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Abstract: We consider the controller synthesis problem for stochastic, continuous-state,
nonlinear systems against ω-regular specifications. We synthesize a symbolic controller that
ensures almost sure (qualitative) satisfaction of the specification. The problem reduces, after
some automata-theoretic constructions, to computing the almost sure winning region—the
largest set of states from which a parity condition can be satisfied with probability 1 (on a
possibly hybrid state space). While characterizing the exact almost sure winning region is still
open for the considered system class, we propose an algorithm for obtaining a tight under-
approximation of this set. The heart of our approach is a technique to symbolically compute this
under-approximation via a finite-state abstraction as a 21/2-player parity game. Our abstraction
procedure uses only the support of the probabilistic evolution; it does not use precise numerical
transition probabilities. We have implemented our approach and evaluated it on the nonlinear
model of the perturbed Dubins vehicle.
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1. INTRODUCTION

Controlled Markov processes (CMPs) over continuous
state spaces and evolving in discrete time form a gen-
eral model for temporal decision making under stochastic
uncertainty. In recent years, the problem of finding or
approximating optimal policies in CMPs for specifications
given in temporal logics or automata has received great
attention. While there is a steady progression towards
more expressive models and properties (Tkachev et al.,
2017; Haesaert and Soudjani, 2018; Svoreňová et al., 2017;
Majumdar et al., 2020; Dutreix et al., 2020; Laurenti et al.,
2020), a satisfactory symbolic solution fornonlinear models
and general ω-regular specifications is still open. In this
paper, we address a qualitative aspect of this problem (i.e.,
satisfying the specification with probability 1).

We are interested to compute the largest set of states,
called the almost sure winning region, from which the
given specification can be satisfied almost surely, i.e., with
probability 1. For finite-state Markov decision processes
(MDP), one can compute the almost sure winning region
using graph theoretic techniques, ignoring the actual tran-
sition probabilities. Further, for any state in this almost
sure winning region, an optimal policy for almost sure
satisfaction of the specification can be derived (Baier and
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Katoen, 2008). For continuous-state CMPs, as considered
in this paper, computation of the exact almost sure win-
ning region is difficult. This is because a characterization
of the optimal control policies for CMPs subject to general
ω-regular specifications is not available. In particular, it is
not known if deterministic or finite-memory policies are
sufficient for this challenging control problem.

The main contribution of this paper is a new technique
to under-approximate the almost sure winning region of a
given CMP for a parity specification. A parity specification
is a canonical representation for all ω-regular properties
(Thomas, 1995); thus, our approach provides a way to
under-approximate the almost sure winning region for any
ω-regular specification.

Our approach uses a finite-state abstraction of the given
CMP which is qualitative in nature, i.e., the constructed
abstraction disregards the exact transition probabilities
of the CMP. As a result, we obtain a purely symbolic
algorithm for the computation of the almost sure winning
region of the CMP subject to a given specification. This
abstraction-based policy synthesis technique is inspired by
the abstraction-based controller design (ABCD) paradigm,
that has been proposed for non-stochastic systems (Pola
et al., 2008; Nilsson et al., 2017; Reissig et al., 2017). By
following the ABCD paradigm, we first build an abstrac-
tion of the original CMP using a 21/2-player game (Chat-
terjee and Henzinger, 2012). The abstract 21/2-player game
models the interplay between the controller (Player 0),
the precision loss incurred due to the abstraction process

Symbolic Qualitative Control for
Stochastic Systems via
Finite Parity Games �

Rupak Majumdar ∗ Kaushik Mallik ∗

Anne-Kathrin Schmuck ∗ Sadegh Soudjani ∗∗

∗ Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern, Germany

∗∗ School of Computing, Newcastle University, United Kingdom

Abstract: We consider the controller synthesis problem for stochastic, continuous-state,
nonlinear systems against ω-regular specifications. We synthesize a symbolic controller that
ensures almost sure (qualitative) satisfaction of the specification. The problem reduces, after
some automata-theoretic constructions, to computing the almost sure winning region—the
largest set of states from which a parity condition can be satisfied with probability 1 (on a
possibly hybrid state space). While characterizing the exact almost sure winning region is still
open for the considered system class, we propose an algorithm for obtaining a tight under-
approximation of this set. The heart of our approach is a technique to symbolically compute this
under-approximation via a finite-state abstraction as a 21/2-player parity game. Our abstraction
procedure uses only the support of the probabilistic evolution; it does not use precise numerical
transition probabilities. We have implemented our approach and evaluated it on the nonlinear
model of the perturbed Dubins vehicle.

Keywords: Abstraction-based control design, Approximate model checking, Discrete-time
stochastic systems, Finite games, Formal specifications, Policy synthesis

1. INTRODUCTION

Controlled Markov processes (CMPs) over continuous
state spaces and evolving in discrete time form a gen-
eral model for temporal decision making under stochastic
uncertainty. In recent years, the problem of finding or
approximating optimal policies in CMPs for specifications
given in temporal logics or automata has received great
attention. While there is a steady progression towards
more expressive models and properties (Tkachev et al.,
2017; Haesaert and Soudjani, 2018; Svoreňová et al., 2017;
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tion of the original CMP using a 21/2-player game (Chat-
terjee and Henzinger, 2012). The abstract 21/2-player game
models the interplay between the controller (Player 0),
the precision loss incurred due to the abstraction process
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1. INTRODUCTION

Controlled Markov processes (CMPs) over continuous
state spaces and evolving in discrete time form a gen-
eral model for temporal decision making under stochastic
uncertainty. In recent years, the problem of finding or
approximating optimal policies in CMPs for specifications
given in temporal logics or automata has received great
attention. While there is a steady progression towards
more expressive models and properties (Tkachev et al.,
2017; Haesaert and Soudjani, 2018; Svoreňová et al., 2017;
Majumdar et al., 2020; Dutreix et al., 2020; Laurenti et al.,
2020), a satisfactory symbolic solution fornonlinear models
and general ω-regular specifications is still open. In this
paper, we address a qualitative aspect of this problem (i.e.,
satisfying the specification with probability 1).

We are interested to compute the largest set of states,
called the almost sure winning region, from which the
given specification can be satisfied almost surely, i.e., with
probability 1. For finite-state Markov decision processes
(MDP), one can compute the almost sure winning region
using graph theoretic techniques, ignoring the actual tran-
sition probabilities. Further, for any state in this almost
sure winning region, an optimal policy for almost sure
satisfaction of the specification can be derived (Baier and
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Katoen, 2008). For continuous-state CMPs, as considered
in this paper, computation of the exact almost sure win-
ning region is difficult. This is because a characterization
of the optimal control policies for CMPs subject to general
ω-regular specifications is not available. In particular, it is
not known if deterministic or finite-memory policies are
sufficient for this challenging control problem.

The main contribution of this paper is a new technique
to under-approximate the almost sure winning region of a
given CMP for a parity specification. A parity specification
is a canonical representation for all ω-regular properties
(Thomas, 1995); thus, our approach provides a way to
under-approximate the almost sure winning region for any
ω-regular specification.

Our approach uses a finite-state abstraction of the given
CMP which is qualitative in nature, i.e., the constructed
abstraction disregards the exact transition probabilities
of the CMP. As a result, we obtain a purely symbolic
algorithm for the computation of the almost sure winning
region of the CMP subject to a given specification. This
abstraction-based policy synthesis technique is inspired by
the abstraction-based controller design (ABCD) paradigm,
that has been proposed for non-stochastic systems (Pola
et al., 2008; Nilsson et al., 2017; Reissig et al., 2017). By
following the ABCD paradigm, we first build an abstrac-
tion of the original CMP using a 21/2-player game (Chat-
terjee and Henzinger, 2012). The abstract 21/2-player game
models the interplay between the controller (Player 0),
the precision loss incurred due to the abstraction process
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(Player 1), and the environmental randomness (the 1/2-
player). A solution of this abstract game generates a con-
trol strategy, which can then be refined as a controller for
the original CMP.

The key insight in our 21/2-player game abstraction is
that the disturbances need to be handled in a fair way—
in the long run, all transitions with positive probability
will eventually occur. In contrast, for the ABCD with
nonstochastic systems, the abstractions need to treat the
disturbances in a worst-case fashion, making the controller
synthesis problem much more difficult.

This provides a conceptually very appealing result of our
paper. Using 21/2-player games as abstractions of CMPs
allows to utilize the symbolic game solving machinery,
analogous to ABCD techniques for non-stochastic systems,
while capturing the intuitive differences between the prob-
lem instances by the use of a random player in the abstract
game. Most interestingly, the stochastic nature of the re-
sulting abstract game eases the abstract synthesis problem
compared to standard ABCD where disturbances are non-
stochastic. In conclusion, we obtain a symbolic algorithm
to compute an under-approximation of the almost sure
winning region in a continuous-state CMP for all ω-regular
specifications. Moreover, similar to the results for finite-
state MDPs, this shows that the (approximate) solution
of almost sure winning region for CMPs does not need to
handle the actual transition probabilities.

Related Work. Stochastic nonlinear systems were ab-
stracted to finite-state interval Markov decision processes
by Dutreix et al. (2020), where they provide an alterna-
tive approach for approximating the almost sure winning
region for CMPs by using algorithms for model checking
finite interval Markov chains against deterministic Rabin
automata. Our method is conceptually very different from
the one by Dutreix et al. (2020), where they explicitly
compute lower and upper bounds of all involved proba-
bilities and construct winning regions by an enumerative
algorithm taking these probability bounds into account.
On the other hand, our approach shows that this knowl-
edge is not needed for the almost sure winning case. This
allows us to provide a conceptually simpler symbolic algo-
rithm approximately solving the qualitative aspect of the
synthesis problem via abstract 21/2-player games.

21/2-player games were used as abstractions of probabilistic
systems, both in the finite case (Kwiatkowska et al., 2020)
and for stochastic linear systems with GR1 specifications
(Svoreňová et al., 2017). Our paper subsumes the result
of Svoreňová et al. (2017) by showing a computational
procedure to abstract a general, nonlinear CMP with a
parity specification into a finite-state 21/2-player game. We
also extend the work by Weininger et al. (2019) from finite
to continuous spaces. Our paper also extends the recent
results of Majumdar et al. (2020) from Büchi specifications
to parity specifications. Due to space constrains, the proofs
for all technical results are provided in the extended
version of this paper (Majumdar et al., 2021).

2. PRELIMINARIES

2.1 Notation

We consider Borel space S which is assumed to be endowed
with a Borel sigma-algebra (i.e., the one generated by the
open sets in the topology), which is denoted by B(S). We
say that a map f : S → Y is measurable whenever it
is Borel measurable. A Borel space (S,B(S)) is endowed
with a probability measures P , which is assumed to be
induced by a random variable mapping elements of some
underlying probability space to the space (S,B(S)). More
details can be found in any standard book on Markov
processes (Bertsekas and Shreve, 1996).

Given an alphabet A, we use the notation A∗ and Aω

to denote respectively the set of all finite and infinite
words formed using the letters of the alphabet A, and
use A∞ to denote the set A∗ ∪ Aω. Let X be a set and
R ⊆ X × X be a relation. For simplicity, let us assume
that dom R := {x ∈ X | ∃y ∈ X . (x, y) ∈ R} = X. For
any given x ∈ X, we use the notation R(x) to denote the
set {y ∈ X | (x, y) ∈ R}. We extend this notation to sets:
For any given Z ⊆ X, we write R(Z) to denote ∪z∈ZR(z).

A probability distribution over a finite set A is a proba-
bility measure on the space (A, 2A). We use the notation
Dist(A) to denote the set of all probability distributions
over A. Given any distribution f ∈ Dist(A), we define the
support of f as: supp (f) := {a ∈ A | f(a) > 0}.
We denote the set of nonnegative integers by N :=
{0, 1, 2, . . .} and the set of integers in an interval by [a; b] :=
{a+k | k ∈ N, k ≤ b−a}. We also use the symbols “∈even”
and “∈odd” to denote memberships in the set of even and
odd integers within a given set of integers: For example,
for a given set of natural numbers M ⊆ N, the notation
n ∈even M is equivalent to n ∈ M ∩ {0, 2, 4, . . .}, and the
notation n ∈odd M is equivalent to n ∈ M ∩ {1, 3, 5, . . .}.

2.2 Controlled Markov Processes

A controlled Markov process (CMP) is a tuple S =
(S,U , Ts) , where S is a Borel space called the state space,
U is a finite set called the input space, and Ts is a
conditional stochastic kernel Ts : B(S)×S×U → [0, 1] with
B(S) being the Borel sigma-algebra on the state space and
(S,B(S)) being the corresponding measurable space. The
kernel Ts assigns to any s ∈ S and u ∈ U a probability
measure Ts(·|s, u) on the measurable space (S,B(S)) so
that for any set A ∈ B(S), Ps,u(A) =

∫
A
Ts(ds|s, u), where

Ps,u denotes the conditional probability P (·|s, u).

The evolution of a CMP is as follows. For k ∈ N, let Xk

denote the state at the kth time step and Ak the input
chosen at that time. If Xk = s ∈ S and Ak = u ∈ U , then
the system moves to the next state Xk+1, according to the
probability distribution Ps,u. Once the transition into the
next state has occurred, a new input is chosen, and the
process is repeated.

Given a CMP S, a finite path of length n+1 is a sequence

wn = (s0, s1, . . . , sn), n ∈ N,
where si ∈ S are state coordinates of the path. The space
of all paths of length n + 1 is denoted Sn+1. An infinite
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(Player 1), and the environmental randomness (the 1/2-
player). A solution of this abstract game generates a con-
trol strategy, which can then be refined as a controller for
the original CMP.

The key insight in our 21/2-player game abstraction is
that the disturbances need to be handled in a fair way—
in the long run, all transitions with positive probability
will eventually occur. In contrast, for the ABCD with
nonstochastic systems, the abstractions need to treat the
disturbances in a worst-case fashion, making the controller
synthesis problem much more difficult.

This provides a conceptually very appealing result of our
paper. Using 21/2-player games as abstractions of CMPs
allows to utilize the symbolic game solving machinery,
analogous to ABCD techniques for non-stochastic systems,
while capturing the intuitive differences between the prob-
lem instances by the use of a random player in the abstract
game. Most interestingly, the stochastic nature of the re-
sulting abstract game eases the abstract synthesis problem
compared to standard ABCD where disturbances are non-
stochastic. In conclusion, we obtain a symbolic algorithm
to compute an under-approximation of the almost sure
winning region in a continuous-state CMP for all ω-regular
specifications. Moreover, similar to the results for finite-
state MDPs, this shows that the (approximate) solution
of almost sure winning region for CMPs does not need to
handle the actual transition probabilities.

Related Work. Stochastic nonlinear systems were ab-
stracted to finite-state interval Markov decision processes
by Dutreix et al. (2020), where they provide an alterna-
tive approach for approximating the almost sure winning
region for CMPs by using algorithms for model checking
finite interval Markov chains against deterministic Rabin
automata. Our method is conceptually very different from
the one by Dutreix et al. (2020), where they explicitly
compute lower and upper bounds of all involved proba-
bilities and construct winning regions by an enumerative
algorithm taking these probability bounds into account.
On the other hand, our approach shows that this knowl-
edge is not needed for the almost sure winning case. This
allows us to provide a conceptually simpler symbolic algo-
rithm approximately solving the qualitative aspect of the
synthesis problem via abstract 21/2-player games.

21/2-player games were used as abstractions of probabilistic
systems, both in the finite case (Kwiatkowska et al., 2020)
and for stochastic linear systems with GR1 specifications
(Svoreňová et al., 2017). Our paper subsumes the result
of Svoreňová et al. (2017) by showing a computational
procedure to abstract a general, nonlinear CMP with a
parity specification into a finite-state 21/2-player game. We
also extend the work by Weininger et al. (2019) from finite
to continuous spaces. Our paper also extends the recent
results of Majumdar et al. (2020) from Büchi specifications
to parity specifications. Due to space constrains, the proofs
for all technical results are provided in the extended
version of this paper (Majumdar et al., 2021).

2. PRELIMINARIES

2.1 Notation

We consider Borel space S which is assumed to be endowed
with a Borel sigma-algebra (i.e., the one generated by the
open sets in the topology), which is denoted by B(S). We
say that a map f : S → Y is measurable whenever it
is Borel measurable. A Borel space (S,B(S)) is endowed
with a probability measures P , which is assumed to be
induced by a random variable mapping elements of some
underlying probability space to the space (S,B(S)). More
details can be found in any standard book on Markov
processes (Bertsekas and Shreve, 1996).

Given an alphabet A, we use the notation A∗ and Aω

to denote respectively the set of all finite and infinite
words formed using the letters of the alphabet A, and
use A∞ to denote the set A∗ ∪ Aω. Let X be a set and
R ⊆ X × X be a relation. For simplicity, let us assume
that dom R := {x ∈ X | ∃y ∈ X . (x, y) ∈ R} = X. For
any given x ∈ X, we use the notation R(x) to denote the
set {y ∈ X | (x, y) ∈ R}. We extend this notation to sets:
For any given Z ⊆ X, we write R(Z) to denote ∪z∈ZR(z).

A probability distribution over a finite set A is a proba-
bility measure on the space (A, 2A). We use the notation
Dist(A) to denote the set of all probability distributions
over A. Given any distribution f ∈ Dist(A), we define the
support of f as: supp (f) := {a ∈ A | f(a) > 0}.
We denote the set of nonnegative integers by N :=
{0, 1, 2, . . .} and the set of integers in an interval by [a; b] :=
{a+k | k ∈ N, k ≤ b−a}. We also use the symbols “∈even”
and “∈odd” to denote memberships in the set of even and
odd integers within a given set of integers: For example,
for a given set of natural numbers M ⊆ N, the notation
n ∈even M is equivalent to n ∈ M ∩ {0, 2, 4, . . .}, and the
notation n ∈odd M is equivalent to n ∈ M ∩ {1, 3, 5, . . .}.

2.2 Controlled Markov Processes

A controlled Markov process (CMP) is a tuple S =
(S,U , Ts) , where S is a Borel space called the state space,
U is a finite set called the input space, and Ts is a
conditional stochastic kernel Ts : B(S)×S×U → [0, 1] with
B(S) being the Borel sigma-algebra on the state space and
(S,B(S)) being the corresponding measurable space. The
kernel Ts assigns to any s ∈ S and u ∈ U a probability
measure Ts(·|s, u) on the measurable space (S,B(S)) so
that for any set A ∈ B(S), Ps,u(A) =

∫
A
Ts(ds|s, u), where

Ps,u denotes the conditional probability P (·|s, u).

The evolution of a CMP is as follows. For k ∈ N, let Xk

denote the state at the kth time step and Ak the input
chosen at that time. If Xk = s ∈ S and Ak = u ∈ U , then
the system moves to the next state Xk+1, according to the
probability distribution Ps,u. Once the transition into the
next state has occurred, a new input is chosen, and the
process is repeated.

Given a CMP S, a finite path of length n+1 is a sequence

wn = (s0, s1, . . . , sn), n ∈ N,
where si ∈ S are state coordinates of the path. The space
of all paths of length n + 1 is denoted Sn+1. An infinite

path of the CMP S is the sequence w = (s0, s1, s2, . . .),
where si ∈ S for all i ∈ N. The space of all infinite paths is
denoted by Sω. The spaces Sn+1 and Sω are endowed with
their respective product topologies and are Borel spaces.

A stationary control policy is a universally measurable
function ρ : S → U such that at any time step n ∈ N,
the input un is taken to be ρ(sn) ∈ U . As we only deal
with stationary control policies in this paper, we simply
refer to them as policies for short. We denote the class of
all such policies by Π. The function ρ is also called state
feedback controller in control theory.

For a CMP S, any policy ρ ∈ Π together with an initial
probability measure α : B(S) → [0, 1] of the CMP induces
a unique probability measure on the canonical sample
space of paths (Hernández-Lerma and Lasserre, 1996),
denoted by P ρ

α with the expectation Eρ
α. In the case when

the initial probability measure is supported on a single
state s ∈ S, i.e., α(s) = 1, we write P ρ

s and Eρ
s in place of

P ρ
α and Eρ

α, respectively. We denote the set of probability
measures on (S,B(S)) by D.

2.3 Parity Specifications

Let S = (S,U , Ts) be a CMP and suppose P =
〈B0, B1, . . . , B�〉 is a partition of S with measurable sets
B0, . . ., B�; that is, Bi∩Bj = ∅ for i �= j and ∪�

i=1Bi = S.
We allow some Bi’s to be empty. For each Bi, we call the
integer i its priority. An infinite path w ∈ Sω satisfies
the parity specification if the highest priority set visited
infinitely often by w is even. We indicate the set of all
infinite paths w ∈ Sω of a CMPS that satisfy the property
Parity(P) by S |= Parity(P). The event S |= Parity(P)
is measurable because S |= Parity(P) can be written as
a Boolean combination of events S |= �♦A, where A is
a measurable set, and �♦A is a canonical Gδ set in the
Borel hierarchy. Thus, P ρ

α(S |= Parity(P)) denotes the
probability of satisfaction of Parity(P) by S under the
effect of the control policy ρ, when the initial probability
measure is given by α.

It is well-known that every ω-regular specification whose
propositions range over measurable subsets of the state
space of a CMP can be modeled as a deterministic parity
automaton (Gradel and Thomas, 2002, Thm. 1.19). By
taking a synchronized product of this parity automaton
with the CMP, we can obtain a product CMP and a parity
specification over the product state space such that every
path satisfying the parity specification also satisfies the
original ω-regular specification and vice versa. Moreover,
a stationary policy for the parity objective gives a (possibly
history-dependent) policy for the original specification.
Thus, without loss of generality, we assume that an ω-
regular objective is already given as a parity condition
using a partition of the state space of the system.

2.4 Problem Statement

We are interested in finding the set of initial states of a
CMP S from which a given parity specification Parity(P)
can be satisfied with probability 1 using a given stationary
policy ρ. The respective set of states is called the almost
sure winning region, and is defined as follows:

WinDom(S, ρ) := {s ∈ S | P ρ
s (S |= Parity(P)) = 1}. (1)

We also define the maximal almost sure winning region as
follows:

WinDom∗(S) := {s ∈ S | sup
ρ∈Π

P ρ
s (S |= Parity(P)) = 1}.

(2)

An optimal control policy ρ∗ is a policy such that
WinDom(S, ρ∗) = WinDom∗(S). Note that an optimal
control policy might not exist, since the supremum (in
the definition of WinDom∗) may not be achievable by any
policy. We are unaware of any work characterizing neces-
sary or sufficient conditions for existence of optimal control
policies on continuous-space CMPs for parity specifica-
tions. Additionally, we restrict our attention to stationary
policies. While it is possible to define more general classes
of policies, that depend on the entire history and use
randomization over U , we are again unaware of any work
that characterizes the class of policies that are sufficient
for optimal control of CMPs for parity specifications. For
finite-state systems, stationary policies are sufficient and
we restrict our attention to this class of policies.

Since we cannot prove existence or computability of opti-
mal policies, in this paper, we focus on providing a best-
effort under-approximation procedure to compute a pos-
sibly sub-optimal control policy ρ and the corresponding
almost sure winning region WinDom(S, ρ):

Problem 1. (Approximate Maximal Winning Region).
Given S and a parity specification Parity(P), find a
(sub-optimal) control policy ρ ∈ Π, its winning region
WinDom(S, ρ) �= ∅, and an upper bound on the volume
of the set difference WinDom∗(S)\WinDom(S, ρ), which
we call the approximation error.

We provide a solution for Prob. 1 in Sec. 3, where
the sought control policy ρ and the respective winning
region WinDom(S, ρ) are obtained through abstraction-
based controller design. Besides, we compute an over-
approximation of WinDom∗(S, ρ), and the volume of
the set difference between the over- and the under-
approximation gives us the sought bound on the ap-
proximation error. Unsurprisingly, when we use a finer
discretization of the state space during the abstraction
step, we get a tighter (i.e., larger) approximation of
WinDom∗(S), resulting in a smaller approximation error.
This fact is empirically validated using a numerical exam-
ple in Sec. 4.

3. ABSTRACTION-BASED POLICY SYNTHESIS

The main result of our paper is a solution to Prob. 1 via
a symbolic algorithm over abstract 21/2-player games in
the spirit of abstraction-based controller design (ABCD).
Standard ABCD techniques for non-stochastic nonlinear
systems use a finite two-player game abstraction of the
given system to synthesize a controller (Reissig et al.,
2017). We build a 21/2-player game (Chatterjee and Hen-
zinger, 2012) abstraction of the given CMP to synthesize
the controller. The key insight in our abstract 21/2-player
game is that the stochastic disturbance can be modeled
as a fair random player (the 1/2-player), which makes the
synthesis problem easier compared to a purely nondeter-
ministic adversary. In the abstract game, only the effect of
the discretization is handled by Player 1 in an adversarial
manner. In the rest of the section, we explain our approach.
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3.1 Preliminaries: 21/2-Player Parity Games

A 21/2-player game graph is a tuple G = 〈V,E, 〈V0, V1, Vr〉〉,
where V is a finite set of vertices, E is a set of directed
edges E ⊆ V ×V , and the sets V0, V1, Vr form a partition of
the set V . A 21/2-player parity game is a pair 〈G,P〉, where
G is a 21/2-player game graph, and P = 〈B0, B1, . . . , B�〉
is a tuple of � disjoint subsets of V , some of which
can possibly be empty. The tuple P induces the parity
specification Parity(P) over the set of vertices V in the
natural way. In order to ensure that Parity(P) is well
defined, we impose the restriction that every infinite run
must have infinitely many occurrences of vertices from at
least one of the sets in P. In other words, we require that
every set of vertices U ⊆ V for which there is no i ∈ [1; �]
with U ∩Bi �= ∅ must be “transient” vertices.

The players and their strategies. We assume that
there are two players Player 0 and Player 1, who are
playing a game by moving a token along the edges of the
game graph G. In every step, if the token is located in
a vertex in V0 or V1, Player 0 or Player 1 respectively
moves the token to one of the successors according to
the edge relation E. On the other hand, if the token is
located in a vertex v ∈ Vr, then in the next step the token
moves to a vertex v′ which is chosen uniformly at random
from the set E(v). Strategies of Player 0 and Player 1
are respectively the functions π0 : V

∗V0 → Dist(V ) and
π1 : V

∗V1 → Dist(V ) such that for all w ∈ V ∗, v0 ∈
V0 and v1 ∈ V1, we have supp π0(wv0) ⊆ E(v0) and
supp π1(wv1) ⊆ E(v1). We use the notation Π0 and Π1

to denote the set of all strategies of Player 0 and Player 1
respectively. A strategy πi of Player i, for i ∈ {0, 1}, is
deterministic memoryless if for every w1, w2 ∈ V ∗ and for
every v ∈ Vi, πi(w1v) ≡ πi(w2v) holds; we simply write
πi(v) in this case. We use the notation ΠDM

i to denote the
set of all deterministic memoryless strategies of Player i.
Observe that ΠDM

i ⊆ Πi.

Runs and winning conditions. An infinite (finite) run
of the game graph G, compatible with the strategies π0 ∈
Π0 and π1 ∈ Π1, is an infinite (a finite) sequence of vertices
r = v0v1v2 . . . (r = v0 . . . vn for some n ∈ N) such that for
every k ∈ N, (a) vk ∈ V0 implies vk+1 ∈ supp π0(v

0 . . . vk),
(b) vk ∈ V1 implies vk+1 ∈ supp π1(v

0 . . . vk), and (c)
vk ∈ Vr implies vk+1 ∈ E(vk). Given an initial vertex v0

and a fixed pair of strategies π0 ∈ Π0 and π1 ∈ Π1, we
obtain a probability distribution over the set of infinite
runs of the system. For a measurable set of runs R ⊆ V ω,
we use the notation Pπ0,π1

v0 (R) to denote the probability
of obtaining the set of runs R when the initial vertex is
v0 and the strategies of Player 0 and Player 1 are fixed
to respectively π0 and π1. For an ω-regular specification
ϕ, defined using a predicate over the set of vertices of G,
we write (G |= ϕ) to denote the set of all infinite runs
for all possible strategies of Player 0 and Player 1 which
satisfy ϕ. For example, (G |= Parity(P)) denotes the set of
all infinite runs for all possible strategies of Player 0 and
Player 1 which satisfy the parity condition Parity(P). We
say that Player 0 wins Parity(P) almost surely from a
vertex v ∈ V (or v is almost sure winning for Player 0) if
Player 0 has a strategy π0 ∈ Π0 such that for all π1 ∈ Π1

we have Pπ0,π1
v (G |= Parity(P)) = 1. We collect all the

vertices for which this is true in the almost sure winning
region W(G |= Parity(P)).

3.2 Abstraction: CMPs to 21/2-Player Games

Given a CMP S = (S,U , Ts) and a parity specification
Parity(P) for a partition P of the state space S we
construct an abstract 21/2-player game.

State-space abstraction.We introduce a finite partition

Ŝ := {ŝi}i∈I such that ∪i∈I ŝi = S, ŝi �= ∅ and ŝi ∩ ŝj = ∅
for every ŝi, ŝj ∈ Ŝ with i �= j. Furthermore, we assume

that the partition Ŝ is consistent with the given priorities

P, i.e., for every partition element ŝ ∈ Ŝ, and for every
x, y ∈ ŝ, x and y belong to the same partition element in
P (i.e., x and y are assigned the same priority). We call

the set Ŝ the abstract state space and each element ŝ ∈ Ŝ
an abstract state.

We introduce the abstraction function Q : S → Ŝ as a
mapping from the continuous to the abstract states: For
every s ∈ S, Q : s �→ ŝ such that s ∈ ŝ. We define the
concretization function as the inverse of the abstraction
function: Q−1 : Ŝ → 2S , Q−1 : ŝ �→ {s ∈ S | s ∈ ŝ}. We
generalize the use of Q and Q−1 to sets of states: For

every U ⊆ S, Q(U) =
⋃

s∈U Q(s), and for every Û ⊆ Ŝ,
Q−1(Û) =

⋃
ŝ∈Û

Q−1(ŝ).

Transition abstraction. We also introduce an over- and
an under-approximation of the probabilistic transitions of
the CMPS using the non-deterministic abstract transition

functions F : Ŝ × U → 2Ŝ and F : Ŝ × U → 2Ŝ with the
following properties:

F (ŝ, u) ⊇ {ŝ′ ∈ Ŝ | ∃s ∈ ŝ . Ts(ŝ
′ | s, u) > 0}, (3a)

F (ŝ, u) ⊆ {ŝ′ ∈ Ŝ | ∃ε > 0 . ∀s ∈ ŝ . Ts(ŝ
′ | s, u) ≥ ε}.

(3b)

Intuitively, given an abstract state ŝ and an input u, the set
F over-approximates the set of abstract states reachable
by probabilistic transitions from ŝ on input u. On the
other hand, F under-approximates those abstract states
which can be reached by every state in ŝ with probability
bounded away from zero. Unlike abstractions for control
of non-stochastic systems using F -like transitions, we need
both F and F for stochastic systems.

The parameter ε states that there is a uniform lower bound
on transition probabilities for all states in an abstract
state. This ensures that, provided ŝ is visited infinitely
often and u is applied infinitely often from ŝ, then ŝ′ will be
reached almost surely from ŝ. In the absence of a uniform
lower bound, this property need not hold for infinite state
systems; for example, if the probability goes to zero, the
probability of escaping ŝ can be strictly less than one.

While it is difficult to compute F and F in general,
they can be approximated for the important subclass of
stochastic nonlinear systems with affine disturbances.

Abstract 21/2-player game graph. Given the abstract

state space Ŝ and the over and under-approximations of
the transition functions F and F , we are ready to construct
the abstract 21/2-player game graph induced by a CMP.
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3.1 Preliminaries: 21/2-Player Parity Games

A 21/2-player game graph is a tuple G = 〈V,E, 〈V0, V1, Vr〉〉,
where V is a finite set of vertices, E is a set of directed
edges E ⊆ V ×V , and the sets V0, V1, Vr form a partition of
the set V . A 21/2-player parity game is a pair 〈G,P〉, where
G is a 21/2-player game graph, and P = 〈B0, B1, . . . , B�〉
is a tuple of � disjoint subsets of V , some of which
can possibly be empty. The tuple P induces the parity
specification Parity(P) over the set of vertices V in the
natural way. In order to ensure that Parity(P) is well
defined, we impose the restriction that every infinite run
must have infinitely many occurrences of vertices from at
least one of the sets in P. In other words, we require that
every set of vertices U ⊆ V for which there is no i ∈ [1; �]
with U ∩Bi �= ∅ must be “transient” vertices.

The players and their strategies. We assume that
there are two players Player 0 and Player 1, who are
playing a game by moving a token along the edges of the
game graph G. In every step, if the token is located in
a vertex in V0 or V1, Player 0 or Player 1 respectively
moves the token to one of the successors according to
the edge relation E. On the other hand, if the token is
located in a vertex v ∈ Vr, then in the next step the token
moves to a vertex v′ which is chosen uniformly at random
from the set E(v). Strategies of Player 0 and Player 1
are respectively the functions π0 : V

∗V0 → Dist(V ) and
π1 : V

∗V1 → Dist(V ) such that for all w ∈ V ∗, v0 ∈
V0 and v1 ∈ V1, we have supp π0(wv0) ⊆ E(v0) and
supp π1(wv1) ⊆ E(v1). We use the notation Π0 and Π1

to denote the set of all strategies of Player 0 and Player 1
respectively. A strategy πi of Player i, for i ∈ {0, 1}, is
deterministic memoryless if for every w1, w2 ∈ V ∗ and for
every v ∈ Vi, πi(w1v) ≡ πi(w2v) holds; we simply write
πi(v) in this case. We use the notation ΠDM

i to denote the
set of all deterministic memoryless strategies of Player i.
Observe that ΠDM

i ⊆ Πi.

Runs and winning conditions. An infinite (finite) run
of the game graph G, compatible with the strategies π0 ∈
Π0 and π1 ∈ Π1, is an infinite (a finite) sequence of vertices
r = v0v1v2 . . . (r = v0 . . . vn for some n ∈ N) such that for
every k ∈ N, (a) vk ∈ V0 implies vk+1 ∈ supp π0(v

0 . . . vk),
(b) vk ∈ V1 implies vk+1 ∈ supp π1(v

0 . . . vk), and (c)
vk ∈ Vr implies vk+1 ∈ E(vk). Given an initial vertex v0

and a fixed pair of strategies π0 ∈ Π0 and π1 ∈ Π1, we
obtain a probability distribution over the set of infinite
runs of the system. For a measurable set of runs R ⊆ V ω,
we use the notation Pπ0,π1

v0 (R) to denote the probability
of obtaining the set of runs R when the initial vertex is
v0 and the strategies of Player 0 and Player 1 are fixed
to respectively π0 and π1. For an ω-regular specification
ϕ, defined using a predicate over the set of vertices of G,
we write (G |= ϕ) to denote the set of all infinite runs
for all possible strategies of Player 0 and Player 1 which
satisfy ϕ. For example, (G |= Parity(P)) denotes the set of
all infinite runs for all possible strategies of Player 0 and
Player 1 which satisfy the parity condition Parity(P). We
say that Player 0 wins Parity(P) almost surely from a
vertex v ∈ V (or v is almost sure winning for Player 0) if
Player 0 has a strategy π0 ∈ Π0 such that for all π1 ∈ Π1

we have Pπ0,π1
v (G |= Parity(P)) = 1. We collect all the

vertices for which this is true in the almost sure winning
region W(G |= Parity(P)).

3.2 Abstraction: CMPs to 21/2-Player Games

Given a CMP S = (S,U , Ts) and a parity specification
Parity(P) for a partition P of the state space S we
construct an abstract 21/2-player game.

State-space abstraction.We introduce a finite partition

Ŝ := {ŝi}i∈I such that ∪i∈I ŝi = S, ŝi �= ∅ and ŝi ∩ ŝj = ∅
for every ŝi, ŝj ∈ Ŝ with i �= j. Furthermore, we assume

that the partition Ŝ is consistent with the given priorities

P, i.e., for every partition element ŝ ∈ Ŝ, and for every
x, y ∈ ŝ, x and y belong to the same partition element in
P (i.e., x and y are assigned the same priority). We call

the set Ŝ the abstract state space and each element ŝ ∈ Ŝ
an abstract state.

We introduce the abstraction function Q : S → Ŝ as a
mapping from the continuous to the abstract states: For
every s ∈ S, Q : s �→ ŝ such that s ∈ ŝ. We define the
concretization function as the inverse of the abstraction
function: Q−1 : Ŝ → 2S , Q−1 : ŝ �→ {s ∈ S | s ∈ ŝ}. We
generalize the use of Q and Q−1 to sets of states: For

every U ⊆ S, Q(U) =
⋃

s∈U Q(s), and for every Û ⊆ Ŝ,
Q−1(Û) =

⋃
ŝ∈Û

Q−1(ŝ).

Transition abstraction. We also introduce an over- and
an under-approximation of the probabilistic transitions of
the CMPS using the non-deterministic abstract transition

functions F : Ŝ × U → 2Ŝ and F : Ŝ × U → 2Ŝ with the
following properties:

F (ŝ, u) ⊇ {ŝ′ ∈ Ŝ | ∃s ∈ ŝ . Ts(ŝ
′ | s, u) > 0}, (3a)

F (ŝ, u) ⊆ {ŝ′ ∈ Ŝ | ∃ε > 0 . ∀s ∈ ŝ . Ts(ŝ
′ | s, u) ≥ ε}.

(3b)

Intuitively, given an abstract state ŝ and an input u, the set
F over-approximates the set of abstract states reachable
by probabilistic transitions from ŝ on input u. On the
other hand, F under-approximates those abstract states
which can be reached by every state in ŝ with probability
bounded away from zero. Unlike abstractions for control
of non-stochastic systems using F -like transitions, we need
both F and F for stochastic systems.

The parameter ε states that there is a uniform lower bound
on transition probabilities for all states in an abstract
state. This ensures that, provided ŝ is visited infinitely
often and u is applied infinitely often from ŝ, then ŝ′ will be
reached almost surely from ŝ. In the absence of a uniform
lower bound, this property need not hold for infinite state
systems; for example, if the probability goes to zero, the
probability of escaping ŝ can be strictly less than one.

While it is difficult to compute F and F in general,
they can be approximated for the important subclass of
stochastic nonlinear systems with affine disturbances.

Abstract 21/2-player game graph. Given the abstract

state space Ŝ and the over and under-approximations of
the transition functions F and F , we are ready to construct
the abstract 21/2-player game graph induced by a CMP.
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A B C D A2

(A2, u)

{C2, C3}
{C1, C2, C3}

{C2, C3, C4}

C1 C2 C3 C4

Fig. 1. Construction of the abstract 21/2-player game
(right) from a continuous-state CMP (left). The state
space of the CMP is discretized into rectangular
abstract states A1, . . . , D4; F (A2, u) = {C2, C3}
(intersecting the green region), and F (A2, u) =
{C1, C2, C3, C4} (intersecting the orange region). V0,
V1 and Vr are indicated by circular, rectangular, and
diamond-shaped nodes. Random edges are dashed.

Definition 3.1. Let S be a given CMP. Then its in-
duced abstract 21/2-player game graph is given by G =
〈V,E, 〈V0, V1, Vr〉〉 such that

• V0 = Ŝ and V1 = Ŝ × U ;
• Vr =

⋃
v1∈V1

Vr(v1), where

Vr(v1) := {vr ⊆ Ŝ | F (v1) ⊆ vr ⊆ F (v1), 1 ≤ |vr| ≤
|F (v1)|+1};

• and it holds that
◦ for all v0 ∈ V0, E(v0) = {(v0, u) | u ∈ U}
◦ for all v1 ∈ V1, E(v1) = Vr(v1), and
◦ for all vr ∈ Vr, E(vr) = {v0 ∈ V0 | v0 ∈ vr}.

Note that Vr(v1) contains non-empty subsets of Ŝ that
includes all the abstract states in F (v1) and possibly
include only one additional element from F (v1). The
construction is illustrated in Fig. 1.

In the reduced game, Player 0 models the controller,
Player 1 models the effect of discretization of the state
space of S, and the random edges from the states in
Vr model the stochastic nature of the transitions of S.
Intuitively, the game graph in Def. 3.1 captures the fol-
lowing interplay which is illustrated in Fig. 1: At every
time step, the control policy for S has to choose a control
input u ∈ U based on the current vertex ŝ of G. Since
the control policy is oblivious to the precise continuous
state s ∈ S of S, hence u is required to be an optimal
choice for every continuous state s ∈ ŝ. This requirement
is materialized by introducing a fictitious adversary (i.e.
Player 1) who, given ŝ and u, picks a continuous state
s ∈ ŝ from which the control input u is to be applied.
Now, we know that no matter what continuous s is chosen
by Player 1, Ts(F (ŝ, u) | s, u) > ε holds for some ε > 0.
This explains why every successor of the (ŝ, u) ∈ V1 states
contains the set of vertices F (ŝ, u). Moreover, depending
on which exact s ∈ ŝ Player 1 chooses, with positive proba-
bility the system might go to some state in F (ŝ, u)\F (ŝ, u).
This is materialized by adding every state in F (ŝ, u) \
F (ŝ, u) at a time to the successors of the states in V1 (see
Def. 3.1). Finally, we assume that the successor from every
state in Vr is chosen uniformly at random (indicated by
dotted edges in Def. 3.1). It can be shown that the exact
probability values are never used for obtaining the almost

sure winning region, and so we could have chosen any other
probability distribution.

Abstract parity specification. To conclude the ab-
straction of a given CMP S and its parity specification
P = {B1, . . . , Bk}, we have to formally translate the
priority sets Bi defined over subsets of states of the CMP
into a partition of the vertices of the abstract 21/2-player
game graph G induced by S. To this end, recall that we

have assumed that the state space abstraction Ŝ respects
the priority set P.

Definition 3.2. Let S be a CMP with parity specification
Parity(P) and G be the abstract 21/2-player game graph
induced by S. Then the induced abstract parity specifica-

tion P̂ = {B̂0, . . . , B̂�} is defined such that B̂i = {v0 ∈
V0 | Q−1(v0) ⊆ Bi} for all i ∈ [0; 
]. We denote the

resulting 21/2-player parity game by the tuple 〈G, P̂〉.

We note that the choice of the abstract parity set P̂
does not partition the state space. Indeed, we implic-
itly assign an “undefined” color “−” to all nodes V1 ∪
Vr. Thereby, we only interpret the given parity spec-
ification over a projection of a run to its player 0
nodes. Formally, a run r over the abstract game graph
G starting from a vertex s0 ∈ V0 is of the form r =
s0,(s0, u0),({s0,0, . . . ,s0,i0}),s1, (s1,u1),({s1,0, . . . ,s1,i1}), . . .,
where sk ∈ {sk,0, . . . , sk,ik} for all k ∈ N. The projection
of the run r to the player 0 states is defined as ProjV0

(r) =

s0, s1, . . .. Let ϕ be an ω-regular specification defined using
a set of predicates over V0. We use the convention that
(G |= ϕ) will denote the set of every infinite run r of G, for
any arbitrary pair of strategies of Player 0 and Player 1,
such that ProjV0

(r) satisfies ϕ. This convention is well-
defined because every infinite run of G will have infinitely
many occurrences of vertices from V0 in it: This follows
from the strict alternation of the vertices in V0, V1, and
Vr, as per Def. 3.1.

3.3 Synthesis and Refinement

Once the 21/2-player parity game 〈G, P̂〉 is constructed
from the CMPS according to Def. 3.1, one can use existing
techniques (Chatterjee et al., 2003) to compute the almost
sure winning states of Player 0 along with an associated
almost sure memoryless Player 0 winning strategy π0 over

〈G, P̂〉. Then we can refine π0 to a policy ρ for the CMP by

setting ρ(s) := u for every s ∈ S, if and only if s ∈ ŝ ∈ Ŝ
and π0(ŝ) = (ŝ, u) ∈ V1.

With the completion of this last step of our ABCD method
for stochastic nonlinear systems we can finally state our
main theorem providing a solution to Problem 1.

Theorem 3.3. (Solution of Problem 1). Let S be a CMP

and Parity(P) be a given parity specification. Let 〈G, P̂〉
be the abstract 21/2-player game defined in Def. 3.1. Sup-
pose, a vertex ŝ ∈ V0 is almost sure winning for Player 0

in the game 〈G, P̂〉, and π0 ∈ ΠDM is the corresponding
Player 0 winning strategy. Then the refinement ρ of π0

ensures that ŝ ⊆ WinDom(S, ρ).

Remark 1. An over -approximation of the optimal almost
sure winning domain WinDom∗(S) of S w.r.t. Parity(P)

can be computed via 〈G, P̂〉 as well. To obtain an over -
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Table 1. Performance evaluation: Col. 1 shows
the size of the abstract states, Col. 2 shows
an upper-bound on the approximation error
(obtained by measuring the volume of the set
difference between the over- and the under-
approximation), and Col. 3, 4, and 5 respec-
tively show the computation times for the 21/2-
player game, the over-approximation, and the
under-approximation of the winning region.

Size of
abstract states

Bound on
approx.
error

Computation time

Abs.
Over-
approx.

Under-
approx.

0.1× 0.1× 0.1 6.6 < 1m 9m 31m
0.08× 0.08× 0.08 4.8 2m 84m 4h
0.06× 0.06× 0.06 4.5 7m 102m 9h

approximation, we solve this abstract game cooperatively.
That is, we let player Player 0 choose both its own moves
and the moves of player p1 to win almost surely w.r.t.

Parity(P̂). The volume of the set difference between the
over- and the under-approximation gives us an upper
bound on the approximation error.

4. NUMERICAL EXAMPLE

We demonstrate the effectiveness of our controller synthe-
sis approach using a numerical example. We consider the
controller synthesis problem for a mobile robot, modeled
using the sampled-time version of the perturbed Dubins
vehicle with 3 state variables and 1 control input. The
state space of the robot is annotated using a set of atomic
propositions A0, A1, G0, G1, and Crash; A0 and A1 rep-
resent certain events under the environment’s influence
such as the opening/closing of doors, etc., G0 and G1

represent certain events under the robot’s influence such
as reaching a target, and Crash represents the event of the
robot colliding against any obstacle. The specification for
the robot is given as:

�¬Crash
∧ (�♦A0 ∧� (A0 → (A0UG1)) → �♦G0 ∧�♦G1) .

(4)

The specification in (4) can be modeled as a 3-color parity
automaton. We computed the synchronous product of the
parity automaton and the vehicle’s dynamics model. We
used the infrastructure of Mascot-SDS (Majumdar et al.,
2020) to compute a 21/2-player game and to synthesize an
almost sure winning controller for the product system. We
performed the experiments on a computer with 3.3GHz
Intel Xeon E5 v2 processor and 256 GB RAM. We used
three different levels of discretization for the abstract state
space for computing the 21/2-player game. The results are
summarized in Tab. 1. We would like to highlight two key
facts which came out of the experiments: (a) In all three
cases, when we treated the environmental noise in the
worst case fashion, the synthesis process failed to provide
us any controller, and (b) as we decreased the size of
the abstract states (i.e., finer abstraction), the bound on
the approximation error got monotonically smaller, which
empirically confirms the intuition that the quality of the
approximation improves with finer abstraction.
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