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Abstract
A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has
become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to
uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile
thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory
(VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording
their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover
the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position
however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG
decoding results from our originally planned analyses were confounded. In addition to the eye movement
analyses, we also present the original analyses to highlight how these might have readily led to invalid
conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer
that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We
conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-
related confounds.
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Significance Statement

Neural decoding is an important and relatively novel technique that has opened up new avenues for
cognitive neuroscience research. However, with its promises also come potential caveats. In this study we
show that neural decoding may be susceptible to confounds induced by small task- and stimulus-specific
eye movements in the context of a visual working memory (VWM) task. Such eye movements during
working memory tasks have been reported before and may in fact be a common phenomenon. Given the
widespread use of neural decoding and the potentially contaminating effects of eye movements, we
therefore believe that our results are of significant relevance for the field.
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Introduction
Neural decoding, or multivariate pattern analysis

(MVPA), is a popular analysis technique that has obtained
considerable momentum in the field of cognitive neuro-
imaging (Haxby et al., 2014; Grootswagers et al., 2017). It
refers to uncovering a factor of interest, for instance stim-
ulus identity, from multivariate patterns in neural signals
such as those measured by magnetoencephalography
(MEG) or functional magnetic resonance imaging (fMRI).
Decoding allows one to probe the representational con-
tents of a neural signal, rather than overall activity levels,
with superior sensitivity. However, this sensitivity may
require extra vigilance at the end of the user, because
these analyses may also be particularly sensitive to po-
tentially confounding factors. Here we demonstrate such
an example, specifically in the context of visual working
memory (VWM), where a decoding analysis is contami-
nated by stimulus-specific eye movements. Given the
widespread use of these techniques and its pivotal con-
tributions to contemporary VWM theories, we argue that
appreciation of these potential caveats is important.

VWM is the ability to retain and use visual information
about the world for a short period of time, even when the
original external source of that information is no longer
available. Neural decoding has been frequently applied in
the study of VWM to elucidate where, when and how a
memorandum is encoded in the brain. This was first dem-
onstrated by Harrison and Tong (2009) and Serences et al.
(2009), who were able to decode the orientation of a
memorized grating from visual cortex. Further VWM de-
coding studies extended Harrison and Tong (2009)’s par-
adigm in varying ways to study, among others, mental
imagery, mental transformations, and spatial working
memory (Albers et al., 2013; Christophel et al., 2015,
2017; Foster et al., 2016; Gayet et al., 2017). The para-
digm has also been ported to electrophysiological studies
using MEG or electroencephalography to capitalize on the
high temporal resolution offered by those methods (Wolff
et al., 2015, 2017; Foster et al., 2016; King et al., 2016).
These results have led to important new theories, among
others the idea that high-fidelity VWM representations are

stored in early sensory cortex (Albers et al., 2013;
Sreenivasan et al., 2014), the activity-silent coding hy-
pothesis (Stokes, 2015; Wolff et al., 2015, 2017; Rose
et al., 2016; Rademaker and Serences, 2017) and the
dynamic coding framework (Stokes et al., 2013, 2015;
King et al., 2016; Spaak et al., 2017).

In the current study, human volunteers performed a
combined VWM/imagery task, while we traced the repre-
sentational contents of their neural activity as measured
by MEG. The experiment was designed to elucidate the
temporal profile of the memorized item’s neural represen-
tation. However, control analyses revealed that our data
were severely contaminated by small eye movements. In
this article, we first describe the eye movement analysis to
show how the identity of the memorized item could be
decoded from gaze position. Next, we present the naive
results as they would have been, had we not been aware
of the confound. This highlights how these could easily
have been mistaken to provide genuine insight into the
neural mechanisms underlying VWM. Finally, we present a
potential solution by training the decoders on separate
functional localizer blocks, which allowed us to extract the
sensory-specific neural patterns, thereby effectively by-
passing the eye-movements confounds.

Materials and Methods
Subjects

Thirty-six human volunteers were recruited from the
local institute’s subject pool to participate in a behavioral
screening session. Of these, 24 (13 male; mean age: 26.8
years, range: 18–60) were selected to participate in the
MEG experiment (see below, Experimental design and
procedure). Of these 24 selected subjects, three were
excluded from MEG analysis due to poor data quality and
another four were excluded from the analyses regarding
eye movements, because the eye-tracker failed to track
the eye reliably in those subjects. The experiment was
approved by the local ethics committee and conducted
according to the guidelines set out by the committee. All
participants provided written informed consent and re-
ceived either monetary compensation or course credits.

Stimuli
Stimulation was visual and consisted of sinusoidal grat-

ings with a spatial frequency of 1 cycle/°, 80% contrast
and one random phase per experimental block. The grat-
ings were masked at an outer radius of 7.5° and an inner
aperture radius of 0.7° and presented on a gray back-
ground (luminance: 186 cd/m2). Stimuli were generated
and presented using MATLAB with the Psychtoolbox ex-
tension (Kleiner et al., 2007).

Experimental design and procedure
The main task was to vividly imagine and remember an

oriented grating and, in some conditions, mentally rotate
this grating over a certain angle. Each trial began with a
dual cue that indicated both the amount (presented above
fixation) and the direction (� for clockwise and � for
counterclockwise, presented below fixation) of mental ro-
tation (MR) that was to be performed in that trial (Fig. 1).
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The amount could be either 0°, 60°, 120°, or 180°, in either
clockwise or counterclockwise direction, where 0° corre-
sponded to a VWM task. This condition will henceforth be
referred to as the VWM condition, and the other three
conditions, which corresponded to imagery, as the MR
conditions. This cue lasted for 417 ms, after which a blank
screen was shown for another 417 ms. A fixation dot (four
pixels in diameter) was present throughout the entire trial,
and throughout the entire block. After the blank, a grating
was presented for 217 ms that could have either of three
orientations: 15°, 75°, or 135° (clockwise with respect to
vertical). Next, a blank delay period of 8017 ms followed,
during which subjects were required to keep the starting
grating in mind and, in a subset of trials, mentally rotate it.
The delay period was terminated by the presentation of a
probe grating for 217 ms, whose orientation was slightly
jittered (see below, Staircase procedure) with respect to
the orientation that subjects were supposed to have in
mind at that moment. Subjects then indicated with a
button press whether the probe was oriented clockwise or
counterclockwise relative to their internal image. The re-
sponse period lasted until 2033 ms after probe, after
which feedback was given. There were three trials per
design cell (four arcs of rotation and two directions) per
block, resulting in 24 trials per block. In addition, there
were two catch trials per block, in which the probe grating
was presented at an earlier moment in the delay interval to
gauge ongoing rotation. All trials were presented in pseu-
dorandomized order. The catch trials were excluded from
further analysis, because subjects indicated to find them
difficult and confusing. In general, each experiment con-
sisted of six experimental blocks (although some subjects
performed five, seven, or eight blocks), preceded by one
or more practice blocks, resulting in a total of 144 exper-
imental trials for most of the participants.

Interleaved with the VWM/imagery blocks, there were
six functional localizer blocks (Fig. 1B,C). In these blocks,
gratings of six different orientations (15° to 165°, in steps
of 30°) were presented for 250 ms with an intertrial interval
of 750 ms. Each block consisted of 120 trials, resulting in
a total of 120 trials per orientation. The task was to press
a button when a brief flicker of the fixation dot occurred.
Such a flicker occurred between 8 and 12 times (randomly
selected number) per block, at random times. Using such
a task we ensured that spatial attention was drawn away
from the gratings while stimulating subjects to maintain
fixation, allowing us to record activity that predominantly
reflected bottom-up, sensory-specific signals (Mostert
et al., 2015).

Before the MEG session, the volunteers participated in
a behavioral screening session that served to both train
the subjects on the task as well as to assess their ability
to perform it. Subjects were instructed to mentally rotate
the stimulus at an angular velocity of 30°/s by demon-
strating examples of rotations on the screen. Moreover,
during this session subjects were required to press a
button as soon as they achieved a vivid imagination of the
grating on completion of the cued rotation. This provided
a proxy of the speed at which they actually performed the
rotation and was used as selection criterion for participa-
tion in the MEG session.

Staircase procedure
The amount of jitter of the probe grating was deter-

mined online using an adaptive staircasing procedure to
equalize subjective task difficulty across conditions and
subjects. The starting difference was set to 15° and was
increased by 1° following an incorrect response and de-
creased by 0.5488 after two consecutive correct re-
sponses. Such a procedure has a theoretical target

Figure 1. Experimental paradigm. A, In the combined VWM/imagery blocks, subjects were instructed to vividly imagine a grating and
to either keep that in mind (VWM condition) or rotate it mentally over a cued number of degrees (MR condition). B, In the functional
localizer block, oriented gratings were continuously presented while the subject’s attention was drawn to a task at fixation. C, The
VWM/imagery and localizer blocks were performed in alternating order.
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performance of �80% correct (Garcı´´a-Pérez, 1998). Four
separate staircases were used, one for each of the VWM
and MR conditions.

MEG recordings, eye-tracker recordings, and pre-
processing

Neural activity was measured using a whole-head MEG
system with 275 axial gradiometers (VSM/CTF Systems)
situated in a magnetically shielded room. A projector
outside the room projected via a mirror system onto the
screen located in front of the subject. Fiducial coils posi-
tioned on the nasion and in the ears allowed for online
monitoring of head position and for correction in between
blocks if necessary. Both vertical and horizontal electro-
oculogram (EOG) as well as electrocardiogram were ob-
tained to aid in the recognition of artifacts. All signals were
sampled at 1200 Hz and analyzed offline using the Field-
Trip toolbox (Oostenveld et al., 2011). The data were
notch-filtered at 50 Hz and corresponding harmonics to
remove line noise, and subsequently inspected in a semi-
automatic manner to identify irregular artifacts. After re-
jection of bad segments, independent component
analysis was used to remove components that corre-
sponded to regular artifacts such as heartbeat, blinks and
eye movements (although our results suggest that the
removal of eye movement-related artifacts was imperfect,
see Results and Discussion). The cleaned data were
baseline-corrected on the interval of -200–0 ms, relative
to stimulus onset.

Gaze position and pupil dilation were continuously
tracked throughout the experiment using an Eyelink 1000
(SR Researcher) eye-tracker. The eye-tracker was cali-
brated before each session and signals were sampled at
1200 Hz. Because we were interested in eye-movements
induced by the experimental stimulation, we removed any
slow drifts in the signal by baseline-correcting the signal
on an interval of -200–0 ms relative to cue onset.

Data sharing
All data, as well as analysis scripts required to obtain

the presented figures, are available from the Donders
Institute for Brain, Cognition, and Behavior repository at
http://hdl.handle.net/11633/di.dc-
cn.DSC_3018016.04_526.

Classification and decoding analyses
Originally, we first focused on the neural data. Broadly,

we conducted two lines of decoding analyses. In the first,
we focused only on the blocks in which participants per-
formed the combined VWM/imagery task, using 8-fold
cross-validation. We trained a three-class probabilistic
classifier that returns the probability that a given trial
belongs to either of the three presented grating orienta-
tions. To improve signal-to-noise ratio, yet retain the abil-
ity to draw firm conclusions regarding the timing of any
decoded signal, we smoothed the data using a moving
average with a window of 100 ms. The classifier was
trained across the spatial dimension (i.e., using sensors as
features), on trials from all conditions (i.e., all amounts and
directions of rotation). This may seem counterproductive,
because the mental contents diverge over the delay in-

terval and there should therefore be no systematic rela-
tionship between the MEG data and the stimulus label.
However, our rationale was that regardless of condition,
subjects need to first perceive, encode and maintain the
presented stimulus before they can even commence the
task, be it VWM or MR. Thus, we expected to be able to
extract the neural pattern of the presented stimulus during
at least the physical presentation and a brief moment after
that. This classifier was then trained and applied across all
time points, resulting in a temporal generalization matrix
(King and Dehaene, 2014). It is important to note that we
trained the classifiers only using the labels of the pre-
sented stimulus but sorted the data in varying ways when
testing the performance. For example, by looking at an
early training time point, but a late testing time point, we
tested whether we could decode the orientation of the
grating kept in mind near the end of the delay period, on
the basis of the pattern evoked by the presented stimulus
early in the trial.

In the second line of analysis, we trained a continuous
orientation decoder on the functional localizer. The larger
number of orientations sampled in the functional localizer
allowed us to decode a continuous estimate of repre-
sented orientation, rather than a discrete one from a fixed
number of classes. We applied this decoder to the VWM/
imagery task and subsequently related the decoded ori-
entation to the true presented orientation by calculating a
quantity intuitively similar to a correlation coefficient (see
below, Continuous orientation decoder). Here too, we
extended the procedure to include all pairwise training
and testing time points, resulting in temporal generaliza-
tion matrices (King and Dehaene, 2014).

In the control analysis, where we tested for a systematic
relationship between gaze position and VWM contents,
we repeated the first line of analysis described above, but
instead used the gaze position (x- and y-coordinates) as
features rather than the MEG data.

Multi-class probabilistic classifier
The three-class classifier was based on Bishop (2006,

pp 196–199). Briefly, the class-conditional densities were
modeled as Gaussian distributions with assumed equal
covariance. By means of Bayes’ theorem, and assuming a
flat prior, this model was inverted to yield the posterior
probabilities, given the data. Specifically, let x be a col-
umn vector with length equal to the number of features
[number of sensors for MEG data, two for gaze position
(horizontal and vertical location)] containing the data to be
classified, then the posterior probability that the data
belongs to class k is given by the following equations:

P�class � k�x �
exp �ak�

�j exp�aj�

ak�x� � wk
Tx � wk0

wk � S�1mk
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wk0 � �
1
2

mk
TS�1mk

where mk is the mean of class k and S is the common
covariance, both obtained from the training set. The latter
was calculated as the unweighted mean of the three
covariance matrices for each individual class, and subse-
quently regularized using shrinkage (Blankertz et al., 2011)
with a regularization parameter of 0.05 for the MEG data
and 0.01 for the eye-tracker analysis.

Continuous orientation decoder
The continuous orientation decoder was based on the

forward-modeling approach as described in Brouwer and
Heeger (2009, 2011) but adapted for improved perfor-
mance (Kok et al., 2017). The forward model postulates
that a grating with a particular orientation activates a
number of hypothetical orientation channels, according to
a characteristic tuning curve, that subsequently lead to
the measured MEG data. We formulated a model with 24
channels spaced equally around the circle, whose tuning
curves were governed by a Von Mises curve with a con-
centration parameter of 5. Note that all circular quantities
in the analyses were multiplied by two, because the for-
mulas we used operate on input that is periodic over a
range of 360° but grating orientation only ranges from 0°
to 180°. Next, we inverted the forward model to obtain an
inverse model. This model reconstructs activity of the
orientation channels, given some test data. In this step we
departed from Brouwer and Heeger (2009, 2011)’s origi-
nal formulation in two aspects. First, we estimated each
channel independently from each other, allowing us to
include more channels than there are stimulus classes.
Second, we explicitly took into account the correlational
structure of the noise, which is a prominent characteristic
of MEG data, to improve decoding performance
(Blankertz et al., 2011; Mostert et al., 2015). For full imple-
mentational details, see Kok et al. (2017). The decoding
analysis yields a vector c of length equal to number of
channels (24 in our case) with the estimated channel
activity in a test trial, for each pairwise training and testing
time point. These channels activities were then trans-
formed into a single orientation estimate � by calculating
the circular mean (Berens, 2009) across all the orienta-
tions the channels are tuned for, weighted by each indi-
vidual activation:

� � arg ��
j

cjexp �i�j��
where the summation is over channels, �j is the orienta-
tion around which the jth channel tuning curve is cen-
tered, and i is the imaginary unit. These decoded
orientations can then be related to the true orientation,
across trials, as follows:

z �
1
N �

k

N

exp�i��k � �k��

	 � �z�cos�arg �z��

where N is the number of trials and �k is the true orienta-
tion on trial k. The quantity 	 is also known as the test
statistic in the V test for circular uniformity, where the
orientation under the alternative hypothesis is prespeci-
fied (Berens, 2009). This quantity has properties that
make it intuitively similar to a correlation coefficient: it is
�1 when decoded and true orientations are exactly equal,
-1 when they are in perfect counterphase and 0 when
there is no systematic relationship or when they are per-
fectly orthogonal.

Statistical testing
All inferential statistics were performed by means of a

permutation test with cluster-based multiple comparisons
correction (Maris and Oostenveld, 2007). These were ap-
plied to either whole temporal generalization matrices, or
horizontal cross-sections thereof (i.e., a fixed training win-
dow). These matrices/cross-sections were tested against
chance-level (33%) in the classification analysis, or
against zero in the continuous decoding analysis. In the
first step of each permutation, clusters were defined by
adjacent points that crossed a threshold of p � 0.05
according to a two-tailed one-sample t test. The t values
were summed within each cluster, but separately for pos-
itive and negative clusters, and the largest of these were
included in the permutation distributions. A cluster in the
true data were considered significant if its p value was
�0.05. For each test, 10,000 permutations were con-
ducted.

Spatial patterns and source analysis
To interpret the signals that the classifier and decoder

pick up, we looked at the corresponding spatial patterns
(Haufe et al., 2014). The spatial pattern is the signal that
would be measured if the latent variable that is being
decoded is varied by one unit. For both the probabilistic
classifier and the continuous orientation decoder, this
comes down to the difference ERF between each cate-
gory and the average across all categories. This yields
one spatial pattern for each class, and these were sub-
sequently averaged across classes, as well as across time
of interest, and fed into source analysis and synthetic
planar gradient transformation. This transformation refers
to a procedure whereby MEG data recorded with axial
gradiometers is transformed as if it were measured by
planar gradiometers (Bastiaansen and Knösche, 2000).
The main advantage is that the spatial distribution of the
resulting data is more readily interpretable.

For source analysis, we used a template anatomic scan
provided by FieldTrip to create a volume conduction
model based on a single shell model of the inner surface
of the skull. The source model consisted of a regular grid
spaced 0.5 cm apart that encompassed the entire brain.
Leadfields were calculated and rank-reduced to two di-
mensions, to accommodate the fact that MEG is blind to
tangential sources. The covariance of the data were cal-
culated over the window of 1–8 s post-stimulus and
regularized using shrinkage (Blankertz et al., 2011) with a

New Research 5 of 14

July/August 2018, 5(4) e0401-17.2018 eNeuro.org



regularization parameter of 0.05. The leadfields and data
covariance were then used to calculate linearly con-
strained minimum variance spatial filters (LCMV, also
known as beamformers; Van Veen et al., 1997). Applying
these filters to sensor-level data yields activity estimates
of a two-dimensional dipole at each grid point. We further
reduced these estimates to a scalar value by means of the
Pythagorean theorem. This leads to a positivity bias how-
ever, that we corrected for using a permutation procedure
(Manahova et al., 2017). The number of permutations was
10,000. The final result was interpolated to be projected
on a cortical surface and quantifies the degree to which a
particular area contributed to the performance of the
classifier/decoder.

Results
Behavioral results

The average accuracies in the MEG session for the four
conditions ranged from 68% to 72%, confirming that
subjects were able to do the task, as well as that the
staircase procedure was successful. The average final
jitter estimate from the staircase procedure for the 0°, 60°,
120°, and 180° conditions were as follows (95%-CI in
parentheses): 3.1° (0.98-5.2), 11.0° (8.87-13.0), 13.4°
(11.35–15.52), and 6.5° (4.42-8.60), respectively. With the
exception of the 180° condition, the rising trend in these
values suggests that subjects found the task more difficult
when the amount of rotation was larger. The relatively low
value for the 180° condition however indicates that this
condition was relatively easy. One explanation may be the
fact that subjects did not require the final product of the
MR to perform well on the task. It is possible that they
simultaneously memorized the starting orientation. After
having finished the MR, regardless of how well they were
able to do so, they could simply reactivate the initial image
and use that in their judgment.

Gaze position tracks VWM contents
In the eye movement analysis, we investigated whether

there is a relation between gaze position and the item held
in VWM. We adopted the same analysis in our original
main analysis (see Materials and Methods), but instead
entered the horizontal and vertical gaze position, mea-
sured by the eye-tracker, as features in the decoding
analysis. Specifically, we constructed a three-class prob-
abilistic classifier that yields the posterior probabilities
that any given data belong to either of three presented
orientations. That is, the classifier was trained according
to the labels of the presented stimulus. The classifier was
trained on trials from all conditions (i.e., all amounts and
directions of rotation) pooled together to obtain maximum
sensitivity (for rationale, see Materials and Methods). To
verify whether we could decode stimulus identity from the
gaze position, we first applied the classifier to the same
(pooled) data using cross-validation. We found above-
chance decoding in a time period of �0.5–3.5 s post-
stimulus that was marginally significant (Fig. 2, Extended
Data Fig. 2-1). This indicates that subjects moved their
eyes in a way consistent with the present stimulus, and
kept it there for �2–3 s.

Then, when looking at the decoded signal within the
VWM condition only, we found a sustained pattern (Fig.
2A), although again only marginally significant. This sug-
gests that on perceiving and encoding the stimulus, sub-
jects move their eyes in a way systematically related to
the identity of the stimulus and keep that gaze position
stable throughout the entire delay period.

Contrary to previously used paradigms, where two
stimuli were displayed at the beginning of a trial and a
retro-cue signaled the item that was to be remembered
(Harrison and Tong, 2009; Albers et al., 2013; Christophel
et al., 2015, 2017), in the present experiment we only
showed one stimulus. It is therefore possible that the
sustained decoding performance does not necessarily
reflect VWM contents, but simply that the subjects moved
their gaze according to the presented stimulus rather than
to their mental contents. However, if this were true, then
we should find a similar effect in the three MR conditions.
If, on the other hand, the classifier picked up the item kept
in mind, then the probability that a trial is assigned to the
same class as the presented stimulus should drop over
time, as the subject rotates the mentally imagined grating
away from the starting orientation. Our results were con-
sistent with the latter scenario (Fig. 2B). Whereas the
probability that the data belong to the same class as the
presented stimulus stays steadily above chance in the
VWM condition, it drops to lower levels in the three MR
conditions. Moreover, we found evidence that the gaze
moves toward a position consistent with the orientation of
the presented grating plus or minus 60° (depending on the
cued direction of rotation) in the MR conditions, but not
any further (Fig. 3A,B).

Figure 2C displays the grand average, as well as indi-
vidual average gaze positions during 0.5–1.5 s after stim-
ulus onset, separately for each of the three stimulus
conditions, collapsed across VWM and MR conditions.
Although there is large variability among subjects in the
magnitude of the eye movements, a general trend can be
discerned where subjects position their gaze along the
orientation axis of the grating. The mean disparity in visual
angle with respect to pre-trial fixation was only 0.23°,
which is in the same order of magnitude as reported
previously (Foster et al., 2016), although for some sub-
jects, it was larger, up to 1.5°.

In short, there was a systematic relationship between
gaze position and stimulus orientation, after which the
gaze position tracked the orientation kept in mind during
the delay period, but only for a maximum of approximately
�60° relative to starting orientation. These findings raise
the concern that any potential decoding of VWM items
from MEG signals, as was the aim of our original analysis,
could be the result of stimulus-related eye confounds (for
possible underlying mechanisms, see Discussion).

Sustained decoding of VWM items from MEG signals
The original aim of this study was to assess the repre-

sentational contents of the neural signals while the sub-
jects were engaged in VWM/imagery. We present these
results here, to demonstrate how they could easily have
been mistaken for genuine results, had we been oblivious
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to the systematic eye movements. We constructed a
three-class probabilistic classifier in which the MEG sen-
sors were entered as features. As before, the classifier
was trained on trials from all conditions (i.e., all amounts
and directions of rotation) pooled together for maximum
sensitivity (for rationale, see Materials and Methods). To
test whether we could decode stimulus identity from the
MEG signal, we applied the classifier to the same (pooled)
data using cross-validation and found successful decod-
ing during a period of up to �2.5 s after stimulus onset
(Fig. 4, Extended Data Fig. 4-1). The stimulus itself was
presented for only 250 ms. Therefore, the later part of this
period could have be interpreted as an endogenous rep-
resentation, for instance stemming from active mental
instantiation by the subject, although in reality it is more
likely to be the result of eye movements.

Next, we looked at the decoding performance in the
VWM condition alone, using the classifier trained on all
conditions as described above. We found that the identity
of the memory item could be decoded during the entire
delay interval, using classifiers obtained from a training
window of �0.5–1.5 s (Fig. 4A). The performance stayed
above chance-level (33.3%) at a stable level of �37%
throughout the entire interval (Fig. 4B).

Again, we found this sustained pattern to be specific to
the VWM condition, because the probability that the data
belong to the same class as the presented stimulus drops

over time in the three MR conditions (Fig. 4B). As ex-
plained in the previous paragraph, this indicates that the
sustained above-chance classification in the VWM condi-
tion cannot be explained as a long-lasting stimulus-driven
effect (e.g., stimulus aftereffect), but must also reflect the
memorized item to at least some degree. In the 180°
condition, the posterior probability that the data belong to
the same classes as the presented stimulus later re-
emerges as a rising, although nonsignificant trend. This
can be explained by the fact that the final orientation that
the subjects should have in mind in the 180° condition is
identical to the orientation of the presented stimulus at the
start of a trial.

To facilitate interpretation of these results, we in-
spected the classifier’s corresponding sensor topography
(Fig. 4C) and source localization (Fig. 4D), averaged over
the training time period of 0.5–1.5 s. These indicate that
both occipital (Harrison and Tong, 2009; Albers et al.,
2013) and prefrontal sources (Sreenivasan et al., 2014;
Spaak et al., 2017) contributed to the classifier’s perfor-
mance. Indeed, the prefrontal sources could in reality
point to ocular sources. Moreover, although the contribu-
tion from occipital regions may seem to provide evidence
that the decoder genuinely picks up visual representa-
tions, these sources could in fact also be driven by the eye
movements (see Discussion).

Figure 2. Gaze position classification results, cross-validation within VWM/imagery task. A, Temporal generalization matrix of
classification performance in the VWM condition. The color scale denotes the average posterior probability that the data belong to
the same class as the presented stimulus. The gray outline demarcates a near-significant cluster (p � 0.069). Note that this matrix
is asymmetric because only the VWM condition is shown, while the classifier was trained on the data from all VWM/MR conditions.
For this reason, the data after �3 s are not expected to contain systematic patterns and therefore the training time axis has been
truncated (Extended Data Fig. 2-1). B, Classification performance averaged over the training time window of 0.5–1.5 s, separately for
the VWM and the three MR conditions. Note that the 0° condition corresponds directly to the matrix in A. The two vertical dashed lines
indicate stimulus and probe onset. Shaded areas indicate the SEM. Significant clusters are indicated by the horizontal bars in the
lower part of the figure. C, Average gaze position during 0.5–1.5 s after stimulus onset, separately per stimulus orientation. Each
transparent dot corresponds to an individual subject. The crosses are the grand averages, where the vertical and horizontal arms
denote the SEM. The three colored lines depict the orientation of the three stimuli.

New Research 7 of 14

July/August 2018, 5(4) e0401-17.2018 eNeuro.org

https://doi.org/10.1523/ENEURO.0401-17.2018.f4-1
https://doi.org/10.1523/ENEURO.0401-17.2018.f2-1


Finally, we investigated whether we could decode the
intermediate (for the 120° and 180° rotations) and the final
orientations in the MR conditions. We found some indi-
cation that the final orientation, but not the intermediate
ones (Fig. 5B), indeed emerges halfway through the delay
period, but this effect was not statistically significant (Fig.
5A).

Decoding visual representations from sensory areas
In a third analysis, we trained a continuous orientation

decoder (see Materials and Methods) on the functional
localizer data (Fig. 1B,C) and applied these decoders to
the data from the VWM/imagery task (King and Dehaene,
2014). The main advantage of this method is that it en-
sures that the decoder is primarily sensitive to sensory
signals, and not to higher-level top-down processes in-
volved in mental manipulation of an image. It thus allows
us to track sensory-specific activation throughout the
delay period (Mostert et al., 2015). Cross-validation within
the functional localizer confirmed that we were indeed
able to reliably decode orientation-specific information
from activity evoked by passively perceived gratings (Fig.
6, Extended Data Fig. 6-1). Moreover, we were not able to
decode grating orientation on the basis of gaze position,
verifying that the data from the functional localizer were
not contaminated by stimulus-specific eye movements
(Extended Data Fig. 6-2).

Figure 3. Complete gaze position classification results. Analo-
gously to Figure 2, the classifier was trained on the time window
of 0.5–1.5 s after stimulus onset, and according to the labels of
the presented stimulus. A, Average posterior probability that the
data belong to the class of the target orientation, that is, the
orientation that the subjects were supposed to have in mind at
the end of the delay period. For both the 0° and the 180°
conditions, the target orientation was the same as the presented
stimulus. For the 60° and 120° conditions, however, the target
and presented stimulus were different, hence the below-chance
probabilities at the beginning of the delay period. B, The average
posterior probabilities that the data belong to either of three
classes: the same orientation as the presented stimulus, the

Figure 3. continued
orientation of the presented stimulus �60° or the orientation of
the presented stimulus �120°, plotted separately for the four
VWM/MR conditions. The plus/minus sign is due to the MR being
performed either clockwise or counterclockwise. This figure
gives insight into whether the feature patterns corresponding to
any intermediate orientations become active during MR, which is
particularly relevant for the 120° and 180° conditions. For in-
stance, in the 180° counterclockwise condition, the subject
would start with a mental image with the same orientation as the
presented stimulus, then pass through, respectively, -60° and
-120°, ultimately to reach the target of -180° (i.e., 0°). If the gaze
positions corresponding to all these orientations become active
in sequence, one would first expect a peak in posterior proba-
bility that the data belong to the same class as the stimulus (gray
line, bottom figure), then a peak in the probability of belonging to
the presented stimulus -60° (orange line), then for -120° (blue
line), and finally again for 0° (gray line). It is important to realize
that below-chance probabilities in these analyses are meaning-
ful. For instance, consider A. Here, the probability that the data
belong to the same class as the target is plotted. Hence, in the
60° and 120° conditions, the classifier correctly identifies that the
data do not belong to the same class as the target in the
beginning of the interval, because the starting orientation was
different. As another example, consider the red line in the second
panel in B. This line plots the probability that the data belong to
the starting orientation �60°. On presentation of the starting
orientation, the classifier therefore yields a significant below-
chance probability. However, as the subject performs the �60°
rotation over the course of the trial, the classifier increasingly
picks up this rotated image, hence giving above-chance proba-
bilities. Note that A, B, as well as Figure 2, all depict the same
data but visualized in different manners. Shaded areas denote
the SEM and significant clusters are depicted by the thick hori-
zontal lines at the bottom of the panels.
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In the VWM condition, the decoders trained on the
functional localizer data could reliably decode the orien-
tation of the presented stimulus (Fig. 6A). Moreover, for a
training time of �90–120 ms, we could decode the stim-
ulus for a prolonged time, lasting over 1 s after stimulus
onset. Interestingly, this training time point coincides with
the time at which peak performance is obtained within the
localizer itself (Extended Data Fig. 6-1). Comparing the
decoding trace within this training time window with the
three MR conditions, it can be seen that grating orienta-
tion can be decoded in all four conditions for a sustained
period of �500 ms (Fig. 6B). This is in sharp contrast to
the extended decoding of the presented stimulus
throughout the entire delay period, found within the VWM/
imagery task using cross-validation (Fig. 4).

We inspected the spatial pattern (Fig. 6C) and corre-
sponding source topography (Fig. 6D) for the decoders,

averaged across training time 90–120 ms. These highlight
primarily occipital regions as contributing to the decoder’s
performance, consistent with our premise that the func-
tional localizer primarily induced bottom-up sensory sig-
nals, especially during this early time interval (Mostert
et al., 2015).

In summary, our findings suggest that the stable, per-
sistent representation found in our within-task MEG de-
coding result may well be attributed to stimulus-specific
eye movements, although the magnitude of the eye move-
ments were only small. In contrast, no clear evidence was
found for such a long-lasting representation when training
the decoder on the functional localizer. Given that the
localizer was not contaminated by stimulus-specific eye
movements, these results thus provide a more reliable
picture of the sensory representations during the delay
interval.

Figure 4. MEG classification results. A, Same as in Figure 2A, except the classification was performed on MEG data, rather than on
gaze position. The black outline demarcates a significant cluster (p � 0.006). B, Same as in Figure 2B, except the analysis was
performed on MEG data. Synthetic planar gradiometer topography (C) and source topography (D) of areas that contributed to the
classifier. See also Extended Data Figure 4-1.
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Figure 5. Complete MEG classification results, visualized in a variety of ways. This figure is analogous to Figure 3, except the classifier
is trained and tested on MEG data rather than on gaze position.
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Discussion
Neural decoding is a powerful and promising technique

for neuroimaging studies (Haxby et al., 2014; Grootswa-
gers et al., 2017) that has led to substantial advancement
in the field of VWM over recent years (Harrison and Tong,
2009; Serences et al., 2009; Albers et al., 2013; Wolff
et al., 2015, 2017). This study also employed neural de-
coding techniques, with the original aim to investigate the
temporal dynamics of sensory representations during
VWM. However, we found that our data were contami-
nated by small but systematic eye movements, whereby
gaze position was related to the stimulus held in mind.
This jeopardized our ability to interpret the neural decod-
ing results, results that otherwise would have seemed

sensible, because very similar results could be obtained
by considering gaze position only.

There are at least three possible mechanisms via which
stimulus-specific eye movements may confound our re-
sults. First, eye movements are known to cause stereo-
typical artifacts in MEG recordings. Due to the positively
charged cornea and negatively charged retina, the eyeball
acts as an electromagnetic dipole whose rotation is
picked up by the MEG sensors. The spatial pattern that
the dipole evokes is directly related to its angle, or in other
words, to the position of the subject’s gaze (Plöchl et al.,
2012). Thus, if the subject moves his/her eyes in response
to the grating in a manner related to the orientation of that
grating, then this will induce a specific pattern in the MEG
signals, which in turn is directly related to the grating

Figure 6. MEG decoding results, generalized from localizer to VWM/imagery task. A, Temporal generalization matrix of orientation
decoding performance, for which the decoder was trained on all time points in the functional localizer and tested across all time points
in the VWM/imagery task. The color scale reflects the correspondence between true and decoded orientation. The black outline
shows a significant cluster (p � 0.04). Note that the x- and y-axis in the figure are differently scaled for optimal visualization. B,
Decoding performance over time in the VWM/imagery task, averaged over decoders trained in the window of 0.09–0.12 s in the
localizer, separately for the VWM and three MR conditions. Shaded areas denote the SEM, and significant clusters are indicated by
the horizontal bars. Synthetic planar gradiometer topography (C) and source topography (D) of areas that contribute to the decoder.
See also Extended Data Figures 6-1, 6-2.
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orientation. A decoding analysis applied to these signals
is then likely to pick up the patterns evoked by the eyeball
dipoles, confounding potential orientation-related infor-
mation stemming from genuine neural sources. In fact,
our source analysis hints at this scenario (Fig. 4D), as the
contributions from presumed prefrontal sources closely
resemble an ocular source.

Second, if the eyes move, then the projection falling on
the retina will also change, even when external visual
stimulation remains identical. Thus, if gaze position is
systematically modulated by the image that is perceived
or kept in mind, then so is the visual information transmit-
ted to the visual cortex. For example, if a vertical grating
is presented and kept in VWM, then the subject may
subtly move her or his gaze upward. Correspondingly, the
fixation dot is now slightly below fixation, thus leading to
visual cortex activity that is directly related to the retino-
topic position of the fixation dot. Our decoding analysis
may thus actually decode the position of the fixation dot,
rather than grating orientation, potentially leading to an
incorrect conclusion. Source analysis would in this sce-
nario also point to occipital sources, similarly to what we
found (Fig. 4D). Note that this mechanism is not specifi-
cally dependent on the presence of a fixation dot. A
systematic difference in eye position will also lead to
changes in the retinotopic position of, for instance, the
presentation display or the optically visible part of the
MEG helmet.

Third, if gaze position covaries with the mental image,
then decoding of the mental image will also reveal areas
that encode eye gaze position, such as oculomotor re-
gions in parietal and prefrontal cortex.

Our findings raise the question of why there were task-
induced eye movements that were directly related to the
grating kept in VWM. In fact, there is a considerable mass
of literature that describes the role of eye movements in
mental imagery. It has been found that subjects tend to
make similar eye movements during imagery as during
perception of the same stimulus (Brandt and Stark, 1997;
Laeng and Teodorescu, 2002; Laeng et al., 2014). Already
proposed by Donald Hebb (Hebb, 1968), it is now thought
that eye movements serve to guide the mental recon-
struction of an imagined stimulus, possibly by dwelling on
salient parts of the image (Spivey and Geng, 2001; Laeng
et al., 2014). Moreover, the specificity of the eye move-
ments is also related to neural reactivation (Bone et al.,
2017) and recall accuracy (Laeng and Teodorescu, 2002;
Laeng et al., 2014; Bone et al., 2017). Our findings are in
accordance with these studies. Subjects’ gaze was posi-
tioned along the orientation axis of the grating - that is, the
visual location within the stimulus that provided the high-
est information regarding its orientation and is thus ex-
actly what one would expect given that the task was to
make a fine-grained orientation comparison with a probe
grating. Importantly, however, subjects were explicitly in-
structed to maintain fixation throughout the entire trial. We
nevertheless observed that not all subjects adhered to
this requirement, albeit involuntarily.

Despite these problems associated with the systematic
eye movements in our experiment, it is still possible that

our decoding results do in reality stem from genuine
orientation information encoded in true neural sources. In
fact, we used independent component analysis in our
pre-processing pipeline to (presumably) remove eye-
movement artifacts. However, it would be very difficult, if
not impossible, to convincingly establish that no artifacts
remain and, considering the similarities between the de-
coding results from the MEG data (Fig. 4A,B) and the gaze
position (Fig. 2A,B), we feel any attempts at this would be
unwarranted.

Given the potential pervasiveness of systematic eye
movements in VWM/imagery tasks, and the demon-
strated susceptibility of our analysis methods to these
confounds, one wonders whether other studies may have
been similarly affected. Clearly, the first mechanism de-
scribed above involving the eyeball dipole would only
affect electrophysiological measurements like electroen-
cephalography and MEG, and has indeed been a concern
in practice (Foster et al., 2016). The second mechanism
however, whereby stimulus identity is confounded with
the retinal position of visual input, would also affect other
neuroimaging techniques such as fMRI. This confound
could be particularly difficult to recognize, because it
would also affect activity in visual areas. Moreover, be-
cause eye movements during imagery have been found to
be positively related to performance (Laeng and Teodor-
escu, 2002), this could potentially explain correlations
between VWM decoding and behavioral performance.
The third mechanism, whereby one directly decodes gaze
position from motor areas, could be a problem especially
for fMRI which, thanks to its high spatial resolution, might
be well able to decode such subtle neural signals. This
concern may be especially relevant for studies that inves-
tigate the role of areas involved in eye movements or
planning thereof, such as frontal eye fields or superior
precentral sulcus, in the maintenance of working memory
items (Jerde et al., 2012; Ester et al., 2015; Christophel
et al., 2017).

This leaves the question of how to deal with eye move-
ments in VWM/imagery tasks. Naturally, it is important to
record eye movements during the experiment, for in-
stance using an eye-tracker or EOG. One can then test for
any systematic relationship and, if found, investigate
whether it could confound the main results. In our case,
for example, decoding of gaze position leads to strikingly
similar results as those obtained from the MEG data.
Foster et al. (2016) on the other hand found that decoding
performance of working memory items decreased
throughout the trial, whereas the deviation in gaze posi-
tion increased, suggesting that eye confounds cannot
explain the main findings. Another approach might be to
design the experimental task in such a way that eye
movements are less likely. For example, by presenting
gratings laterally (Pratte and Tong, 2014; Ester et al.,
2015; Wolff et al., 2017), and assuming that VWM items
are stored in a retinotopically specific manner (Pratte and
Tong, 2014), the involuntary tendency to move one’s eyes
subtly along the remembered grating’s orientation axis
may become less strong, because those gratings are
located distantly from the gaze’s initial location (i.e., cen-
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tral fixation). Finally, a powerful approach could be to
adopt a separate functional localizer, which allows spe-
cific decoding of functionally defined representations
such as bottom-up, sensory-specific signals (Harrison
and Tong, 2009; Serences et al., 2009; Albers et al., 2013;
Mostert et al., 2015). If the localizer is well designed and
not systematically contaminated by eye movements, then
eye movements in the main task cannot have a systematic
effect on the decoded signal, thus effectively filtering
them out.

We designed a localizer that is specifically sensitive to
the neural representations encoded in bottom-up signals
evoked by passively perceived gratings. This allowed us
to address the question of whether the imagined stimulus
was encoded with a similar neural code as the perceived
gratings (Harrison and Tong, 2009; Albers et al., 2013).
Using this localizer, we indeed obtained MEG decoding
results that were very dissimilar from those obtained using
cross-validation within the combined VWM/imagery task.
We no longer found persistent activation of an orientation-
specific representation throughout the entire delay period.
Nevertheless, the sensory pattern did remain above base-
line for a period of �1 s, which is relatively long consid-
ering that the stimulus was presented for only 250 ms.
One explanation is that the stimulus was relevant for the
task. Previous work has shown that task relevance may
keep the sensory representation online for a prolonged
period even after the stimulus is no longer on the screen
(Mostert et al., 2015).

It should be pointed out that using a functional localizer
also has its intrinsic limitations. The most important being
that, while such an approach is primarily sensitive to a
functionally defined signal, it may at the same time be
blind to other relevant signals that were not a priori in-
cluded in the functional definition. The VWM literature
itself provides an instructive example: while the functional
localizer approach has clearly demonstrated sensory rep-
resentations of the memorandum in associated sensory
cortex (Harrison and Tong, 2009; Albers et al., 2013), it
would have missed relevant encoding in other regions in
the brain such as parietal and prefrontal cortex
(Christophel et al., 2015, 2017). Furthermore, the fact that
the decoders were trained on a functionally defined signal
does not mean that they are necessarily insensitive to
other signals, such as eye movement-related signals.
However, it is important to realize that the exact effect of
these other signals on the decoder’s output is not explic-
itly defined. These potential effects would therefore be
idiosyncratic to an individual’s data and are expected to
cancel out at the group level.

In summary, we demonstrate a case where decoding
analyses in a VWM/imagery task are heavily confounded
by systematic eye movements. Given the high potential
benefit of decoding analyses and its widespread use in
the study of working memory and mental imagery, we
argue that this problem may be more pervasive than is
commonly appreciated. Future studies could target this
question specifically and investigate how strong the con-
founds are exactly. One approach could be to systemat-
ically vary salient input and assess how this impacts

decoding performance (cf. the second mechanism de-
scribed above). Furthermore, it is important to realize that
this does not necessarily invalidate all previous studies.
While some previous results may have been afflicted, our
current understanding of the neural underpinnings of
VWM is still firmly grounded in converging evidence from
a wide variety of techniques, paradigms and modalities.
Nevertheless, we conclude that eye movement confounds
should be taken seriously in both the design as well as the
analysis phase of future studies.
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