means of a conjunction phrase which first combines
second and blue, and is then combined with ball. In con-
trast, the scopal (hierarchical) interpretation of second
blue ball can only be derived from a nested constituent
structure (i.e. Figure 1(a)). Because the hierarchical
interpretation cannot be derived without hierarchical
structure (as in the linear representation in Figure 1
(b)), consistently hierarchical responses should be
taken as evidence against the view that hierarchical
structure is unnecessary to account for language
interpretation.

To show how the semantics corresponding to these
phrases relates to their structure (Partee, 2007; Spenader
& Blutner, 2007), we provide the lambda expressions for
the noun ball (which is of type <e,t>), the intersective
adjective blue and the adjective second (which are
both predicate modifiers of type <<e,t>,<e,t>> ) below:

1. ball: λx[ball(x)]
2. blue: λPλx[P(x) & blue(x)]
3. second: λPλx[P(x) & ∃!y[P(y) & y < x]]

where < indicates a type of ordering relationship
(i.e. y precedes x on some dimension, such as space
or time).

In these expressions, P refers to a one-place predicate,
i.e. a set of individuals that is the denotation of a noun
such as ball. Hence, we get the following lambda
expressions that correspond to the noun phrases blue
ball and second ball, which are both of type < e,t>:

4. blue ball: λx[ball(x) & blue(x)]
5. second ball: λx[ball(x) & ∃!y[ball(y) & y < x]]

Combining these expressions yields the hierarchical
right-branching interpretation of the complex noun
phrase second blue ball (corresponding to Figure 1(a)),
as expressed in (6):

6. Hierarchical interpretation: λx[ball(x) & blue(x) & ∃!y
[ball(y) & blue(y) & y < x]]

This means that second blue ball on the hierarchical
interpretation refers to the set of elements x that are a
member of the intersection of the set of balls and the
set of blue things, such that there is exactly one other
element in this intersection, which is the set of blue
balls, preceding x (in one way or another). Clearly, in
this interpretation, second applies to the set of blue
balls, which means that blue and ball are combined to
form a constituent that serves as the argument of
second.

On the linear interpretation of second blue ball this
would not be the case. Here, second blue ball would
denote the set of elements x that are a member of the
intersection of the set of balls and the set of blue
things, such that there is exactly one other element in
the set of balls preceding x. On this interpretation, the
phrase refers to the second ball, which is blue (i.e. a
green ball was in the first position). The lambda
expression for the linear interpretation of second blue
ball (corresponding to Figure 1(b)) is given in (7):

7. Linear interpretation: λx[ball(x) & blue(x) & ∃!y[ball(y)
& y < x]]

While these two interpretations could yield the same
referent (Figure 2(a)), this need not be the case: based
on the context in which second blue ball is presented,
the linear and hierarchical interpretations can diverge
(Figure 2(b)). This divergence forms the basis of the
current study.

The idea was based on a set of acquisition exper-
iments conducted in the 1980s, in which it was investi-
gated how children acquire and interpret prenominal
modifier sequences (Hamburger & Crain, 1984; Matthei,
1982). Matthei (1982) asked five-year old children to
point to the second blue ball in an array of coloured
balls in which the linear and hierarchical interpretations
yielded a different answer (Figure 2(b)). The children
interpreted the phrase intersectively, pointing to the
ball that was blue and in the second position, rather
than to the second among blue balls. This was taken
to indicate that the children had built an unembedded,
linear representation. In a reply to this study, Hamburger
and Crain (1984) noted that Matthei’s (1982) results
reflected the children’s inability to deal with the cogni-
tive complexity of the task, which might have concealed
their hierarchical grammatical knowledge. They
attempted to reduce the nature of the planning com-
ponent underlying these linguistic expressions by
letting children first point to the first blue ball, and then
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point to the second one. The children’s interpretations of
one in this scenario are indicative of whether they relied
on a linear representation of first blue ball, in which case
one can only refer to ball, or on a hierarchical represen-
tation, in which one can also refer to blue ball. Similar to
the infants in the Lidz et al. (2003) study, four-year-old
children took one as anaphoric with the constituent
blue ball, indicating that they relied on a hierarchical rep-
resentation of first blue ball. We adopted a similar exper-
imental paradigm, but chose to use full noun phrases
rather than anaphoric pro-forms, given the debate
about whether one indeed substitutes for syntactic con-
stituents (Goldberg & Michaelis, 2017; Payne et al., 2013).

2. Methods and results

2.1. Experiment 1

The first experiment is a replication of the original study
byMatthei (1982), but with only adults. 20 native speakers
of Dutch (14 females, mean age = 21.9 years, range = 19–
27 years) participated in the experiment, none of whom
were colour-blind. All participants gave written informed
consent to take part in the experiment, which was
approved by the Ethics Committee of the Faculty of
Social Sciences at Radboud University Nijmegen. The
experiment was conducted in Dutch, but for ease of expo-
sition, the stimuli are translated here into English, which
in these sentences has the same surface word order as
Dutch. Participants had to click on a target denoted by
a noun phrase containing an ordinal, a colour adjective
and a noun referring to the shape of the target, such as
second blue ball. Two example arrays, corresponding to
the two conditions, are presented in Figure 2.

In the convergent condition, the hierarchical (non-
intersective) and linear (intersective) interpretation con-
verge on the same item. For example, the second blue
ball in Figure 2(a) is both the second among blue balls
(hierarchical) and also the ball that is blue and in
second position (linear). In the divergent condition, the
linear and hierarchical interpretation yield a different
answer. While the second ball in the array in Figure 2
(b) is blue (linear), it is not the second among blue
balls, which is in fourth position (hierarchical).

The convergent condition was not present in the orig-
inal studies (Hamburger & Crain, 1984; Matthei, 1982).
The responses in this condition do not dissociate

between hierarchical and linear interpretations, and
serve as fillers to reduce the potential influence of prag-
matic factors. That is, one could argue that participants
only give hierarchical answers in response to second
blue ball on divergent trials because they take the
mere presence of blue to indicate that they should not
interpret the phrase as referring to the second ball.
Had that been the intended target (e.g. in the picture
of Figure 2(b)), then it could have been referred to as
second ball, thus making the addition of blue redundant
and therefore pragmatically odd.2 By making sure that
half of the trials contains a redundant colour adjective,
we intended to make participants less sensitive to the
effect of redundancy on interpretation, thereby making
it less likely that their behaviour on divergent trials
would be driven by pragmatic factors.

Each trial consisted of the written sentence “Click on
the [target]” and an array of eight blue or green balls, visu-
ally presented at the same time on a computer screen.
The target was always described using an ordinal, a
colour adjective, and the noun ball. The ordinals first,
second, third, fourth, fifth, and sixth were used. There
were 192 trials, half of which were divergent, the other
half were convergent. In both conditions, all ordinals
were used 16 times in the target phrase, and they were
equally often combined with green as with blue. Conver-
gent trials were created as follows: all items to the left of
the target were the same as the target, and all items to the
right were randomised. For the divergent trials, there
were two possible targets: a linear one and a hierarchical
one.3 For every ordinal, the position of the hierarchical
target was randomly chosen among the positions to the
right of the linear target. The positions to the left of the
hierarchical target were then filled with the right
number of items that were the same as the target. For
instance, for the target sixth green ball, the hierarchical
target could be in the positions 7 or 8. To the left of this
position five green balls were placed, and one of these
green balls was in sixth position (linear target). The
other positions are filled with blue balls. Correct answers
on convergent trials were coded as hierarchical/linear,
while all other items were coded as error. On divergent
trials, answers were coded as hierarchical, linear, or error.

2.1.1. Results
The results of experiment 1 are presented in Figure 3.
The graph on the right contains the results for divergent

Figure 2. Example arrays for the target second blue ball, corresponding to a convergent (a) and a divergent (b) trial.

LANGUAGE, COGNITION AND NEUROSCIENCE 5



trials, which shows that of all correctly answered trials,
participants gave a hierarchical answer 99.8% of the
time. Only three answers were according to a linear
interpretation. To test this effect, we applied a logistic
regression model in R (R Core Team, 2020) with only
an intercept to the binary output variable (hierarchical
vs. linear), which showed that participants gave more
hierarchical than linear answers, β =−6.27, SE = 0.58,
Wald z =−10.84, p < .001.

While these results strongly suggest that the partici-
pants used hierarchical syntax, there is one alternative
interpretation that does not need to rely on constituent
structure. In this interpretation, second applies to the set
of blue things first, hence forming a complex adjective
second blue, which is then applied to the noun ball (e.g. a
ball that is second among blue items). This is similar to
phrases in which second modifies an adjective, e.g.
second biggest ball (which is the ball that is the second
biggest, but not necessarily the second ball), and phrases
in which blue is modified by an adverb, e.g. very blue ball
(which is very blue, not very ball). Because the arrays of
items contained only balls, this approach always yields
the same target as the hierarchical interpretation.

Importantly, while this alternative interpretation can
be represented in a constituent structure (as in the
left-branching structure in Figure 4(b)), it does not,
strictly speaking, need hierarchy. In the right-branching
“hierarchical” structure in Figure 4(a), a relationship is
established between the element second and a constitu-
ent (i.e. a constituent is modified). Such a constituency-
based relationship is not needed to represent the
meaning of the left-branching structure in Figure 4(b),
which would be expressed as follows:

8. Left-branching interpretation: λx[ball(x) & blue(x) &
∃!y[blue(y) & y < x]]

On this interpretation participants would choose the
second blue thing in a sequence, which happens to be
a ball (e.g. when the first position contains a blue tri-
angle). While right-branching interpretations must rely
on constituency, left-branching interpretations can, but
need not do so. A second experiment was undertaken
to adjudicate between the right-branching and left-
branching interpretation.

2.2. Experiment 2

20 native speakers of Dutch (15 females, mean age =
23.0 years, range = 18–28 years) took part in the exper-
iment after their written informed consent was obtained.
None of the participants were colour-blind or had par-
ticipated in experiment 1. The experiment was almost
identical to experiment 1, except that the set of items
in the array also contained blue and green triangles.
As there were now two shapes, the noun provided
crucial information for the identification of the target.
Each trial contained two potential targets. For the
target second blue ball, the “right-branching” interpret-
ation, corresponding to the right-branching structure
in Figure 4(a), again refers to the second among blue
balls (fifth item in Figure 5). The other interpretation,
which could be represented in a left-branching structure
(Figure 4(b)), refers to the second blue item, which is a

Figure 3. Responses in the convergent and divergent conditions of experiment 1.

Figure 4. Right-branching (a) and left-branching (b) represen-
tations for the phrase second blue ball.
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ball (third item in Figure 5). The right-branching and left-
branching interpretations were both always available,
but never converged on the same item.

There were again 192 trials. All ordinals were used 32
times in the target phrase. For each ordinal, the target
was equally often a blue ball, a blue triangle, a green
ball, and a green triangle. We made sure that the left-
branching and right-branching interpretations never
converged on the same item by placing one item with
the same colour but a different shape as the target at
a random position to the left of the left-branching
target. In Figure 5, this is the blue triangle on the left,
which makes the leftmost blue ball the second blue
item (the left-branching target). The presence of a blue
triangle does not affect the position of the right-branch-
ing target, which is the second among blue balls.4

2.2.1. Results
The results of experiment 2 are presented in Figure 6. Of
all correctly answered trials, participants gave a right-
branching answer 99.8% of the time. Only five answers
were coded as left-branching answer. A logistic
regression analysis of output type (right-branching vs.
left-branching) showed that participants gave more

right-branching than left-branching answers, β =−6.45,
SE = 0.45, Wald z =−14.42, p < .001. These findings can
only be captured using constituent structure, and there-
fore provide strong experimental evidence for the
importance of hierarchical structure for semantic
interpretation.

2.3. Computational modelling

2.3.1. Methods
In order to test whether a computational model would
show the same bias towards the hierarchical interpret-
ation as the participants did, we trained and tested a
state-of-the-art RNN model with a long short-term
memory (LSTM) architecture (Hochreiter & Schmidhuber,
1997) on the task of Experiment 1.5 The LSTM model,
which was implemented with Keras (Chollet et al.,
2015), had a many-to-one architecture, which is visually
represented in Figure 7. The input to the model con-
sisted of four one-hot vectors, sequentially presented
in four timesteps. Recurrence is indicated by the fact
that the model’s current state is a function of its previous
state (i.e. a<t−1>) in combination with the input at the
current timestep (i.e. x). The input vectors represent
respectively the ordinal, colour, and shape of the
target, as well as the picture. Each input vector had a
length of 57, where the first 9 elements were reserved
for words in the phrase (elements 1–6 represented the
ordinals second through seventh, 7 and 8 represented
the colours blue and green, and 9 represented the
shape ball6) and the last 48 elements were reserved for

Figure 5. Example array for the target second blue ball. The left-
branching target is in third position, while the right-branching
target is in fifth position.

Figure 6. Responses in experiment 2.

Figure 7. Visual representation of a trial for the LSTM, where x
represents the input at timestep t and a<t−1> the activation state
of the model after the previous timestep.
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the eight-element picture, wherein each element had
one of two colours and the shape ball (i.e. we need
three bits to represent each feature). As a result, each
picture vector would have 16 ones, so we normalised
it to make sure that its net content is 1, in line with
the other one-hot vectors. To give an example of an
input vector, the word “blue” was represented as a 57-
element vector which has a one in position 7 and
zeros everywhere else.

The hidden layer consisted of 100 units, whose acti-
vation function at the last timestep was forwarded to a
softmax layer, which provided the output of the
network. The output was a nine-element one-hot
vector which had a one at the position of the target (pos-
itions 1–8) on target-present trials or a one at position 9
to indicate that the target was absent from the picture.
In short, the task of the model was to take the words
and picture sequentially as input, and provide as
output the position of the target.

The LSTM was trained in a supervised manner on
datasets of different sizes (100-1000 trials, depending
on the training set), in 50 epochs (100 steps per
epoch) using the optimiser “Adam” (optimisation using
stochastic gradient descent with a learning rate of
0.001) and the categorical-crossentropy loss function.
For each dataset, the model was evaluated on 100 test
trials, and this training-test evaluation was simulated
100 times.

2.3.1.1. Training and test datasets. We trained the
LSTM on four different, artificially created datasets. In
half of the trials in all datasets the target was present,
in the other half, the target was absent.7 While target-
absent trials were not included in the behavioural exper-
iments, we did include them in the datasets for the
network because this ensures that the network cannot
succeed by only paying attention to the ordinal. In all
datasets, the training and test trials were mutually exclu-
sive, never containing identical trials. Figure 8 presents a
visual overview of the different training/test trials.

In the “linear” training and test set, the linear
interpretation was present on target-present trials, and
absent on target-absent trials. Moreover, on both
target-present and target-absent trials, the hierarchical
interpretation was also present, but the output
showed that the training data were unambiguously
about the linear interpretation, because trials were
always divergent (cf. Figure 2(b)). To give an example,
if the target was second blue ball, then the second ball
in target-present pictures was blue, but it was not the
second among the blue balls (i.e. the first ball was
green; see Figure 8). Here it becomes clear why we
included target-absent trials. If the target were always

present, there would be a perfect statistical relationship
between the ordinal and the output (i.e. second blue ball
would always lead to target position 2). This could serve
as a context-independent statistical heuristic for the
model, as it would not need to incorporate information
about the colour or shape of the target, or about the
elements in the picture. By including target-present
trials, we made sure that the model could not succeed
by relying only on the information provided by the
ordinal.

The “hierarchical” training and test set consisted of
target-present trials in which the hierarchical interpret-
ation was present and target-absent trials in which it
was absent. All target-present trials were divergent (cf.
Figure 2(b)), so the linear interpretation of the phrase
would also be present, but the output was only in line
with the hierarchical interpretation. On target-absent
trials the hierarchical interpretation was absent but the
linear interpretation was still present. For example, if
the target phrase was second blue ball, then the
second ball was blue on both target-present and
target-absent trials, but it would not be the second
among blue balls (in fact, on target-absent trials the
second ball would be the only blue ball; see Figure 8).

The “ambiguous” training set was fully ambiguous
between the hierarchical and linear interpretations of
the target phrase, both on target-present and target-

Figure 8. Examples of the different training/test trials in the
computational simulations, ordered by condition and target
presence. The target phrase for these trials is second blue ball.
The squares in target-present trials indicate the target for
each trial.

8 C. W. COOPMANS ET AL.



absent trials. While target-present training trials were
always convergent (cf. Figure 2(a)), target-present test
trials were always divergent (cf. Figure 2(b)). The
model’s answers on these test trials are thus informative
about what the model has induced from ambiguous
training data. On target-absent training and test trials,
neither the linear nor the hierarchical interpretation
was present. The ambiguous training set had only 100
trials. This has to do with the fact that target-present
training trials are always convergent and thus limited
in number, and that the number of unique trials varies
per ordinal (e.g. for seventh blue ball, there are only
two different target-present pictures (one in which the
eighth ball is also blue, and one in which it is green),
but for second blue ball there are 64 different target-
present pictures). To make sure that the training and
test sets contain roughly the same number of all ordi-
nals, they were both fixed at a size of 100 trials.

The “mixed” training set contained both ambiguous
and unambiguously hierarchical training trials. While
the only possible generalisation from these data is the
hierarchical interpretation, the linear interpretation is
compatible with some of the trials. By varying the per-
centage of ambiguous trials (and thus the ratio
between ambiguous and hierarchical trials), we exam-
ined how much unambiguously hierarchical data the
model needs in order to consistently give hierarchical
responses on test trials. The test trials were the same
as those used after ambiguous training (i.e. divergent
trials).

2.3.1.2. Generalisation to novel items. To further inves-
tigate what the model has learned after the hierarchical
training regime, we tested its ability to generalise to
items that were not seen during training. Specifically,
we looked at the model’s response to phrases that
included the word “red” when the training data did
not contain red at all (extrapolation), or only in combi-
nation with specific ordinals (interpolation). First, we
trained the model on all items (green and blue balls),
and then tested it on phrases with the word “third red
ball” and pictures which included red balls. This type
of generalisation is an instance of extrapolation,
because the input contains features (i.e. the word
“red”, as well as red balls) that were not observed
during training and therefore lie outside the training
space (Marcus, 1998). Second, we tested the model’s
ability to interpolate, i.e. to generalise to an item that
is composed of known features, and therefore lies
within the training space (e.g. Baroni, 2020; Lake &
Baroni, 2018). The model was trained on all combi-
nations of features, including the colour “red”, except
the item “third red ball” (e.g. “second blue/green/red

ball”, “third blue/green ball”, and pictures which
included red balls). It was then tested on “third red
ball”. Here, the training data contains the distributional
evidence that “red” and both “blue” and “green”
pattern identically, and it contains information about
how “third x” should be interpreted. Given that “third”,
“red” and “ball” have all been presented during training,
the training data span a distribution that captures “third
red ball”, even though the combination of these items is
new. Given that the new item lies within the parameter
space, interpolation can be approached through linear
regression. We therefore hypothesise that the model is
able to interpolate from known data points to “third
red ball”. In order to see how well the model extrap-
olates and interpolates, we simulated each generalis-
ation test 100 times. Because the hierarchical model in
the main experiment reached over 90% accuracy after
500 training trials (discussed in Section 2.3.2 Results,
Figure 10(b)), we trained the model in each simulation
on 500 trials. As in the main experiment, it was evaluated
on 100 test trials.

As reported in the results, the model was not able to
systematically generalise its “hierarchical” knowledge to
novel items, such as “third red ball”. While the training
data for the interpolation test contained the information
that “red” functions the same as both “blue” and “green”,
it is possible that this distributional information was not
sufficient to indicate the relatedness between these
words. That is, there is no intrinsic relationship
between the one-hot vectors [0, 1… 0, 0] and [0, 0…
1, 0], although they should be dependent if they are to
represent the related words “red” and “blue”. In an
attempt to test the model’s generalisation ability when
it receives input vectors that are closely related, we
used pre-trained word embeddings from Google’s
word2vec (Mikolov et al., 2013), which have been
shown to capture the similarity between related words.
The similarity between two multidimensional word
embedding vectors can expressed in terms of the
cosine of the angle between them. The closer this
“cosine similarity” value is to 1, the smaller the angle
between the vectors and thus the more similar the
vectors (see the similarity matrix in Figure 9(a)).

As these word embeddings are 300-dimensional
vectors, however, they might lead to overfitting given
the limited size and scale of the training data. The
model might overcapitalise on redundant aspects
these big vectors, disabling them from dealing with
novel input. We therefore used a dimensionality
reduction technique based on Principal Component
Analysis to reduce the size of the word embeddings to
10 (Shlens, 2014), in line with the size of our vocabulary.8

This reduces the size of the vectors by maximising the
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variance between them, while retaining the essence of
the original vectors. For our purpose it is important
that the similarity between the colour words, which is
the property over which generalisation is evaluated, is
retained after dimensionality reduction (Figure 9(b)).

We repeated the two generalisation tests described
above (including separate train-and-test evaluations)
with both the full 300-dimensional word embeddings
as well as the reduced 10-dimensional embedding
vectors.

Figure 9. Heatmap of the cosine similarity between all 300-dimensionsal word embeddings (a) and between all 10-dimensional word
embeddings (b). Note that in both cases the word embeddings capture the similarity between “blue”, “green”, and “red”, as indicated
by a large and positive cosine similarity.

Figure 10. Model performance after linear training (a), hierarchical training (b) and ambiguous training (c). Results are into divided
average accuracy over 100 simulations (error bars represent standard deviation) and specificity of predicted output (activation of
output unit with largest value) on the test trials of one simulation.
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2.3.2. Results
We evaluate each model’s performance by comparing its
predicted output on the test input to the correct test
output. Each unit in the output layer of the model con-
tains an activation value which can be interpreted as the
likelihood that that unit corresponds to the position of
the target, given the input (activations sum to one).
We took the index of the output unit with the
maximum activation value to be the model’s predicted
output. This value can be seen as the specificity of the
model’s prediction. For instance, if a model has learned
to interpret the phrase second blue ball hierarchically,
then given the picture in Figure 2(b) it outputs a
vector with a high activation value for the fourth
element (i.e. the target position, which has a one in
the one-hot output vector used during training) and
low activation values for all the other elements. We
show the specificity of the predicted output (bottom
graphs in Figure 10 each show these predictions for
the test trials of one simulation), and evaluate the accu-
racy of these predictions by comparing them to the
correct output (i.e. top graphs in Figure 10 show the
average percentage correct: frequency with which the
predictions match their labels).

When the model was trained on linear data, it quickly
reached very good performance. After 400 training trials,
the model scored perfectly, reaching an average accu-
racy of 100% (Figure 10(a)). After training sizes of 100
and 200, the model makes on average, respectively 19
and 3 errors. These all have to do with the presence of
the target: the model either gives a target-absent
response on a target-present trial (i.e. “miss”), or it
gives an incorrectly linear response on a target-absent
trial.

After 100 hierarchical training trials, the model
reaches an average accuracy of 65%. The majority of
its errors are wrong (but not linear) answers on target-
present trials. The model’s performance steadily
increases with increasing training size up to 700 trials,
after which it stabilises around 97–100% correct on
target-present trials (Figure 10(b)). The hierarchical
model needs more training data to reach high accuracy
than the linear model, which has likely to do with the
statistical variance in the hierarchical output data:
whereas second blue ball on linear target-present trials
always maps to position 2, the same target on hierarch-
ical target-present trials can be in positions 3–8. More
generally, the effect of hierarchy on interpretation in
terms of statistics (i.e. in the form of an input-output
mapping in our experiment) is inconsistent because it
reflects information that is not directly encoded in the
linear properties of the (input or output) signal.

In order to evaluate whether the model gives more
linear or more hierarchical answers after being trained
on ambiguous data, we simulated this evaluation 100
times. The model was trained on 100 different datasets
of 100 ambiguous (convergent) trials, and at each simu-
lation evaluated on 100 unambiguous (divergent) test
trials. The model gets absence correct on most target-
absent trials (M = 96.5, SD = 3.47), see Figure 10(c).
Importantly, on target-present trials it gives mainly
linear answers (M = 76.2, SD = 6.43), and never gives a
hierarchical answer (see the empty column for “hierarch-
ical” in Figure 10(c)). On average, the model makes 14
errors, which are of the same type as those made by
the “linear” model (i.e. misses, or incorrectly linear
answers on target-absent trials).

To evaluate how much unambiguously hierarchical
information the model needs to start generalising hier-
archically, we trained it on a mixed dataset with
different ratios between ambiguous and unambiguously
hierarchical trials. This ratio ranged from 10:0 (fully
ambiguous) to 0:10 (fully hierarchical). Note that these
mixed training data are always fully compatible with
the hierarchical interpretation. What varies is the
number of trials that is also compatible with the linear
interpretation. Each mixed training set contained 100
trials, and we simulated each training-test evaluation
100 times. Figure 11 presents the responses for each
of the different ratios. What is clear from the figure is
that the more unambiguous evidence for the hierarchi-
cal interpretation in the training set, the more the
model converges on the hierarchical interpretation in
the test set. What is notable is that this increase is
gradual: there is never a point at which the model
“realises” that the hierarchical interpretation is the only
correct generalisation (i.e. the model does not induce a
rule). Instead, it always gives a substantial proportion
of linear answers, even when 90% of the training data
is unambiguously hierarchical and only 10% is ambigu-
ous. Moreover, the number of errors on target-present
trials increases as there is more unambiguous evidence
for the hierarchical interpretation. This matches the pat-
terns seen after linear and hierarchical training. The
model initially only considers the linear interpretation,
on which it does not make many errors (cf. Figure 10
(a)), but the increasing evidence for the hierarchical
interpretation is also taken as increasing evidence
against the linear interpretation, so the model will give
less linear responses. However, it still does not always
get the hierarchical answer right, which is why its error
rate increases (cf. Figure 10(b)). In all, these results
again show that the model can learn to answer “hier-
archically”, but that it needs (a considerable percentage
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of) unambiguous trials to overcome its non-hierarchical
bias.

2.3.2.1. Extrapolation and interpolation. We then
probed the hierarchical model’s ability to extrapolate
and interpolate to novel items that were not seen
during training. Figure 12 presents the model’s accuracy,
defined as the percentage of correct hierarchical
answers, on both generalisation tests as a function of
the input vectors that represented the words in the
phrases. On the extrapolation test, the model did not
generalise very well, regardless of whether it was
trained on one-hot vector representations (Mean accu-
racy = 12.6, SD = 9.20), reduced word embeddings (M =
12.7, SD = 5.44) or full word embeddings (M = 10.7, SD
= 5.89). In order to see whether these accuracies differ
from chance level, we ran 100 simulations in which the
training data consisted of pseudorandom mappings
between input (phrase, picture) and output (target pos-
ition). These contained the same information as the
other simulations, and included one-hot vectors as the
input layer. The model was tested on “third red ball”.
Given that there are 6 attested outputs in the hierarchi-
cal training regime for the ordinal “third” (i.e. positions 4
through 9), and that there is no consistent statistical
relationship between the target and the output (i.e.
there is nothing to learn, beyond the fact that “third”
cannot be in the positions 1-3), this model scores
around chance level of 16.7% accuracy. Comparison of

the four groups (one-hot, reduced embeddings, full
embeddings, random) through a one-way ANOVA in R
(R Core Team, 2020) reveals that the accuracies
between groups were different, F(3,396) = 16.7, p
< .001, but pairwise follow-up tests showed that none
of the conditions scored above chance. In fact, they all
scored slightly below chance: one-hot vs. random: Δ =
−4.63, 95% CI [−7.12, −2.15], p < .001; full word embed-
ding vs. random: Δ =−6.53, 95% CI [−9.01, −4.05], p
< .001; reduced word embedding vs. random: Δ =
−4.53, 95% CI [−7.01, −2.05], p < .001.

On the interpolation test, where the model is tested
on “third red ball”, it reached higher accuracy for each
type of input vector: one-hot vectors (M = 13.9, SD =
13.1), reduced word embeddings (M = 22.2, SD = 12.4)
and full word embeddings (M = 23.8, SD = 22.2). We
again consider chance level to be around 16.7%,
because the input “third red ball” during training could
only be followed by a one-hot output vector with a
one in either of the six positions 4–9. To evaluate each
model against this chance level, we computed the
model’s performance after it was trained on pseudoran-
domly generated data, as described above. Comparison
of the four groups (one-hot, reduced embeddings, full
embeddings, random) again reveals that the accuracies
between groups were different, F(3,396) = 15.5, p
< .001. Pairwise follow-up tests showed that the accu-
racy for the full and reduced word embeddings was
higher than expected by chance (full word embedding

Figure 11. Model performance on hierarchical test trials after mixed training data. The training sets are composed of different ratios
between ambiguous and unambiguously hierarchical trials, ranging from fully ambiguous data (10:0) to fully hierarchical data (0:10).
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vs. random: Δ = 6.32, 95% CI [2.15, 10.5], p < .001;
reduced word embedding vs. random: Δ = 4.66, 95% CI
[0.49, 8.84], p = .02). Interpolation accuracy for one-hot
vectors was not different from chance. Despite this
slight increase in accuracy for the model when trained
on word embeddings, overall these findings show that
the model was not able use the information it had
induced from hierarchical training to systematically gen-
eralise to unseen items.

3. Discussion

In two behavioural experiments, we show a strong pre-
ference for hierarchy in human language interpretation:
people’s interpretation of ambiguous noun phrases cat-
egorically follows from their hierarchically organised,
right-branching syntactic structure. In line with a long
tradition of research, our findings support the idea that
humans represent noun phrase structures in terms of
hierarchical relations rather than linear order (Alexiadou
et al., 2007; Cinque, 2005; Culbertson & Adger, 2014;
Hamburger & Crain, 1984; Jackendoff, 1972; Martin
et al., 2020; Pinker, 1999). In addition, we trained and
tested an LSTM model on a computational version of
the experimental task, and showed that the model can
learn to give hierarchical answers if it is trained on unam-
biguously hierarchical datasets. However, when the
training data contain both unambiguously hierarchical

as well as ambiguous trials, the model strongly favours
the linear interpretation, even though the hierarchical
interpretation is a better fit to the overall data. Moreover,
the “hierarchical”model does not systematically general-
ise to novel items that are not seen during training.
These findings show that the model behaves unlike
humans when the training data are ambiguous, and
suggest that it needs different inductive biases in
order to achieve human-like generalisation.

A comparison between the performance of the model
and the behaviour of the human participants reveals a
number of critical differences. First of all, while the
model learned to give hierarchical answers, it only did
so when it was explicitly fed unambiguously hierarchical
information during supervised training. When the train-
ing data were ambiguous with respect to the correct
representation underlying the noun phrases, the
model had a strongly linear bias, never giving a hierarch-
ical answer during the test phase. When the training
data were mixed to contain both ambiguous and unam-
biguously hierarchical trials, such that the hierarchical
interpretation was the only generalisation fully compati-
ble with the data (i.e. the linear interpretation was only
compatible with ambiguous trials), the model still had
a strongly linear bias. This suggests that the model can
learn to answer “hierarchically”, but that it needs a sub-
stantial percentage of unambiguous trials to overcome
its non-hierarchical bias (cf. McCoy et al., 2018).

Figure 12. Percentage of correct hierarchical responses on both generalisation tests after training and testing on different input
vectors. Each drop reflects the average hierarchical accuracy on one simulation run (100 simulations per evaluation). The horizontal
line reflects the mean accuracy of the model after pseudorandom training, thus representing chance level.
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The point about the apparent need for unambigu-
ously hierarchical information during supervised training
is relevant because children are not taught to interpret
language hierarchically, but come to do so naturally,
despite strongly deficient and ambiguous input data
(e.g. Berwick et al., 2011; Crain, 1991; Gleitman &
Newport, 1995; Kam & Fodor, 2012; Legate & Yang,
2002; Lidz et al., 2003). While we do not believe that
adult language users have not been exposed to unam-
biguous data, it does seem to be the case that humans
have a bias to interpret language in accordance with
its underlying hierarchical structure (Crain & Nakayama,
1987; Crain et al., 2017; Ferrigno et al., 2020; Flaherty
et al., 2021; Hunsicker & Goldin-Meadow, 2012; Kam &
Fodor, 2012; Martin et al., 2020; Yang et al., 2017). The
effect of such biases is particularly clear when people
consistently generalise over hierarchical structure
rather than linear order, despite the fact that these gen-
eralisations are underdetermined by the training data
(Culbertson & Adger, 2014; Ferrigno et al., 2020; Martin
et al., 2020; Morgan & Ferreira, 2021). This learnability
scenario also applies to the interpretation of phrases
such as second blue ball, even when the input does
contain unambiguous data. There might indeed be posi-
tive evidence in the linguistic input to suggest that such
a phrase should be interpreted as a hierarchical struc-
ture, but this does not yet rule out the interpretation
derived from a linear structure. As is the case in most lin-
guistic examples of ambiguity, evidence for interpret-
ation A is not necessarily evidence against
interpretation B. In our behavioural experiments,
however, participants categorically interpreted second
blue ball hierarchically, completely ignoring the linear
interpretation, even though that linear option was
always present. The strong preference to interpret
these phrases hierarchically is suggestive of an inductive
bias for hierarchy. Computational models without such
an inductive hierarchical bias will often interpret ambig-
uous linguistic input in line with the linear generalis-
ation, because that is the simpler statistical mapping
between input and output sequence (Frank et al.,
2013; McCoy et al., 2018, 2020). Indeed, it has been
shown that RNNs have an architectural bias for depen-
dencies over shorter (linear) distance (Christiansen &
Chater, 1999).

In addition, the hierarchical model was not capable of
systematic generalisation to novel items. We showed
this by evaluating its ability to extrapolate (i.e. generalise
to “third red ball” when the training data does not
contain “red”) and interpolate (generalise to “third red
ball” when the training data contains “third”, “red” and
“ball”, but not in combination) as a function of
different types of input vectors (i.e. one-hot vectors

and word embeddings). On the extrapolation test the
model did not perform above chance level, even if it
was trained and tested on word embeddings from
word2vec (Mikolov et al., 2013). This is in line with pre-
vious studies which show that RNNs are not able to gen-
eralise to items that are not observed during training
(Hupkes et al., 2020; Lake & Baroni, 2018; Loula et al.,
2018), a consequence of the training algorithm also
called “input independence” (Marcus, 1998, 2001).
Note that the model’s responses to items with the
word “red”, while labelled as errors, are technically not
incorrect. Because the training data never contained
“red” as possible input, every induction for a new item
containing “red” is statistically legitimate (Marcus,
1998, 2001). Importantly, however, they differ sharply
from what humans do. That is, modification in natural
language is systematic, in that it applies in the same
way to all variables of the right type. If someone
knows how to interpret “second blue ball” and “second
green ball”, they interpret “second red ball” in a similar
way, even if they have never seen “red” as a possible
attribute. A well-known example of the productive and
systematic nature of linguistic knowledge is children’s
behaviour on the Wug Test: young children know that
the plural form of a pseudoword such as wug would
be wugs, even though they have never heard this
word before (Berko, 1958).

On the interpolation test, we found that if the model
was trained on one-hot vectors, it performed at chance
level. When it was trained on word embeddings,
however, it scored somewhat higher than chance level,
suggesting that it was able to take advantage of the
inherent similarity between the word embeddings that
represent related words, such as “blue” and “red”. In
addition, it is possible that the model picks up the statisti-
cal information that “red” and both “green” and “blue”
occur in the same distributional environments, which
would allow it to interpret “third red ball” correctly.
However, we again believe that the reason behind this
performance differs in a fundamental way from the
reason why human cognition can support interpolation
(and extrapolation). Human knowledge of linguistic
modification relies on a symbolic representation of the
way in which ordinals modify their arguments (i.e.
ordinal(x); see the lambda expressions in (1)-(8)), which
is why this relation obeys consistency and systematicity.
The answers of the participants in our behavioural exper-
iments were categorical: they consistently interpreted the
phrases in the same way. The model’s performance,
instead, is stochastic: it gets the answer to “third red
ball” right on about one-fourth of the trials, while
making an error on all the other trials. The fact that the
model was not able to consistently draw the right

14 C. W. COOPMANS ET AL.



generalisations (i.e. the highest average accuracy was
23.8% for the full word embeddings, but even this
model sometimes reached 0% accuracy, see Figure 12)
shows that the model was not capable of systematic gen-
eralisation. Rather, in line with previous work, it appears
that the model is to some extent capable of generalising
in an item-based manner, correctly interpreting novel
items when they are composed of known features
(Baroni, 2020; Lake & Baroni, 2018; Loula et al., 2018).

Importantly, the model’s inability to systematically
generalise to unseen items shows that it achieved its per-
formance on hierarchical test trials without resorting to
hierarchical constituent structure (Fodor & Pylyshyn,
1988; Marcus, 2001; Pinker, 1999; Pinker & Prince, 1988).
To be clear, this is not to say that hierarchical structure
per se is necessary for a system to be able to generalise.
A computational system that relies only on linearly struc-
tured representations might be able to generalise, cer-
tainly if these representations contain symbolic variables
to which specific instances can be bound. Our point is
that the inability to systematically generalise to novel
items suggests that the model does not rely on the type
of symbolic constituent structure we believe underlies
the responses of the human participants (Martin, 2020;
Martin & Doumas, 2017, 2019; Puebla et al., 2021).

To sum up, we showed that an LSTM learns to provide
output that is in line with hierarchical representations.
However, the way in which the model generalises is
quite different from linguistic generalisation by
humans: when given ambiguous training data, it never
provided hierarchical answers, and when tested on
novel items, it did not systematically generalise. These
two limitations show that the model’s inductive biases
and its ostensibly hierarchical knowledge are fundamen-
tally different from human knowledge of language.

3.1. Linear models of hierarchical structure

While many contemporary computational models of
language achieve impressive performance on a range of
language tasks (e.g. machine translation, question
answering), they often break down when evaluated on
targeted syntactic tests. The reason is that they are funda-
mentally sequence-basedmodels: theymap one sequence
onto another sequence (hence the term seq2seq models;
Sutskever et al., 2014), and thus learn sequentially organ-
ised statistical patterns that cannot capture the full com-
plexity of hierarchical syntax. While statistical signatures
of hierarchical constituent structure can be found in the
sequential structure of a sentence (e.g. Thompson &
Newport, 2007), and while sequential statistics affects
language processing (e.g. Townsend & Bever, 2001), that
is not to say that sequence statistics is a sufficient basis

for language (Chomsky, 1957). Because these models
are inherently linear, they do not have a natural way to
capture structural ambiguities (e.g. that she saw the man
with binoculars has two meanings) and structural general-
isations between different constructions (e.g. how what
did she see the man with? relates to only one of these
two meanings), which follow from the structured nature
of linguistic representations and the structure depen-
dence of linguistic operations.

In addition, the strongly linear bias of these compu-
tational models does not readily explain why structure
dependence is so pervasive (Berwick et al., 2011; Crain
& Pietroski, 2001; Fodor & Crowther, 2002; Heinz &
Idsardi, 2011). If statistical information about sequential
properties, such as linear order, were available as the
basis for grammatical acquisition, one would expect
speakers to adopt linear procedures, and therefore
languages with linear dependencies to emerge,
because that type of information is abundantly available.
For instance, in the large majority of subject-verb agree-
ment dependencies, the subject noun and the verb are
adjacent. A language model which is trained and
tested on these data can thus predict the correct verb
inflection in most cases without accessing syntactic
structure (Linzen et al., 2016). When the model is
tested on structurally more complex examples, which
are less likely to be found in the training data and
which require hierarchical structure, its accuracy drops
dramatically (Marvin & Linzen, 2018). Yet for humans
this never happens: children universally adopt struc-
ture-dependent rules in the face of overwhelming evi-
dence that is in line with linear alternatives (e.g. Crain
& Nakayama, 1987; Crain et al., 2017; Gleitman &
Newport, 1995; Lidz et al., 2003; Yang et al., 2017).

We noted in the previous sections that under the
experimental circumstances in which the model was
tested, it appears that statistical analysis of sequentially
presented data is not sufficient to model human
language behaviour (see also Puebla et al., 2021). This
divergence between model performance and human
behaviour could be attributed to roughly two indepen-
dent factors: differences in cognitive architecture and
differences in input data. Regarding input data, we
acknowledge that the training data for computational
models usually consists of raw texts, which lack rich
sources of information that contribute to disambiguat-
ing the intended meanings of utterances (see Bender
& Koller, 2019 for discussion). While this limits the gener-
alisability of our findings in the same way as it limits
most NLP work, we do recognise that other NLP
models are trained on much more and more diverse
data than what we used in our simulations. It is certainly
possible that the LSTM would have performed
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differently had it been trained on more naturalistic data.
Assuming that naturalistic language data contains more
evidence in favour of hierarchical structure, we predict
that the model’s performance on divergent test trials
will reveal a stronger preference for the hierarchical
interpretation, in line with what we show in our mixed
training-test regime (see Figure 11).

That being said, even within the limited scope of our
training simulation we showed that the model learned
to behave “hierarchically”. It was only after further inves-
tigation (in particular, extrapolation and interpolation)
that we concluded that this behaviour did not arise in
the same way as the linguistic behaviour of our partici-
pants. The difference in quality and quantity training,
therefore, does not undermine our argument that hier-
archical performance is not directly indicative of
human-like hierarchical representations. We believe
that progress towards human-like linguistic generalis-
ation will benefit from a significant adjustment to the
cognitive architecture of these models, such that they
are biased to encode constituent structure (for related
proposals, see Guest & Martin, 2021; Linzen, 2020;
Linzen & Baroni, 2021). This might eventually turn out
to be unnecessary in the sense that a preference for con-
stituency could be learned from the environment, so it
need not be innate (e.g. Perfors et al., 2011). Our
current results do not speak to the question of innate-
ness. However, what is crucial is not whether these
biases are innate or learned, but whether they precede
the acquisition of specific grammatical properties.
Given the evidence for structure-dependent generalis-
ations in both child and adult linguistic behaviour
(Crain & Nakayama, 1987; Crain et al., 2017; Flaherty
et al., 2021; Gleitman & Newport, 1995; Hunsicker &
Goldin-Meadow, 2012; Kam & Fodor, 2012; Lidz et al.,
2003; Martin et al., 2020; Yang et al., 2017), we believe
that the incorporation of a notion of hierarchy into com-
putational language models is the logical next step in
order to build plausible models of human cognition.

In support of the value of this idea, recent results show
that endowing neural networks with (syntactic) inductive
biases for hierarchy improves their performance on
complex syntactic tasks (e.g. Chen et al., 2017; Hale
et al., 2018; Kuncoro et al., 2018; McCoy et al., 2020;
Shen et al., 2019; Wilcox et al., 2019). These biases can
be implemented in several ways, by means of both
implicit and explicit representations of hierarchy. As an
example of the former, the Ordered Neurons LSTM has
an architecture in which its memory cells are structurally
ordered in such a way that when a higher ordered neuron
is updated, lower ordered neurons are forced to be
updated as well. Different neurons therefore vary in
update frequency, due to which they also vary in the

timescale of the information they encode, with higher
ordered neurons encoding longer timescales (Shen
et al., 2019). As higher nodes in a tree structure represent
information spanning over longer timescales, higher
ordered neurons learn to encode higher nodes. This
network thus comes to represent the hierarchical struc-
ture of sentences by discovering an implicit connection
between timescale and node height. In contrast to this
fully data-driven approach, the Tree-LSTM model is built
to represent the hierarchical structure of sentences expli-
citly (Chen et al., 2017). This model is given the correct
syntactic tree structure for every input sentence, such
that its internal representations are biased to encode con-
stituent structure. In contrast to the implicit link between
node height and timescale in the Ordered Neurons LSTM
(Shen et al., 2019), the Tree-LSTM incorporates syntactic
trees explicitly (Chen et al., 2017). An important similarity
between the two approaches, however, is that they both
rely on the modeller’s assumptions about the type of
structure that must be represented.

3.2. Structure, statistics, or both?

A commonly articulated reason to favour linearity is that
hierarchical structure is complex. Therefore, if language
use can be equally well captured by a purely linear
system, the linear system should be favoured on
grounds of parsimony (e.g. Frank et al., 2012; Frank &
Christiansen, 2018). However, while the hierarchical
structure of natural language syntax is indeed more
complex than can be modelled by linear grammars
(Chomsky, 1956), equivalent metrics of parsing complex-
ity have not been defined for “linear” vs. “hierarchical”
language use. Thus, without an implementation of syn-
tactic structure building, or at least the identification of
the core computations at stake, the simplicity statement
is ill-posed. Furthermore, the psycholinguistic evidence
that hierarchical structure building is costly comes
from the comparison of putatively “more complex”
structure with “less complex”, but still hierarchical, struc-
ture (e.g. King & Just, 1991; Waters & Caplan, 2004). But
most importantly, appeals to simplicity can only be
made when competing theories have equivalent empiri-
cal coverage, which does not hold here because the “lin-
earity view” cannot account for our behavioural results.
To deal with these situations, hierarchical structure
might only be used in very specific situations, such as
when sentence meaning depends on precise hierarchi-
cal structure (second blue ball vs. big blue ball; e.g.
Frank et al., 2012). However, this requires the postulation
of both a linear and a hierarchical grammar processor,
resulting in a two-system cognitive architecture that is
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more complex than a one-system architecture that only
uses hierarchical syntax (Lewis & Phillips, 2015).

While the debate about hierarchical and linear
systems is often couched in terms of hierarchy versus
statistics, these two are not mutually exclusive (see
Martin, 2016, 2020; Yang, 2004). We believe that prob-
abilistic processes do play an important role in language,
as has been shown extensively (e.g. Marcus, 2001; Pinker,
1999; Townsend & Bever, 2001), but that they operate
within the boundaries imposed by hierarchical structure,
during both language processing (Martin, 2016, 2020)
and acquisition (Lidz & Gagliardi, 2015; Yang, 2002,
2004). Finding out where the boundaries lie, i.e. what
is the representational level over which probabilities
are computed, is an important avenue for future
research (Brennan et al., 2016; Brennan & Martin, 2020;
Martin & Doumas, 2017, 2019; Meyer et al., 2019).

4. Conclusion

In conclusion, we have shown that hierarchical structure is
a key component of human language interpretation, and
that an LSTM only reproduces such hierarchical behaviour
under highly specific training circumstances. We conclude
that without a predisposition to generalise hierarchically,
the model is not a cognitively adequate model of
human language (Fitch, 2014; Martin, 2020; Martin &
Doumas, 2017, 2019, 2020). Beyond language, hierarchical
structure might form the basis of other domains of cogni-
tion and information processing (e.g. Dehaene et al., 2015;
Doumas et al., 2008; Ferrigno et al., 2020; Fitch, 2014;
Hummel & Holyoak, 1997; Martin & Doumas, 2019, 2020;
Tenenbaum et al., 2011). Figuring out how the brain
builds hierarchically structured representations from
linear input therefore remains a central question in the
science of the human mind.

Notes

1. Semantic scope refers to the domain in which an oper-
ator can affect the interpretation of other elements.
Scope domains can sometimes be directly read off hier-
archical relations between syntactic elements, that is, by
virtue of the c-command relation (e.g., Reinhart, 1983).

2. Notably, even if it is the case that such pragmatic factors
drive people to interpret second blue ball non-intersec-
tively (i.e., not referring to the ball that is blue and in
second position), they would still have to use constitu-
ent structure to interpret the phrase “hierarchically”.

3. This applies to all ordinals except the ordinal first, for
which divergent trials do not exist. That is, if the first
among blue balls is not the first ball, then the linear
interpretation is not present and only the hierarchical
option is available. Divergent trials with ordinal first
were actually non-convergent trials with only a hierarch-
ical option, and were therefore not analysed.

4. Again, the interpretations of targets with the ordinal first
always converged. The responses to these targets could
not distinguish between the two interpretations and
were therefore not analysed.

5. Code and data for the computational experiments
described in this paper are available at: https://github.
com/CasCoopmans/second_blue_ball.

6. Trials with the ordinal first would always be convergent
and were therefore not part of the datasets. We replaced
first by seventh in these datasets to make sure that the
number of ordinals on which the human participants
and the model were tested was the same.

7. This was done to make sure that the number of target-
present and target-absent responses for each ordinal
are roughly equal. However, it also means that output
vectors with a one in position 9 (“target absent”) are
overrepresented in the output. We accounted for this
imbalance by updating the loss function with a weight-
ing parameter that reflected the class distribution in the
training data (Chollet et al., 2015).

8. Because we have ten words, we would need maximally
ten dimensions to capture their differences. In reality,
this number can be lower, because some of the words
are related.
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